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Abstract. Latent heating (LH) is an important quantity in both weather forecasting and climate analysis, being the essential 

factor driving convective systems. Yet, inferring LH rates from our current observing systems is challenging at best. For climate 

studies, LH has been retrieved from the Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) using 

model simulations in the look-up table (LUT) that relates instantaneous radar profiles to corresponding heating profiles. These 10 

radars, first on TRMM and then Global Precipitation Measurement  (GPM), provide a continuous record of LH. However, with 

observations approximately 3 days apart, its temporal resolution is too coarse to be used to initiate convection in forecast models. 

In operational forecast models such as High-Resolution Rapid Refresh (HRRR), convection is initiated from LH derived from 

ground based radar. Despite the high spatial and temporal resolution of ground-based radars, one disadvantage of using it is that 

its data are only available over well observed land areas. This study suggests a method to derive LH from the Geostationary 15 

Operational-Environmental Satellite-16 (GOES-16) in near-real time. Even though the visible and infrared channels on the 

Advanced Baseline Imager (ABI) provide mostly cloud top information, rapid changes in cloud top visible and infrared 

properties, when coupled to a LUT similar to those used by the TRMM and GPM radars, can equally be used to derive LH 

profiles for convective regions using model simulations coupled to a convective classification scheme and channel 14 (11.2m) 

brightness temperature. Convective regions detected by GOES-16 are assigned LH from the LUT, and they are compared with 20 

LH from NEXRAD and one of Dual-frequency Precipitation Radar (DPR) products, Goddard Convective-Stratiform Heating 

(CSH). LH obtained from GOES-16 show similar magnitude with NEXRAD and CSH, and vertical distribution of LH is also 

very similar with CSH. Overall, GOES LH appear to have the ability to mimic LH from radars, although the area identified as 

convective is roughly 25% smaller than the current HRRR model, while the heating is correspondingly higher.  

1 Introduction 25 

As the spatial resolution of numerical weather prediction models becomes finer, and even operational models are run at 

resolutions of a few kilometer, an effective way to assimilate observation data at this fine resolution has been sought (Gustafsson 

et al., 2018). At a few kilometer resolution, convection can be resolved explicitly (Seity et al., 2011). However, if the model 

environment is not favorable for convection, updrafts and clouds will not develop in the right place. In order to correctly initiate 

convection in operational regional models where both accuracy and speed are fairly important, observed latent heating (LH) can 30 

be added in the model in the data assimilation cycle. LH is not only important to initiate convection, it also contributes to the 

intensification of convection. Adding LH increases buoyancy in the atmospheric column, thereby inducing convection, and it has 

become an important procedure that many operational models use for the initialization of convective events (Gustafsson et al., 

2018).  

 35 
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National Oceanic and Atmospheric Administration (NOAA)’s operational models, the Rapid Refresh (RAP) and High-

Resolution Rapid Refresh (HRRR), both use observed latent heating to drive convection, but in different ways (Benjamin et al., 

2016). RAP uses digital-filter initialization (Peckham et al., 2016) while HRRR simply replaces modeled temperature tendency 

with the observed LH (Benjamin et al., 2016). For this operational purpose, LH data have to be available continuously in near-

real time. Therefore, ground-based radars which have high spatial and temporal resolutions similar to HRRR’s resolutions are 40 

used to calculate LH from reflectivity in HRRR. While suitable for the HRRR region of interest, the method is not applicable to 

regions beyond radar coverage such as the Gulf of Mexico and even some mountainous areas. It also limits the model’s 

applicability to global scales. 

 

The Precipitation Radar (PR) on the Tropical Rainfall Measuring Mission (TRMM) has been used to retrieve LH from space. PR 45 

is the first meteorological radar in space, designed to provide vertical distribution of precipitation over the tropics (Kummerow et 

al., 1998). From its three-dimensional precipitation data, vertical profiles of LH have been retrieved. There are several retrieval 

algorithms using PR: Goddard Convective-Stratiform heating (CSH; Tao et al., 1993), Spectral Latent Heating (SLH; Shige et 

al., 2004), Hydrometeor heating (HH; Yang and Smith, 1999), and Precipitation Radar Heating algorithm (PRH; Satoh and 

Noda, 2001). Among these algorithms, CSH and SLH are the two most widely used products. Most recent versions of monthly 50 

gridded CSH and SLH products have spatial resolution of 0.250.25 and 0.50.5 respectively with 80 vertical layers and 

have been used to provide valuable insights to heat budget or atmospheric dynamics over Tropics. Two algorithms have 

improved since their first development, and both algorithms are also applied to Dual-frequency Precipitation Radar (DPR) data 

on Global Precipitation Measurement (GPM), the successor of TRMM, to continue the climate record of LH and expand the 

regions of interest to mid-latitude.  55 

 

CSH and SLH both rely on the lookup table (LUT) based on cloud resolving model simulations. Inputs that are used to look for 

LH profiles in the LUT are different, but their common inputs to the LUT are echo top height and surface rainfall rate. Echo top 

height is important in determining the depth of heating in the vertical, and surface rainfall rate is a good indicator for intensity of 

maximum heating rate. Even though the methods use different model simulations to create the LUT, and differ in other details, 60 

they seem to exhibit similar distributions when they are averaged spatially or temporally (Tao et al., 2016).  

 

Although these products are considered instantaneous heating, their temporal resolutions are poor compared to 15-minute or 

hourly observations available from ground-based radars. Geostationary data is required to achieve the sampling of ground-based 

radars. The visible (VIS) and infrared (IR) sensor on geostationary satellite, unfortunately, cannot provide much vertical 65 

information as active sensor do in the presence of thick clouds, but their data contain cloud top information, and rapid refresh 

provides important information about a cloud’s convective nature. Cloud top information from geostationary data is included 

when creating cloud analysis during data assimilation (Benjamin et al., 2016), and thus LH retrieved based on cloud top 

temperature, can be useful in the forecast model by keeping consistency of retrieved LH with the updated cloud analysis.  

 70 

This study examines if cloud convective identification from the cloud’s one-minute evolution from the Advanced Baseline 

Imager (ABI), coupled with cloud top information on Geostationary Operational-Environmental Satellite-16 (GOES-16), can be 

sufficient to approximate NEXRAD-derived LH. Following the lead of spaceborne radar LH algorithms, a LUT is created using 

model simulations. Once convective clouds are determined by using 10 consecutive one-minute ABI data, LH profiles for 

convective clouds are looked for in the LUT based on cloud top temperature of the convective cloud. Unlike DPR products that 75 
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has temporal resolution of a day, ABI data in mesoscale sector are provided with one-minute interval, and thus LH can be 

obtained from GOES-16 as frequently as NEXRAD, thereby eligible for initiating convection during the forecast. LH from 

GOES-16 can be beneficial over the regions without radar such as ocean or mountainous regions where the quality of radar data 

degrades.  

 80 

Detailed descriptions of CSH, SLH and how NEXRAD converts reflectivity to LH are provided, followed by the retrieval 

process using GOES-16 ABI. LH from GOES-16 are then examined to see if it is comparable to other radar products. 

2 Existing LH retrieval methods 

2.1 Radiosonde networks 

LH is not a measurable quantity as it is almost impossible to single out temperature changes by phase changes from the total 85 

observed temperature changes. However, heat and moisture budget studies are conducted using sounding network in a field 

campaign, and apparent heat source (Q1) and apparent moisture sink (Q2) from the budget study are related to LH (Yanai et al., 

1973; Johnson 1984; Demott 1996). It can be done using a diagnostic heat budget method which is first presented by Yanai et al. 

1973 (Tao et al., 2006). Over a certain horizontal area, Q1 can be expressed as the equation below that includes LH (Tao et al., 

2006). 90 

𝑄1 −𝑄2 = 𝜋̅ [−
1

𝜌̅
(
𝜕𝜌̅𝑤′𝜃

𝜕𝑧
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
− ∇ ∙ 𝑉′𝜃′̅̅ ̅̅ ̅̅ ̅̅ ̅] +

1

𝑐𝑝
[𝐿𝑣(𝑐 − 𝑒) + 𝐿𝑓(𝑓 − 𝑚) + 𝐿𝑠(𝑑 − 𝑠)]                                                        (1) 

where prime denotes deviations from horizontal averages, which is denoted by upper bar. QR is the radiative heating rate,  is 

potential temperature,  is non-dimensional pressure,  is air density, cp is specific heat at constant pressure and R is gas constant 

for dry air. Lv, Lf, and Ls represent the latent heats of condensation, freezing, and sublimation while c, e, f, m, d, and s represent 

each microphysical process of condensation, evaporation, freezing, melting, deposition, and sublimation, respectively. The last 95 

six terms on the right-hand side that include these microphysical processes are LH from phase changes. Since Q1 can be obtained 

using vertical profiles of temperature, moisture, and wind data observed during the field campaign (Tao et al., 2006), the 

observed Q1 is used to indirectly validate GPM LH products that are retrieved together with Q1.  

2.2 CSH and SLH from GPM DPR 

DPR has two operational LH algorithms: the Goddard Convective-Stratiform Heating (CSH) and Spectral Latent Heating (SLH). 100 

In the GPM products, LH is provided along with additional variables: Q1-Qr and Q2 in SLH and Q1-Qr-LH, Qr, and Q2 in CSH 

(Tao et al., 2019). These algorithms are first developed for TRMM data, but have been adapted to GPM data. Both algorithms 

use cloud resolving model simulations to create a LUT relating hydrometeor profiles to cloud model heating rates. Although 

there is no direct measurement for LH to validate the results, retrieved Q1 and Q2 are compared instead with sounding data from 

various field campaigns through a method mentioned in section 2.1. The evolution of these products is well summarized in 105 

(Levizzani et al., 2020), but each algorithm is briefly explained here. 

 

The CSH algorithm is first introduced by Tao et al. 1993. Initial algorithm by Tao et al.1993 uses surface rainfall rate and 

amount of stratiform rain as inputs to the LUT, but the LUT has been improved by increasing the number of LH profiles, using 

finer resolution in simulations, and adding new inputs such as echo-top heights and low-level vertical reflectivity gradients (Tao 110 

et al., 2019). For high-latitude regions observed by GPM satellite, new LUT is created with simulations from NASA Unified-
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Weather Research and Forecasting model which is known to be suitable for high latitude weather system (Levizzani et al., 2020). 

Inputs to this LUT are surface rainfall rate, maximum reflectivity height, freezing level height, echo top height, decreasing flag, 

and maximum reflectivity intensity (Levizzani et al., 2020). 

 115 

The SLH algorithm is based on Shige et al. 2004 and Shige et al. 2007. For tropical regions, the LUT is created for three 

different rain types; convective, shallow stratiform, and anvil (or deep stratiform) clouds. Inputs to the LUT are precipitation top 

height (PTH), precipitation rate at the surface (Ps), precipitation rate at the level that separates upper-level heating and lower-

level heating (Pf) and precipitation at the melting level (Pm). Once non-convective rain is separated into either shallow stratiform 

or anvil, a vertical profile for anvil cloud is chosen based on Pm, and magnitudes of upper level heating and lower level cooling 120 

are normalized by Pm and (Pm - Ps), respectively. For convective and shallow stratiform clouds, a vertical profile corresponding 

to the PTH is chosen, and then upper-level heating and lower-level heating are normalized by Pf and Ps, respectively. For DPR, a 

new LUT is created for mid and higher latitude to account for expanded latitudinal coverage by GPM. For higher latitude 

regions, six precipitation types (convective, shallow stratiform, three types of deep stratiform, and other) instead of three are 

used, and therefore six respective LUTs exist. Inputs to these LUTs are precipitation type, PTH, precipitation bottom height, 125 

maximum precipitation, and Ps. 

 

Figure 1 shows monthly gridded products from these two algorithms over CONUS for July of 2020 at four different heights. 

Overall horizontal pattern in the two products looks similar. However, there is a difference in the vertical. At 5km or 8km, CSH 

tends to show higher heating rate especially over mid-latitude, while at 10km, SLH shows higher heating rate. In addition, SLH 130 

tends to have larger cooling rate throughout the layers, although it is not clear from the figure. These discrepancies would be 

attributed to different configuration setup such as microphysical scheme used to run simulations for the LUT. This again shows 

that there is no true heating rate that we can trust, and vertical profiles of LH highly depend on the simulations that comprise the 

LUT.  
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Figure 1: Monthly gridded LH from CSH at (a) 2km, (c) 5km, (e) 8km, and (g) 10km and LH from SLH at (b) 

2km, (d) 5km, (f) 8km, and (h) 10km. 

a) b)

c) d)

e) f)

g) h)
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Orbital data for these products have finer spatial resolution of 5km, but their temporal resolution is too coarse to be used in the 

forecast model, which typically has a spatial resolution of few kilometers and time step of few seconds. The closest that can meet 

the resolutions of the forecast model is ground-based radar data, and this is the reason why LH derived from ground-based radar 

is used to initiate convection during the short-term forecast.  

2.3 LH from NEXRAD 195 

In the operational forecast model, LH profiles retrieved using radar reflectivity replace modeled LH profiles so that appropriate 

heating rate can help initiate convection. LH profiles in this case are obtained through a simple empirical formula that converts 

radar reflectivity to LH. In Eq. (2), reflectivity is converted to potential temperature tendency using model pressure field. This 

equation is only applied when radar reflectivity exceeds 28dBZ. The threshold of 28dBZ was chosen based on the effectiveness 

of adding heating from reflectivity in HRRR (Bytheway et al., 2017). 200 

𝑇𝑡𝑒𝑛 =
1000

𝑝

𝑅𝑑/𝑐𝑝𝑑 (𝐿𝑣+𝐿𝑓)𝑄𝑠

𝑛∙𝑐𝑝𝑑
                                                                 (2) 

where 𝑄𝑠 = 1.5 ×
10𝑧/17.8

264083
 

           z: grid radar/lightning-proxy reflectivity 

           Tten: temperature tendency 

           p: background pressure (hPa) 205 

           Rd: specific gas constant for dry air 

           cpd: specific heat of dry air at constant pressure 

           Lv: latent heat of vaporization at 0C 

           Lf: latent heat of fusion at 0C 

           N: number of forward integration steps of digital filter initialization 210 

 

Tten in Eq. (2) is produced in K/s to meet the needs during the short-term forecast. Although heating rate is not a general output in 

the forecast model, it is calculated every time step by dividing temperature change from microphysical scheme by time step 

which is usually on the order of few tens of seconds. Therefore, this empirical formula is developed to produce LH comparable 

to the modeled heating rate in K/s so that added LH does not blow up the model when it is ingested. 215 

3 LH profiles from GOES-16 

Current operational geostationary satellite, GOES-16, carries the Advanced Baseline Imager (ABI), an instrument with 16 VIS 

and IR channels. Mesoscale sectors, which are manually moved around to observe interesting weather events, provide data in 

one-minute intervals. Such high temporal resolution data have helped observe cloud developments in more detail. Using this 

high temporal resolution ABI data, convective clouds are detected, and LH profiles for the detected clouds are assigned from a 220 

lookup table. The lookup table is created running the Weather Research and Forecasting (WRF) model simulations. While CSH 

and SLH algorithm look for LH profiles in a model-based LUT according to precipitation type and precipitation top height, the 

LUT for GOES is created for convective clouds that appear bright and bubbling from ABI according to brightness temperature 

(Tb) at channel 14 (11.2m), which is a good indicator of cloud top temperature. LH is not assigned for stratiform clouds from 

GOES-16 as it is not important in initiating convection in the forecast. Once convective clouds are detected using temporal 225 

changes in reflectance and Tb, LH profile corresponding to the Tb of the detected cloud is assigned from the LUT.  
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3.1 Definition of convection in GOES-16 ABI and model simulations 

When using LH to drive convection in the operational forecast model, LH derived from radar reflectivity is applied only in 

convective regions. In HRRR, a simple threshold of 28dBZ determines where to put LH, but there is no such simple threshold for 

VIS or IR channels that can determine convective regions. However, there are several convection detecting algorithms for 230 

GOES-16 ABI, including Lee et al. 2020. It uses mesoscale sector data with one-minute interval to detect convections from ABI. 

Two separate detecting methods are proposed for vertically growing clouds in early stages and mature convective clouds that 

move rather horizontally once it reaches the tropopause and often have overshooting tops. The method for vertically growing 

clouds measures Tb decrease over ten minutes for two water vapor channels, and if the decrease is greater than the designated 

threshold, it assigns the pixel as convective. For mature convective clouds, the method looks for grid points that have 235 

continuously high reflectance, low Tb, and lumpy cloud top over ten minutes. Combining the two methods provides results 

comparable to radar product, and these methods are rather simple and fast. Therefore, this algorithm is used to detect convective 

regions from ABI.  

 

However, this method is not applicable to model simulations due to unreliable reflectance simulated by the Community 240 

Radiative Transfer Model (CRTM). Instead, convection is defined with vertical velocity, which is one of prognostic variables in 

the model. It is actually the most direct and accurate way to define convection (Zipser & Lutz, 1994; LeMone &Zipser, 1980; Xu 

& Randall, 2001; Wu et al., 2009; Delgenio et al., 2010; Schumacher et al., 2015), but not widely used since vertical velocity is 

not always available in observation data. A threshold is usually defined at a certain altitude or over certain range of altitudes for a 

general use. However, vertical velocity tends to peak at different height at different stages of convection (Schumacher et al. 245 

2015), and not one altitude works for all the convection. Therefore, an appropriate threshold for the model simulation that is also 

consistent with the observed scene is determined in this study, not pursuing values from previous studies. 

 

Tb at 11.2m which is used to construct the LUT is mostly sensitive to hydrometeors or water vapor. Accordingly, the signal 

received by the channel will be largely from layers with high cloud water contents. Considering that cloud water is produced 250 

after an updraft followed by condensation, an altitude that has maximum cloud water contents can be regarded as an altitude with 

the strongest updraft. Since vertical velocity at a layer with maximum cloud water contents can be beneficial in both determining 

convection at all stages and matching with the observation, it is used in this study with a threshold that can keep consistency 

between model outputs and observation. The threshold is chosen comparing fractions of convective regions. Table 1 shows 

convective fractions using the GOES-16 convection detecting algorithm and using different vertical velocity thresholds in the 255 

model outputs. Using higher thresholds can prevent including non-convective grids, but at the same time, it will only include the 

strongest part of convective regions. Using 1.5m/s shows a fraction closest to the observed fraction, and therefore, 1.5m/s is used 

to define convection in the model output. This number is actually similar to values used in some previous studies (1m/s in 

LeMone and Zipser 1980, Xu and Randall 2001, and Wu et al., 2009) 

 260 

Table 1. Fraction of convective regions in observation and using different vertical velocity thresholds in the model output. 

Observation 1m/s 1.5m/s 2m/s 3m/s 4m/s 

0.96% 1.53% 1.04% 0.77% 0.47% 0.31% 
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3.2 Model simulations used to create a lookup table 

11 convective cases are simulated using WRF to obtain stable mean LH profiles. The convective cases are chosen over CONUS 

within NEXRAD network during May to August in 2017 or 2018. All simulations use the same configuration in Table 2 to avoid 265 

discrepancy between simulation results, and their Tbs at 11.2m are calculated using the CRTM. In each scene, convective grid 

points are defined by the threshold found in the previous section, and neighboring convective grid points are clustered to form a 

convective cloud. Minimum Tb of each cloud is calculated, and LH profiles from the clouds with the same minimum Tb are 

averaged to produce mean profiles for each Tb bin of the LUT. LH profiles gathered in the LUT are provided in K/s as for 

NEXRAD.  270 

 

Table 2. Table for WRF simulation setup. 

Version WRFv3.9 

Spatial resolution 3km 

Time step 10 seconds 

Microphysical scheme Aerosol-aware Thompson scheme (The original 

scheme is modified to produce vertical profiles 

of LH as outputs) 

Planetary boundary layer Mellor-Yamada Nakanishi Niino (MYNN) 

Level 2.5 and Level 3 schemes 

Land surface model Rapid update cycle (RUC) land surface model 

Long wave and short wave radiation physics Rapid radiative transfer model for general 

circulation models (RRTMG) schemes 

3.3 Mean LH profiles according to cloud top temperature 

LH profiles of convective clouds from 11 WRF simulations are collected according to 16 bins of the minimum cloud top 

temperature at 11.2m. 16 bins range from below 200K to above 270K with a bin size of 5K. Figure 2 shows mean vertical 275 

profiles of LH in each bin. All profiles exhibit slightly negative LH near the ground due to evaporation, but positive LH is shown 

at most layers. It is also nicely shown in the figure that as the Tb decreases, the profile stretches up in the vertical. Interestingly 

though, the maximum heating rate is not perfectly proportional to Tb. However, considering the maximum LH that is allowed in 

HRRR model, which is 0.02K/s, these values seem quite reasonable. Table 3 shows average of maximum surface precipitation 

rate and mean surface precipitation rate for each bin. Precipitation rate is mostly inversely proportional to Tb in Table 3. This is 280 

expected as deeper and higher clouds tend to precipitate more. This again shows that mean LH profiles for each bin are properly 

obtained from GOES-16. 
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Table 3. Table of maximum precipitation rate and mean precipitation rate for each cloud top temperature bin. 

 Maximum precipitation rate (mm/hour) Mean precipitation rate (mm/hour) 

~200K 137.4 48.8 

200K ~ 205K 99.7 41.2 

205K ~ 210K 88.0 47.2 

210K ~ 215K 60.9 40.0 

215K ~ 220K 41.6 30.3 

220K ~ 225K 31.1 23.5 

225K ~ 230K 24.9 18.9 

230K ~ 235K 20.1 15.5 

235K ~ 240K 16.4 12.6 

240K ~ 245K 14.0 13.4 

245K ~ 250K 10.8 10.9 

250K ~ 255K 10.4 10.9 

255K ~ 260K 7.9 7.4 

260K ~ 265K 6.4 6.0 

265K ~ 270K 4.8 4.1 

270K ~ 3.4 3.1 

 310 

~	200K
200K	~	205K
205K	~	210K
210K	~	215K
215K	~	220K
220K	~	225K
225K	~	230K
230K	~	235K
235K	~	240K
240K	~	245K
245K	~	250K
250K	~	255K
255K	~	260K
260K	~	265K
265K	~	270K
270K	~

Figure 2: Mean vertical profiles for each cloud top temperature bin. 
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4 Comparisons between products 

LH from three different instruments, GOES-16, NEXRAD, and DPR are examined for comparison. Methods using GOES-16 

and DPR products are similar in a way that they use cloud top height or PTH to look for mean profiles in the LUT created with 

model simulations, although DPR has additional parameters such as surface rain rate which is used to vary the magnitude of the 

heating rate. In contrast, NEXRAD uses an empirical formula to convert radar reflectivity to LH regardless of PTH. They are all 315 

instantaneous heating, but provided in different units. LH from GOES-16 and NEXRAD is in K/s to easily match with modeled 

heating rate, while DPR products are in K/hour. Therefore, LH in K/hour from DPR products are converted to K/s for 

comparison. 

 

A scene on 18th June, 2019 is shown in Fig, 3 to compare how each product determines precipitation type (convective or 320 

stratiform) which is one of the major factors in estimating LH profiles. The regions with reflectivity greater than 28dBZ in Fig. 

3a are regions where LH is estimated from NEXRAD reflectivity to be used in HRRR, but not necessarily convective regions. 

These regions are larger than convective regions defined by DPR products in Fig. 3c and include some of the stratiform regions 

assigned by DPR. Pink regions on top of visible image at channel 2 (0.65m) in Fig. 3b are convective regions detected by 

GOES-16, and they encompass smallest regions compared to others. Even though areal coverage differs by the method, locations 325 

of convective core matches well between the products. 

 

 

 

 330 

 

 

 

 

 335 

 

 

 

 

 340 

 

 

 

 

 345 

 

 

 

 
Figure 3: A scene on June 18th, 2019. (a) NEXRAD composite reflectivity. Only the regions with reflectivity greater than 

28dBZ are shown with colors. Color bar is in dBZ. (b) Convective regions detected by GOES-16 are colored in pink on top of 

GOES-16 visible image at channel 2 (0.65m). (c) Precipitation type defined by CSH. Convective regions are colored in pink 

while stratiform regions are colored in navy.  
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Clouds in colored boxes in Fig. 3 are all convective clouds, but in different evolutional stages. Clouds in red, green, and blue box 350 

respectively have high, low, and mid-level cloud top temperature. LH profiles from NEXRAD, GOES-16, and CSH for these 

clouds are interpolated into the same WRF grid with 3km resolution for comparison in Figs. 4, 5, and 6. CSH provides LH for 

both convective and stratiform regions, and thus different colors of lines in Figs. 4c, 5c, and 6c represent different cloud type. 

Lines with light blue color are each LH profiles of convective grid points in the red box, and blue line is the mean of these 

profiles. Similarly, LH profiles of each stratiform gird point are in light green, and the mean of these profiles is in dark green. 355 

The total mean LH profile is colored in red. Convective LH profiles from CSH shows heating throughout the vertical layers as 

expected, except near the surface due to evaporation at lower levels. LH profiles in stratiform regions show cooling at low levels 

below a melting level and heating above. LH profiles from GOES-16 corresponding to the three convective clouds are shown in 

Figs. 4b, 5b, and 6b, light blue line being each profile and blue line representing the mean. Even though mean profile is assigned 

from GOES-16 for each convective cloud, a number of different lines are shown in the figure due to spatial interpolation. When 360 

LH profiles from GOES-16 and CSH are compared, mean profile of convective LH from CSH in blue (Figs. 4c, 5c, and 6c) is 

similar to GOES LH in blue (Figs. 4b, 5b, and 6b) both in terms of the magnitude and the vertical shape.  

 

On the other hand, LH from NEXRAD shows different vertical shape from GOES-16 or CSH which uses the LUT consisting of 

model simulations. LH profiles from GOES-16 or CSH peak around the middle of the atmosphere while NEXRAD LH in 365 

convective core (Figs. 4a, 5a, and 6a) tends to peak at low levels where radar reflectivity is high. At low levels where model 

simulations have cooling, NEXRAD LH does not show cooling due to Eq. (2) which is designed to only produce positive values. 

This heating at lower levels can help increase buoyancy in lower atmosphere, and thus, convection can be effectively initiated 

from the added heating.  

 370 

Although their vertical shape is different, the magnitude of LH is within similar magnitude. Overall values of mean LH profile 

from NEXRAD in blue is slightly smaller than mean profile from GOES-16 or mean convective LH profile from CSH (blue 

line), but are closer to the total mean profile of CSH (red line), which indicates that 28dBZ threshold might include some 

stratiform regions as well. Smaller mean of NEXRAD LH is mainly attributed to anvil regions where reflectivity greater than 

28dBZ only exist at few vertical layers and 0dBZ elsewhere. 375 
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 395 

 

 

 

 

 400 

Figure 4: LH profiles from (a) NEXRAD, (b) GOES-16, and (c) CSH for the red box region. Light blue lines are each 

LH profile for convective grid point and blue line is a mean profile of the light blue lines. In (c), each LH profile for 

stratiform grid point is coloered in light green and its mean profile is colored in dark green. The total mean of LH 

profiles for CSH is colored in red.  

Figure 5: Same as Fig. 4, but for the green box region. 
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Even though the mean LH from NEXRAD is smaller, the total LH for the region can be similar when it is added up over the 405 

region due to broader area determined by the threshold of 28dBZ in Fig. 3a than GOES-16 detection in Fig. 3b. Therefore, the 

total LH of each cloud is compared between GOES-16 and NEXRAD. Figure 7 shows vertical profiles of LH that is horizontally 

summed over each convective cloud, each color representing colors of the three box regions. As mentioned before, the altitude 

that LH peaks is different, but the magnitude of the total heating is very similar. Finally, the total LH of each region is obtained 

by summing up the vertical profiles in Fig. 7 and presented in Table 4. The total LH is shown to be similar between NEXRAD 410 

and GOES-16. Despite the smaller mean LH from NEXRAD that was shown in Figs. 4, 5, and 6, it shows a good agreement in 

total heating between GOES-16 and NEXRAD.  

 

 

Table 4. Total LH (K/s) from NEXRAD and GOES-16 in 415 

the red, green, and blue box regions. 

 

 

 

 420 

 

 

 

 

 425 

 

 Red Green Blue 

NEXRAD 0.31 1.41 0.68 

GOES-16 0.34 1.83 0.64 

Figure 6: Same as Fig. 4, but for the blue box region. 

(a) (b)

Figure 7: Vertical profiles of the total heating in the boxed regions 

from (a) NEXRAD and (b) GOES-16. Different colors represent the 

color of the box region. 
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5 Conclusions 

A method to obtain vertical profiles of LH from GOES-16 ABI data was described. Convective clouds are first detected using 

temporal changes in reflectance and Tb, and LH profiles for the detected cloud is found by searching a LUT created using WRF 

model simulations. The LUT contains LH profiles of convective clouds that are defined by a threshold of 1.5m/s for the modeled 430 

vertical velocity, and these convective LH profiles are sorted according to Tb at 11.2m, which is a good indicator of cloud top 

height. Mean profiles that represent each Tb bin show good correlation with cloud top temperature, with lower Tb bin having 

deeper LH profiles. Precipitation rates corresponding to each bin are also well correlated to Tb. In addition, maximum LH in the 

LUT is well within the range that is allowed in HRRR to initiate convection using NEXRAD. 

 435 

Even though this method is not designed for assigning LH profiles at each grid point as radar products do, it can assign mean 

values for each cloud. Since the convection detection method for GOES-16 tends to detect convective core region, each cloud is 

defined separately by combining neighboring grid points, and mean LH is assigned for the cloud. LH from GOES-16, NEXRAD, 

and CSH are compared in three convective clouds with different cloud top heights. Vertical profiles of convective LH from 

GOES-16 are very similar to those from CSH that uses model simulations in the LUT. Their vertical profiles show heating 440 

throughout the vertical layer except near the surface where evaporation occurs, and heating peaks around the middle of the 

atmosphere. This vertical pattern differs from when using an empirical formula with radar reflectivity. Vertical profiles of LH 

from NEXRAD highly depend on vertical profiles of reflectivity which typically peaks near surface in convective regions, and 

thus, maximum LH is usually observed at lower level, which is not commonly shown in the modeled heating rate. Even though 

their vertical shape is slightly different, the total LH over convective clouds is shown to be similar. Similar magnitude of LH 445 

between GOES-16 and NEXRAD suggests a potential use of LH from GOES-16 in initiating convection in the regions where 

ground-based radar data are not available.  
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