Supplementary information:

In-situ measurements of NH₃: instrument performance and applicability

Marsailidh M. Twigg¹, Augustinus J.C. Berkhout², Nicholas Cowan¹, Sabine Crunaire³, Enrico

- 5 Dammers⁴, Volker Ebert¹⁰, Vincent Gaudion³, Marty Haaima², Christoph Häni⁶, Lewis John⁷, Matthew R. Jones¹, Bjorn Kamps⁸, John Kentisbeer¹, Thomas Kupper⁶, Sarah R. Leeson¹, Daiana Leuenberger⁹, Nils O. B. Lüttschwager¹⁰, Ulla Makkonen¹¹, Nicholas A. Martin¹², David Missler¹³, Duncan Mounsor⁷, Albrecht Neftel¹⁴, Chad Nelson¹⁵, Eiko Nemitz¹, Rutger Oudwater¹⁵, Celine Pascale⁹, Jean-Eudes Petit^{5,13}, Andrea Pogany¹⁰, Nathalie Redon³, Jörg Sintermann¹⁶, Amy Stephens¹, Mark A. Sutton¹, Yuk
- 10 S. Tang¹, Rens Zijlmans^{8†}, Christine F. Braban¹ and Bernhard Niederhauser⁹.

¹UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 0QB, UK. ²National Institute for Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, the Netherlands

- ³IMT Nord Europe, Univ. Lille, CERI EE, 59000 Lille, France
 ⁴TNO, Department of Climate, Air and Sustainability, Utrecht, the Netherlands
 ⁵Laboratoire des Sciences du Climat et de l'Environnement, CEA / Orme des Merisiers; 91191 Gif-sur-Yvette, France
 ⁶Bern University of Applied Sciences, School of Agricultural, Forest and Food Sciences , Laenggasse 85, 3052 Zollikofen, Switzerland
- ⁷Enviro Technology Services Ltd, UK
 ⁸LSE monitors BV, the Netherlands
 ⁹Federal Institute of Metrology (METAS), Lindenweg 50, 3003 Bern-Wabern, Switzerland
 ¹⁰Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany
 ¹¹Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
- ¹²National Physical laboratory, Air Quality and Aerosol Metrology Group, Teddington, Middlesex, TW11 0LW, UK
 ¹³Atmo Grand-Est, 5 rue de Madrid, 67300 Schiltigheim, France
 ¹⁴Neftel Research Expertise, Switzerland
 ¹⁵Tiger Optics, USA
 ¹⁶Office of Waste, Water, Energy and Air AWEL; Canton Zürich, Switzerland
- 30 + Deceased

Correspondence to: Marsailidh M. Twigg (sail@ceh.ac.uk)

Figure S1 summaries the reported concentrations from the instruments during the intercomparison study, with summary statistics presented on Table S1 for the same period. During the campaign to investigate the homogeneity of the reported concentration, both windspeed (figure 1) and atmospheric stability (figure S1) were considered. It is clear from the atmospheric stability that there were periods of stable conditions that resulted in a build-up of NH₃ and non-uniform concentrations across the field site.

Figure S1. a) Summary of the raw concentrations from the instruments on a linear scale for the whole range for i) instruments with individual inlet set-up 2) instruments subsampling from the manifold and 3) instruments on scaffolding. Number in brackets is the reporting time resolution of each instrument. The thick black line is the fertilisation of both fields and the black arrow indicates the point at which the laser position was changed on the LGR #1.

Figure S2. Atmospheric stability during the campaign at Easter bush from the 22/08/2016 to 03/08/2016.

 Table S1. Summary of statistics of NH3 measurements by instruments for the period of 23/08/2016 00:00 to 29/08/2016 00:00 based on 1 hour averages. NOTE: Data is not paired.

Instrument	µ₄ (ppb)	µм (ppb)	χ _{min} (ppb)	χ _{max} (ppb)	Data Capture	
					(%)	
miniDOAS #1	12.37	8.23	1.98	65.14	100	
miniDOAS #2	12.21	7.21	-0.23	73.04	100	
AiRRmonia #1	13.75	8.96	1.72	74.94	98	
AiRRmonia #2	11.77	8.34	2.43	57.21	100	
QCLAS	12.12	7.73	1.25	68.26	100	
AP ₂ E	14.68	10.33	1.12	81.94	100	
Picarro #1	13.77	9.17	2.69	77.71	99	
Picarro #2	14.40	9.02	1.98	82.07	100	
LGR #1*	12.58	7.91	3.67	67.20	77	
LGR #2	13.82	9.08	2.14	76.77	100	
Tiger Optics*	23.03	17.65	8.57	75.25	42	
LSE	15.51	9.25	0.67	92.93	100	
MARGA	11.61	6.20	1.50	63.91	80	
OGS	14.14	9.02	1.63	81.45	99	
Average ^{\$}	13.5					

Data capture was lower for *LGR #1 only includes data from the 24/08/16 10:00 (GMT) and #Tiger Optics data only for the period of the 23/08/16 22:00 to 26/08/16 11:00. [§]Only instruments with at least 98% data coverage.

To monitor the homogeneity across the field site the path of the miniDOAS instruments had UKCEH ALPHA®s in triplicate 10 placed at 3 positions between the instrument and reflector. Table S2 is a summary of the average concentration of the ALPHA®s for exposure period 1 and the average reported concentrations for the same period from instruments which took part in the field campaign.

15

5

Table S2 Average concentrations from instrumentation ALPHA® exposure periods based on reported instrument concentrations (Refer to table 1 for instrument reporting resolution time). Both LGR #1 and the Tiger Optics are excluded from this comparison.

	Exposure Period				
T	22/08/2016 16:35 to 29/08/2016 16:29				
Instrument	Average	Data Capture			
	ppb	%			
ALPHA®	10.92	100			
miniDOAS #1	11.33	99			
miniDOAS #2	10.95	100			
AiRRmonia #1	13.37	89			
QCLAS	10.97	89			
AP_2E	13.39	100			
AiRRmonia #2	10.73	97			
Picarro #1	12.49	97			
LGR #2	12.54	100			
Picarro #2	13.93	91			
LSE	13.93	96			
MARGA	10.32	83			

5 **Table S3. Summary of instrument response time at ambient concentrations based on** Error! Reference source not found. **for the period of the 22/08 06:00 to 23/03 06:00. Note: Tiger Optics and LGR#1 instruments time response was not calculated as data not available for the period.**

Instrument	$ au_{1/e}$
	min
Picarro #1	99.5
Picarro #2	49.5
AiRRmonia #1	32.8
AiRRmonia #2	124
LGR #2	28.1
LSE	19.5
AP ₂ E	99.5
MARGA	208

10

Figure S3 presents evidence that WRD on the MARGA instrument suffered breakthrough to the SJAC, which reported NH_3 (g) as NH_4^+ aerosol.

5 Figure S3. Ion balance of PM_{2.5} inorganic aerosol from the MARGA instrument and coloured according to NH₃ concentrations.

Figure S4. Orthogonal regression (red line, Boggs, 1989) plots of hourly NH₃ concentrations against the OGS for the whole period filtered. Data were filtered for low wind speed and stable/unstable conditions that could have led to inhomogeneity at the site. The dashed black line is the 1:1 line.

Figure S5. Orthogonal regression (red line, Boggs, 1989) plots of the instrumentation against the OGS for periods when the ensemble median < 10ppb. The dashed black line is the 1:1 line.

Table S4. Summary of the theoretical NH₃ concentration produced by the ReGaS1 system and the concentrations reported by the instrumentation, where μ_A - arthimetic mean, σ_A - arithmetic standard deviation.

Theoretical concentration from ReGaS1	ReGaS1 expanded uncertainty (k=2)	LSE	LSE		LGR#2		OGS		
ррb	ррb	µ₄ (ррb)	σA (ppb)	μ _A (ppb)	σ _A (ppb)	μ _A (ppb)	σ _A (ppb)	Calculated expanded uncertainty	
								(R=2) (ppb)	
0.00	n/a	-0.77	0.44	0.16	0.03	0.14	0.02	0.62	
9.98	0.18	8.18	0.53	5.58	0.37	9.72	0.21	0.66	
24.39	0.43	22.55	0.65	18.03	0.83	24.09	0.39	0.92	
39.71	0.69	41.31	0.66	33.93	0.58	41.09	0.16	1.3	
2.95	0.08	5.59	4.56	6.06	4.68	4.26	0.99	0.62	
1.02	0.05	1.34	0.55	2.13	0.729	1.64	0.08	0.62	

5 Figure S6: Comparison of ReGaS1 reference concentrations and the calculated uncertainty of the OGS instrument. Error bars indicate the expanded uncertainty (k = 2, ReGaS1 and OGS). The orange box indicate the regions where measurement results agree to ReGaS1 reference values at the 95% confidence level. The red data point (lower middle plot) is the non-averaged OGS reading after a longer waiting period (at 14:00 o'clock in Figure 13a). ReGaS1 and OGS values, except at about 3 ppb with averaging, are metrologically compatible.