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Abstract.

Random uncertainties and vertical error correlations are estimated for three independent data sets. The three collocated

data sets are: 1) Refractivity profiles of radio occultation measurements retrieved from the Metop-A and B and COSMIC-1

missions, 2) refractivity derived from GRUAN processed RS92 sondes and 3) refractivity profiles derived from ERA5 forecast

fields. The analysis is performed using a generalization of the so-called Three-Cornered Hat method to include off-diagonal5

elements such that full error covariance matrices can be calculated. The impacts from various sources of representativeness

error on the uncertainty estimates are analyzed. The estimated refractivity uncertainties of radio occultations, radiosondes and

model data are stated with reference to the vertical representation of refractivity in these data sets. The existing theoretical

estimates of radio occultation uncertainty are confirmed in the middle and upper troposphere and lower stratosphere, and only

little dependence on latitude is found in that region. In the lower troposphere refractivity uncertainty decreases with latitude.10

These findings have implications for both retrieval of tropospheric humidity from radio occultations and for assimilation of

radio occultation data in NWP models and reanalyses.

1 Introduction

In variational estimation of geophysical parameters from satellite observations, the obtained accuracy relies on the validity

of the underlying uncertainty and error correlation assumptions of the observation and of the model background fields. The15

Three-Cornered Hat (3CH) method (Grubbs, 1948; Barnes, 1966; Levine, 1999) provides an empirically based uncertainty

estimate of three independent data sets, all representing a series of measurements of the same physical property. A historical

overview of the applications of 3CH, and related methods, is given by Sjoberg et al. (2020). The 3CH method was introduced

independently by multiple authors earliest by Grubbs (1948), and (often referenced) Gray and Allan (1974). The method has

in several cases been used for meteorological applications, sometimes under other names, see e.g., O’Carroll et al. (2008).20

In Numerical Weather Prediction (NWP), the method developed by Desroziers et al. (2005) is being widely adopted to empir-

ically based adjustment of observation error covariance matrices, e.g., Bormann et al. (2016). However, the 3CH method has not

been adopted as a tool in operational assimilation of satellite data into NWP models. This is likely because of the requirements
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— that the errors of the
::
in

:::::
NWP

::::
data

::::::::::
assimilation

:::
all

:::
the

:::::
model

:::::::::::::::
representativeness

::::::
errors,

::::::::
including

:::::::
forward

::::::::
modeling

::::::
errors,

::
are

::::::::::
considered

::
as

::
a
::::
part

::
of

:::
the

::::::::::
observation

:::::
error.

::::
The

:::::
3CH

:::::::
method

::
is

:::
not

:::::::
targeted

::::::::::
specifically

::
at
:::::

NWP
:::::::::::

applications.
:::::

This25

:::::
means

::::
that

::
all

:
three data sets must be uncorrelated, and that the data sets must truly represent the same property with the same

footprint in time and space — that are seldom met
:::::::
involved

:::
are

::::::
treated

::::::
equally

::
as

::
a
::::
start,

::::
thus

::::
they

:::
are

:::
all

:::::::
assumed

::
to

:::::::
contain

:::::::::::::::
representativeness

:::::
errors,

:::::
with

::::::
respect

::
to
::::

the
:::::::::
underlying

:::::
truth.

::
In

:::::
order

:::
to

:::
use

::::::
results

:::::::
obtained

:::::
from

:::
the

:::::
3CH

:::::::
analysis

::
it

::
is

::::::::
necessary

::
to

::::::::
consider,

:::
for

::::
each

::::::::
particular

::::::::::
application,

::::
how

::::::::::::::::
representativeness

:::::
errors

:::
are

:::::::::
distributed

::::::
among

:::
the

::::::::
involved

::::
data

:::
sets,

::::
and

:::
this

::
is

:::
not

::::::
always

:::::::
possible

::
to

::::
find

:::
out.30

To distinguish error correlations between data sets from vertical error correlations within each data set, we will refer to

the former as error cross correlations. Such error cross correlations can for instance be due to similarities in measurement

methods and processing or they can for example arise as a result of similarity in resolution among the data sets. Error cross

correlations can cause the 3CH method to misrepresent uncertainties (Rieckh and Anthes, 2018). If error cross correlations

and representativeness issues are properly considered and accounted for, the 3CH method can serve as an alternative to — or a35

validation reference for — uncertainty estimates based on instrument characteristics and measurement geometry.

Recently Rieckh et al. (2021) applied the 3CH method to refractivity, temperature and humidity profiles from radio occulta-

tions (RO), combined with radiosondes and model analysis. The results of that study gives relatively large uncertainty estimates

(see discussion Sect. 5), and the study leaves the problem of error cross correlations unresolved.

In this paper the 3CH method is generalized to include off-diagonal elements of the error covariance matrices. We ap-40

ply the generalized 3CH (G3CH) to three data sets where the random error
::::
errors

:
components can be assumed to be truly

independent
::
not

::
to
:::
be

:::::::::::::
interdependent,

:::::::
meaning

::::
that

::::
their

::::
error

:::::
cross

::::::::::
correlations

:::
are

:::::::
assumed

::
to

:::
be

::::::::
negligible. The refractivity

error covariance matrices of RO measurements are estimated and compared to current vertical correlation assumptions, used

in 1D-Var retrieval of specific humidity and temperature from RO refractivity. The main objective of this study is to assess

refractivity random uncertainty and vertical error correlations, expressed as the refractivity error covariance matrix, to be used45

in 1D-Var retrieval of temperature and specific humidity (Healy and Eyre, 2000; Kursinski et al., 2000; ROM SAF, 2021b).

The
::::
three

::::
data

:::
sets

:::
are

::::::
treated

:::
on

:::::
equal

:::::
terms

::::
such

::::
that

::::
none

::
of

:::::
them

:::
are

:::::::::
considered

:::::
more

::
or

::::
less

:::::::::::
representative

:::
for

:::
the

:::::
truth

:
a
::::::
priori,

::::
thus

:::
the analysis will also provide estimates of the ERA5 refractivity error covariance matrix and of the GRUAN

processed RS92 refractivity error covariance matrix.

The rest of the paper is organized as follows: The next two sections, Sect. 1.1 and Sect. 1.2 contain definitions of the50

terminology used throughout the paper. Next the three data sets are introduced in Sect. 2, and the G3CH method is presented

in Sect. 3, which includes a derivation of the G3CH equations. Results are presented in Sect. 4 along with interpretation of

the different collocation and filtering experiments. In the Discussion, Sect. 5, the results are related to previous studies and

applications. The results are finally collected in the Conclusions, Sect. 6.

1.1 Definitions55

The terms random uncertainty and systematic uncertainty are used as defined in the Guide to the Expression of Uncertainty

in Measurement (GUM) (International Bureau of Weights and Measures and International Organization for Standardization,
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1993). However, since the GUM does not provide a terminology for non-scalar properties we adopt the concept of error covari-

ance (matrix) and error correlation (matrix) from NWP terminology (Bormann et al., 2016)
:::::::::::::::::::::::::::::::::::::
(Bormann et al., 2016; Merchant et al., 2019)

to describe vertically correlated random uncertainties, and we use the terms error variance and error standard deviation to refer60

to the diagonal of an error covariance matrix and its square root.

The term vertical footprint of a data set is used here in the meaning width of an ideal physical refractivity feature, shaped as a

delta function, mapped to the resolved representation of refractivity, for the given data set.
::::
same

::::
way

::
as

::
in

:::::::::::::::::
Semane et al. (2022)

:
:

:::
The

:::::::
vertical

::::
scale

::::
that

::
an

::::::::::
observation

:::::
value

:::::::::
represents. The word resolution may be used to describe this property, but we shall

avoid this term because in the NWP community it is used in the meaning of sampling density — the number of data points per65

spatial interval (for example in Hersbach et al. (2020)). The vertical footprint will typically be larger than the distance between

data points
::
the

:::::::
vertical

:::::
height

:::::
levels

::::::
which

:::
the

:::
data

::::::
values

::::
refer

::
to.

1.2 Error components

For a given refractivity data profile, x, we consider the observation error εεε as the deviation from the unknown truth t, εεε= x−t.

In the context of this paper
::::
The

::::::
G3CH

::::
does

:::
not

:::::
make

::::
any

:::::::::::
assumptions

:::::
about

::::::
exactly

:::::
what

:::
the

::::
true

::::::
profile

:
t isthe actual70

refractivity at a vertical line above the RO reference coordinates at the RO reference time,
:
.
:
t
::::
may

:::
be

:::::::
thought

::
of

::
as

:
defined

with respect to given finite footprints in space and time
:
a

:::::
given

:::
but

::::::::
unknown

::::
finite

:::::::
vertical

::::::::
footprints, which may differ from

the
::::::
vertical footprints of all three data sets.

The quantity εεε is a sum of the measurement error εεεI and a representativeness error εεεR. Both terms may contain random and

systematic error components, but we assume that the systematic components have been removed prior to this
::
for

::::
each

::::::
subset

::
of75

::::::::
collocated

::::::
triplets

:::::
being

::::::::
analyzed,

:::
we

:::::::
remove

:::::::::
systematic

::::
error

:::::::::
differences

:::::::
between

:::
the

:::::
three

:::::::
involved

::::
data

::::::
subsets

:::::
prior

::
to

:::
the

analysis. The measurement error εεεI acts as a superimposed noise, possibly correlated in space and time. εεεI may for instance

include instrument errors, radio noise from external sources, and also some errors arising during data processing steps. The

εεεR component represents the distortion of the underlying truth in a data set, as it is being mapped to the
::::::
vertical observation

grid. εεεR contains errors associated with for instance sampling, interpolation and mismatch between the observation grid and80

measurement resolution in time and space. Especially for the RO and RS92 data εεεR contains a geometric error component,

εεεG, representing the departure of the
::::::
ERA5, RO and RS92 trajectories

::::::
vertical

:::
or

::::::
skewed

:::::::
profiles in time and space from the

vertical
::::::::
unknown

:::
true

:
profile at the RO reference time

::::::::::
coordinates.

:::
The

::::
RO

:::::::
reference

:::::::::
coordinate

::
is

:::
the

:::::
point

::
at

:::::
which

:
a
:::::::
straight

:::
line

:::::::
between

:::
the

::::::
GNSS

:::::::
satellite

:::
and

:::
the

::::::::
receiving

::::
Low

:::::
Earth

::::::
Orbiter

:::::::
tangents

:::
the

:::::
Earth

:::::::
ellipsoid. The ERA5 profile is strictly

vertical, interpolated to the RO reference time and position, while the RO profile is a weighted average of the three-dimensional85

atmosphere in the plane of occultation Syndergaard et al. (2005), and the radiosonde follows the balloon trajectory. The
::::
used

::::::
forward

::::::::
operator

::::::::
estimates

:::::::::
refractivity

:::::
along

:
a
::
1
::::::::::
dimensional

::::::::
assumed

::::::
vertical

::::
line,

::::
and

:::
this

:::
has

:::
an

::::::
impact

::
on

:::
the

::::::::::
uncertainty

::::::::
estimates.

:::::
Thus,

:::
the

:::
RO

:::::::::
observation

::::::
errors

::::::::
estimated

::
by

:::
the

::::
3CH

::::::
method

::
in
::::
this

:::::
paper

::
are

:::::::::
applicable

:::
for

:::::::::
variational

::::::::::
assimilation

::::
with

:
a
:::
1D

:::::::
operator,

:::
but

:::
not

:::
for

::::::
2D/3D

::::::::
operators.

::::
The time scale of an RO profile is in the order of one minute and the timescale

of an radiosonde profile is in the order of one hour. The skew trajectories of the RO tangent points and RS92 balloons are90

assumed not to be correlated with each other. Hence the εεεG term contains
:::
can

::
be

:::::::
assumed

:::
to

::::::
contain no cross correlations, and
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consequently it will be correctly attributed to the RO and RS92 data by the G3CH procedure
:
.
::::::::
However,

:::::
there

:::
are

:::::::::
potentially

::::
error

:::::
cross

:::::::::
correlation

::::::::::
components

::::::
arising

:::::
from

::::::
spatial

::::::::::
correlations

:::::::
between

:::
the

::::
data

::::
sets,

::::
that

:::
we

:::::
cannot

::::::
assess.

:::::
This

:::::
could

::
for

::::::::
example

::
be

:::
the

::::
case

:::
for

:::::
ERA5

::::
and

:::
RO,

:::::::
because

:::::
these

:::
are

:::::::
sampled

::
on

::::::
similar

:::::::::
horizontal

:::::
scales.

Given the definition of t to be the actual profile at the RO reference location and time, there are, in addition to εεεR and εεεI ,95

errors induced by the methods applied in this paper. These are a collocation error, εεεC , due to the distance in time and space

between the radiosonde and the reference coordinates, and a cross-correlation error, εεεX , representing error cross correlations

induced by the finite
::::::
vertical footprints of the three data sets. The raw G3CH uncertainty estimate for one of the data sets will

not represent the intrinsic
::::::::::
observation error, but it will represent a combination of the intrinsic

::::::::::
observation error εεε and error

components added by the G3CH:100

εεεG3CH = εεεI +εεεR +εεεC +εεεX . (1)

We are able to remove εεεC and the εεεX components of the three data sets, by adding
::
the

:::::::::
following additional analysis steps

to the G3CH(see sections Sect. 4.2 and Sect. 4.3)
:
.
::::
The

:::
εεεC

:::::::::
covariance

::::::
matrix,

::::
CC ,

::
is

:::::::::
eliminated

:::
by

::::
first

:::::::::
calculating

::::::
G3CH

::::::::
estimated

:::::::::
covariance

:::::::
matrices

:::
Ci:::

for
::

a
:::::
series

::
of
::::::::::

collocation
:::::::
subsets,

:::::::
sampled

:::::
from

:::::
areas

::
of

:::::::::
decreasing

::::
size

::::::
around

:::
the

::::
RO

:::::::
reference

:::::::::::
coordinates.

:::::
Next,

:::
the

:::::::
sequence

:::
of

:::::::::
decreasing

:::::::::
covariance

::::::::
estimates

::
is

::::::::::
extrapolated

::
to
:::
the

::::::
virtual

::::::::
zero-area

::::
case

::::
C0.105

:::::::::::::
CC

i =Ci−C0.
:::::::::::
Subsequently

:::
the

:::
εX

:::::::::
covariance

::::::
matrix,

:::::
CX ,

:
is
:::::::::
eliminated

:::
by

::::::::
smooting

::
all

:::::
three

::::
data

:::
sets

::::
such

::::
that

::::
they

::::
have

::
the

:::::
same

::::::
vertical

::::::::
footprint,

::::
and

:::
then

::::::::
calculate

:::
for

::::
each

::::
data

::
set

::
a

:::::::::
covaraince

:::::
matrix

:::
Cs::::

with
::::::
G3CH

::::
from

:::
the

::::::::
smoothed

::::
data

::::
sets.

:::::::::::::
CX =C0−Cs. So the observation error covariance matrices that we estimate includes

:
in

:::
the

:::
end

::::::::
includes

::::
only measurement

error εεεI and representativeness error εεεR.

εεε= εεεI +εεεR. (2)110

The final estimate of εεε will be stated with reference to a common vertical footprint of the three data sets, which is determined

by the data set with the largest
::::::
vertical

:
footprint, ERA5. These general definitions of measurement error and representativeness

error are thought to be applicable for all three data sets.

2 Data

Three data sets are combined in the analysis. The radio occultation dataset
:::
data

:::
set

:
(RO) includes refractivity profiles from115

the Metop and COSMIC-1 missions (Gleisner et al., 2020)
:
,
::::::::::
interpolated

::
to

::::
247

:::::
levels. These are downloadable as part of the

ROM SAF CDR v1 and ICDR v1 data sets. The CDR v1 (Gleisner et al., 2021a) consists of RO data from several satellite

missions data that have
::
has

:
been reprocessed by the ROM SAF, using lower-level input data from both EUMETSAT and UCAR

as input. The ICDR v1 (Gleisner et al., 2021b) consists of RO data from the Metop mission, that has been reprocessed by the

ROM SAF, using input data from EUMETSAT. Secondly the radiosondes (RS92) are taken from the RS92-GDP.2 data set,120

provided by the GCOS Reference Upper-Air Network, GRUAN, (Dirksen et al., 2014; Sommer et al., 2012). From these two

data sets a collocated subset has been selected, from the criterion that the GRUAN central time and position must be within
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three hours and 300 km from the radio occultation reference point. In effect this ensures that the location criteria are met in

the upper troposphere while measurements can be sampled further apart at both higher and lower altitude. The RO data has

been subject to the ROM SAF quality control described in Steiner et al. (2020), and the GRUAN data has been pruned for a125

few extreme outliers. The third data set (ERA5) is
::::::
contains

:
model forecast from the ERA5 data set (Hersbach et al., 2020) on

model levels, retrieved from the ECMWF MARS archive. The forecast verification time has in each case been chosen such that

the radio occultation has not been within the assimilation window used for initialization of the given forecast.
::::::::
Effectively

::::
this

::::::
implies

:::
that

::::
the

::::
used

::::::::::
verification

::::
times

:::::
runs

::::
from

::
3

::
to

::
15

::::::
hours,

:::
and

:::
the

::::::
ERA5

::::::::::
uncertainty

::
is

:::::::
assumed

::
to

:::
be

:::::::
constant

::
in

::::
this

::::
time

:::::
range.130

The ERA5 forecast is prepared at model levels and interpolated in time (three hour grid) and horizontal space (1x1 deg grid)

to the RO reference points. These interpolated ERA5 profiles are also provided as part of the ROM SAF CDR v1 and ICDR v1

data sets. The data spans a time interval from 2006 to 2020. A total of 15597 collocations were found for this analysis. The

::::
RS92

:::::::::::
temperature,

::::::::
humidity

:::
and

::::::::
pressure

:::::::
variables

:::::
have

::::
been

::::::::::
interpolated

::::
with

:::::
cubic

::::::
splines

::
to

:::
the

::::
137

:::::
ERA5

::::::
model

::::::
levels,

:::::::
hereafter

:::
the

:
ERA5 and RS92 data have been interpolated to

:::::::
variables

:::::
have

::::
been

:::::::
forward

::::::::
modeled

::
to

:::::::::
refractivity

::
at
:
the RO135

vertical grid of 247 levels(Lewis, 2009)with cubic splines. .
::::
The

:::::::::
refractivity

:::::::::
calculation

::
is
:::::
done

::::
with

:::
the

::::::
method

:::::::::
described

::
in

::
the

::::::
ROPP

::::
user

:::::
guide:

:::::::::::::::::
(ROM SAF, 2021a).

:

3 Method

3.1 The Generalized Three-Cornered Hat method

The 3CH method has historically been applied to triplets of data without considering vertical error correlations, meaning that140

the data sets have effectively been treated as scalar properties (Sjoberg et al., 2020). A straight forward generalization of the

method allows us to also infer internal error correlations for each data set. In the Generalized 3CH (G3CH) it is assumed that

we have three independent variables x,y and z, that are composed of four stochastic vectors; the truth t, and three independent

error terms εεεx, εεεy and εεεz , such that

x = t+εεεx145

y = t+εεεy

z = t+εεεz . (3)

In the present paper x,y and z may represent atmospheric refractivity profiles obtained from different sources. εεεx,εεεy and εεεz

represent the random observation error vectors. In the following the bracket notation, 〈·〉, is used to denote expectation values.

The error vectors εεεx,εεεy and εεεz may have internal correlations, expressed as error covariance matrices X= 〈εεεxεεεxT 〉, Y =150

〈εεεyεεεyT 〉 and Z= 〈εεεzεεεzT 〉::::::::::
Z= 〈εεεzεεεzT 〉, but we assume no cross correlation components, that is; 〈εεεxεεεTy 〉= 〈εεεxεεεTz 〉= 〈εεεzεεεTy 〉=

0. We may allow that the error is correlated with the physical property t; e.g., 〈tεεεTx 〉 6= 0. In the analysis in
:::::::
Besides

:::
this

:::
no

::::::::::
assumptions

:::
are

:::::
made

:::::
about

:::
the

:::::::::
particular

:::::
shape

::
of
:::::

error
::::::::::
distribution

:::::::::
functions.

::
In

:
the present paper we only estimate the

random uncertainties, so it can without loss of generality be assumed that all three data sets are bias free. This can in practice
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be ensured
:
.
::
In

::::::
practice

:::
we

:::::::
remove

:::::
biases

::
in

::::
each

::::::
subset

::
of

::::::::::
collocations

:::::
where

::::::
G3CH

::
is

::
to

::
be

:::::::
applied by subtracting the

:::::
subset155

mean of each data set
:
of

:::
the

:::::
three

::::
data

:::
sets

:
prior to the analysis.

::
So

::
in

:::
the

::::::::
following

::::::::
derivation

:::
we

::::
can

::::::
assume

:::
that

:::
all

::::
data

:::
are

:::
bias

::::
free.

:
In the absence of bias the covariance matrices of each subtraction pair can be written as

〈(x−y)(x−y)T 〉 = 〈xxT +yyT −xyT −yxT 〉

〈(x− z)(x− z)T 〉 = 〈xxT + zzT −xzT − zxT 〉

〈(y− z)(y− z)T 〉 = 〈yyT + zzT −yzT − zyT 〉.160

(4)

Expanding the right hand side of for instance the first line of Eq. (4) we obtain:

〈(x−y)(x−y)T 〉 = 〈εεεxεεεxT −εεεxεεεTy −εεεyεεεTx +εεεyεεεy
T 〉.

(5)

If we keep in mind that error cross correlations between data sets are set to zero, the three subtraction pair covariances reduces165

to

〈(x−y)(x−y)T 〉 = 〈εεεxεεεxT +εεεyεεεy
T 〉

〈(x− z)(x− z)T 〉 = 〈εεεxεεεxT +εεεzεεεz
T 〉

〈(y− z)(y− z)T 〉 = 〈εεεyεεεyT +εεεzεεεz
T 〉.

(6)170

Finally, by solving these three equations for the error covariance matrices X= 〈εεεxεεεxT 〉, Y = 〈εεεyεεεyT 〉 and Z= 〈εεεzεεεzT 〉 for

the variables x,y and z, we get

X= 〈εεεxεεεxT 〉 =
1

2
〈(x−y)(x−y)T +(x− z)(x− z)T

−(z−y)(z−y)T 〉

Y = 〈εεεyεεεyT 〉 =
1

2
〈(y−x)(y−x)T +(y− z)(y− z)T175

−(x− z)(x− z)T 〉

Z= 〈εεεzεεεzT 〉 =
1

2
〈(z−x)(z−x)T +(z−y)(z−y)T

−(x−y)(x−y)T 〉. (7)

The above G3CH model, is applied to the three data sets described in Sect. 2. In this analysis the mean is subtracted from each

data set prior to applying the G3CH. The biases are not the focus here, but for reference the global means of RS92 and RO180

refractivity differences to ERA5 for all collocations used in the analysis are plotted in Fig. 1.
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3.2 Handling collocation uncertainty

In order to compensate for the impact of collocation uncertainty εC on the obtained refractivity error covariance matrices, the

G3CH analysis is applied to a series of data subsets with increasing collocation distances between 50 km and 300 km. The

collocation uncertainty is removed from the uncertainty estimates by extrapolating the covariance matrices to zero collocation185

distances. This procedure, which is also performed by Hollingsworth and Lönnberg (1986) in another context, also allows one

to track how the G3CH method partition the collocation uncertainty among the three data sets. See subsection 4.2.

3.3 Error correlations between data sets

The 3CH algorithm cannot distinguish between true physical variability and mutual positive error correlations (Sjoberg et al.,

2020). In cases where errors of two data sets (x and y) are positively correlated the discrepancy between the third dataset
::::
data190

::
set, z and (x,y) will be attributed as an uncertainty of z, because the term 〈(x−y)(x−y)T 〉 would be reduced in such cases.

In this study the measurement error cross correlations between the chosen data sets are assumed to be negligible, since

the three data sets at hand are obtained by completely independent techniques. In particular the ERA5 model forecast data is

chosen such that no information from either a given RO or RS92 profile can have been passed to the forecast being used in a

given collocation triplet. However, if two data sets have similar vertical footprints, differing from the vertical footprint of t
::
or

::
if195

:::
they

:::
are

:::::::
sampled

::
at
::::::
similar

:::::::::
horizontal

:::::
scales, these two data sets will

:::
may

:
have cross-correlated errors, and possibly biases. All

biases are removed prior to application of G3CH, but the error cross correlations introduced by finite vertical footprints will
::
or

::::::
similar

::::::::
horizontal

:::::
scale

::::
may influence the result of G3CH.

3.4 Handling differences in vertical footprints

The three data sets differ in their vertical footprints. The RS92 radiosonde has a vertical footprint of around 50 m (Dirksen200

et al., 2014). This
::::::
vertical footprint is increased through the interpolation to the common grid, and through the procedure for

correcting for collocation error. The radio occultation refractivity has been shown to have a vertical footprint of about 200 m

under optimal conditions in the lower troposphere (Xie et al., 2012). In the RO data used here the processing has removed some

small scale information, so the RO vertical footprint is expected to be larger than 200 m. In Fig. 2 two examples of refractivities

of triple-collocations are shown. The plots illustrate the ability of resolving vertical structures in the middle troposphere and205

lower stratosphere of the three data sets. Even though the highly resolved ERA5 has 137 vertical levels, shown on the right

vertical axis, it provides a somewhat smoother representation of the vertical structures, compared to the radio occultation. The

RO profiles and RS92 profiles, show more vertical structure than ERA5.

Uncertainty estimates for any
:::::::
vertically

::::::::::
represented

:
variable must refer to a specified

::::::
vertical

:
footprint to be meaningful.

Thus, the G3CH analysis has to be accompanied with an assessment of the
:::::
vertical

:
footprints of the data sets. In the three210

cornered hat analysis,
:::
our

::::::::
approach

:
the data set with the largest

::::::
vertical footprint determines the common

::::::
vertical

:
footprint

to be used for all three data sets. Said in another way: If one of the data sets do not contain information below a certain
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length scale, there is not enough information in the data triplet to apply the G3CH method to estimate uncertainties related to

variability below that length scale.

Because ERA5 is missing some fine scale physical features, seen in the better resolved RO and RS92 data set, we are forced215

to state the uncertainty on the common scale determined by ERA5. This means that the RO and RS92 data must be smoothed

to match the ERA5
::::::
vertical

:
footprint prior to the G3CH analysis. If this smoothing is omitted the G3CH may give a biased

estimate of uncertainties. By smoothing the data sets to a common scale we remove both physical features and errors on scales

shorter than the common
::::::
vertical footprint. Therefore the estimated uncertainties of RO and RS92, which are correct on the

found common scale, may be viewed as lower uncertainty boundaries for these variables, on their native scales. The vertical220

footprints of the three data sets are examined in Sect. 4.3.

4 Results

In this section the G3CH results are presented, first as raw unfiltered uncertainty estimates, then with corrections for collocation

mismatch (εεεC terms) and corrections for cross correlations due to finite vertical footprints (εεεX terms), to assess the uncertainty

limits for each data set.225

4.1 Raw uncertainty estimates

Fig. 3 shows the raw estimates of the mid latitude refractivity uncertainty expressed as error standard deviation of the three data

sets, obtained by applying the G3CH directly to the raw data sets. Generally the G3CH attributes a big part of the collocation

error (εεεCx ) to the RS92 uncertainty. The reason is that the collocation is performed by interpolating ERA5 to the RO reference

point, such that ERA5 and RO are closely collocated, while RS92 is being chosen such that it is within 300 km from the RO230

reference point, so naturally RS92 will stand out from the two other data sets in many cases.

4.2 Collocation uncertainty

The most striking feature in Fig. 3 is the bulge of RS92 around the tropopause. The main part of this bulge is removed along

with the collocation uncertainty by the procedure described in Sect. 3.2. We are calculating the G3CH estimates of covariance

matrices for a sequence of collocation criteria (between 50 km and 300 km) and use these to extrapolate all covariance matrices235

to 0 km collocation distance, with a linear fit to the
:::
full

:::::::::
covariance

::::::::
matrices

::
as

:::::::
function

:::
of

:::
the squared collocation distance.

The
::::
effect

::
of

:::::::
varying

:::
the

:::::::
temporal

::::::::::
collocation

:::::::
window

::
is

:::::
small,

::
so

:::
we

::::
have

::::::::
excluded

:::
that

:::::
from

:::
the

:::::::
analysis.

:

:::
The

:
impact on RS92 of changing collocation distance is shown as an example in Fig. 4, and in Fig. 5 a few examples of

extrapolations are shown. The result of this procedure is summarized for all three data sets in Fig. 6. The RS92 uncertainty

estimate is reduced considerably, while the uncertainty estimates for the two other data sets are slightly changed. In the sub-240

sequent analysis the 0 km estimates of covariances are used for evaluation of covariance matrices and difference terms in the

G3CH equations.
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4.3 Vertical filtering

In Fig. 7 the impact of smoothing on error standard deviations estimated with G3CH (Eq. 7) is shown for middle latitudes.

The smoothing is applied as a sequence of Gaussian filters of increasing widths. For each data set filtering has been performed,245

not on the data set itself, but on the two other complementing data sets (see figure legends). The
:::
idea

::
is

::::::::
basically

::
to

:::::
probe

:::
the

::::::
vertical

:::::::
footprint

:::
of

:::
one

::::
data

:::
set

::::
with

:::
two

:::::
other

::::
data

:::
sets

::
of

:::::::
varying

::::::
vertical

::::::::
footprint.

::::
The G3CH analysis has been performed

at the sequence of such prepared triplets of data sets with increasing filter width. The impact of applying sequences of Gaussian

filters is best viewed near the tropopause. We note that all variances eventually starts to grow at some filter width, but the ERA5

error standard deviation drops in most cases at small filter widths, and does not start to increase until the width of the filter,250

applied on the RO and RS92 data, exceeds a certain threshold. We interpret this threshold as the ERA5
::::::
vertical

:
footprint. ERA5

::::::
vertical footprint was estimated for each altitude, as the minimum of a second order polynomial, fitted to σERA5 as function of

filter width. These
::::::
vertical

:
footprints are plotted in Fig. 8, for middle and high latitudes. At low latitudes the result is unstable,

so that plot has been omitted. We use these result to identify a common ERA5
::::::
vertical footprint to be applied globally as the

mean of the middle and high latitude
::::::
vertical footprints, shown as a dashed line in Fig. 8.255

A similar analysis cannot be performed for the RO or RS92 data sets, because these appear to have small footprints which

happens
::::::
vertical

:::::::::
footprints

:::::
which

:::::::
happen

:
to lie close to each other. There is not a finite filter length which minimizes the

refractivity error standard deviation for RO and RS92 (the filters being applied to the complementing data sets in each case).

Therefore the RO and RS92
::::::
vertical footprints cannot be inferred from these three data sets alone, but it can be concluded that

their
::::::
vertical

:
footprints are smaller than the ERA5

::::::
vertical footprint since ERA5 estimated error standard deviation decreases260

if either the RO or RS92 are smoothed. This is illustrated in Fig. 9: The impact of smoothing RS92 on the ERA5 variance is

shown in Fig. 9 (a). Generally σ2
ERA5 decreases as the RS92 data are brought closer to the ERA5 data by smoothing, consistent

with RS92 having smaller
::::::
vertical footprint than ERA5. The RO error variance, σ2

RO, on the other hand increases as a result

of smoothing the RS92 data (see Fig. 9 (b)). This is consistent with the RS92
::::::
vertical footprint being close to the RO

::::::
vertical

footprint, and RS92 data moving closer to the ERA5 data as smoothing is applied to RS92. In Fig. 9 (c) σ2
ERA5 is seen to265

decrease as the RO refractivity is brought closer to ERA5 refractivity, as smoothing is applied on RO.

To estimate the final G3CH uncertainties with reference to the common
::::::
vertical

:
footprint determined by ERA5, all three raw

data sets have been smoothed with a Gaussian filter with the width of the ERA5
::::::
vertical footprint prior to the G3CH analysis.

In Fig. 10 the final G3CH inferred uncertainties are shown for each data set for low, middle and high latitudes. For all data set

the unfiltered (raw) uncertainty is also plotted, for later discussion.270

4.4 Error covariances

In Fig. 11 and Fig. 12 the G3CH based error covariance matrices for ERA5, RO and RS92 are shown for rising and setting

occultations for middle and high latitudes. These matrices have been calculated without any vertical filtering applied. The

tropics are not shown because of insufficient amount of data in that region. The fine scale off-diagonal structures must be
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attributed to statistical noise, but there are certainly larger scale vertical correlation structures especially in the RO and RS92275

data.

Generally the vertical correlations are divided in two separable regimes: Close to the diagonal we see a short range correlation

with standard deviation of approximately 0.5 km, and a long range correlation component of varying shape and amplitude. The

short scale vertical correlations are very similar for all data sets. Rising occultations are found to have larger vertical error

correlations (and slightly larger standard deviation where correlations are broader) than setting occultations in this data set,280

which is seen when comparing plot (b) with plot (e) in Fig. 11 and plot (b) with plot (e) in Fig. 12. This is believed to be

due to the ionospheric correction in the RO processing for rising occultations, where the L2 GPS signal is often not available

below 20 km, and extrapolation from above is necessary. In the CDR v1.0 data set, it is in particular the rising occultations for

Metop after instrument firmware upgrades in 2013 that suffers from missing L2 data below 20 km (Gleisner et al., 2020), and

consequently there are broader vertical error correlations in the retrieved refractivity profiles for Metop after 2013 (not shown).285

It is worth noticing that the estimated vertical correlations of RS92 are larger for setting than for rising RO at high latitudes,

especially between 6 and 22 km. So the G3CH fails to give an independent estimate of the RS92 correlations. The RS92 is

expected to have long ranging vertical correlations due to corrections implemented in the GRUAN processing, but the G3CH

fails to attribute these correctly when strong long range correlations are also present in the RO data. The estimated RS92

diagonals (standard deviations superimposed vertically on correlation matrices) seem reasonably consistent for rising and290

setting occultations.

The relative magnitude of the off-diagonal covariance components can also be viewed in Fig. 13: Here the vertical error

correlation function of RO refractivity is exemplified for two heights, approximately 5 and 20 km, at low, middle and high

latitudes. The correlation functions are slices of the RO refractivity error correlation matrix at these altitudes. For instance at

high latitude there are pronounced long range correlations at these two heights. In the tropics the data are
:
is too sparse to get an295

estimate of the correlation function. In Fig. 13 the dashed lines shows
:::::
curves

:::::
show the three km exponential correlation which

is assumed in the current ROM SAF 1D-Var analysis (ROM SAF, 2021b). Given that the finer correlation structures, around

the 1 km scale, are influenced by sparseness of data, the current correlation function appears to be reasonably adequate at high

latitudes at the selected altitudes. At middle latitudes there is a potential for decreasing the error correlation length in future

applications.300

5 Discussion

It is evident from the results in Sect. 4.3 that uncertainty estimates for a data set must be stated with reference to scale in space

and time. In the derivation of G3CH representativeness is defined with reference to given scales in space and time of the truth.

The truth is assumed to have smaller footprint than any of the involved data sets. We choose for all data sets to report the

estimated uncertainty boundaries with reference to the estimated
::::::
vertical

:
footprint of the ERA5 data set. We have identified305

the
::::::
vertical footprint of ERA5 for for a range of altitudes, and used these to find RO uncertainties in Fig. 10. This operation is

equivalent to define the truth t with reference to the ERA5 footprint if one will.
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The unfiltered (raw) G3CH RO uncertainty estimates, also seen in Fig. 10 includes
::::::
include uncertainty associated with

fluctuations on shorter scale than the ERA5
::::::
vertical

:
footprint. The raw

::::::::
unfiltered uncertainties are overestimated because they

will include physical variability, falsely attributed as errors. We cannot quantify the native
::::::
vertical

:
footprints of RO and RS92,310

but it can be assumed that the raw
:::::::
unfiltered

:
uncertainty estimates marks upper boundaries for their uncertainties evaluated

with reference to the native
::::::
vertical

:
footprint.

The estimated uncertainties of RO in the lower stratosphere are only slightly above 0.2%, the theoretical estimates found

in Kursinski et al. (1997). Empirical uncertainty estimates have previously been analysed for instance by Rieckh and Anthes

(2018) and Scherllin-Pirscher et al. (2011). In the empirical uncertainty analysis study by Scherllin-Pirscher et al. (2011) the315

refractivity uncertainty is found to be 0.35% in the lower stratosphere. Scherllin-Pirscher et al. (2011) were using RO data in

combination with ECMWF analysis, and were therefore confined to make assumptions about mutual correlation and partition-

ing of uncertainties among the two data sets. By combining three independent data sets in a 3CH analysis such assumptions

may be avoided, and consequently one is able to decrease the uncertainty estimates.

The RO uncertainty in the Upper Troposphere — Lower Stratosphere (UTLS), where the uncertainty estimates are at a320

minimum, does not vary much with latitude, except for a small increase at the tropopause. The structure of the uncertainty

profiles are quite similar for all latitudes. The increase of uncertainty in the troposphere is smaller at high latitude, but the

crossover between high and low uncertainty happens at approximately the same altitude, 5 to 7 km, for all latitudes. For the

tropics, the noisy uncertainty estimates, due to insufficient amount of data, does
::
do

:
not allow to safely read a minimum above

the tropopause from Fig. 10, but there is an indication of uncertainty almost down to 0.2% even between 7 and 10 km, well325

below the tropical tropopause layer.

In Rieckh et al. (2021) the 3CH is applied to multiple triplets of RO data and different model refractivity data. Overall

their uncertainty estimates are much higher, for instance 0.55% in the UTLS. Partly this may be due to high noise level of

the analyzed RO data (COSMIC-1 and COSMIC-2). But the data-sets
::::
data

:::
sets

:
used by Rieckh et al. (2021) are less well

suited for 3CH analysis than the data-sets
:::
data

:::
sets

:
used here, because the errors of the used models

:::::
ERA5

:::::::
analysis

::::
fields

:
must330

be expected to be correlated across data-sets
::::
with

:::::
errors

::
of

:::::
other

::::
data

:::
sets, leading to a biased estimate of 3CH uncertainties.

The models applied have larger
::::::
vertical

:
footprint than the RS92 radiosonde data used here, and this will tend to yield an

overestimate of RO uncertainties, which is indeed seen in Rieckh et al. (2021). Their results show an apparent uncertainty

maxima near the tropopause, as must be anticipated according to our analysis of impact of vertical footprint in Sect. 4.3.

In the theoretical uncertainty analysis study by Kursinski et al. (1997) the refractivity uncertainty in the lower troposphere335

tangents 1% which is a little lower than the G3CH estimate at middle latitudes, but quite consistent with the G3CH estimate at

high latitudes. The Kursinski et al. (1997)-estimate is dominated by the contribution from representativeness uncertainty arising

from horizontal gradients along the ray path up to 30 km, i.e. the contribution from the spherical symmetry assumption to the

uncertainty. Retrospectively seen Kursinski et al. (1997) may have underestimated the horizontal gradients in the troposphere

since the effect of horizontal variability was estimated from a model with 40 km horizontal resolution. In a later study by Steiner340

and Kirchengast (2005) even lower refractivity uncertainty estimates are obtained, with a coarser model (60 km resolution and

50 vertical levels). Steiner and Kirchengast (2005) find down to 0.1% refractivity uncertainty in the UTLS.
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The estimation of error correlation matrices with G3CH is a novelty introduced in the present study. The method is able to

detect expected differences between rising and setting RO long range vertical error correlations, and long range correlations are

also seen in RS92 data. The vertical correlation estimates are limited in the same way as variance estimates; if for instance one345

of the data-sets does not have long range correlations (in the case ERA5) the method fails to give an unbiased
::::
have

:::::::::
limitations

::::
since

:::
the

:
estimate of long range vertical error correlations of the two other data sets

::::
RS92

::::::
seems

::
to

::
be

:::::::::
dependent

:::
on

:::::::
whether

::
the

:::::
used

:::
RO

::::
data

:::::::::
represents

:::::
rising

::
or

::::::
setting

:::::::::::
occultations. However, this inaccuracy seems relatively small compared to the

difference between the found RO vertical error correlation estimates and vertical error correlation estimates currently used in

RO 1D-Var retrievals, and therefore the correlation estimates will be useful in this context. Especially at middle latitudes there350

is a potential for decreasing the vertical error correlation length in future applications.

The presented analysis G3CH may have consequences for uncertainty parameterization in retrieval and assimilation of RO

refractivity. In particular the estimates of RO refractivity uncertainty reveals a potential for deflating tropospheric refractivity

uncertainty in the ROM SAF 1D-Var configuration. A reduction of assumed refractivity uncertainty is of particular interest

in the troposphere, where it can improve the information content of water vapor retrievals. There is a need for establishing355

tropospheric water vapor climate data records for climate research, as it is for instance expressed in the objectives of the

GEWEX water vapor assessment (G-VAP) (Schröder et al., 2018). The results presented here promises
::::::
promise

:
a reduction of

uncertainty of RO based tropospheric water vapor retrieval.

6 Conclusions

The collocation-corrected G3CH random uncertainty estimate provides full refractivity error covariance matrices, for three360

independent data sets. The method was a applied to collocated refractivity profiles from ERA5 forecast
:::::::
forecasts, radio occul-

tations and radiosondes.

The RO refractivity uncertainty is found between 0.2% and 0.6% in the UTLS between 8 and 25 km at middle and high

latitudes, and between 0.2% and 1.4% below 8 km. The Generalized 3CH method presented here also yields estimates of the

vertical error covariance matrices for refractivity.365

The achieved refractivity uncertainty estimates are lower than empirically determined uncertainties previously reported in

literature. The results can be used to model uncertainty assumptions used in model
:::::
NWP

:
data assimilation and in 1D-Var

calculation of atmospheric temperature and specific humidity based on RO refractivity data.

Code and data availability. The analysis is performed in Jupyter Notebook. The code is sitting in an internal git repository at the Danish

Meteorological Institute. It is available from the corresponding author upon request.370

The RO refractivity profiles and interpolated ERA5 temperature and humidity profiles on model levels (including surface pressure) are

available at the ROM SAF web-page (Gleisner et al. (2021a) and Gleisner et al. (2021b)). The GRUAN atmospheric profiles are available at

the GRUAN web-page (Sommer et al. (2012)).
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Figure 1. Global biases of RS92 and RO refractivity, with ERA5 used as reference, based on all collocation triplets (collocated ERA5, RO

and RS profiles) used in this study, evaluated at the RO reference location. See also Sect. 2. Percentages are calculated relative to the mean

of ERA5 forecasts.
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Figure 2. Refractivity of two selected triple collocations exemplifying differences in vertical footprint. Left: ERA5, RS92 and COSMIC-1

RO (40.1 deg N, collocation distance: 18.6 km (0.2 hour)) and right: ERA5, RS92 and Metop RO (52 deg N, collocation distance: 25.5 km

(1.6 hour)). RS92 and ERA5 have been interpolated to the 247 RO height levels. The refractivity has been normalized by division with the

mean of the ERA5 data set refractivity. The thinned refractivity levels and the 137 ERA5 model levels are printed on the right vertical axis.
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Figure 3. Raw estimate of refractivity random uncertainty (standard deviation) of ERA5, RO and RS92 at middle latitudes.
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Figure 4. Estimate of refractivity uncertainty (standard deviation as percent of ERA5 mean refractivity) of RS92, for a series of collocation

criteria. The black dashed line shows the STDV obtained by extrapolation of the variance to zero collocation distance.
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Figure 5. Examples of extrapolation of refractivity error variance of RS92, i.e. diagonal elements of covariance matrix, to zero collocation

criterion at 5 different altitudes. The variances are divided with the mean ERA5 refractivity
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Figure 6. 3CH estimates of refractivity error standard deviations are shown for 300 km and 0 km collocation criterion, for each of the ERA5,

RS92 and RO data sets, at low (a), middle (b) and high (c) latitudes. Smoothing has not been applied.
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Figure 7. Effect of smoothing on error standard deviations of ERA5 (a), RO (b) and RS92 (c), estimated by 3CH.
:::
Note

:::
that

:::
the

:::::
x-axis

:::
has

:::
been

::::::
shifted

::
by

::::
0.2%

::
in

::::
panel

:::
(c). All plots are for middle latitudes. The standard deviations are divided with the mean ERA5 refractivity. The

filtering width is defined as 2 times the standard deviation of the Gaussian filter function. The single curves are easiest
::::
most

::::
easily

:
identified

at a given altitude by counting the curves from one side. For each data set the smoothing is only applied on the two other data sets.
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Figure 8. Estimates of the ERA5
::::::
vertical footprint for middle and high latitudes. The effect of filtering of RO and RS92 on the estimated

ERA5 error standard deviation, σERA5, may be viewed in Fig. 7 (a). The ERA5
::::::
vertical footprint is found for each altitude as the filter width

which minimizes σERA5.
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Figure 9. Estimates of middle latitude refractivity error variances based on smoothed data divided with refractivity error variance based on

un-smoothed data; (a) ERA5 error variance with smoothed RS92, (b) RO error variance with smoothed RS92 and (c) ERA5 error variance

with smoothed RO. The legends show the width of the different vertical Gaussian filters applied to the refractivity profiles mentioned in the

legend title,
::::

and
:::
e.g.,

:::::::

σERA5
σERA5,0::

in
::::::
subplot

::
(a)

::::
means

:::::::::
uncertainty

::::::
estimate

::
of

::::::
ERA5,

::::
given

::::::
filtering

::
of

:::
the

:::
data

:::
set

::::::::
mentioned

::
in

::
the

:::::
legend

:::
—

:
in
::::

this
:::
case

:::::
RS92,

::::::
divided

::::
with

::
the

:::::::::
uncertainty

::::::
estimate

::
of
::::::

ERA5,
:::::::
obtained

::::::
without

::::::
filtering. 9722 collocated data triplets were used in the

G3CH analysis for these error covariance estimates.
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Figure 10. Best estimate of refractivity uncertainties, shown as standard deviations in percents of the ERA5 refractivity, for ERA5, RO and

RS92, at low (a), middle (b) and high (c) latitudes. For all data sets the uncertainty is given with reference to the ERA5
:::::
vertical

:
footprint,

which is achieved by filtering all data sets to match the ERA5
:::::
vertical footprint (thick curves). For RO and RS92 the

:::
The uncertainties based

on un-smoothed data are also shown (thin curves). The found standard deviation estimates have been vertically smoothed with a 10 grid

points box filter.
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Figure 11. G3CH estimate of ERA5 (a,d), RO (b,e) and RS92 (c,f) refractivity vertical error covariance matrices at middle latitude. Rising

occultations (a,b,c) and setting occultations (d,e,f). The covariance matrices are plotted as correlation matrices (diagonal = 1) with superim-

posed standard deviation as function of height (black line), plotted on the left and upper axes. The standard deviation is given in percent of the

mean ERA5 forecast refractivity. The covariance matrices have been truncated at 30 km where the RS92 data sparseness starts to destabilize

the results. 9722 collocated profile triplets were used for these covariance estimates. For these estimates no smoothing was applied on any of

the data sets.
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Figure 12. Same as in Fig. 11, but for high latitudes.
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Figure 13. Estimate of RO vertical error correlations at approximately 5 and 20 km for low, middle and high latitudes (full curves). The

dashed lines show exponential correlation with at three km decay length. No smoothing was applied on any of the data sets before the

generalized G3CH was applied.
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