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Abstract 45 

Thermodynamic profiles are often retrieved from the multi-wavelength brightness 46 

temperature observations made by microwave radiometers (MWRs) using regression methods 47 

(linear, quadratic approaches), artificial intelligence (neural networks), or physical-iterative 48 

methods. Regression and neural network methods are tuned to mean conditions derived from 49 

a climatological dataset of thermodynamic profiles collected nearby. In contrast, physical-50 

iterative retrievals use a radiative transfer model starting from a climatologically reasonable 51 

value of temperature and water vapor, with the model run iteratively until the derived 52 

brightness temperatures match those observed by the MWR within a specified uncertainty. 53 

In this study, a physical-iterative approach is used to retrieve temperature and humidity 54 

profiles from data collected during XPIA (eXperimental Planetary boundary layer Instrument 55 

Assessment), a field campaign held from March to May 2015 at NOAA’s Boulder Atmospheric 56 

Observatory (BAO) facility. During the campaign, several passive and active remote sensing 57 

instruments as well as in-situ platforms were deployed and evaluated to determine their 58 

suitability for the verification and validation of meteorological processes. Among the deployed 59 

remote sensing instruments was a multi-channel MWR, as well as two radio acoustic sounding 60 

systems (RASS), associated with 915-MHz and 449-MHz wind profiling radars.  61 

Having the possibility to combine the information provided by the MWR and RASS 62 

systems, in this study the physical-iterative approach is tested with different observational 63 

inputs: first using data from surface sensors and the MWR in different configurations, and then 64 

including data from the RASS. These temperature retrievals are also compared to those derived 65 

by a neural network method, assessing their relative accuracy against 58 co-located radiosonde 66 
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profiles. Results show that the combination of the MWR and RASS observations in the physical-67 

iterative approach allows for a more accurate characterization of low-level temperature 68 

inversions, and that these retrieved temperature profiles match the radiosonde observations 69 

better than all other approaches, including the neural network, in the atmospheric layer 70 

between the surface and 5 km AGL.  Specifically, in this layer of the atmosphere, both root 71 

mean square errors and standard deviations of the difference between radiosonde and 72 

retrievals that combine MWR and RASS are improved by ~0.5 oC compared to the other 73 

methods. Pearson correlation coefficients are also improved.   74 

 75 

 76 
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1. Introduction 89 

To monitor the state of the atmosphere for process understanding and for model 90 

verification and validation, scientists rely on observations from a variety of instruments, each 91 

one having its set of advantages and disadvantages. Using several diverse instruments allows 92 

one to monitor different aspects of the atmosphere, while combining them in an optimized 93 

synergetic approach can improve the accuracy of the information we have on the state of the 94 

atmosphere. 95 

During the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) 96 

campaign, an U.S. Department of Energy sponsored experiment held at the Boulder 97 

Atmospheric Observatory (BAO) in Spring 2015, several instruments were deployed (Lundquist 98 

et al., 2017) with the goal of assessing their capability for measuring flow within the 99 

atmospheric boundary layer. XPIA investigated novel measurement approaches, and quantified 100 

uncertainties associated with these measurement methods. While the main interest of the XPIA 101 

campaign was on wind and turbulence, measurements of other important atmospheric 102 

variables were also collected, including temperature and humidity. Among the deployed 103 

instruments were two identical microwave radiometers (MWRs) and two radio acoustic 104 

sounding systems (RASS), as well as radiosondes launches that were used for verification. 105 

MWRs are passive sensors, sensitive to atmospheric temperature and humidity content 106 

that allow for a high temporal observation of the state of the atmosphere, with some 107 

advantages and limitations. In order to estimate profiles of temperature and humidity, they 108 

observe atmospheric brightness temperature and apply radiative transfer equations 109 

(Rosenkranz, 1998) and neural network retrievals (Solheimet al., 1998a, and 1998b; Ware et al., 110 
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2003), or physical retrieval methodologies that can include more information about the 111 

atmospheric state in the retrieval process (Turner and Blumberg, 2019). Advantages of MWRs 112 

include their compact design, the relatively high temporal resolution of the measurements (2-3 113 

minutes), the possibility to observe the vertical structure of both temperature and moisture, 114 

the deep layer of the atmosphere that can be monitored including during cloudy conditions, 115 

and their capability to operate in a standalone mode. Disadvantages include the limited 116 

accuracy, as the temperature and humidity profiles are not actively measured but retrieved, 117 

their lower accuracy in the presence of rain because of scattering of radiation due to raindrops 118 

in the atmosphere (and because some water can still deposit on the radome, although the 119 

instruments use a hydrophobic radome and force airflow over the surface of the radome during 120 

rain), rather coarse vertical resolution, and for retrievals the necessity to have a site specific 121 

climatology. Other disadvantages include the challenges related to performing accurate 122 

calibrations (Küchler et al., 2016, and references within), radio frequency interference (RFI), and 123 

the low accuracy on the retrieved liquid water path (LWP) especially for values of LWP less than 124 

50 g/m2. 125 

RASS, in comparison, are active instruments that emit a longitudinal acoustic wave 126 

upward, causing a local compression and rarefaction of the ambient air. These density 127 

variations are tracked by the Doppler radar associated with the RASS, and the speed of the 128 

propagating sound wave is measured. The speed of sound is related to the virtual temperature 129 

Tv (North et al., 1973), and therefore, RASS are routinely used to remotely measure vertical 130 

profiles of virtual temperature in the boundary layer. Being an active instrument, the RASS is in 131 

general more accurate than a passive instrument (Bianco et al., 2017), but they also come with 132 
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their sets of disadvantages. The main limitations of RASS for retrieval purposes are its low 133 

temporal resolution (typically a 5-min averaged RASS profile is measured once or twice per 134 

hour), and their limited altitude coverage. Recent studies (Adachi and Hashiguchi, 2019) have 135 

shown that to make them more suitable to operate in urban areas RASS could use parametric 136 

speakers to take advantage of their high directivity and very low side lobes. Nevertheless, the 137 

maximum height reached by the RASS is still limited, being a function of both radar frequency 138 

and atmospheric conditions (May and Wilczak, 1993), and is determined both by the 139 

attenuation of the sound, which is a function of atmospheric temperature, humidity, and 140 

frequency of the sound source, and the advection of the propagating sound wave out of the 141 

radar’s field-of-view. Therefore, data availability is usually limited to the lowest several km, 142 

dependent on the frequency of the radar. In addition, wintertime coverage is usually 143 

considerably lower than that in summer, due to a higher probability of stronger winds 144 

advecting the sound wave away from the radar in the winter. 145 

To get a better picture of the state of the temperature and moisture structure of the 146 

atmosphere, it makes sense to try to combine the information obtained by both MWR and 147 

RASS. Integration of different instruments has been of scientific interest for several years (Han 148 

and Westwater 1995; Stankov et al. 1996; Bianco et al., 2005; Engelbart et al., 2009; Cimini et 149 

al., 2020, Turner and Löhnert, 2020, to name some). In this study we particularly focus on the 150 

combination of the MWR and RASS observations in the retrievals to improve the accuracy of 151 

the temperature profiles in the lowest 5 km compared to the standard MWR retrievals 152 

obtained through neural network (NN) processing, or compared to physical retrieval 153 

approaches that do not include the information from RASS measurements.  154 
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This paper is organized as follows: Section 2 summarizes the experimental dataset; 155 

Section 3 introduces the principles of the physical retrieval approaches used to obtain vertical 156 

profiles of the desired variables; Section 4 produces statistical analysis of the comparison 157 

between the different retrieval approaches and radiosonde measurement; finally, conclusions 158 

are presented in Section 5. 159 

 160 

2. XPIA data 161 

The data used in our analysis were collected during the XPIA experiment, held in Spring 162 

2015 (March-May) at the NOAA’s Boulder Atmospheric Observatory (BAO) site, in Erie, 163 

Colorado (Lat.: 40.0451 N, Lon.: 105.0057 W, El.: 1584 m MSL). XPIA was the last experiment 164 

conducted at this facility, as after almost 40 years of operations the BAO 300-m tower was 165 

demolished at the end of 2016 (Wolfe and Lataitis, 2018). XPIA was designed to assess the 166 

capability of different remote sensing instruments for quantifying boundary layer structure, and 167 

was a preliminary study as many of these same instruments were later deployed, among other 168 

campaigns, for the second Wind Forecast Improvement Project WFIP2 (Shaw et al., 2019; 169 

Wilczak et al., 2019) which investigated flows in complex terrain for wind energy applications, 170 

and were for example used to study cold air pool and gap flow characteristics (Adler et al., 171 

2020; Banta et al., 2020; Neiman et al., 2019). The list of the deployed instruments included 172 

active and passive remote-sensing devices, and in-situ instruments mounted on the BAO tower. 173 

Data collected during XPIA are publicly available at https://a2e.energy.gov/projects/xpia. A 174 

detailed description of the XPIA experiment can be found in Lundquist et al. (2017), while a 175 
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specific look at the accuracy of the instruments used in this study can be found in Bianco et al. 176 

(2017).  177 

 178 

2.1 MWR measurements 179 

Two identical MWRs, managed by NOAA (MWR-NOAA) and by the University of 180 

Colorado (MWR-CU), were deployed next to each other at the visitor center ~600 m south of 181 

the BAO tower (see Lundquist et al., 2017 for a detailed map of the study area). Both MWRs 182 

have 35-channels spanning a range of frequencies, with 21 channels in the lower (22-30 GHz) K-183 

band frequency band, and 14 channels in the higher (51-59 GHz) V-band frequency band. 184 

Frequencies in the K-band are more sensitive to water vapor and cloud liquid water, while 185 

frequencies in the V-band are sensitive to atmospheric temperature due to the absorption of 186 

atmospheric oxygen (Cadeddu et al., 2013).  Both MWRs observed at the zenith and at 15- and 187 

165-degree elevation angles in the north-south plane (referred to as oblique elevation scans 188 

hereafter; note zenith views have 90-degree elevation angles). In addition, each MWR was 189 

provided with a separate surface sensor to measure pressure, temperature, and relative 190 

humidity at the installation level that was ~2.5 m above ground level (AGL). MWRs are passive 191 

devices which record the natural microwave emission in the water vapor and oxygen 192 

absorption bands from the atmosphere, providing measurements of the brightness 193 

temperatures. Vertical profiles of temperature (T), water vapor density (WVD), and relative 194 

humidity (RH) were retrieved in real-time during XPIA every 2-3 minutes using a NN approach 195 

provided by the private manufacturing company Radiometrics (Solheim et al. 1998). The NN 196 

used a training dataset based on a 5-year climatology of profiles from radiosondes launched at 197 
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the Denver International Airport, 35 miles south-east from the XPIA site. NN-based MWR 198 

vertical retrieval profiles were obtained using the zenith and an average of two oblique 199 

elevation scans, all extending for 58 levels up to 10 km, with nominal vertical levels depending 200 

on the height (every 50 m from the surface to 500 m, every 100 m from 500 m to 2 km, and 201 

every 250 m from 2 to 10 km, AGL). In this study we make use of the NN zenith and of the NN 202 

oblique, where the latter can average out small-scale horizontal inhomogeneities of the 203 

atmosphere. 204 

The MWR-CU operated from 9 March to 7 May 2015, while MWR-NOAA was unavailable 205 

between 5-27 April 2015. For the overlapping dates, temperature retrieved from the two 206 

MWRs showed very good agreement with less than 0.5 K bias and 0.994 correlation (Bianco et 207 

al., 2017). For this reason, we use only the MWR-CU (hereafter simply called MWR). 208 

 209 

2.2 Radiosonde measurements 210 

Between 9 March and 7 May 2015, while the MWR was operational, radiosondes were 211 

launched by the National Center for Atmospheric Research (NCAR) assisted by several students 212 

from the University of Colorado over three selected periods, one each in March, April, and May. 213 

There was a total of 59 launches, mostly four times per day, around 14:00, 18:00, 22:00 and 214 

0200 UTC (8:00, 12:00, 16:00 and 20:00 local standard time, LST). All radiosondes were Vaisala 215 

RS92. The first 35 launches, between 9-19 March, were done from the visitor center, while the 216 

11 launches, between 15-22 April, and 13 launches, between 1-4 May, were done from the 217 

water tank site, ~1000 meters apart (see Lundquist et al., 2017 for a detailed map of the study 218 

area). The radiosonde measurements included temperature, dewpoint temperature, and 219 
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relative humidity, to altitudes usually higher than 10 km AGL, with measurements every few 220 

seconds.  221 

 222 

2.3 WPR-RASS measurements 223 

Two NOAA wind profiling radars (WPRs), operating at frequencies of 915-MHz and 449-224 

MHz, were deployed at the visitor center (same location of the MWR) during XPIA. These 225 

systems are primarily designed to measure the vertical profile of the horizontal wind vector, but 226 

co-located RASS also observe profiles of virtual temperature in the lower atmosphere, with 227 

different resolutions and height coverages depending on the WPR. Thus, the RASS associated 228 

with the 915-MHz WPR (hereafter referred to as RASS 915) measured virtual temperature from 229 

120 to 1618 m with a vertical resolution of 62 m, and the 449 MHz RASS (hereafter referred to 230 

as RASS 449) sampled the boundary layer from 217 to 2001 m with a vertical resolution of 105 231 

m. The maximum height reached by the RASS is a function of both radar frequency and 232 

atmospheric conditions (May and Wilczak, 1993), and is usually lower for RASS 915 data, as will 233 

be shown later in the analysis. 234 

The RASS data were processed using a radio frequency interference (RFI)-removal 235 

algorithm (performed on the RASS spectra), a consensus algorithm (Strauch et al. 1984) 236 

performed on the moment data using a 60% consensus threshold, a Weber-Wuertz outlier 237 

removal algorithm (Weber et al., 1993) performed on the consensus averages, and a RASS 238 

range-correction algorithm (Görsdorf and Lehmann, 2000) using an average relative humidity 239 

setting of 50% determined from the available observations. 240 

 241 
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2.4 BAO data 242 

The BAO 300-m tower was built in 1977 to study the planetary boundary layer (Kaimal 243 

and Gaynor 1983). During XPIA, measurements were collected at the surface (2 m) and at six 244 

higher levels (50, 100, 150, 200, 250 and 300 m AGL).  Each tower level was equipped with 2 245 

sonic anemometers on orthogonal booms, and one sensor based on a Sensiron SHT75 solid-246 

state sensor to measure temperature and relative humidity with a time resolution of 1 s, and 247 

averaged over five minutes. 248 

The observational temperature and water vapor surface data are used from the more 249 

accurate observations at the BAO tower 2 m AGL level (Horst, 2016), to replace the data 250 

measured by the less accurate MWR inline surface sensor. 251 

 252 

 253 

3. Physical retrievals  254 

Other than NN approaches, a physical retrieval (PR) iterative approach can be used to 255 

retrieve vertical profiles of thermodynamic properties from the MWR observations (Maahn et 256 

al 2020). In this case, using a radiative transfer model, the process starts with a climatologically 257 

reasonable value of temperature and water vapor, and is iteratively repeated until the 258 

computed brightness temperatures match those observed by the MWR within the uncertainty 259 

of the observed brightness temperatures (Rodgers, 2000; Turner and Löhnert, 2014; Maahn et 260 

al. 2020). 261 

 262 
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3.1 Iterative retrieval technique 263 

For this study, the physical retrieval (PR) uses a microwave radiative transfer model, 264 

MonoRTM (Clough et al., 2005), which is fully functional for the microwave region and was 265 

intensively evaluated previously on MWR measurements (Payne et al. 2008; 2011). We start 266 

with the state vector Xa = [T, Q, LWP]T, where superscript T denotes transpose. T (K) and Q 267 

(g/kg) are temperature and water vapor mixing ratio profiles at 55 vertical levels from the 268 

surface up to 17 km, with the distance between the levels increasing exponentially-like with 269 

height. LWP is the liquid water path in (g/m2) that measures the integrated content of water in 270 

the entire vertical column above the MWR, and is a scalar. For this study we have Xa with 271 

dimensions equal to 111 x 1 (two vectors T and Q with 55 levels each, and LWP).  We are using 272 

the retrieval framework of Turner and Blumberg (2019), but only using MWR data (no spectral 273 

infrared) and will augment the retrieval to include RASS profiles of Tv. 274 

The observation vector Y from the beginning includes temperature and water vapor 275 

mixing ratio measured at the surface, and brightness temperature (Tb) measured by the MWR. 276 

The MonoRTM model F is used as the forward model to estimate the observation vector Y from 277 

the current state vector X, from Eq. (1), iterating until the difference between F(X) and Y is 278 

small within a specified uncertainty: 279 

Xn+1 = Xa +(Sa
-1+KTSε

-1K)-1 KTSε
-1 [Y - F(Xn) + K (Xn - Xa)]  (1) 280 

with: 281 

     282 
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 283 

and Y, depending on the configuration used, being equal to: 284 

       285 

   286 

The superscripts T and -1 indicate transpose or inverse matrix, respectively. Also, 287 

vectors and matrices are shown in bold.  Note that we are including the 2-m surface-level 288 

observations of temperature and water vapor mixing ratio (Tsfc and Qsfc, respectively) as part 289 

of the observation vector Y, and thus the uncertainties in these observations are included in Sε. 290 

The first guess of the state vector X, X1 in Eq. (1), is set to be equal to the mean state 291 

vector of climatological estimates, or a “prior” vector Xa, which is calculated independently for 292 

each month of the year from climatological sounding profiles (10 years) in the Denver area. 293 

Sa is the covariance matrix of the “prior” vector that includes not only temperature or water 294 

vapor variances but also the covariances between them. K is the Jacobian matrix, computed 295 

using finite differences by perturbing the elements of X and rerunning the radiative transfer 296 

model. 297 
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We start with four configurations for the observational vector Y (Y1, Y2, Y3, and Y4). The 298 

MWR provides the Tb measurements in all schemes, zenith only in Y1 (which also includes the 299 

2-m in-situ observations of temperature and humidity), and zenith and oblique in Y2, Y3, and Y4. 300 

Using additional measurements from the co-located radar systems with RASS, we may further 301 

expand the observational vector with either RASS 915 (Y3) or RASS 449 (Y4) virtual temperature 302 

observations. The covariance matrix of the observed data, Sε, depends on the chosen Yi as it is 303 

highlighted by the red numbers in the matrix description, with increasing dimensions from Y1 to 304 

Y2 and additional increasing dimensions to Y3 and Y4 through the multi-level measurements of 305 

the RASS (Turner and Blumberg, 2019). Table 1 summarizes the observational information 306 

included in these four different configurations of the PR. 307 

 Tsfc
 Qsfc Tbzenith Tbzenith-oblique TvRASS915 TvRASS449 

Y1 = MWRz X X X    

Y2 = MWRzo X X X X   

Y3 = MWRzo915 X X X X X  

Y4 = MWRzo449 X X X X  X 

Table 1. Four PR configurations corresponding to the four observational Yi vectors in Eq. (1). 308 

 309 

We assume that there is no covariance between different instruments as well as 310 

between different channels (MWR) or height levels (RASS) of each instrument, therefore this 311 

covariance matrix Sε is diagonal. The Jacobian matrix, K, has dimensions m x 111, where m is 312 

the length of the vector Yi, therefore its dimensions increase correspondingly with the inclusion 313 

of more observational data. K makes the “connection” between the state vector and the 314 
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observational data and should be calculated at every iteration.  315 

 316 

3.2 Bias-correction 317 

Observational errors propagate through the retrieval into the derived profiles (i.e. the 318 

bias of the observed data will contribute to bias the retrievals.) For that, retrieval uncertainties 319 

in Eq. (1) from Y = Y1 or Y2 derive only from uncertainties in surface and MWR data, while 320 

retrieval uncertainties from Y = Y3 or Y4 are coming from uncertainties in surface, MWR, and 321 

RASS measurements.  322 

While the bias of the retrieval depends on both the sensitivity of the forward model and 323 

the observational uncertainty, we can try to eliminate, or at least to reduce, the systematic 324 

error in the MWR observations. To this aim, we first looked for clear sky days (to reduce the 325 

degrees of freedom associated with clouds) during the period of the measurements. One 326 

method to identify clear-sky times is to use brightness temperature observations in the 30 GHz 327 

water vapor sensitive channel. The random uncertainty in brightness temperature was 328 

calculated as its standard deviation during clear sky times and for this channel is approximately 329 

0.3 K (but during periods with liquid-bearing clouds overhead, the standard deviation of the 30 330 

GHz Tb is markedly higher than this threshold due to the non-homogeneous nature of clouds 331 

and thus their contribution to the downwelling microwave radiance). Four clear-sky days were 332 

selected, March 10 and 30, and April 13 and 29. The bias was then computed on all channels 333 

over these selected clear-sky days and removed from all measurements. Fig. 1 shows the 334 

results of the bias-correction for the four chosen clear-sky days. The green lines on this figure 335 

indicate the MWR random errors at each frequency calculated as the standard deviation of Tb 336 
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averaged over one-hour sliding window; these are 0.3-0.4 K for K-band channels and 0.6-0.7 K 337 

for V-band channels. 338 

 339 

Fig.1. Bias for the four chosen clear-sky days (red-dashed lines) and their mean (red solid line) 340 

for the original observations in the top panel, and for the bias-corrected data in the bottom 341 

panel. Green lines are the uncertainty boundaries around the mean bias. Frequencies used in the 342 

PR algorithm are marked with black triangles in both panels.  343 

 344 

This bias correction was applied to the brightness temperature used in the PR approach; 345 

however, the NN retrievals used the uncorrected brightness temperature, since it was non-346 

trivial for us to reprocess those retrievals.  347 
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The retrieved profiles of the four different PR configurations presented in Table 1 348 

(MWRz, MWRzo, MWRzo915, MWRzo449) were compared to the radiosonde profiles, as well 349 

as to the NN retrievals. BAO tower temperature and mixing ratio data at the seven available 350 

levels were used as an additional validation dataset, without any interpolation.  351 

To compare radiosonde observations against the PR and NN retrieved profiles, all these 352 

profiles were interpolated vertically to the same PR heights, and PR and NN profiles were 353 

averaged in the time window between 15 minutes before and 15 minutes after each 354 

radiosonde launch. Since the radiosonde ascends quite quickly in the lowest kilometers of the 355 

atmosphere (~15-20 min to reach 5 km), we estimated that the 30-minute temporal window is 356 

representative of the same volume of the atmosphere measured by the radiosonde. 357 

An example of the different temperature retrievals and their relative performance, data 358 

obtained on 17 March 2015 at 2200 UTC is presented in Fig. 2. Temperature profiles up to 2 km 359 

AGL from the four PR configurations (MWRz, MWRzo, MWRzo915, MWRzo449) are compared 360 

to the radiosonde data in red, to the BAO measurements in blue squares, and to the NN profiles 361 

(NN zenith in beige, and NN oblique in green). The MWRz and MWRzo profiles, as well as those 362 

from the NNs, are very smooth and depart quite substantially from the radiosonde 363 

measurements, being unable to reproduce the more detailed structure of the atmospheric 364 

temperature profile measured by the radiosonde, while the MWRzo449 profile (in light-blue) 365 

demonstrates better agreement with both the radiosonde and BAO measurements (blue 366 

squares). Note that all four of the PRs match the BAO observations reasonably well, while the 367 

NN retrievals are warm-biased.  The MWRzo915 profile (in magenta) also tries to follow the 368 
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elevated temperature inversion observed by the radiosonde, successfully only in the lower part 369 

of the atmosphere (below 1 km AGL) where RASS 915 measurements are available. This 370 

behavior will be also addressed in the following section and in the statistical analysis presented 371 

later in the manuscript. 372 

 373 

Fig. 2. Temperature profiles obtained by the four PR configurations: MWRz in gray, MWRzo in 374 

black, MWRzo915 in magenta, and MWRzo449 in light-blue; NN retrievals: NN zenith in beige, 375 

and NN averaged oblique in green. These retrievals are compared to radiosonde measurements, 376 

in red, and BAO tower observations, in blue squares. The heights with available RASS virtual 377 

temperature measurements (RASS 915 in magenta and RASS 449 in light-blue), are marked by 378 

the asterisks on the right Y-axis. 379 

 380 

3.3 Averaging kernel 381 
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The averaging kernel, Akernel (Masiello et al., 2012, Turner and Löhnert, 2014) from Eq. 382 

(1) can be calculated as: 383 

Akernel = B-1 KT Sε
-1 K       (2) 384 

where: 385 

B = Sa
-1 + KT Sε

-1 K 386 

Both matrices, Akernel and B, have dimensions 111 x 111 in our configuration. The 387 

Akernel matrix has  useful information about the calculated retrievals, such as vertical 388 

resolution and degrees of freedom for signal at each level. Thus, the rows of Akernel provide 389 

the smoothing functions that have to be applied to the retrievals (Rodgers, 2000) to help 390 

minimize the vertical representativeness error in the comparison between the various retrievals 391 

and the radiosonde profiles due to very different vertical resolutions of these profiles. 392 

Using the averaging kernel, the smoothed radiosonde observed profiles will be 393 

therefore computed as: 394 

Xsmoothed_sonde = Akernel (Xsonde – Xa) + Xa   (3) 395 

The Akernel in Eq. (2) depends on the retrieval parameters (e.g., which datasets are 396 

used in the Y vector, the values assumed in the observation covariance matrix Sε, and the 397 

sensitivity of the forward model (i.e., its Jacobian), etc.), so for our four PR configurations it is 398 
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possible to calculate four different kernels: A_MWRz, A_MWRzo, A_MWRzo915 and 399 

A_MWRzo449, respectively.  400 

While the top left corner of the Akernel matrix (1:55, 1:55) is devoted to temperature, 401 

and it will be called AT_MWR hereafter, the next (56:110, 56:110) elements are devoted to 402 

water vapor mixing ratio, and will be called AQ_MWR.  403 

For each of the four Akernels, a smoothed radiosonde profile can be computed for each 404 

radiosonde profile using Eq. (3). In the presence of temperature inversions or other particular 405 

structures in the atmosphere these smoothed profiles can be quite different from each other 406 

and also from the original unsmoothed radiosonde profile.  407 

Therefore, in the statistical analysis presented later in the manuscript (in section 4.2), 408 

mean bias, root mean square error (RMSE), and Pearson correlation coefficients will be 409 

computed between the MWR’s retrievals and both the unsmoothed and smoothed radiosonde 410 

profiles,where the latter were computed using their respective Akernels.  Additional 411 

observational data help to resolve the atmospheric structure in more detail, therefore we 412 

would expect to obtain better statistical evaluations from the configurations including 413 

additional RASS observations compared to the runs without RASS data. 414 

The improvement in the retrieved temperature profiles presented in Fig. 2 obtained 415 

using additional RASS data can be explained and clearly shown by the ATkernel itself. Figure 3 416 

includes the temperature profiles of the radiosonde and PRs of MWRzo and MWRzo449 (panel 417 

a), and the ATkernels corresponding to these PRs in the color plots in the middle of the figure 418 
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(panels b and c). These color plots are a schematic visualization of the 37 x 37 top left corner of 419 

the ATkernel matrix that illustrates the part of the ATkernel up to 3 km, for reference. Dash 420 

lines mark the 2 km vertical level.  421 

The rows of the ATkernel provide a measure of the retrieval smoothing as a function of 422 

altitude, so the full-width half maximum of each ATkernel row estimates the vertical resolution 423 

of the retrieved solution at each vertical level (Merrelli and Turner, 2012). These plots of 424 

temperature vertical resolution vs height for MWRzo and MWRzo449 are included in Figure 3, 425 

panel d, for the same case presented in Fig. 2. Comparison of ATkernel color plots and vertical 426 

resolution plots of MWRzo vs MWRzo449 shows that additional observations from the RASS 427 

449 significantly reduces the spread around the main diagonal up to 2 km (in the layer of the 428 

atmosphere where RASS 449 measurements are available), thereby improving the vertical 429 

resolution of the retrievals (as clearly visible in panel d). 430 

 431 

 432 
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Fig. 3. Panel a: temperature profiles from radiosonde, in red, from MWRzo PR in black, and from 433 

MWRzo449 PR in light-blue. Middle colored panels: 37x37 levels (surface to 3 km) of the Akernel 434 

matrix for temperature, b) AT_MWRzo and c) AT_MWRzo449. Right panel d: vertical resolution 435 

(VRES) as a function of the height for the MWRzo PR (black), and for the MWRzo449 PR (light-436 

blue). Dash lines on plots b)-d) mark 2 km AGL. Hatched area on panel c) marks the RASS 437 

measurement heights. 438 

 439 

4. Results 440 

PR and NN retrieved profiles have been evaluated against radiosonde observations. For 441 

additional verification, radiosonde data from 59 launches taken between 9 March and 4 May 442 

2015 were first of all compared to the BAO tower measurements, up to 300 m AGL. These 443 

observed data sets match very well, with a correlation coefficient of 0.99 and a standard 444 

deviation of ~0.7 oK.  However, one radiosonde profile showed a large bias (> 5 oK) against all 445 

seven levels of BAO temperature measurements and against all PRs and NNs, therefore we 446 

decided to exclude this particular radiosonde profile from the statistical calculations. 447 

 448 

4.1 PRs statistical analysis 449 

To complete the analyses on the ATkernel changes and dependencies from different 450 

types of observational data used in the PRs, the ATkernels, averaged over all radiosonde 451 

events, are shown in Fig. 4, panels a-d, for the four PR configurations of Table 1, in the same 452 

way as shown in Fig. 3, b-c. A clearly visible gradual narrowing of the spread around the main 453 

diagonal is obtained by the usage of the additional observations, from MWR zenith only (panel 454 

https://doi.org/10.5194/amt-2021-9
Preprint. Discussion started: 29 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 

24 
 

a), to MWR zenith-oblique (panel b), to the larger impact obtained by the usage of RASS 915 455 

(panel c) and RASS 449 (panel d) data. 456 

Other statistically important features to analyze in the PRs, besides vertical resolution, 457 

are the retrieval uncertainty, and the degree of freedom for signal (DFS). These three features 458 

are also shown in Fig.4, panels e-g, at each of the heights of the retrieved solution, up to 3 km 459 

AGL, and averaged over all radiosonde events. While the vertical resolution (panel e) shows the 460 

width of the atmosphere layer used for each retrieval height (the vertical resolution is 461 

computed as the full-width half-maximum value of the averaging kernel), the uncertainty (panel 462 

f) gives a measure of the retrieval correctness (computed by propagating the uncertainty of the 463 

observations and the sensitivity of the forward model), and the DFS (panel g) is a measure of 464 

the number of independent pieces of information used in the retrieved solution. For example, 465 

at the 1 km AGL level the vertical resolution of MWRzo449 equals 0.5 km, i.e. information from 466 

+/- 0.5 km around the retrieval height are considered in the retrieval, while all other retrievals 467 

use the information from +/- 2 km. Also, the uncertainty of the MWRzo449 retrieval up to 1km 468 

AGL is around 0.5 oK while the other retrievals have higher uncertainties of up to 1 oK. The 469 

higher accuracy of the MWRzo449 retrievals is because they use more observational 470 

information compared to the other retrieval configurations. 471 
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 472 

Fig. 4. Top four-color images: ATkernels for MWRz (panel a), MWRzo (panel b), MWRzo915 473 

(panel c) and MWRzo449 (panel d), averaged over all radiosonde events. Hatched area on 474 

panels c) and d) marks the RASS measurement heights. Bottom three panels from left to right: 475 

vertical resolution (VRES) in km (panel e), one-sigma uncertainty derived from the posterior 476 

covariance matrix in oC (panel f), and cumulative Degree of Freedom (DFS, panel g) as a function 477 

of height for temperature, averaged over all radiosonde events (MWRz is in gray, MWRzo is in 478 

black, MWRzo915 is in magenta, and MWRzo449 is in light-blue). Dash lines mark 2 km AGL on 479 

all panels.  480 

 481 

https://doi.org/10.5194/amt-2021-9
Preprint. Discussion started: 29 January 2021
c© Author(s) 2021. CC BY 4.0 License.



 

26 
 

The improvements from MWRz (in gray) to MWRzo (in black), then to MWRzo915 (in 482 

magenta), and finally to MWRzo449 (in light-blue) are visible in all three panels (Fig 4 e-g), 483 

whereas MWRzo449 has the best statistical measures compared to the other PRs, particularly 484 

below 2 km AGL, where RASS 449 measurements are available. Finally, it is interesting that 485 

below 200 m AGL the MWRzo915 has slightly better statistics compared to the MWRzo449, as 486 

could be expected due to the first available height of the RASS 915 being lower (120 m AGL) 487 

than the first available height for the RASS 449 (217 m AGL) and due to the finer vertical 488 

resolution of the 915-MHz RASS. This suggests that if additional observations were available in 489 

the lowest several 100 m layer of the atmosphere where RASS measurements are not available, 490 

improvements might be even better closer to the surface, where temperature inversions, if 491 

present, are sometimes difficult to retrieve correctly. 492 

As a matter of fact, we found several cases during XPIA when the temperature profile 493 

exhibits inversions, with the lowest happening in the surface layer. Figure 5a shows one of the 494 

most complex cases, with several temperature inversions visible in the temperature profile 495 

from the radiosonde (red line), in the temperature measurements from the BAO tower (blue 496 

squares), and in the virtual temperature measured by the RASS 449 (light blue triangles). We 497 

note that the virtual temperature profile is in close agreement with the temperature measured 498 

by radiosonde. Generally, the moisture contribution to the virtual temperature is less than a 499 

degree K, decreasing substantially for dryer air. Among the PR profiles, the PRs including RASS 500 

data show better agreement with the radiosonde in the atmospheric layer where RASS 501 

measurements are available, as was already shown in Fig. 2 for a different date. Unfortunately, 502 

this better performance is not visible below the first available RASS measurement, i.e. from the 503 
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surface up to ~200m AGL, where the PRs with additional RASS data have the largest positive 504 

bias compared to both radiosonde and BAO data in this layer. We believe that the MWR data, 505 

especially those from the oblique scans, in this case have a bias in the observed brightness 506 

temperatures that propagates through the retrieval calculations, and including other 507 

observational data is not enough to correct it in the layer between the surface data and the first 508 

available RASS measurement. 509 

 510 

Fig. 5. Panel a) as in Fig. 2 but for 18 March 2015 at 0200 UTC. The RASS 449 virtual 511 

temperature is included as light blue triangles. Panel b) shows the same data (except for the NN 512 

retrievals) presented in panel a), but only up to 500 m AGL, and includes PR profiles in which the 513 

MWR uncertainties were increased by a factor of two, MWRz915 in maroon and MWRz449 in 514 

violet. 515 

 516 
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After several trials, we found that when RASS measurements are included, temperature 517 

profiles in this and similar cases exhibiting inversions could be improved  by increasing the 518 

random uncertainty of MWR observations, and only using the zenith MWR measurements, 519 

because the oblique MWR brightness temperature measurements (which give more 520 

information in the lower layer of the atmosphere) seemingly have a bias that competes with 521 

the active and more accurate measurements from the RASS and surface observations. In this 522 

way, the PR approach is granted more freedom to get an optimal profile in the gap between the 523 

lowest RASS measurements and the surface measurement. Proof of this is presented in Figure 524 

5b, that shows the same data as in 5a, but including the profiles obtained when increasing the 525 

assumed MWR Tb uncertainties by a factor of two, hereafter called MWRz2sigma915 and 526 

MWRz2sigma449, in maroon and violet respectively. The increased accuracy of these 527 

temperature profiles compared to MWRzo915 and MWRzo449 are obvious in the layer of 528 

atmosphere closer to the surface. Later we will show that these last two PR configurations 529 

demonstrate improved statistics over all 58 cases, and also through the layer of the atmosphere 530 

up to 5km. We note that these last two PR configurations, that were found to work well for this 531 

dataset, might not be optimal for other datasets. During XPIA the RASS measurements impact 532 

(particularly those from the RASS 449) was important in the PR approach. This might not be the 533 

case for other datasets or over different seasons, when RASS coverage might not be as good as 534 

that during XPIA. For this reason, we think that attention has to be used to determine what is 535 

the best configuration to use when dealing with PR approaches. On the positive side, the 536 

advantage is that the user can determine and has control on what is the optimal configuration 537 

to use in his/her dataset, in terms of different inputs to employ and their relative uncertainty. 538 
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 539 

4.2 Statistical analysis of PRs compared to NN retrievals 540 

Since the iteratively calculated PRs and the NN retrievals are obtained by very different 541 

approaches, we find it very important to compare their relative statistical behavior. We do this 542 

both for temperature and mixing ratio, providing this comparison in two ways: first using the 543 

Akernel smoothed radiosonde data obtained as described in section 3.3, and second comparing 544 

to the original, unsmoothed, radiosonde profiles, just interpolated to the 55 PR vertical levels. 545 

Figure 6 shows the statistical results of these comparisons for temperature, in terms of 546 

Pearson correlation, RMSE, and mean bias, averaged over all radiosonde events. 547 
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 548 

Fig. 6. Pearson correlation, RMSE, and mean bias for temperature profiles of MWRz in gray, 549 

MWRzo in black, MWRzo915 in magenta, MWRzo449 in light-blue and MWRz2sigma449 in 550 

violet, computed comparing to smoothed radiosonde data (using their relative ATkernel) in 551 

panels a-c, and against the original radiosonde measurements in panels d-f. The same 552 

comparisons for NN profiles, with NN zenith in beige, and NN averaged oblique in green, are 553 

made against the corresponded smoothed radiosonde data in the top panel and against original 554 

radiosonde data in the bottom panel. 555 
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 556 

These results confirm the superiority of the MWRz2sigma449 temperature retrieval 557 

over the other PRs. While this is not true at all heights, this retrieval shows improved 558 

distribution of RMSE and bias for the atmospheric layer up to 5 km AGL. The MWRz2sigma915 559 

profile is not included in the figure to not overcrowd it, but its behaviour compared to the 560 

MWRzo915 is similar to that of the MWRz2sigma449 compared to the MWRzo449 profile, 561 

reducing the drastic bias found in the layer closer to the ground. The differences between the 562 

two ways of comparison, against the smoothed ATkernel or the original radiosonde data, are 563 

small in terms of RMSE and bias, but more evident in terms of correlation as it can be expected 564 

because of the smoothing technique applied to the radiosonde profiles through Eq. (3). Above 565 

and below 1.5 km AGL the bias, RMSE, and correlation profiles of the PRs show very different 566 

behavior. While statistical measures above 1.5 km AGL are very similar for the four PRs 567 

introduced in Table 1, they are better for the MWRz2sigma449 PR, especially when compared 568 

to the smoothed radiosonde profiles. Differences between the profiles show more variability in 569 

the lowest 1.5 km. NN retrievals, both for zenith and averaged oblique, are very variable from 570 

height to height and generally have much larger RMSE and bias, and worse correlation 571 

coefficients compared to PRs. 572 

Besides temperature profiles, the NN and PR retrievals also provide water vapor mixing 573 

ratio profiles.  It is understandable that the different configurations of PRs are not noticeably 574 

different from each other in relation to moisture, because the Tv observations from the RASS 575 

are dominated by the ambient temperature (not moisture), and thus have little impact on the 576 

water vapor retrievals.   577 
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 Figure 7 includes two AQkernels corresponding to the PRs MWRz and MWRzo449 in 578 

panels a and b, which are averaged over all radiosonde events and appear to be almost 579 

identical. More detailed statistical estimations of PRs mixing ratio in Fig 7 c-e, also averaged 580 

through all radiosonde events, show very similar correlations, RMSEs, and biases for all PRs 581 

included in the figure, meaning that the impact of including RASS observations is minimal on 582 

this variable. These PR mixing ratio profiles are also statistically very close to the averaged 583 

oblique NN retrieval mixing ratio profiles, with the zenith NN retrieval mixing ratio profiles 584 

showing the worst statistics in terms of RMSE and bias. Overall, we conclude that the PR 585 

retrievals are not degraded on average compared to the NN moisture retrievals.  586 

 587 

 588 

 589 
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590 

Fig. 7. Top two-color images: AQkernels for MWRz (panel a) and MWRzo449 (panel b), 591 

averaged over all radiosonde events and shown up to 3 km AGL with dash lines mark 2 km AGL 592 

on both panels. Bottom three panels are the same as panels d-f in Figure 6, but for mixing ratio 593 

estimation. 594 

 595 

4.3 Statistics for cases far from the climatological mean 596 

While both approaches, physical and neural network retrievals, are quite different, both 597 

use climatological data as a constraint or for building the statistical relationships used in the 598 

retrieval. Statistically, the averaged profiles of both temperature and moisture variables are 599 
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very close to the climatological averages. However, the most interesting and difficult profiles to 600 

retrieve are the cases furthest from the climatology (Löhnert and Maier, 2012). To check the 601 

behavior of the retrieved data in such events, we first calculated the RMSE for each radiosonde 602 

profile relative to the prior profiles for 42 vertical levels from the surface up to 5 km AGL, and 603 

then we selected the 15 cases with the largest 0-5km layer averaged RMSEs compared to the 604 

prior. All comparisons are done against the corresponded smoothed ATkernel radiosonde data, 605 

using AT_MWRz, AT_MWRzo, AT_MWRzo915, AT_MWRzo449, AT_MWRz2sigma915, 606 

AT_MWRz2sigma449 for all six PRs, and AT_MWRz, AT_MWRzo for NN zenith and NN oblique 607 

retrievals respectively. 608 

 609 

 610 
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Fig. 8. From top to bottom: biases (retrievals minus ATkernel radiosonde), RMSEs, standard 611 

deviations of the difference between retrievals and ATkernel radiosonde, and Pearson 612 

correlations for the six PR configurations so far introduced and both NN retrievals, averaged 613 

from the surface to 5 km AGL, averaged over all radiosonde data (solid boxes), and averaged 614 

over the 15 events furthest from the priors (hatched boxes). 615 

 616 

Figure 8 shows the temperature statistical analysis for the entire radiosonde data set 617 

(solid boxes) and to just the fifteen chosen events (hatched boxes) for bias, RMSE, standard 618 

deviation of retrieval differences to the radiosonde data, and Pearson correlation, calculated as 619 

the weighted averaged over the 42 vertical heights up to 5 km AGL. Differences in the statistics 620 

when using the entire radiosonde data set or the fifteen profiles furthest from the prior are 621 

noticeable, especially for bias and RMSE, but also for the standard deviation. All PRs that 622 

include RASS observations show better performance compared to strictly MWR-only PR profiles 623 

(i.e., MWRz and MWRzo) for almost all statistical comparisons.  Also, the statistical behavior of 624 

the MWRz2sigma915 and MWRz2sigma449 retrievals are the best in terms of RMSE and 625 

standard deviation for all events and for RMSE, standard deviation, and correlation coefficient, 626 

for the fifteen profiles furthest from the climatological average.  Finally, we note that the NN 627 

profiles are the least accurate retrievals for all of the statistics for the entire radiosonde data 628 

set, and have the highest bias, RMSE and the lowest correlation for the 15 events. 629 
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630 

Fig. 9. The same as Fig. 6 but for the temperature over 15 furthest from prior radiosonde 631 

profiles. 632 

 633 

To investigate the vertical structure of the error statistics for the 15 events furthest from 634 

the radiosonde climatology, profiles of correlation, RMSE and bias for these events are shown 635 

in Figure 9 for the layer 0-5 km.  The MWRz449 and MWRz2sigma449 profiles, which were seen 636 

in Fig. 8 to have the best layer averaged statistics, are seen to be as good as, or better, than the 637 

other methods for the 0-2 km layer.  Importantly, for heights above 2km AGL, where there is no 638 
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additional observational data from RASS, all of the PRs are better than the NN profiles, with the 639 

MWRz2sigma449 and MWRz449 being the best. We note that the increased accuracy of the 640 

PRs relative to the NNs is more obvious in Fig. 9 for the 15 events when compared to the entire 641 

data set in Fig. 6.  Also, it can be seen that the NNs for the 15 events are worse than they are 642 

for the entire data set, especially in the 2-5km layer, which indicates (not surprisingly) that the 643 

NNs accuracy degrades when the atmosphere is far from its climatology.   644 

 645 

4.4 Virtual temperature statistics 646 

The above analysis confirms the superiority of MWRz2sigma915 and MWRz2sigma449 647 

compared to the other PRs and to the NN retrievals for this dataset. In this section we show the 648 

direct comparison of the retrieved profiles to the original radiosonde and RASS virtual 649 

temperature profiles. Using temperature and moisture retrieval output, we calculated 650 

“retrieved virtual temperature profiles” and interpolated all profiles and RASS data on a regular 651 

vertical grid, going from 200 m to 1.6 km with 100 m range, for easy comparison.  652 

Figure 10 shows Tv retrieved profile biases compared to the original radiosonde data as 653 

solid lines, and RASS 915 and RASS 449 Tv bias as asterisks. A zero bias is denoted by the red 654 

line. On the left side of the figure we show bar charts of the RASS measurement availability as a 655 

function of height. The widest part of these charts corresponds to 100% data availability. 656 

Heights with RASS availability greater than 50% are marked with additional circles over the 657 

asterisks. 658 
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 659 

Fig. 10. Bias of virtual temperature for all six PR configurations and both NN retrievals 660 

compared to the original radiosonde measurements. RASS data are marked by asterisks and by 661 

additional circles for the RASS data with more than 50% availability, according to the availability 662 

bar charts on the left. 663 

 664 

While RASS 449 data are available at almost all heights up to 1.6 km, the RASS 915 data 665 

availability decreases considerably with height, lowering to 50% availability around 800 m AGL. 666 

All PRs with input from RASS data, MWRzo915 and MWRzo449, and MWRz2sigma915 and 667 

MWRz2sigma449 with larger MWR uncertainties, are also marked with additional black lines at 668 
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the heights with at least 50% of relative RASS data availability. This figure clearly shows the 669 

superiority of MWRz2sigma449 and MWRz2sigma915 (in the layer with > 50% RASS 915 data 670 

availability) compared to MWRz and MWRzo configurations, which do not include RASS data, as 671 

well as to MWRzo915 and MWRzo449 which include RASS data and MWR zenith and oblique 672 

data. For MWRzo449 and MWRz2sigma449 profiles, RASS 449 data were almost always 673 

available, therefore it is easy to identify similar features between Tv bias profiles of the RASS 674 

449 and the PRs including it. Thus, for the MWRzo449 and MWRz2sigma449 the Tv bias is more 675 

uniform through the heights compared to all other PRs that do not include RASS data, and to 676 

both NN retrievals. Moreover, because MWRzo449 and MWRz2sigma449 Tv bias profiles follow 677 

tightly the trend of the RASS 449 with height, the difference between MWRzo449 and RASS 449 678 

biases equals ~0.32 oC and the difference between MWRz2sigma449 and RASS 449 biases 679 

equals ~0.14 oC over the ~1.3 km atmospheric layer where RASS 449 measurements are 680 

available, uniformly distributed through the heights. Finally, the average differences between 681 

these MWRzo449 and MWRz2sigma449 Tv profiles and the radiosonde virtual temperature 682 

equal ~0.56 oC and ~0.34 oC respectively. From these results we can assume that the final bias 683 

of the PRs that include additional RASS data derives from a combination of the RASS data bias 684 

itself, of the uncertainty of the retrieval model, and of the MWR brightness temperature biases, 685 

even though we tried to correct for the latter. 686 

We note as an alternative to using the PR temperatures at all heights, one could 687 

consider replacing the PR temperatures with RASS observations up to the maximum height 688 

reached by the RASS, and then use the PR retrieval above that.  To do this the moisture 689 
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contribution to the RASS virtual temperatures could be removed by using either the relative 690 

humidity measured by radiometer or by a climatology of the moisture term. 691 

 692 

5. Conclusions 693 

In this study we used the data collected during the XPIA field campaign to test different 694 

configurations of a physical-iterative retrieval (PR) approach in the determination of 695 

temperature and humidity profiles from data collected by microwave radiometers, surface 696 

sensors, and RASS measurements. We tested the accuracy of several PR configurations, two 697 

that made use only of surface observations and MWR observed brightness temperature (zenith 698 

only, MWRz, and zenith plus oblique, MWRzo), and others that included the active observations 699 

available from two co-located RASS (one, RASS 915, associated with a 915-MHz, and the other, 700 

RASS 449, associated with a 449-MHz wind profiling radar). Radiosonde launches were used for 701 

verification of the retrieved profiles and Neural Network retrieved profiles were also used for 702 

comparison. The NN retrievals used in this study were obtained either using the zenith angle 703 

only, or the average of the oblique scans (based on the averaged Tb of 15- and 165-degree 704 

scans) without including the zenith. Other MWR systems (Rose et al., 2005) provide retrieved 705 

profiles that include the information from both oblique and zenith scans. 706 
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Inclusion of the observations from the active RASS instruments in the PR approach 707 

improves the accuracy of the temperature profiles, particularly when low-level temperature 708 

inversions are present. Of the PRs configurations tested, we find better statistical agreement 709 

with the radiosonde observations when the RASS 449 is used together with the surface 710 

observations and brightness temperature from only the zenith MWR observations 711 

(MWRz2sigma449), and doubling the random radiometric uncertainty on the MWR 712 

observations relative to the uncertainty calculated over the selected clear-sky days (Fig. 1). This 713 

configuration is also more accurate compared to MWRzo915 or MWRz2sigma915 (which use 714 

RASS 915 observation), because of the deeper RASS 449 height coverage.  The larger assumed 715 

radiometric uncertainty in the MWR Tb observations allows the retrieval to overcome both (a) 716 

the (small) systematic errors that exist between the MWR (which could be in either the 717 

observed Tb values or in the MonoRTM used as the forward model) and the RASS, and (b) the 718 

systematic errors that exist in forward microwave radiative models (Cimini et al. 2018). 719 

We also selected 15 cases when temperature profiles from the radiosonde observations 720 

were the furthest from the mean climatological average, and reproduced the statistical 721 

comparison over this subset of cases. These are the cases usually most difficult to retrieve and 722 

most important to forecast; therefore, it is essential to improve the retrievals in these 723 

situations. Even for this subset of selected cases we find that MWRz2sigma449 produces better 724 

statistics, proving that the inclusion of active sensor observations in MWR passive observations 725 
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would be beneficial for improving the accuracy of the retrieved temperature profiles also in the 726 

upper layer of the atmosphere where RASS measurements are not available (at least up to 5 km 727 

AGL).  728 

Finally, we also considered the impact of the inclusion of RASS measurements on the 729 

retrieved humidity profiles, but in this case the inclusion of RASS observations did not produce 730 

significantly better results, compared to the configurations that do not include them. This was 731 

not a surprise as RASS measures virtual temperature, effectively adding very little extra 732 

information to the water vapor retrievals. In this case a better option would be to consider 733 

adding other active remote sensors such as water vapor differential absorption lidars (DIALs) to 734 

the PRs. Turner and Löhnert (2020) showed that including the partial profile of water vapor 735 

observed by the DIAL substantially increases the information content in the combined water 736 

vapor retrievals. Consequently, to improve both temperature and humidity retrievals a synergy 737 

between MWR, RASS, and DIAL systems would likely be necessary. 738 
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