

1	Improving thermodynamic profile retrievals from microwave
2	radiometers by including Radio Acoustic Sounding System (RASS)
3	observations
4	
5	
6	Irina V. Djalalova ^{1,2} , David D. Turner ³ , Laura Bianco ^{1,2} ,
7	James M. Wilczak ² , James Duncan ^{1,2} , Bianca Adler ^{1,2} and Daniel Gottas ²
8	
9	¹ Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, CO, USA
10	² National Oceanic and Atmospheric Administration, Physical Sciences Laboratory, Boulder, CO, USA
11	³ National Oceanic and Atmospheric Administration, Global Systems Laboratory, Boulder, CO USA
12	
13	
14	
15	
16	
17	
18	
19	Corresponding author address: Irina V. Djalalova (Irina.V.Djalalova@noaa.gov), NOAA/Physical
20	Science Laboratory, 325 Broadway, mail stop: PSD3, Boulder, CO 80305. Tel.: 303-497-6238.
21	Fax: 303-497-6181.
22	

- 23 Outline
- 24 Abstract
- 25 1. Introduction
- 26 2. XPIA dataset
- 27 2.1 MWR measurements
- 28 2.2 Radiosonde measurements
- 29 2.3 WPR-RASS measurements
- *30* **2.4 BAO data**
- 31 3. Physical retrievals
- 32 **3.1** Iterative retrieval technique
- 33 3.2 PR's bias correction
- 34 **3.3 Averaging kernel**
- 35 4. Results
- 36 4.1 PRs statistical analysis
- 37 4.2 Statistical analysis of PRs compared to NN retrievals
- 38 4.3 Statistics for the least close to the climatological profiles
- *39* **4.4 Virtual temperature statistics**
- 40 5. Conclusions
- 41 Data availability
- 42 Author contribution
- 43 Acknowledgments
- 44 References

45 Abstract

46	Thermodynamic profiles are often retrieved from the multi-wavelength brightness
47	temperature observations made by microwave radiometers (MWRs) using regression methods
48	(linear, quadratic approaches), artificial intelligence (neural networks), or physical-iterative
49	methods. Regression and neural network methods are tuned to mean conditions derived from
50	a climatological dataset of thermodynamic profiles collected nearby. In contrast, physical-
51	iterative retrievals use a radiative transfer model starting from a climatologically reasonable
52	value of temperature and water vapor, with the model run iteratively until the derived
53	brightness temperatures match those observed by the MWR within a specified uncertainty.
54	In this study, a physical-iterative approach is used to retrieve temperature and humidity
55	profiles from data collected during XPIA (eXperimental Planetary boundary layer Instrument
56	Assessment), a field campaign held from March to May 2015 at NOAA's Boulder Atmospheric
57	Observatory (BAO) facility. During the campaign, several passive and active remote sensing
58	instruments as well as in-situ platforms were deployed and evaluated to determine their
59	suitability for the verification and validation of meteorological processes. Among the deployed
60	remote sensing instruments was a multi-channel MWR, as well as two radio acoustic sounding
61	systems (RASS), associated with 915-MHz and 449-MHz wind profiling radars.
62	Having the possibility to combine the information provided by the MWR and RASS
63	systems, in this study the physical-iterative approach is tested with different observational
64	inputs: first using data from surface sensors and the MWR in different configurations, and then
65	including data from the RASS. These temperature retrievals are also compared to those derived
66	by a neural network method, assessing their relative accuracy against 58 co-located radiosonde

- 67 profiles. Results show that the combination of the MWR and RASS observations in the physical-
- 68 iterative approach allows for a more accurate characterization of low-level temperature
- 69 inversions, and that these retrieved temperature profiles match the radiosonde observations
- *70* better than all other approaches, including the neural network, in the atmospheric layer
- 71 between the surface and 5 km AGL. Specifically, in this layer of the atmosphere, both root
- 72 mean square errors and standard deviations of the difference between radiosonde and
- 73 retrievals that combine MWR and RASS are improved by ~0.5 °C compared to the other
- 74 methods. Pearson correlation coefficients are also improved.
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88

1. Introduction

89

05	
90	To monitor the state of the atmosphere for process understanding and for model
91	verification and validation, scientists rely on observations from a variety of instruments, each
92	one having its set of advantages and disadvantages. Using several diverse instruments allows
93	one to monitor different aspects of the atmosphere, while combining them in an optimized
94	synergetic approach can improve the accuracy of the information we have on the state of the
95	atmosphere.
96	During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA)
97	campaign, an U.S. Department of Energy sponsored experiment held at the Boulder
98	Atmospheric Observatory (BAO) in Spring 2015, several instruments were deployed (Lundquist
99	et al., 2017) with the goal of assessing their capability for measuring flow within the
100	atmospheric boundary layer. XPIA investigated novel measurement approaches, and quantified
101	uncertainties associated with these measurement methods. While the main interest of the XPIA
102	campaign was on wind and turbulence, measurements of other important atmospheric
103	variables were also collected, including temperature and humidity. Among the deployed
104	instruments were two identical microwave radiometers (MWRs) and two radio acoustic
105	sounding systems (RASS), as well as radiosondes launches that were used for verification.
106	MWRs are passive sensors, sensitive to atmospheric temperature and humidity content
107	that allow for a high temporal observation of the state of the atmosphere, with some
108	advantages and limitations. In order to estimate profiles of temperature and humidity, they
109	observe atmospheric brightness temperature and apply radiative transfer equations
110	(Rosenkranz, 1998) and neural network retrievals (Solheimet al., 1998a, and 1998b; Ware et al.,

111	2003), or physical retrieval methodologies that can include more information about the
112	atmospheric state in the retrieval process (Turner and Blumberg, 2019). Advantages of MWRs
113	include their compact design, the relatively high temporal resolution of the measurements (2-3
114	minutes), the possibility to observe the vertical structure of both temperature and moisture,
115	the deep layer of the atmosphere that can be monitored including during cloudy conditions,
116	and their capability to operate in a standalone mode. Disadvantages include the limited
117	accuracy, as the temperature and humidity profiles are not actively measured but retrieved,
118	their lower accuracy in the presence of rain because of scattering of radiation due to raindrops
119	in the atmosphere (and because some water can still deposit on the radome, although the
120	instruments use a hydrophobic radome and force airflow over the surface of the radome during
121	rain), rather coarse vertical resolution, and for retrievals the necessity to have a site specific
122	climatology. Other disadvantages include the challenges related to performing accurate
123	calibrations (Küchler et al., 2016, and references within), radio frequency interference (RFI), and
124	the low accuracy on the retrieved liquid water path (LWP) especially for values of LWP less than
125	50 g/m².
126	RASS, in comparison, are active instruments that emit a longitudinal acoustic wave
127	upward, causing a local compression and rarefaction of the ambient air. These density

128 variations are tracked by the Doppler radar associated with the RASS, and the speed of the

129 propagating sound wave is measured. The speed of sound is related to the virtual temperature

130 Tv (North et al., 1973), and therefore, RASS are routinely used to remotely measure vertical

- 131 profiles of virtual temperature in the boundary layer. Being an active instrument, the RASS is in
- 132 general more accurate than a passive instrument (Bianco et al., 2017), but they also come with

133	their sets of disadvantages. The main limitations of RASS for retrieval purposes are its low
134	temporal resolution (typically a 5-min averaged RASS profile is measured once or twice per
135	hour), and their limited altitude coverage. Recent studies (Adachi and Hashiguchi, 2019) have
136	shown that to make them more suitable to operate in urban areas RASS could use parametric
137	speakers to take advantage of their high directivity and very low side lobes. Nevertheless, the
138	maximum height reached by the RASS is still limited, being a function of both radar frequency
139	and atmospheric conditions (May and Wilczak, 1993), and is determined both by the
140	attenuation of the sound, which is a function of atmospheric temperature, humidity, and
141	frequency of the sound source, and the advection of the propagating sound wave out of the
142	radar's field-of-view. Therefore, data availability is usually limited to the lowest several km,
143	dependent on the frequency of the radar. In addition, wintertime coverage is usually
144	considerably lower than that in summer, due to a higher probability of stronger winds
145	advecting the sound wave away from the radar in the winter.
146	To get a better picture of the state of the temperature and moisture structure of the
147	atmosphere, it makes sense to try to combine the information obtained by both MWR and
148	RASS. Integration of different instruments has been of scientific interest for several years (Han
149	and Westwater 1995; Stankov et al. 1996; Bianco et al., 2005; Engelbart et al., 2009; Cimini et
150	al., 2020, Turner and Löhnert, 2020, to name some). In this study we particularly focus on the
151	combination of the MWR and RASS observations in the retrievals to improve the accuracy of
152	the temperature profiles in the lowest 5 km compared to the standard MWR retrievals
152 153	the temperature profiles in the lowest 5 km compared to the standard MWR retrievals obtained through neural network (NN) processing, or compared to physical retrieval

155	This paper is organized as follows: Section 2 summarizes the experimental dataset;
156	Section 3 introduces the principles of the physical retrieval approaches used to obtain vertical
157	profiles of the desired variables; Section 4 produces statistical analysis of the comparison
158	between the different retrieval approaches and radiosonde measurement; finally, conclusions
159	are presented in Section 5.
160	
161	2. XPIA data
162	The data used in our analysis were collected during the XPIA experiment, held in Spring
163	2015 (March-May) at the NOAA's Boulder Atmospheric Observatory (BAO) site, in Erie,
164	Colorado (Lat.: 40.0451 N, Lon.: 105.0057 W, El.: 1584 m MSL). XPIA was the last experiment
165	conducted at this facility, as after almost 40 years of operations the BAO 300-m tower was
166	demolished at the end of 2016 (Wolfe and Lataitis, 2018). XPIA was designed to assess the
167	capability of different remote sensing instruments for quantifying boundary layer structure, and
168	was a preliminary study as many of these same instruments were later deployed, among other
169	campaigns, for the second Wind Forecast Improvement Project WFIP2 (Shaw et al., 2019;
170	Wilczak et al., 2019) which investigated flows in complex terrain for wind energy applications,
171	and were for example used to study cold air pool and gap flow characteristics (Adler et al.,
172	2020; Banta et al., 2020; Neiman et al., 2019). The list of the deployed instruments included
173	active and passive remote-sensing devices, and in-situ instruments mounted on the BAO tower.
174	Data collected during XPIA are publicly available at <u>https://a2e.energy.gov/projects/xpia</u> . A
175	detailed description of the XPIA experiment can be found in Lundquist et al. (2017), while a

- 176 specific look at the accuracy of the instruments used in this study can be found in Bianco et al.
- 177 (2017).
- 178

179 2.1 MWR measurements

180 Two identical MWRs, managed by NOAA (MWR-NOAA) and by the University of 181 Colorado (MWR-CU), were deployed next to each other at the visitor center ~600 m south of 182 the BAO tower (see Lundquist et al., 2017 for a detailed map of the study area). Both MWRs 183 have 35-channels spanning a range of frequencies, with 21 channels in the lower (22-30 GHz) K-184 band frequency band, and 14 channels in the higher (51-59 GHz) V-band frequency band. 185 Frequencies in the K-band are more sensitive to water vapor and cloud liquid water, while 186 frequencies in the V-band are sensitive to atmospheric temperature due to the absorption of atmospheric oxygen (Cadeddu et al., 2013). Both MWRs observed at the zenith and at 15- and 187 188 165-degree elevation angles in the north-south plane (referred to as oblique elevation scans 189 hereafter; note zenith views have 90-degree elevation angles). In addition, each MWR was 190 provided with a separate surface sensor to measure pressure, temperature, and relative 191 humidity at the installation level that was ~2.5 m above ground level (AGL). MWRs are passive 192 devices which record the natural microwave emission in the water vapor and oxygen 193 absorption bands from the atmosphere, providing measurements of the brightness 194 temperatures. Vertical profiles of temperature (T), water vapor density (WVD), and relative 195 humidity (RH) were retrieved in real-time during XPIA every 2-3 minutes using a NN approach 196 provided by the private manufacturing company Radiometrics (Solheim et al. 1998). The NN 197 used a training dataset based on a 5-year climatology of profiles from radiosondes launched at

198	the Denver International Airport, 35 miles south-east from the XPIA site. NN-based MWR
199	vertical retrieval profiles were obtained using the zenith and an average of two oblique
200	elevation scans, all extending for 58 levels up to 10 km, with nominal vertical levels depending
201	on the height (every 50 m from the surface to 500 m, every 100 m from 500 m to 2 km, and
202	every 250 m from 2 to 10 km, AGL). In this study we make use of the NN zenith and of the NN
203	oblique, where the latter can average out small-scale horizontal inhomogeneities of the
204	atmosphere.
205	The MWR-CU operated from 9 March to 7 May 2015, while MWR-NOAA was unavailable
206	between 5-27 April 2015. For the overlapping dates, temperature retrieved from the two
207	MWRs showed very good agreement with less than 0.5 K bias and 0.994 correlation (Bianco et
208	al., 2017). For this reason, we use only the MWR-CU (hereafter simply called MWR).
209	
210	2.2 Radiosonde measurements
211	Between 9 March and 7 May 2015, while the MWR was operational, radiosondes were
212	launched by the National Center for Atmospheric Research (NCAR) assisted by several students
213	from the University of Colorado over three selected periods, one each in March, April, and May.
214	There was a total of 59 launches, mostly four times per day, around 14:00, 18:00, 22:00 and
215	0200 UTC (8:00, 12:00, 16:00 and 20:00 local standard time, LST). All radiosondes were Vaisala
216	RS92. The first 35 launches, between 9-19 March, were done from the visitor center, while the
217	11 launches, between 15-22 April, and 13 launches, between 1-4 May, were done from the
218	water tank site, ~1000 meters apart (see Lundquist et al., 2017 for a detailed map of the study
219	area). The radiosonde measurements included temperature, dewpoint temperature, and

- 220 relative humidity, to altitudes usually higher than 10 km AGL, with measurements every few
- 221 seconds.
- 222
- 223 2.3 WPR-RASS measurements

224 Two NOAA wind profiling radars (WPRs), operating at frequencies of 915-MHz and 449-225 MHz, were deployed at the visitor center (same location of the MWR) during XPIA. These 226 systems are primarily designed to measure the vertical profile of the horizontal wind vector, but 227 co-located RASS also observe profiles of virtual temperature in the lower atmosphere, with 228 different resolutions and height coverages depending on the WPR. Thus, the RASS associated 229 with the 915-MHz WPR (hereafter referred to as RASS 915) measured virtual temperature from 230 120 to 1618 m with a vertical resolution of 62 m, and the 449 MHz RASS (hereafter referred to as RASS 449) sampled the boundary layer from 217 to 2001 m with a vertical resolution of 105 231 232 m. The maximum height reached by the RASS is a function of both radar frequency and 233 atmospheric conditions (May and Wilczak, 1993), and is usually lower for RASS 915 data, as will 234 be shown later in the analysis. 235 The RASS data were processed using a radio frequency interference (RFI)-removal 236 algorithm (performed on the RASS spectra), a consensus algorithm (Strauch et al. 1984) 237 performed on the moment data using a 60% consensus threshold, a Weber-Wuertz outlier 238 removal algorithm (Weber et al., 1993) performed on the consensus averages, and a RASS 239 range-correction algorithm (Görsdorf and Lehmann, 2000) using an average relative humidity 240 setting of 50% determined from the available observations.

241

242	2.4 BAO data
243	The BAO 300-m tower was built in 1977 to study the planetary boundary layer (Kaimal
244	and Gaynor 1983). During XPIA, measurements were collected at the surface (2 m) and at six
245	higher levels (50, 100, 150, 200, 250 and 300 m AGL). Each tower level was equipped with 2
246	sonic anemometers on orthogonal booms, and one sensor based on a Sensiron SHT75 solid-
247	state sensor to measure temperature and relative humidity with a time resolution of 1 s, and
248	averaged over five minutes.
249	The observational temperature and water vapor surface data are used from the more
250	accurate observations at the BAO tower 2 m AGL level (Horst, 2016), to replace the data
251	measured by the less accurate MWR inline surface sensor.
252	
253	
254	3. Physical retrievals
255	Other than NN approaches, a physical retrieval (PR) iterative approach can be used to
256	retrieve vertical profiles of thermodynamic properties from the MWR observations (Maahn et
257	al 2020). In this case, using a radiative transfer model, the process starts with a climatologically
258	reasonable value of temperature and water vapor, and is iteratively repeated until the
259	computed brightness temperatures match those observed by the MWR within the uncertainty
260	of the observed brightness temperatures (Rodgers, 2000; Turner and Löhnert, 2014; Maahn et
261	al. 2020).

262

263 **3.1 Iterative retrieval technique**

264	For this study, the physical retrieval (PR) uses a microwave radiative transfer model,
265	MonoRTM (Clough et al., 2005), which is fully functional for the microwave region and was
266	intensively evaluated previously on MWR measurements (Payne et al. 2008; 2011). We start
267	with the state vector $X_a = [T, Q, LWP]^T$, where superscript T denotes transpose. T (K) and Q
268	(g/kg) are temperature and water vapor mixing ratio profiles at 55 vertical levels from the
269	surface up to 17 km, with the distance between the levels increasing exponentially-like with
270	height. LWP is the liquid water path in (g/m^2) that measures the integrated content of water in
271	the entire vertical column above the MWR, and is a scalar. For this study we have X_a with
272	dimensions equal to 111 x 1 (two vectors T and Q with 55 levels each, and LWP). We are using
273	the retrieval framework of Turner and Blumberg (2019), but only using MWR data (no spectral
274	infrared) and will augment the retrieval to include RASS profiles of Tv.
275	The observation vector ${f Y}$ from the beginning includes temperature and water vapor
276	mixing ratio measured at the surface, and brightness temperature (Tb) measured by the MWR.
277	The MonoRTM model ${f F}$ is used as the forward model to estimate the observation vector ${f Y}$ from
278	the current state vector X , from Eq. (1), iterating until the difference between F(X) and Y is
279	small within a specified uncertainty:

280
$$X_{n+1} = X_a + (S_a^{-1} + K^T S_{\varepsilon}^{-1} K)^{-1} K^T S_{\varepsilon}^{-1} [Y - F(X_n) + K (X_n - X_a)]$$
(1)

281 with:

$$egin{aligned} oldsymbol{X}_a = egin{bmatrix} oldsymbol{T} \ oldsymbol{Q} \ L \end{bmatrix} & oldsymbol{S}_a = egin{bmatrix} oldsymbol{\sigma}_{TT}^2 & oldsymbol{\sigma}_{TQ}^2 & 0 \ oldsymbol{\sigma}_{QT}^2 & oldsymbol{\sigma}_{QQ}^2 & 0 \ 0 & 0 & oldsymbol{\sigma}_{L}^2 \end{bmatrix} oldsymbol{K}_{ij} = rac{\partial oldsymbol{F}_i}{\partial oldsymbol{X}_j} \end{aligned}$$

283

284

285

and **Y**, depending on the configuration used, being equal to:

$$\mathbf{Y_1} = \begin{bmatrix} T_{sfc} \\ Q_{sfc} \\ Tb_{zenith} \end{bmatrix} \qquad \mathbf{Y_2} = \begin{bmatrix} T_{sfc} \\ Q_{sfc} \\ Tb_{zenith} \\ Tb_{zenith+oblique} \end{bmatrix}$$
$$\mathbf{Y_3} = \begin{bmatrix} T_{sfc} \\ Q_{sfc} \\ Tb_{zenith} \\ Tb_{zenith+oblique} \\ Tv_{RASS915} \end{bmatrix} \qquad \mathbf{Y_4} = \begin{bmatrix} T_{sfc} \\ Q_{sfc} \\ Tb_{zenith} \\ Tb_{zenith+oblique} \\ Tv_{RASS449} \end{bmatrix}$$

286

287 The superscripts T and -1 indicate transpose or inverse matrix, respectively. Also,

vectors and matrices are shown in bold. Note that we are including the 2-m surface-level 288 289 observations of temperature and water vapor mixing ratio (Tsfc and Qsfc, respectively) as part 290 of the observation vector Y, and thus the uncertainties in these observations are included in S_{ϵ} . 291 The first guess of the state vector X, X_1 in Eq. (1), is set to be equal to the mean state 292 vector of climatological estimates, or a "prior" vector X_a, which is calculated independently for 293 each month of the year from climatological sounding profiles (10 years) in the Denver area. S_a is the covariance matrix of the "prior" vector that includes not only temperature or water 294 295 vapor variances but also the covariances between them. K is the Jacobian matrix, computed using finite differences by perturbing the elements of X and rerunning the radiative transfer 296 297 model.

298	We start with four configurations for the observational vector Y ($Y_1,Y_2,Y_3,$ and $Y_4).$ The
299	MWR provides the ${\sf Tb}$ measurements in all schemes, zenith only in ${\sf Y_1}$ (which also includes the
300	2-m in-situ observations of temperature and humidity), and zenith and oblique in Y_2 , Y_3 , and Y_4 .
301	Using additional measurements from the co-located radar systems with RASS, we may further
302	expand the observational vector with either RASS 915 (Y_3) or RASS 449 (Y_4) virtual temperature
303	observations. The covariance matrix of the observed data, $\boldsymbol{S}_{\epsilon}$ depends on the chosen \boldsymbol{Y}_i as it is
304	highlighted by the red numbers in the matrix description, with increasing dimensions from ${f Y_1}$ to
305	Y_2 and additional increasing dimensions to Y_3 and Y_4 through the multi-level measurements of
306	the RASS (Turner and Blumberg, 2019). Table 1 summarizes the observational information
307	included in these four different configurations of the PR.

	T _{sfc}	Q _{sfc}	Tb _{zenith}	Tbzenith-oblique	Tv _{rass915}	Tv _{rass449}
Y ₁ = MWRz	x	x	x			
Y ₂ = MWRzo	x	x	x	x		
Y ₃ = MWRzo915	x	х	x	x	x	
Y ₄ = MWRzo449	x	x	x	x		x

Table 1. Four PR configurations corresponding to the four observational Y_i vectors in Eq. (1).
309

310 We assume that there is no covariance between different instruments as well as 311 between different channels (MWR) or height levels (RASS) of each instrument, therefore this 312 covariance matrix S_{ϵ} is diagonal. The Jacobian matrix, K, has dimensions m x 111, where m is 313 the length of the vector Y_i , therefore its dimensions increase correspondingly with the inclusion 314 of more observational data. K makes the "connection" between the state vector and the

315 observational data and should be calculated at every iteration.

3.2 Bias-correction

316

317

318 Observational errors propagate through the retrieval into the derived profiles (i.e. the bias of the observed data will contribute to bias the retrievals.) For that, retrieval uncertainties 319 320 in Eq. (1) from $Y = Y_1$ or Y_2 derive only from uncertainties in surface and MWR data, while 321 retrieval uncertainties from $Y = Y_3$ or Y_4 are coming from uncertainties in surface, MWR, and 322 RASS measurements. 323 While the bias of the retrieval depends on both the sensitivity of the forward model and the observational uncertainty, we can try to eliminate, or at least to reduce, the systematic 324 325 error in the MWR observations. To this aim, we first looked for clear sky days (to reduce the 326 degrees of freedom associated with clouds) during the period of the measurements. One 327 method to identify clear-sky times is to use brightness temperature observations in the 30 GHz water vapor sensitive channel. The random uncertainty in brightness temperature was 328 329 calculated as its standard deviation during clear sky times and for this channel is approximately 330 0.3 K (but during periods with liquid-bearing clouds overhead, the standard deviation of the 30 331 GHz Tb is markedly higher than this threshold due to the non-homogeneous nature of clouds 332 and thus their contribution to the downwelling microwave radiance). Four clear-sky days were 333 selected, March 10 and 30, and April 13 and 29. The bias was then computed on all channels 334 over these selected clear-sky days and removed from all measurements. Fig. 1 shows the 335 results of the bias-correction for the four chosen clear-sky days. The green lines on this figure 336 indicate the MWR random errors at each frequency calculated as the standard deviation of Tb

- averaged over one-hour sliding window; these are 0.3-0.4 K for K-band channels and 0.6-0.7 K
- *338* for V-band channels.

339

340 Fig.1. Bias for the four chosen clear-sky days (red-dashed lines) and their mean (red solid line)

341 for the original observations in the top panel, and for the bias-corrected data in the bottom

342 panel. Green lines are the uncertainty boundaries around the mean bias. Frequencies used in the

343 PR algorithm are marked with black triangles in both panels.

344

345 This bias correction was applied to the brightness temperature used in the PR approach;

346 however, the NN retrievals used the uncorrected brightness temperature, since it was non-

347 trivial for us to reprocess those retrievals.

348	The retrieved profiles of the four different PR configurations presented in Table 1
349	(MWRz, MWRzo, MWRzo915, MWRzo449) were compared to the radiosonde profiles, as well
350	as to the NN retrievals. BAO tower temperature and mixing ratio data at the seven available
351	levels were used as an additional validation dataset, without any interpolation.
352	To compare radiosonde observations against the PR and NN retrieved profiles, all these
353	profiles were interpolated vertically to the same PR heights, and PR and NN profiles were
354	averaged in the time window between 15 minutes before and 15 minutes after each
355	radiosonde launch. Since the radiosonde ascends quite quickly in the lowest kilometers of the
356	atmosphere (~15-20 min to reach 5 km), we estimated that the 30-minute temporal window is
357	representative of the same volume of the atmosphere measured by the radiosonde.
358	An example of the different temperature retrievals and their relative performance, data
359	obtained on 17 March 2015 at 2200 UTC is presented in Fig. 2. Temperature profiles up to 2 km
360	AGL from the four PR configurations (MWRz, MWRzo, MWRzo915, MWRzo449) are compared
361	
	to the radiosonde data in red, to the BAO measurements in blue squares, and to the NN profiles
362	
362 363	to the radiosonde data in red, to the BAO measurements in blue squares, and to the NN profiles
	to the radiosonde data in red, to the BAO measurements in blue squares, and to the NN profiles (NN zenith in beige, and NN oblique in green). The MWRz and MWRzo profiles, as well as those
363	to the radiosonde data in red, to the BAO measurements in blue squares, and to the NN profiles (NN zenith in beige, and NN oblique in green). The MWRz and MWRzo profiles, as well as those from the NNs, are very smooth and depart quite substantially from the radiosonde
363 364	to the radiosonde data in red, to the BAO measurements in blue squares, and to the NN profiles (NN zenith in beige, and NN oblique in green). The MWRz and MWRzo profiles, as well as those from the NNs, are very smooth and depart quite substantially from the radiosonde measurements, being unable to reproduce the more detailed structure of the atmospheric
363 364 365	to the radiosonde data in red, to the BAO measurements in blue squares, and to the NN profiles (NN zenith in beige, and NN oblique in green). The MWRz and MWRzo profiles, as well as those from the NNs, are very smooth and depart quite substantially from the radiosonde measurements, being unable to reproduce the more detailed structure of the atmospheric temperature profile measured by the radiosonde, while the MWRzo449 profile (in light-blue)

- *369* elevated temperature inversion observed by the radiosonde, successfully only in the lower part
- 370 of the atmosphere (below 1 km AGL) where RASS 915 measurements are available. This
- 371 behavior will be also addressed in the following section and in the statistical analysis presented
- 372 later in the manuscript.

373

374 Fig. 2. Temperature profiles obtained by the four PR configurations: MWRz in gray, MWRzo in

375 black, MWRzo915 in magenta, and MWRzo449 in light-blue; NN retrievals: NN zenith in beige,

376 and NN averaged oblique in green. These retrievals are compared to radiosonde measurements,

377 in red, and BAO tower observations, in blue squares. The heights with available RASS virtual

378 temperature measurements (RASS 915 in magenta and RASS 449 in light-blue), are marked by

379 the asterisks on the right Y-axis.

380

381 **3.3 Averaging kernel**

383 (1) can be calculated as:

384
$$Akernel = B^{-1} K^T S_{\varepsilon}^{-1} K$$
(2)

385 where:

$$B = S_a^{-1} + K^T S_{\varepsilon}^{-1} K$$

387	Both matrices, Akernel and B, have dimensions 111 x 111 in our configuration. The
388	Akernel matrix has useful information about the calculated retrievals, such as vertical
389	resolution and degrees of freedom for signal at each level. Thus, the rows of Akernel provide
390	the smoothing functions that have to be applied to the retrievals (Rodgers, 2000) to help
391	minimize the vertical representativeness error in the comparison between the various retrievals
392	and the radiosonde profiles due to very different vertical resolutions of these profiles.
393	Using the averaging kernel, the smoothed radiosonde observed profiles will be

394 therefore computed as:

395
$$X_{smoothed_sonde} = Akernel(X_{sonde} - X_a) + X_a$$
 (3)

396 The **Akernel** in Eq. (2) depends on the retrieval parameters (e.g., which datasets are 397 used in the **Y** vector, the values assumed in the observation covariance matrix S_{ϵ} , and the 398 sensitivity of the forward model (i.e., its Jacobian), etc.), so for our four PR configurations it is

- 399 possible to calculate four different kernels: A_MWRz, A_MWRzo, A_MWRzo915 and
- 400 **A_MWRzo449**, respectively.
- 401 While the top left corner of the **Akernel** matrix (1:55, 1:55) is devoted to temperature,
- 402 and it will be called **AT_MWR** hereafter, the next (56:110, 56:110) elements are devoted to
- 403 water vapor mixing ratio, and will be called **AQ_MWR**.
- 404 For each of the four **Akernels**, a smoothed radiosonde profile can be computed for each
- 405 radiosonde profile using Eq. (3). In the presence of temperature inversions or other particular
- 406 structures in the atmosphere these smoothed profiles can be quite different from each other
- 407 and also from the original unsmoothed radiosonde profile.
- 408 Therefore, in the statistical analysis presented later in the manuscript (in section 4.2),
- 409 mean bias, root mean square error (RMSE), and Pearson correlation coefficients will be
- 410 computed between the MWR's retrievals and both the unsmoothed and smoothed radiosonde
- 411 profiles, where the latter were computed using their respective **Akernels**. Additional
- 412 observational data help to resolve the atmospheric structure in more detail, therefore we
- 413 would expect to obtain better statistical evaluations from the configurations including
- 414 additional RASS observations compared to the runs without RASS data.
- The improvement in the retrieved temperature profiles presented in Fig. 2 obtained using additional RASS data can be explained and clearly shown by the **ATkernel** itself. Figure 3 includes the temperature profiles of the radiosonde and PRs of MWRzo and MWRzo449 (panel a), and the **ATkernels** corresponding to these PRs in the color plots in the middle of the figure

- 419 (panels b and c). These color plots are a schematic visualization of the 37 x 37 top left corner of
- 420 the ATkernel matrix that illustrates the part of the ATkernel up to 3 km, for reference. Dash
- 421 lines mark the 2 km vertical level.
- 422 The rows of the **ATkernel** provide a measure of the retrieval smoothing as a function of
- altitude, so the full-width half maximum of each **ATkernel** row estimates the vertical resolution
- 424 of the retrieved solution at each vertical level (Merrelli and Turner, 2012). These plots of
- 425 temperature vertical resolution vs height for MWRzo and MWRzo449 are included in Figure 3,
- 426 panel d, for the same case presented in Fig. 2. Comparison of **ATkernel** color plots and vertical
- 427 resolution plots of MWRzo vs MWRzo449 shows that additional observations from the RASS
- 428 449 significantly reduces the spread around the main diagonal up to 2 km (in the layer of the
- 429 atmosphere where RASS 449 measurements are available), thereby improving the vertical
- 430 resolution of the retrievals (as clearly visible in panel d).
- 431

433	Fig. 3. Panel a: temperature profiles from radiosonde, in red, from MWRzo PR in black, and from
434	MWRzo449 PR in light-blue. Middle colored panels: 37x37 levels (surface to 3 km) of the Akernel
435	matrix for temperature, b) AT_MWRzo and c) AT_MWRzo449. Right panel d: vertical resolution
436	(VRES) as a function of the height for the MWRzo PR (black), and for the MWRzo449 PR (light-
437	blue). Dash lines on plots b)-d) mark 2 km AGL. Hatched area on panel c) marks the RASS
438	measurement heights.
439	
440	4. Results
441	PR and NN retrieved profiles have been evaluated against radiosonde observations. For
442	additional verification, radiosonde data from 59 launches taken between 9 March and 4 May
443	2015 were first of all compared to the BAO tower measurements, up to 300 m AGL. These
444	observed data sets match very well, with a correlation coefficient of 0.99 and a standard
445	deviation of ~0.7 °K. However, one radiosonde profile showed a large bias (> 5 °K) against all
446	seven levels of BAO temperature measurements and against all PRs and NNs, therefore we
447	decided to exclude this particular radiosonde profile from the statistical calculations.
448	
449	4.1 PRs statistical analysis
450	To complete the analyses on the ATkernel changes and dependencies from different
451	types of observational data used in the PRs, the ATkernels, averaged over all radiosonde
452	events, are shown in Fig. 4, panels a-d, for the four PR configurations of Table 1, in the same
453	way as shown in Fig. 3, b-c. A clearly visible gradual narrowing of the spread around the main
454	diagonal is obtained by the usage of the additional observations, from MWR zenith only (panel

- a), to MWR zenith-oblique (panel b), to the larger impact obtained by the usage of RASS 915
- 456 (panel c) and RASS 449 (panel d) data.

457	Other statistically important features to analyze in the PRs, besides vertical resolution,
458	are the retrieval uncertainty, and the degree of freedom for signal (DFS). These three features
459	are also shown in Fig.4, panels e-g, at each of the heights of the retrieved solution, up to 3 km
460	AGL, and averaged over all radiosonde events. While the vertical resolution (panel e) shows the
461	width of the atmosphere layer used for each retrieval height (the vertical resolution is
462	computed as the full-width half-maximum value of the averaging kernel), the uncertainty (panel
463	f) gives a measure of the retrieval correctness (computed by propagating the uncertainty of the
464	observations and the sensitivity of the forward model), and the DFS (panel g) is a measure of
465	the number of independent pieces of information used in the retrieved solution. For example,
466	at the 1 km AGL level the vertical resolution of MWRzo449 equals 0.5 km, i.e. information from
467	+/- 0.5 km around the retrieval height are considered in the retrieval, while all other retrievals
468	use the information from +/- 2 km. Also, the uncertainty of the MWRzo449 retrieval up to 1km
469	AGL is around 0.5 °K while the other retrievals have higher uncertainties of up to 1 °K. The
470	higher accuracy of the MWRzo449 retrievals is because they use more observational
471	information compared to the other retrieval configurations.

Fig. 4. Top four-color images: ATkernels for MWRz (panel a), MWRzo (panel b), MWRzo915 473 474 (panel c) and MWRzo449 (panel d), averaged over all radiosonde events. Hatched area on panels c) and d) marks the RASS measurement heights. Bottom three panels from left to right: 475 476 vertical resolution (VRES) in km (panel e), one-sigma uncertainty derived from the posterior 477 covariance matrix in °C (panel f), and cumulative Degree of Freedom (DFS, panel g) as a function of height for temperature, averaged over all radiosonde events (MWRz is in gray, MWRzo is in 478 black, MWRzo915 is in magenta, and MWRzo449 is in light-blue). Dash lines mark 2 km AGL on 479 480 all panels.

482	The improvements from MWRz (in gray) to MWRzo (in black), then to MWRzo915 (in
483	magenta), and finally to MWRzo449 (in light-blue) are visible in all three panels (Fig 4 e-g),
484	whereas MWRzo449 has the best statistical measures compared to the other PRs, particularly
485	below 2 km AGL, where RASS 449 measurements are available. Finally, it is interesting that
486	below 200 m AGL the MWRzo915 has slightly better statistics compared to the MWRzo449, as
487	could be expected due to the first available height of the RASS 915 being lower (120 m AGL)
488	than the first available height for the RASS 449 (217 m AGL) and due to the finer vertical
489	resolution of the 915-MHz RASS. This suggests that if additional observations were available in
490	the lowest several 100 m layer of the atmosphere where RASS measurements are not available,
491	improvements might be even better closer to the surface, where temperature inversions, if
492	present, are sometimes difficult to retrieve correctly.
493	As a matter of fact, we found several cases during XPIA when the temperature profile
493 494	As a matter of fact, we found several cases during XPIA when the temperature profile exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the
494	exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the
494 495	exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the most complex cases, with several temperature inversions visible in the temperature profile
494 495 496	exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the most complex cases, with several temperature inversions visible in the temperature profile from the radiosonde (red line), in the temperature measurements from the BAO tower (blue
494 495 496 497	exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the most complex cases, with several temperature inversions visible in the temperature profile from the radiosonde (red line), in the temperature measurements from the BAO tower (blue squares), and in the virtual temperature measured by the RASS 449 (light blue triangles). We
494 495 496 497 498	exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the most complex cases, with several temperature inversions visible in the temperature profile from the radiosonde (red line), in the temperature measurements from the BAO tower (blue squares), and in the virtual temperature measured by the RASS 449 (light blue triangles). We note that the virtual temperature profile is in close agreement with the temperature measured
494 495 496 497 498 499	exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the most complex cases, with several temperature inversions visible in the temperature profile from the radiosonde (red line), in the temperature measurements from the BAO tower (blue squares), and in the virtual temperature measured by the RASS 449 (light blue triangles). We note that the virtual temperature profile is in close agreement with the temperature measured by radiosonde. Generally, the moisture contribution to the virtual temperature is less than a
494 495 496 497 498 499 500	exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the most complex cases, with several temperature inversions visible in the temperature profile from the radiosonde (red line), in the temperature measurements from the BAO tower (blue squares), and in the virtual temperature measured by the RASS 449 (light blue triangles). We note that the virtual temperature profile is in close agreement with the temperature measured by radiosonde. Generally, the moisture contribution to the virtual temperature is less than a degree K, decreasing substantially for dryer air. Among the PR profiles, the PRs including RASS

- 504 surface up to ~200m AGL, where the PRs with additional RASS data have the largest positive
- 505 bias compared to both radiosonde and BAO data in this layer. We believe that the MWR data,
- 506 especially those from the oblique scans, in this case have a bias in the observed brightness
- 507 temperatures that propagates through the retrieval calculations, and including other
- 508 observational data is not enough to correct it in the layer between the surface data and the first
- *509* available RASS measurement.

511 Fig. 5. Panel a) as in Fig. 2 but for 18 March 2015 at 0200 UTC. The RASS 449 virtual

temperature is included as light blue triangles. Panel b) shows the same data (except for the NN
retrievals) presented in panel a), but only up to 500 m AGL, and includes PR profiles in which the
MWR uncertainties were increased by a factor of two, MWRz915 in maroon and MWRz449 in
violet.

517	After several trials, we found that when RASS measurements are included, temperature
518	profiles in this and similar cases exhibiting inversions could be improved by increasing the
519	random uncertainty of MWR observations, and only using the zenith MWR measurements,
520	because the oblique MWR brightness temperature measurements (which give more
521	information in the lower layer of the atmosphere) seemingly have a bias that competes with
522	the active and more accurate measurements from the RASS and surface observations. In this
523	way, the PR approach is granted more freedom to get an optimal profile in the gap between the
524	lowest RASS measurements and the surface measurement. Proof of this is presented in Figure
525	5b, that shows the same data as in 5a, but including the profiles obtained when increasing the
526	assumed MWR Tb uncertainties by a factor of two, hereafter called MWRz2sigma915 and
527	MWRz2sigma449, in maroon and violet respectively. The increased accuracy of these
528	temperature profiles compared to MWRzo915 and MWRzo449 are obvious in the layer of
529	atmosphere closer to the surface. Later we will show that these last two PR configurations
530	demonstrate improved statistics over all 58 cases, and also through the layer of the atmosphere
531	up to 5km. We note that these last two PR configurations, that were found to work well for this
532	dataset, might not be optimal for other datasets. During XPIA the RASS measurements impact
533	(particularly those from the RASS 449) was important in the PR approach. This might not be the
534	case for other datasets or over different seasons, when RASS coverage might not be as good as
535	that during XPIA. For this reason, we think that attention has to be used to determine what is
536	the best configuration to use when dealing with PR approaches. On the positive side, the
537	advantage is that the user can determine and has control on what is the optimal configuration
538	to use in his/her dataset, in terms of different inputs to employ and their relative uncertainty.

539

540 **4.2 Statistical analysis of PRs compared to NN retrievals**

- 541 Since the iteratively calculated PRs and the NN retrievals are obtained by very different
- 542 approaches, we find it very important to compare their relative statistical behavior. We do this
- 543 both for temperature and mixing ratio, providing this comparison in two ways: first using the
- 544 Akernel smoothed radiosonde data obtained as described in section 3.3, and second comparing
- 545 to the original, unsmoothed, radiosonde profiles, just interpolated to the 55 PR vertical levels.
- 546 Figure 6 shows the statistical results of these comparisons for temperature, in terms of
- 547 Pearson correlation, RMSE, and mean bias, averaged over all radiosonde events.

Fig. 6. Pearson correlation, RMSE, and mean bias for temperature profiles of MWRz in gray,
MWRzo in black, MWRzo915 in magenta, MWRzo449 in light-blue and MWRz2sigma449 in
violet, computed comparing to smoothed radiosonde data (using their relative ATkernel) in
panels a-c, and against the original radiosonde measurements in panels d-f. The same
comparisons for NN profiles, with NN zenith in beige, and NN averaged oblique in green, are
made against the corresponded smoothed radiosonde data in the top panel and against original
radiosonde data in the bottom panel.

556	
550	

557	These results confirm the superiority of the MWRz2sigma449 temperature retrieval
558	over the other PRs. While this is not true at all heights, this retrieval shows improved
559	distribution of RMSE and bias for the atmospheric layer up to 5 km AGL. The MWRz2sigma915
560	profile is not included in the figure to not overcrowd it, but its behaviour compared to the
561	MWRzo915 is similar to that of the MWRz2sigma449 compared to the MWRzo449 profile,
562	reducing the drastic bias found in the layer closer to the ground. The differences between the
563	two ways of comparison, against the smoothed ATkernel or the original radiosonde data, are
564	small in terms of RMSE and bias, but more evident in terms of correlation as it can be expected
565	because of the smoothing technique applied to the radiosonde profiles through Eq. (3). Above
566	and below 1.5 km AGL the bias, RMSE, and correlation profiles of the PRs show very different
567	behavior. While statistical measures above 1.5 km AGL are very similar for the four PRs
568	introduced in Table 1, they are better for the MWRz2sigma449 PR, especially when compared
569	to the smoothed radiosonde profiles. Differences between the profiles show more variability in
570	the lowest 1.5 km. NN retrievals, both for zenith and averaged oblique, are very variable from
571	height to height and generally have much larger RMSE and bias, and worse correlation
572	coefficients compared to PRs.
573	Besides temperature profiles, the NN and PR retrievals also provide water vapor mixing
575	
574	ratio profiles. It is understandable that the different configurations of PRs are not noticeably

different from each other in relation to moisture, because the Tv observations from the RASSare dominated by the ambient temperature (not moisture), and thus have little impact on the

577 water vapor retrievals.

578	Figure 7 includes two AQkernels corresponding to the PRs MWRz and MWRzo449 in
579	panels a and b, which are averaged over all radiosonde events and appear to be almost
580	identical. More detailed statistical estimations of PRs mixing ratio in Fig 7 c-e, also averaged
581	through all radiosonde events, show very similar correlations, RMSEs, and biases for all PRs
582	included in the figure, meaning that the impact of including RASS observations is minimal on
583	this variable. These PR mixing ratio profiles are also statistically very close to the averaged
584	oblique NN retrieval mixing ratio profiles, with the zenith NN retrieval mixing ratio profiles
585	showing the worst statistics in terms of RMSE and bias. Overall, we conclude that the PR
586	retrievals are not degraded on average compared to the NN moisture retrievals.
587	

588

590

591 Fig. 7. Top two-color images: AQkernels for MWRz (panel a) and MWRzo449 (panel b),

averaged over all radiosonde events and shown up to 3 km AGL with dash lines mark 2 km AGL

593 on both panels. Bottom three panels are the same as panels d-f in Figure 6, but for mixing ratio

594 estimation.

595

596 **4.3 Statistics for cases far from the climatological mean**

597 While both approaches, physical and neural network retrievals, are quite different, both

598 use climatological data as a constraint or for building the statistical relationships used in the

599 retrieval. Statistically, the averaged profiles of both temperature and moisture variables are

- 600 very close to the climatological averages. However, the most interesting and difficult profiles to
- 601 retrieve are the cases furthest from the climatology (Löhnert and Maier, 2012). To check the
- 602 behavior of the retrieved data in such events, we first calculated the RMSE for each radiosonde
- 603 profile relative to the prior profiles for 42 vertical levels from the surface up to 5 km AGL, and
- then we selected the 15 cases with the largest 0-5km layer averaged RMSEs compared to the
- 605 prior. All comparisons are done against the corresponded smoothed ATkernel radiosonde data,
- 606 using AT_MWRz, AT_MWRzo, AT_MWRzo915, AT_MWRzo449, AT_MWRz2sigma915,
- 607 AT_MWRz2sigma449 for all six PRs, and AT_MWRz, AT_MWRzo for NN zenith and NN oblique
- 608 retrievals respectively.
- 609

611	Fig. 8. From top to bottom: biases (retrievals minus ATkernel radiosonde), RMSEs, standard
612	deviations of the difference between retrievals and ATkernel radiosonde, and Pearson
613	correlations for the six PR configurations so far introduced and both NN retrievals, averaged
614	from the surface to 5 km AGL, averaged over all radiosonde data (solid boxes), and averaged
615	over the 15 events furthest from the priors (hatched boxes).
616	
617	Figure 8 shows the temperature statistical analysis for the entire radiosonde data set
618	(solid boxes) and to just the fifteen chosen events (hatched boxes) for bias, RMSE, standard
619	deviation of retrieval differences to the radiosonde data, and Pearson correlation, calculated as
620	the weighted averaged over the 42 vertical heights up to 5 km AGL. Differences in the statistics
621	when using the entire radiosonde data set or the fifteen profiles furthest from the prior are
622	noticeable, especially for bias and RMSE, but also for the standard deviation. All PRs that
623	include RASS observations show better performance compared to strictly MWR-only PR profiles
624	(i.e., MWRz and MWRzo) for almost all statistical comparisons. Also, the statistical behavior of
625	the MWRz2sigma915 and MWRz2sigma449 retrievals are the best in terms of RMSE and
626	standard deviation for all events and for RMSE, standard deviation, and correlation coefficient,
627	for the fifteen profiles furthest from the climatological average. Finally, we note that the NN
628	profiles are the least accurate retrievals for all of the statistics for the entire radiosonde data
629	set, and have the highest bias, RMSE and the lowest correlation for the 15 events.

630

631 Fig. 9. The same as Fig. 6 but for the temperature over 15 furthest from prior radiosonde

632 profiles.

633

To investigate the vertical structure of the error statistics for the 15 events furthest from the radiosonde climatology, profiles of correlation, RMSE and bias for these events are shown in Figure 9 for the layer 0-5 km. The MWRz449 and MWRz2sigma449 profiles, which were seen in Fig. 8 to have the best layer averaged statistics, are seen to be as good as, or better, than the other methods for the 0-2 km layer. Importantly, for heights above 2km AGL, where there is no

639	additional observational data from RASS, all of the PRs are better than the NN profiles, with the	
640	MWRz2sigma449 and MWRz449 being the best. We note that the increased accuracy of the	
641	PRs relative to the NNs is more obvious in Fig. 9 for the 15 events when compared to the entire	
642	data set in Fig. 6. Also, it can be seen that the NNs for the 15 events are worse than they are	
643	for the entire data set, especially in the 2-5km layer, which indicates (not surprisingly) that the	
644	NNs accuracy degrades when the atmosphere is far from its climatology.	
645		
646	4.4 Virtual temperature statistics	
647	The above analysis confirms the superiority of MWRz2sigma915 and MWRz2sigma449	
648	compared to the other PRs and to the NN retrievals for this dataset. In this section we show the	
649	direct comparison of the retrieved profiles to the original radiosonde and RASS virtual	
650	temperature profiles. Using temperature and moisture retrieval output, we calculated	
651	"retrieved virtual temperature profiles" and interpolated all profiles and RASS data on a regular	
652	vertical grid, going from 200 m to 1.6 km with 100 m range, for easy comparison.	
653	Figure 10 shows Tv retrieved profile biases compared to the original radiosonde data as	
654	solid lines, and RASS 915 and RASS 449 Tv bias as asterisks. A zero bias is denoted by the red	
655	line. On the left side of the figure we show bar charts of the RASS measurement availability as a	
656	function of height. The widest part of these charts corresponds to 100% data availability.	
657	Heights with RASS availability greater than 50% are marked with additional circles over the	
658	asterisks.	

659

660 Fig. 10. Bias of virtual temperature for all six PR configurations and both NN retrievals

661 compared to the original radiosonde measurements. RASS data are marked by asterisks and by

662 additional circles for the RASS data with more than 50% availability, according to the availability

663 bar charts on the left.

664

665 While RASS 449 data are available at almost all heights up to 1.6 km, the RASS 915 data

availability decreases considerably with height, lowering to 50% availability around 800 m AGL.

667 All PRs with input from RASS data, MWRzo915 and MWRzo449, and MWRz2sigma915 and

668 MWRz2sigma449 with larger MWR uncertainties, are also marked with additional black lines at

669	the heights with at least 50% of relative RASS data availability. This figure clearly shows the	
670	superiority of MWRz2sigma449 and MWRz2sigma915 (in the layer with > 50% RASS 915 data	
671	availability) compared to MWRz and MWRzo configurations, which do not include RASS data, as	
672	well as to MWRzo915 and MWRzo449 which include RASS data and MWR zenith and oblique	
673	data. For MWRzo449 and MWRz2sigma449 profiles, RASS 449 data were almost always	
674	available, therefore it is easy to identify similar features between Tv bias profiles of the RASS	
675	449 and the PRs including it. Thus, for the MWRzo449 and MWRz2sigma449 the Tv bias is more	
676	uniform through the heights compared to all other PRs that do not include RASS data, and to	
677	both NN retrievals. Moreover, because MWRzo449 and MWRz2sigma449 Tv bias profiles follow	
678	tightly the trend of the RASS 449 with height, the difference between MWRzo449 and RASS 449	
679	biases equals ~0.32 $^{\circ}$ C and the difference between MWRz2sigma449 and RASS 449 biases	
680	equals ~0.14 °C over the ~1.3 km atmospheric layer where RASS 449 measurements are	
681	available, uniformly distributed through the heights. Finally, the average differences between	
682	these MWRzo449 and MWRz2sigma449 Tv profiles and the radiosonde virtual temperature	
683	equal ~0.56 °C and ~0.34 °C respectively. From these results we can assume that the final bias	
684	of the PRs that include additional RASS data derives from a combination of the RASS data bias	
685	itself, of the uncertainty of the retrieval model, and of the MWR brightness temperature biases,	
686	even though we tried to correct for the latter.	

687 We note as an alternative to using the PR temperatures at all heights, one could
688 consider replacing the PR temperatures with RASS observations up to the maximum height
689 reached by the RASS, and then use the PR retrieval above that. To do this the moisture

- 690 contribution to the RASS virtual temperatures could be removed by using either the relative
- 691 humidity measured by radiometer or by a climatology of the moisture term.

692

- 693 **5.** Conclusions
- 694 In this study we used the data collected during the XPIA field campaign to test different
- 695 configurations of a physical-iterative retrieval (PR) approach in the determination of
- 696 temperature and humidity profiles from data collected by microwave radiometers, surface
- 697 sensors, and RASS measurements. We tested the accuracy of several PR configurations, two
- 698 that made use only of surface observations and MWR observed brightness temperature (zenith
- only, MWRz, and zenith plus oblique, MWRzo), and others that included the active observations
- 700 available from two co-located RASS (one, RASS 915, associated with a 915-MHz, and the other,
- 701 RASS 449, associated with a 449-MHz wind profiling radar). Radiosonde launches were used for
- 702 verification of the retrieved profiles and Neural Network retrieved profiles were also used for
- comparison. The NN retrievals used in this study were obtained either using the zenith angle
- only, or the average of the oblique scans (based on the averaged Tb of 15- and 165-degree
- scans) without including the zenith. Other MWR systems (Rose et al., 2005) provide retrieved
- 706 profiles that include the information from both oblique and zenith scans.

707	Inclusion of the observations from the active RASS instruments in the PR approach		
708	improves the accuracy of the temperature profiles, particularly when low-level temperature		
709	inversions are present. Of the PRs configurations tested, we find better statistical agreement		
710	with the radiosonde observations when the RASS 449 is used together with the surface		
711	observations and brightness temperature from only the zenith MWR observations		
712	(MWRz2sigma449), and doubling the random radiometric uncertainty on the MWR		
713	observations relative to the uncertainty calculated over the selected clear-sky days (Fig. 1). This		
714	configuration is also more accurate compared to MWRzo915 or MWRz2sigma915 (which use		
715	RASS 915 observation), because of the deeper RASS 449 height coverage. The larger assumed		
716	radiometric uncertainty in the MWR Tb observations allows the retrieval to overcome both (a)		
717	the (small) systematic errors that exist between the MWR (which could be in either the		
718	observed Tb values or in the MonoRTM used as the forward model) and the RASS, and (b) the		
719	systematic errors that exist in forward microwave radiative models (Cimini et al. 2018).		
720	We also selected 15 cases when temperature profiles from the radiosonde observations		
721	were the furthest from the mean climatological average, and reproduced the statistical		
722	comparison over this subset of cases. These are the cases usually most difficult to retrieve and		
723	most important to forecast; therefore, it is essential to improve the retrievals in these		
724	situations. Even for this subset of selected cases we find that MWRz2sigma449 produces better		
725	statistics, proving that the inclusion of active sensor observations in MWR passive observations		

726	would be beneficial for improving the accuracy of the retrieved temperature profiles also in the		
727	upper layer of the atmosphere where RASS measurements are not available (at least up to 5 km		
728	AGL).		
729	Finally, we also considered the impact of the inclusion of RASS measurements on the		
730	retrieved humidity profiles, but in this case the inclusion of RASS observations did not produce		
731	significantly better results, compared to the configurations that do not include them. This was		
732	not a surprise as RASS measures virtual temperature, effectively adding very little extra		
733	information to the water vapor retrievals. In this case a better option would be to consider		
734	adding other active remote sensors such as water vapor differential absorption lidars (DIALs) to		
735	the PRs. Turner and Löhnert (2020) showed that including the partial profile of water vapor		
736	observed by the DIAL substantially increases the information content in the combined water		
737	vapor retrievals. Consequently, to improve both temperature and humidity retrievals a synergy		
738	between MWR, RASS, and DIAL systems would likely be necessary.		
739			
740	Data availability		
741	All data are publicly accessible at the DOE Atmosphere to Electrons Data Archive and		

- 742 Portal, found at <u>https://a2e.energy.gov/projects/xpia</u> (Lundquist et al., 2016).
- 743
- 744 Author contribution

745	Irina Djalalova completed the primary analysis with physical retrieval approach through		
746	MONORTM using XPIA data. Daniel Gottas contributed to the post-processing of the RASS data.		
747	Irina Djalalova prepared the manuscript with contributions from all co-authors.		
748			
749	Acknowledgements		
750	We thank all the people involved in XPIA for instrument deployment and maintenance,		
751	data collection, and data quality control, and particularly the University of Colorado Boulder for		
752	making the CU MWR data available. Funding for this study was provided by the NOAA/ESRL		
753	Atmospheric Science for Renewable Energy (ASRE) program.		
754			
755			
756			
757	References		
758	Adachi, A. and H. Hashiguchi, 2019: Application of parametric speakers to radio acoustic		
759	sounding system. Atmos. Meas. Tech., 12, 5699–5715, 2019,		
760	https://doi.org/10.5194/amt-12-5699-2019.		
761	Adler, B., J. M. Wilczak, L. Bianco, I. Djalalova, J. B. Duncan Jr., D. D. Turner, 2020: Observational		
762	case study of a persistent cold air pool and gap flow in the Columbia River Basin. In		

763 preparation.

- 764 Banta, R. M., and coauthors, 2020: Characterizing NWP model errors using Doppler lidar
- 765 measurements of recurrent regional diurnal flows: Marine-air intrusions into the
- 766 Columbia River Basin. Month. Wea. Rev., **148**, 927-953, doi:10.1175/MWR-D-19-0188.1
- 767 Blumberg, W. G., D. D. Turner, S. M. Cavallo, J. Gao, J. Basara, A. Shapiro, 2019: An Analysis of
- 768 the Processes Affecting Rapid Near-Surface Water Vapor Increases during the Afternoon
- 769 to Evening Transition in Oklahoma. J. of Appl. Meteorol. and Climatol., 58(10), 2217–
- 770 2234, <u>https://doi.org/10.1175/JAMC-D-19-0062.1</u>.
- 771 Bianco L., D. Cimini, F. S. Marzano, and R. Ware, 2005: Combining microwave radiometer and
- 772 wind profiler radar measurements for high-resolution atmospheric humidity profiling, J.
- 773 Atmos. Ocean. Tech., **22**, 949–965, <u>https://doi.org/10.1175/JTECH1771.1</u>.
- Bianco, L., K. Friedrich, J. M. Wilczak, D. Hazen, D. Wolfe, R. Delgado, S. Oncley, and J. K.
- 775 Lundquist, 2017: Assessing the accuracy of microwave radiometers and radio acoustic
- sounding systems for wind energy applications. *Atmos. Meas. Tech.*, **10**, 1707-1721,
- 777 https://doi.org/10.5194/amt-10-1707-2017.
- 778 Cadeddu, M. P., J. C. Liljegren, and D. D. Turner, 2013: The Atmospheric radiation measurement
- 779 (ARM) program network of microwave radiometers: instrumentation, data, and
- 780 retrievals, Atmos. Meas. Tech., 6, 2359–2372, https://doi.org/10.5194/amt-6-2359-
- 781 <u>2013</u>.
- 782 Cimini, D., M. Haeffelin, S. Kotthaus, U. Löhnert, P. Martinet, E. O'Connor, C. Walden, M.
- 783 Collaud Coen, and J. Preissler, 2020: Towards the profiling of the atmospheric boundary
- 784 layer at European scale—introducing the COST Action PROBE. Bulletin of Atmospheric
- 785 Science and Technology, **1**, 23–42, <u>https://doi.org/10.1007/s42865-020-00003-8</u>.

- 786 Cimini, D., Rosenkranz, P. W., Tretyakov, M. Y., Koshelev, M. A., and Romano, F., 2018:
- 787 Uncertainty of atmospheric microwave absorption model: impact on ground-based
- 788 radiometer simulations and retrievals, Atmos. Chem. Phys., 18, 15231–15259,
- 789 <u>https://acp.copernicus.org/articles/18/15231/2018/</u>.
- 790 Clough, S.A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. Iacono, K. E. Cady-Pereira, S.
- 791 Boukabara and P. D. Brown: Atmospheric radiative transfer modeling: A summary of the
- 792 AER codes, JQSRT, vol 91, no. 2, pp 233-244, 2005,
- 793 <u>https://doi.org/10.1016/j.jqsrt.2004.05.058</u>.
- 794 Engelbart, D., W. Monna, J. Nash, 2009: Integrated Ground-Based Remote-Sensing Stations for
- 795 Atmospheric Profiling, COST Action 720 Final Report, EUR 24172,
- 796 <u>https://doi.org/10.2831/10752</u>.
- 797 Görsdorf, U., and V. Lehmann, 2000: Enhanced Accuracy of RASS-Measured Temperatures Due
- to an Improved Range Correction. J. Atmos. Oceanic Technol., **17 (4)**, 406–416,
- 799 https://doi.org/10.1175/1520-0426(2000)017<0406:EAORMT>2.0.CO;2.
- 800 Han, Y., and E. R. Westwater, 1995: Remote sensing of tropospheric water vapor and cloud
- 801 liquid water by integrated ground-based sensors. J. Atmos. Oceanic Tech., 12, 1050-
- *802* 1059.
- 803 Han, Y., and E. R. Westwater, 2000: Analysis and improvement of tipping calibration for ground-
- 804 based microwave radiometers. *IEEE Trans. Geosci. Remote Sens.*, **38**, 1260–1276,
- 805 https://doi.org/10.1109/36.843018.
- 806 Horst, T. W., S. R. Semmer, and I. Bogoev, 2016: Evaluation of Mechanically-Aspirated
- 807 Temperature/Relative Humidity Radiation Shields, 18th Symposium on Meteorological

808 Observation and Instrum	entation, AMS Annual Meeting,	New Orleans, LA, 10-15 January
-----------------------------	-------------------------------	--------------------------------

- 809 2016, https://ams.confex.com/ams/96Annual/webprogram/Paper286839.html.
- 810 Kaimal, J. C., and J. E. Gaynor, 1983: The Boulder Atmospheric Observatory. J. Climate Appl.
- 811 Meteor., 22, 863–880, https://doi.org/10.1175/1520-
- 812 <u>0450(1983)022<0863:TBAO>2.0.CO;2</u>.
- 813 Küchler, N., D. D. Turner, U. Löhnert, and S. Crewell, 2016: Calibrating ground-based microwave
- 814 radiometers: Uncertainty and drifts, Radio Sci., 51, 311-
- 815 327,<u>doi:10.1002/2015RS005826</u>.
- 816 Löhnert U. and O. Maier, 2012: Operational profiling of temperature using ground-based
- 817 microwave radiometry at Payerne: prospects and challenges. Atmos. Meas. Tech., 5,
- 818 1121–1134, <u>https://doi.org/10.5194/amt-5-1121-2012</u>.
- Lundquist, J. K., J. M. Wilczak, R. Ashton, L. Bianco, W. A. Brewer, A. Choukulkar, A. Clifton, M.
- 820 Debnath, R. Delgado, K. Friedrich, S. Gunter, A. Hamidi, G. V. Iungo, A. Kaushik, B.
- 821 Kosović, P. Langan, A. Lass, E. Lavin, J. C.-Y. Lee, K. L. McCaffrey, R. K. Newsom, D. C.
- 822 Noone, S. P. Oncley, P. T. Quelet, S. P. Sandberg, J. L. Schroeder, W. J. Shaw, L. Sparling,
- 823 C. St. Martin, A. St. Pe, E. Strobach, K. Tay, B. J. Vanderwende, A. Weickmann, D. Wolfe,
- 824 and R. Worsnop, 2017: Assessing state-of-the-art capabilities for probing the
- 825 atmospheric boundary layer: the XPIA field campaign. Bull. Am. Meteor. Soc., 98, 289–
- 826 314, <u>https://doi.org/10.1175/BAMS-D-15-00151.1</u>.
- 827 Maahn, M., D. D. Turner, U. Löhnert, D. J. Posselt, K. Ebell, G. G. Mace, and J. M. Comstock,
- 828 2020: Optimal estimation retrievals and their uncertainties: What every atmospheric

- scientist should know. Bull. Amer. Meteor. Soc., 101, E1512-E1523, doi:10.1175/BAMS-
- *830* D-19-0027.1
- 831 May P. T., Moran, K. P., and Strauch, R. G., 1989: The Accuracy of RASS Temperature
- 832 Measurements, J. Appl. Meteorol., 28, 1329–1335.
- 833 May, P. T. and J. M. Wilczak, 1993: Diurnal and Seasonal Variations of Boundary-Layer Structure
- 834 Observed with a Radar Wind Profiler and RASS. Mon. Wea. Rev., **121**, 673–682,

835 https://doi.org/10.1175/1520-0493(1993)121<0673:DASVOB>2.0.CO;2.

- 836 Masiello, G., C. Serio, and P. Antonelli, 2012: Inversion for atmospheric thermodynamical
- parameters of IASI data in the principal components space. Quart. J. Roy. Meteor. Soc.,
- 838 **138**, 103–117, <u>https://doi.org/10.1002/qj.909</u>.
- 839 Merrelli, A. M., and D. D. Turner, 2012: Comparing information content of upwelling far infrared
- 840 and midinfrared radiance spectra for clear atmosphere profiling. J. Atmos. Oceanic

841 Technol., **29**, 510–526, <u>https://doi.org/10.1175/JTECH-D-11-00113.1</u>.

- 842 Neiman, P. J., D. J. Gottas, and A. B. White, 2019: A Two-Cool-Season Wind Profiler–Based
- 843 Analysis of Westward-Directed Gap Flow through the Columbia River Gorge. *Month.*

844 Wea. Rev., **147**, 4653-4680, <u>https://doi.org/10.1175/MWR-D-19-0026.1</u>.

845 North, E. M., A. M.Peterson, and H. D. Parry, 1973: RASS, a remote sensing system for

- 846 measuring low-level temperature profiles. *Bull. Am. Meteor. Soc.*, **54**, 912–919.
- Payne, V. H., J. S. Delamere, K. E. Cady-Pereira, R. R. Gamache, J.-L. Moncet, E. J. Mlawer, and S.
- A. Clough, 2008: Air-broadened half-widths of the 22- and 183-GHz water-vapor lines.
- 849 IEEE Trans. Geosci. Remote Sens., **46**, 3601-3617, doi:10.1109/TGRS.2008.2002435.

- 850 Payne, V. H., E. J. Mlawer, K. E. Cady-Pereira, and J.-L. Moncet, 2011: Water vapor continuum
- absorption in the microwave. IEEE Trans. Geosci. Remote Sens., 49, 2194-2208,
- 852 doi:10.1109/TGRS.2010.2091416.Rodgers, C. D., 2000: Inverse Methods for Atmospheric
- 853 Sounding: Theory and Practice. Series on Atmospheric, Oceanic and Planetary Physics,
- 854 Vol. 2, World Scientific, 238 pp.
- 855 Rose, T., S. Crewell, U. Löhnert, C. Simmer, 2005: A network suitable microwave radiometer for
- 856 operational monitoring of the cloudy atmosphere, Atmospheric Research, 75, Issue 3,
- 857 183–200, <u>https://doi.org/10.1016/j.atmosres.2004.12.005</u>.
- 858 Rosenkranz, P. W., 1998: Water vapour microwave continuum absorption: A comparison of

859 measurements and models. *Radio Science*, **33**, 919–928.

- 860 Shaw, W., and Coauthors, 2019: The Second Wind Forecast Improvement Project (WFIP 2):
- 861 General Overview. Bull. Am. Meteor. Soc., 100(9), 1687–1699,
- 862 https://doi.org/10.1175/BAMS-D-18-0036.1.
- 863 Solheim, F., J. R. Godwin, J., and R. Ware, 1998a: Passive ground-based remote sensing of
- 864 atmospheric temperature, water vapor, and cloud liquid profiles by a frequency
- synthesized microwave radiometer. *Meteorol. Z.*, **7**, 370–376.
- 866 Solheim F., J. R. Godwin, E. R. Westwater, Y. Han, S. J. Keihm, K. Marsh, R. Ware, 1998b:
- 867 Radiometric profiling of temperature, water vapor and cloud liquid water using various
- 868 inversion methods. *Radio Science*, **33**, 393–404, <u>https://doi.org/10.1029/97RS03656</u>.

- 869 Stankov, B. B., E. R. Westwater, and E. E. Gossard, 1996: Use of wind profiler estimates of
- 870 significant moisture gradients to improve humidity profile retrieval. J. Atmos. Oceanic
- 871 Tech., **13**, 1285-1290.
- 872 Strauch, R. G., D. A. Merritt, K. P. Moran, K. B. Earnshaw, and D. V. De Kamp, 1983: The
- 873 Colorado wind-profiling network. J. Atmos. Oceanic Technol., 1, 37–49,
- 874 <u>https://doi.org/10.1175/1520-0426(1984)001<0037:tcwpn>2.0.co;2</u>.
- 875 Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic
- 876 profiles and liquid cloud properties retrieved from the ground-based Atmospheric
- 877 Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Clim., 53, 752–771,
- 878 <u>https://doi.org/10.1175/JAMC-D-13-0126.1</u>.
- 879 Turner, D. D., and W. G. Blumberg, 2019: Improvements to the AERIoe thermodynamic profile
- 880 retrieval algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and
- 881 Remote Sensing, **12(5)**, 1339–1354, <u>https://doi.org/10.1109/JSTARS.2018.2874968</u>.
- 882 Turner, D. D., and U. Löhnert, 2020: Ground-based Temperature and Humidity Profiling:
- 883 Combining Active and Passive Remote Sensors. *In revision to Atmos. Meas. Tech.*
- 884 Discuss., <u>https://doi.org/10.5194/amt-2020-352</u>.
- 885 Ware R., Solheim F., Carpenter R., and Coauthors, 2003: A multi-channel radiometric profiler of
- temperature, humidity and cloud liquid. *Radio Science*, **38**, No. 4, 8079,
- 887 https://doi.org/10.1029/2002RS002856.

- 888 Weber, B. L., D. B. Wuertz, D. C. Welsh, and R. Mcpeek, 1992: Quality controls for profiler
- 889 measurements of winds and RASS temperatures. J. Atmos. Oceanic Technol., 10, 452–
- 890 464, https://doi.org/10.1175/1520-0426(1993)010<0452:qcfpmo>2.0.co;2
- 891 Wilczak, J. M., and Coauthors, 2019: The Second Wind Forecast Improvement Project (WFIP2):
- 892 Observational Field Campaign. Bull. Am. Meteor. Soc., 100(9), 1701–1723,
- 893 https://doi.org/10.1175/BAMS-D-18-0035.1.
- 894 Wolfe, D. E. and R. J. Lataitis, 2018: Boulder Atmospheric Observatory: 1977–2016: The end of
- an era and lessons learned. Bull. Am. Meteor. Soc., 99, 1345–1358,
- 896 https://doi.org/10.1175/BAMS-D-17-0054.1.