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Abstract.

Geophysical validation of the Integrated Water Vapour (IWV) from Sentinel-3 Ocean and Land Colour Instrument (OLCI)

was performed as a part of “ESA/Copernicus Space Component Validation for Land Surface Temperature, Aerosol Optical

Depth and Water Vapour Sentinel-3 Products” (LAW) project. The IWV was compared with reference observations from two

networks: GNSS (Global Navigation Satellite System) derived precipitable water vapour from the SUOMINET network and5

integrated lower tropospheric columns from radio-soundings from the IGRA (Integrated Radiosonde Archive) database.

Results for cloud-free matchups over land show a wet bias of 7-10% for OLCI, with a high correlation against the reference

observations (0.98 against SUOMINET and 0.90 againts IGRA). Both OLCI-A and -B instruments show almost identical

results, apart from an anomaly observed in camera 3 of the OLCI-B instrument, where observed biases are lower than in other

cameras in either instrument. The wavelength drift in sensors was investigated, and biases in different cameras were found to10

be independent of wavelength. Effect of cloud proximity was found to have almost no effect on observed biases, indicating that

cloud-flagging in the OLCI IWV product is sufficiently robust. We performed validation of random uncertainty estimates and

found them to be consistent with the statistical a posteriori estimates, but somewhat higher.

1 Introduction

Total column water vapour (TCWV) is one of the essential climate variables (ECV) defined by the GCOS (Global Climate15

Observing System) Climate Monitoring Principles (Bojinski et al., 2014). On large temporal and spatial scales, water vapour is

a strong greenhouse gas, contributing to radiative climate feedback loops. Water vapour contributes also to climate and weather

processes through latent heat transport (eg. Bengtsson, 2010). On smaller spatio-temporal scales, amount of water vapour in

the atmosphere affects local weather conditions and hydrological cycles (Bengtsson and Hodges, 2005; Sherwood et al., 2010).

Because of the importance of water vapour for the climate and weather predictions, TCWV, also referred as Integrated Water20

Vapour (IWV) or Total Precipitable Water (TPW), has been continuously observed for decades by wide range of methods.
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In addition to ground-based and In-situ observations, satellite observations using passive imagers on polar-orbiting satellites

can provide daily near-global coverage. Over oceans, microwave radiometers are an established method. Over land water

vapour absorption bands at 890-1000 nm wavelength band is widely used, since all surface types are bright enough at these

wavelengths (Bartsch et al., 1996; Bennartz and Fischer, 2000; Albert et al., 2005).25

OLCI (Ocean and Land Color Instrument) is a medium resolution imaging spectrometer, operating in the solar reflective

spectral range (400 nm to 1020 nm). Two OLCI instruments, aboard Sentinel-3A (launched 2016) and -3B (launched 2018)

satellites, are currently operational. The Primary mission of OLCI is the observation of sea and land surfaces, with secondary

mission of providing information on atmospheric constituents. OLCI is based on the design of MERIS (Medium Resolution

Imaging Spectrometer), and provides continuity with MERIS with enhanced capabilities. For detailed description of Sentinel-330

mission and OLCI instrument, see Donlon et al. (2012). OLCI level 2 IWV product for land (OL_2_LFR/OL_2_LRR) builds

on heritage of water vapour algorithm designed for MERIS instruments with similar differential absorption technique.

Between January 2020 and December 2021, OLCI/Sentinel-3 IWV (included in OL_2_LFR products) was validated within

the “ESA/Copernicus Space Component Validation for Land Surface Temperature, Aerosol Optical Depth and Water Vapour

Sentinel-3 Products” project (referenced in the following by LAW). The aim of the project was to perform more extensive35

and systematic validation against ground-based measurements of the following Sentinel 3 core products: the Integrated Wa-

ter Vapour included in OL_2_LFR products, Aerosol Optical Thickness included in SY_2_AOD products and Land Surface

Temperature provided by SL_2_LST products.

This paper is dedicated to validation of OLCI total column water vapor data. The paper is structured in following way:

Section 2 provides a brief description of the algorithm used in OLCI IWV retrieval with emphasis on the features relevant to40

validation work. Section 3 introduces the reference data sources used. Section 4 describes the match-up database generated

as a part of LAW project, as well as the co-location criteria and screening applied to match-ups. Validation results and the

discussion of results are shown in the section 5 with conclusions in section 6.

2 OLCI Integrated Water Vapour retrieval

Total column water vapour (also labeled as integrated water vapour IWV) for cloud free pixels is included in OLCI level 2 prod-45

ucts for land (full resolution OL_2_LFR and reduced resolution OL_2_LRR) and water (OL_2_WFR/OL_2_WRR). It builds

on the heritage of the retrieval algorithm designed for OLCI’s precursor MERIS (Medium Resolution Imaging Spectrome-

ter, (Rast et al., 1999; Lindstrot et al., 2012)). The water vapour column above a pixel is estimated by comparing Radiative

Transfer (RT) based simulations with the corresponding OLCI measurements. The RT-simulations are approximated by a

product of the atmospheric transmission (using exponential sums of pre-calculated uncorrelated k- distribution terms, (Doppler50

et al., 2013)) and an estimation of the scattering—absorption—interaction, quantified by a factor and stored in a look-up table

(LUT). The optimisation with respect to the total column water vapour is done by a one-dimensional gradient descent (see

also https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/water-vapour-retrieval, accessed on 7 March

2022).
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Cloudy pixels are detected using standard OLCI level 2 cloud mask, which includes cloud ambiguous and cloud margin flags55

(see also https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-3-olci/level-2/pixel-classification, accessed on 7 March

2022). For general overview of the OLCI instrument and products, see OLCI user handbook (https://sentinels.copernicus.eu/

web/sentinel/user-guides/sentinel-3-olci, accessed on 7 March 2022).

3 Reference data sources

3.1 IGRA radiosoundings60

The Integrated Global Radiosonde Archive (IGRA) consists of quality-controlled radiosonde and pilot balloon observations

from more than 2,800 globally distributed stations, of which about 800 are currently reporting data. Version 2 of the IGRA

(Durre et al., 2016) includes new data sources and quality control procedures, as well as new user-requested variables. Version

2 also includes several derived parameters, including the precipitable water vapour between surface and 500 hPa pressure level,

used in this study as the reference water vapour parameter. Description of the network and the quality-control measures applied65

can be found in Durre et al. (2018).

Soundings in IGRA database come from several sounding networks, using different radiosonde types with different pro-

cessing. Due to this inhomogeneous nature, the independent uncertainty of the observation varies between stations. Wang and

Zhang (2008) reports biases of around 1 kg/m2 for different sonde types, with dry bias for capacitive polymer sondes and wet

bias for carbon hygristor and Goldbeater’s skin hygrometers. Estimated precision of sonde-based total colunms compared to70

ground-based has been reported to be around 5% (Van Malderen et al., 2014).

3.2 SUOMINET GNSS network

Long-term TCWV data sets from GNSS networks are widely used in studies involving atmospheric water vapour columns.

In this study, we use U.S. SuomiNet (UCAR/COSMIC) TCWV product, which consists of observations of over 400 Global

Positioning System (GPS) stations with near-global distribution (Ware et al., 2000). This large network provides TCWV values75

retrieved from consistently processed GPS measurements of the temperature- and humidity- dependent zenith path delay at a

couple of hundred sites with a temporal resolution of 30 min. Analysis method and the data set is described in detail by Wang

et al. (2007). While the uncertainties of the retrieval are not precisely stated by the authors, similar data sets have published

accuracies of around 1–2 kg/m2 (Gendt et al., 2004; Ge et al., 2006).
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4 Match-up database and data selection80

4.1 LAW match-up database

In order to facilitate validation work, ACRI-ST created a database of matchups, gathering combination of reference measure-

ments and satellite macro-pixel collocated in time and space. The matchup database is available upon subscription LAW project

web portal (https://law.acri-st.fr/home).

For IWV matchups a macro pixel of 31 × 31 OLCI pixels (i.e. a surface of around 10 by 10 km) with central pixel over85

each reference station is extracted at each overpass. All ground-based measurements acquired in a time window of +/- 3 hours

are considered. Missing satellite observations were only filtered from the database in the case of operational issues or radio

frequency interference (RFI) contamination. Missing satellite extractions that are due to cloud contamination or retrieval failure

are included in the database, flagged with CLOUD or WV_FAIL quality flags, respectively. Automatically generated satellite

extractions over each station station were associated with relevant ground-based measurements when the reference observations90

were available and validated. Satellite extractions included quality flags and contextual parameters present in the Sentinel-3

operational products.

Locations of IGRA and SUOMINET matchups with OLCI observations for OLCI/Sentinel-3A are shown in the Figure 1.

Locations of matchups for OLCI/Sentinel-3B are similar (not shown).

4.2 Co-location criteria95

For all matchups, we applied an additional quality check according to quality flags. The matchups with failed inversion

(WV_FAIL flag set) or with cloud warning flag (CLOUD), were discarded. For more stringent cloud-screening, the matchups

with cloud warning flags CLOUD_MARGIN and CLOUD_AMBIGUOUS were also not used. For SUOMINET matchups,

only matchups with reported SUOMINET formal error of less than 2 kg/m2 were used for the validation.

For each matchup, the satellite-reference observation pair with smallest time difference was chosen. For SUOMINET,100

matchups with time differences larger than 15 minutes, or nominal error larger than 2 kg/m2 were not used. For IGRA, time

differences of up to 180 minutes were allowed. For most of the comparisons, the center pixel for each macropixel, representing

the closest spatial separation, was chosen.

5 Results and Discussion

5.1 Overall agreement105

Comparisons were carried out separately for each instrument (OLCI-A and -B) and for each reference dataset (SUOMINET

and IGRA). Results of the general comparisons are presented in Figure 2 and Table 1. All comparisons presented here use the

more stringent cloud-screening criteria, discarding the matchups with OLCI observations flagged either as CLOUD_MARGIN

and CLOUD_AMBIGUOUS. Likewise, only matchups over land (OLCI flag LAND) are shown.
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Figure 1. Locations of OLCI-A matchups with IGRA (top) and SUOMINET (bottom) networks.

For the cloud-free matchups over land, agreement is generally good, with very high correlation coefficients (0.98 and 0.90110

for SUOMINET and IGRA, respectively). The dispersal of the differences is considerably higher for IGRA matchups, partly

due to longer time differences allowed, and the drift of the sondes during the ascent. All comparisons show a positive (wet)

median bias for the OLCI observations, increasing linearly with increasing total water vapour content (Figures 2 and 3). For

total water contents larger than 50 kg/m2, the bias in IGRA matchups dips closer to the zero line. As the similar dip is not
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observed in SUOMINET comparisons, the bias reduction can be related to radiosonde data or to collocation criteria. General115

comparisons also indicate very good agreement between OLCI-A and -B.

Inclusion of CLOUD_MARGIN and CLOUD_AMBIGUOUS flagged observations leads to higher dispersal of differences,

with large number of outliers. WATER observations, which are produced using different retrieval algorithm, severely overes-

timate the reference columns. WATER pixels are not strictly part of the ESA OLCI product, but are included in the files for

completeness. INLAND_WATER water pixels, representing rivers and lakes, similarly show wet bias and large dispersal. As120

the matchups are based on land-based reference observations, the number of WATER and INLAND_WATER matchups is low.

A dependency of observed biases on latitude, solar zenith angle and season was also investigated (figures A1 and A2).

Results were consistent with the linear increase of wet bias seen in figures 2 and 3. The dependency observed for latitude and

and solar zenith angle is related to generally higher water vapour total columns seen in low latitudes and solar zenith angles,

while the seasonal cycle is consistent with the over-presentation of northern hemisphere stations and higher total columns125

during summer months.

Table 1. Statistics of general comparisons shown in figure 2.

Parameter SUOMINET IGRA

OLCI-A OLCI-B OLCI-A OLCI-B

Number of co-locations 46758 49078 20708 21021

Mean difference [kg/m2] 1.71 1.63 2.58 2.59

Standard deviation of difference [kg/m2] 2.93 3.07 6.22 6.41

Mean relative difference [%] 10.6 10.1 15.6 16.2

Standard deviation of relative difference [%] 21.3 22.2 44.8 49.8

Correlation coefficient 0.98 0.98 0.90 0.90

5.2 Classification of biases

While in general a validation results of OLCI-A and -B are very similar, a small anomaly in distribution of differences was

observed in SUOMINET comparisons for OLCI-B camera 3, compared to the distribution for the other cameras in either in-

strument (Figure 4, top panels). After separating the differences by the central wavelength of the relevant instruments (Figure130

4, middle and bottom panels), the anomaly in OLCI-B Camera 3 (Bottom panel, yellow line) was observed at all wavelengths,

clearly distinguishable from the other cameras. This points to a conclusion that the anomaly is not due to known differential drift

in camera 3, but rather due to an uncorrected instrumental issue. For more information on OLCI spectral characterization and

drift of the central wavelengths, see the Sentinel Online website (https://sentinels.copernicus.eu/web/sentinel/technical-guides/

sentinel-3-olci/olci-instrument/spectral-characterisation-data, accessed 3 March 2022), and technical note available at the web-135

site. A small left-right bias is also seen between camera 1-5 in both instruments. This could be due to the difference in local

6
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Figure 2. Density scatter plot of LAND comparisons of OLCI-A (left) and -B (right) against SUOMINET (top) and IGRA (bottom) obser-

vations, with CLOUD_MARGIN and CLOUD_AMBIGUOUS matchups removed. Color field shows the percentage of matchups in each

category, with darkest colours showing the highest density of matchups. Blue dashed line shows the x = y line and the black lines me-

dian (dashed) and 16th and 84th percentiles (dotted) OLCI-A observation for each 2 kg/m2 bin of reference observations. Linear fits of the

matchups (not shown) for SUOMINET are y = 1.12x-0.31 (OLCI-A) and y = 1.11x-0.29 (OLCI-B) and for IGRA y = 1.07x+0.69 (OLCI-A)

and y = 1.07x+0.64 (OLCI-B). Correlation coefficients are 0.98 (SUOMINET) and 0.90 (IGRA) for both instruments.
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Figure 3. Difference OLCI of observations against SUOMINET (top) and IGRA (bottom) for OLCI-A (left) and OLCI-B (right). Solid line

shows the median of each 2 kg/m2 wide bin, while the dashed show the 16th and 84th percentiles and the dotted lines the 5th and 95th

percentiles. Bins with less than 20 matchups were omitted from the figure.

time (about 45 minutes between cameras 1 and 5) and consequently observed total columns. Neither the left right difference or

the anomaly in OLCI-B / camera 3 is observed in IGRA comparisons, due to larger dispersal of the differences.
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Figure 5 shows the distribution of the differences within 31× 31 pixel macropixels for cloud-free center pixels as a function

of distance to the closest cloud-flagged pixel. Only very small increase of median difference is seen for SUOMINET compar-140

isons (in kg/m2), with no increase seen for relative differences in either SUOMINET or IGRA comparisons. It should be noted

that the width of the distribution increases slightly with the proximity of the cloudy pixels. However, even with this increase,

we conclude that the current cloud-flagging provides robust cloud-screening, with little cloud-induced uncertainty.

5.3 Validation of error estimates

For the validation of random uncertainty estimates, we use the structure function method described in detail in Sofieva et al.145

(2021). This method is based on evaluation of the structure function, i.e., root-mean-square differences as a function of in-

creasing spatio-temporal separation of the measurements. The limit at the zero mismatch provides the experimental estimate

of random noise in the data. For the analysis shown here, we used the OLCI-A and -B data from the cloud-free SUOMINET

matchups over land.

In order to validate the error estimates provided by the OLCI IWV algorithm, we investigated the difference of OLCI150

observations within the 31 × 31 pixel OLCI macropixel to the center pixel, and computed sample variances. RMS difference

increases as a function of the distance from center (Figure 6, top-left panels). For comparison, the bottom-left panels of 6 show

the mean error estimate from the OLCI product. The mean of structure function for the eight pixels around the center pixel

was taken to represent the experimental uncertainty estimate for the OLCI IWV. Right panels of figure 6 show the distributions

of the experimental uncertainty estimates and the estimates given by the OLCI algorithm. The distributions of the estimates155

overlap, showing that the two estimates are consistent with each other. Experimental estimates are generally lower than the

ones provided by the algorithm. This is partly caused by the 0.3 kg/m2 increments of OLCI error estimates, which reduces the

sensitivity of the OLCI estimate, especially at the lower end of the distribution. In general, the validation performed confirms

the validity of the provided error estimates. However, the quantization is too coarse to provide accurate random uncertainty

estimates.160

5.4 Surface types

Figure 7 shows the distributions of relative differences (OLCI - REF / REF) of OLCI observations against the reference

observations for different surface type quality flags. OLCI observations classified as water surfaces (WATER and INLAND

flags, including TIDAL with WATER) considerably larger bias and dispersal than those classified as land surfaces (LAND

flag, including TIDAL with LAND). Since the reference observation sites are located on land, the number of water matchups165

is small, and necessarily limited to being very close to coastline. While the number of non-land matchups is small, results

indicate that the water pixels in coastal areas should be used with caution. This is an expected and known issue, since the very

dark water surface leads to a signal return that is predominantly not influenced by the full atmospheric column. Instead it is

dominated by a complex interaction of aerosol layer height, aerosol optical thickness, water leaving radiance and sun glint.
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Figure 4. Dependency of OLCI - SUOMINET relative difference on camera index. Top row: Distributions of relative differences for OLCI-A

(left) and OLCI-B (right) match-ups with SUOMINET observations for OLCI cameras 1-5. Red lines show the medians of the distributions

and blue boxes the 16th and 84th percentiles of the distribution with black whiskers showing the 2.5th and 97.5th percentiles. Red crosses

show the means of the distributions. Middle and bottom rows: Relative difference as a function of central wavelength of the detector for

OLCI-A (middle panel) and OLCI-B (bottom panel). Colors represent cameras 1-5 (see legend) and the solid and dashed lines represent

median and the interpercentile range (16th-84th) percentiles, respectively.
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Figure 5. Dependency of observed OLCI difference against SUOMINET (Top) and IGRA (bottom) observations to distance to closest cloud-

flagged pixel for OLCI-A and -B (left and right columns, respectively). Black lines show the difference in kg/m2, while the red lines show

the relative difference in percent. Solid line shows the median of each 2 kg/m2 wide bin, while the dashed show the 16th and 84th percentiles

and the dotted lines the 5th and 95th percentiles.
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√
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√
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Figure 7. Distributions of relative differences [in %] of OLCI-A (left) and OLCI-B (right) observations against SUOMINET (top) and IGRA

(bottom) for different surface types. TIDAL matchups are shown separately for LAND and WATER. LAND distribution includes TIDAL/L

matchups and WATER distribution INLAND and TIDAL/W matchups. Red lines show the medians of the distributions and blue boxes the

16th and 84th percentiles of the distribution with black whiskers showing the 5th and 95th percentiles. Red crosses show the means of the

distributions. Note the different y-scales for SUOMINET and IGRA distributions.
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6 Conclusions170

OLCI IWV was validated against two reference datasets, SUOMINET GNSS observations and IGRA integrated radiosonde

columns. High correlation with the reference observations (0.98 for SUOMINET and 0.90 for IGRA) was observed for both

OLCI-A and -B, with all comparisons showing a wet bias of 7-10%. Notably, the results of the general comparisons were very

similar for OLCI-A and B.

In more detailed comparisons, wavelength dependency of an observed anomaly in OLCI-B/camera 3 was investigated,175

showing that the anomaly is independent of the central wavelength of the relevant sensor. This indicates that the cause of the

anomaly is not the wavelength drift of the sensors in camera 3. Proximity of clouds within the macropixel was shown to have

little effect on the observed differences, confirming the robustness of cloud-flags provided with the OLCI product.

Error estimates of the OLCI product were compared to an experimental estimate of random uncertainty. Comparisons indi-

cate that the OLCI estimates were consistent with the experimental estimates, but generally higher. This is partly due to large180

increment (0.3 kg/m2) of the reported OLCI error estimates.

As an outcome of the validation work carried out within the LAW project, three main recommendations were submitted:

1.) Possibility of reducing the wet bias using additional OLCI channels (see Preusker et al., 2021) should be investigated, 2.)

correction to the anomaly observed in Camera 3 / OLCI-B should be implemented, and 3.) uncertainty estimates should be

revisited, preferably with smaller increments for better characterization.185
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Figure A1. Difference OLCI-A (left) and -B (right) of observations against SUOMINET as a function of latitude (top row), Solar zenith

angle (middle row) and time (bottom row). Solid line shows the median of each 2 kg/m2 wide bin, while the dashed show the 16th and 84th

percentiles and the dotted lines the 5th and 95th percentiles. Bins with less than 20 matchups were omitted from the figure.
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Figure A2. Difference OLCI-A (left) and -B (right) of observations against IGRA as a function of latitude (top row), Solar zenith angle

(middle row) and time (bottom row). Solid line shows the median of each 2 kg/m2 wide bin, while the dashed show the 16th and 84th

percentiles and the dotted lines the 5th and 95th percentiles. Bins with less than 20 matchups were omitted from the figure.
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