

1 Development and Validation of a New In-Situ Technique 2 to Measure Total Gaseous Chlorine in Ambient Air

3
4 Teles C. Furlani¹, RenXi Ye¹, Jordan Stewart^{1,2}, Leigh R. Crilley¹, Peter M. Edwards², Tara F.
5 Kahan³, Cora J. Young^{1*}

6 ¹ Department of Chemistry, York University, Toronto, Canada

7 ² Department of Chemistry, University of York, York, UK

8 ³ Department of Chemistry, University of Saskatchewan, Saskatoon, Canada

9
10 *Correspondence to: youngcj@yorku.ca

12 Abstract

13 Total gaseous chlorine (TCl_g) measurements can improve our understanding of unknown sources
14 of Cl to the atmosphere. Existing techniques for measuring TCl_g have been limited to offline
15 analysis of extracted filters and do not provide suitable temporal information on fast atmospheric
16 process. We describe high time-resolution in-situ measurements of TCl_g by combusting
17 thermolyzing ambient air over a heated platinum (Pt) substrate coupled to a cavity ring-down
18 spectrometer (CRDS). The method relies on the complete decomposition of TCl_g to release Cl
19 atoms that react to form HCl, for which detection by CRDS has previously been shown to be fast
20 and reliable. The method was validated using custom organochlorine permeation devices (PDs)
21 that generated gas-phase dichloromethane (DCM), 1-chlorobutane (CB), and 1,3-dichloropropene
22 (DCP). The optimal conversion temperature and residence time through the high-temperature
23 furnace was 825 °C and 1.5 seconds, respectively. Complete conversion was observed for six
24 organochlorine compounds, including alkyl, allyl, and aryl C-Cl bonds, which are amongst the
25 strongest Cl-containing bonds. of gravimetrically validated PDs was indicated by the near unity

26 orthogonal distance regression analysis slope ($\pm\sigma$) of measured TCI_g plotted against expected TCI_g
27 and was 0.996 ± 0.012 , 1.048 ± 0.0060 , and 1.027 ± 0.061 for DCM, CB, and DCP, respectively.
28 The quantitative conversion of these strong C-Cl bonds suggests complete conversion
29 Breaking these relatively strong C-Cl bonds represents a proof of concept for complete conversion of all
30 similar or weaker bonds that characterize all other TCI_g . We applied this technique to both outdoor
31 and indoor environments and found reasonable comparisons agreements in ambient background
32 mixing ratios with the sum of expected HCl from known long-lived Cl species. We measured the
33 converted TCI_g in an indoor environment during cleaning activities and observed varying levels of
34 TCI_g comparable to previous studies. The method validated here is capable of measuring in-situ
35 TCI_g and has a broad range of potential applicationsto make routine TCI_g measurements in a
36 variety of applications.

37 1. Introduction

38 Chlorine (Cl) containing compounds in the atmosphere can impact air quality, climate, and
39 health (Saiz-Lopez and Von Glasow, 2012; Simpson et al., 2015; Massin et al., 1998; White and
40 Martin, 2010). Gaseous chlorinated compounds are either organic (e.g., dichloromethane,
41 chloroform, and carbon tetrachloride) or inorganic (e.g., Cl_2 , HCl , and ClNO_2), with inorganic
42 chlorine Cl being more reactive under most atmospheric conditions. In this work, total gaseous
43 chlorine Cl (TCI_g) refers to all gas-phase chlorine Cl-containing species weighted to their Cl
44 content, including both inorganic and organic species. While groups of chlorinated species are
45 often considered based on reactivity considerations (e.g., reactive chlorine, Cl_y), TCI_g includes all
46 molecules that contain one or more Cl atoms:

47
$$\text{TCI}_g = 4 * [\text{CCl}_4] + 3 * [\text{CHCl}_3] + 2 * [\text{CH}_2\text{Cl}_2] + [\text{CH}_3\text{Cl}] + 2 * [\text{Cl}_2] + [\text{HOCl}] + \dots \quad \text{E1}$$

48 Impacts on air quality and climate are due to the high reactivity of atomic Cl produced by common
49 atmospheric reactions (e.g., photolysis and oxidation) of Cl-containing compounds (Haskins et al.,
50 2018; Riedel et al., 2014; Sherwen et al., 2016). The Cl cycle is important to atmospheric
51 composition in the stratosphere and troposphere, affecting species including methane, ozone, and
52 particles (both formation and composition), which influence air quality and climate (Solomon,
53 1999; Riedel et al., 2014; Young et al., 2014; Sherwen et al., 2016). High levels of some TCl_g
54 species (e.g., Cl_2 and carbon tetrachloride) are known to be toxic (White and Martin, 2010; Unsal
55 et al., 2021). The implications of many TCl_g species on human health are not well understood for
56 low level exposure for extended periods of time. Potential health impacts of organic chlorinated
57 compounds include hepatotoxicity, nephrotoxicity, and genotoxicity (Unsal et al., 2021;
58 Henschler, 1994). Impacts of inorganic chlorinated species include the chlorination of squalene, a
59 major part of human skin oils, by HOCl (Schwartz-Narbonne et al., 2019); respiratory irritation
60 and airway obstruction by Cl_2 (White and Martin, 2010); and increased incidence of asthma and
61 other chronic respiratory issues following exposure to chloramines (Massin et al., 1998).

62 Sources of Cl to the atmosphere are highly variable and depend on both direct emissions
63 and indirect regional Cl activation chemistry (Finlayson-Pitts, 1993; Raff et al., 2009; Khalil et al.,
64 1999). Direct emissions of TCl_g can come from numerous natural and anthropogenic activities
65 such as, but not limited to, ocean and volcanic emissions, biomass burning, disinfection (i.e.,
66 household cleaning, pool emission, etc), use of solvents and heat transfer coolants, and incineration
67 of chlorinated wastes (Blankenship et al., 1994; Lobert et al., 1999; Keene et al., 1999; Butz et al.,
68 2017; Wong et al., 2017; Fernando et al., 2014). Activation of Cl is another source, occurring when
69 atmospheric processes transform relatively unreactive chloride (Cl^- , [such as sea salt, \$\text{NaCl}\$](#)) into
70 reactive gaseous chlorine (Cl_y), which will contribute to TCl_g . Understanding global levels of TCl_g

71 is difficult due to complex emissions and chemistry. Our best estimates come from modelling
72 studies combined with collaborative efforts to compose policy reports on halogenated substances,
73 such as the World Meteorological Organization (WMO) Scientific Assessment of Stratospheric
74 Ozone Depletion (WMO (World Meteorological Organization), 2018). Mixing ratio estimates of
75 halogenated species from this report are summed from individual measurements (e.g., National
76 Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases
77 Experiment (AGAGE)). The WMO report includes flask (captured gas from clean air sectors) and
78 in-situ measurements from field campaigns and routine sampling sites (e.g., CONvective
79 Transport of Active Species in the Tropics (CONTRAST)) (Prinn et al., 2018; Pan et al., 2017;
80 Andrews et al., 2016; Montzka et al., 2021; Adcock et al., 2018). In the most recent WMO report
81 (2018), a decrease of 12.7 ± 0.9 pptv Cl yr^{-1} in total tropospheric Cl was determined for Montreal
82 Protocol-controlled substances (e.g., chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons
83 (HCFCs)). The decrease in Montreal Protocol-controlled emissions has been slightly offset by an
84 increase in relatively short-lived substances (e.g., dichloromethane) that are not controlled by the
85 Montreal Protocol (WMO (World Meteorological Organization), 2018). Despite the emissions of
86 these regulated chlorinated species being relatively well-constrained, new sources for some of
87 these compounds have appeared in the recent past. For example, unexpected increases observed in
88 CFC-11 emissions suggested new unreported production (WMO (World Meteorological
89 Organization), 2018). A new source of chloroform was also recently identified and attributed to
90 halide containing organic matter derived from penguin excrement in the Antarctic tundra (Zhang
91 et al., 2021). Atmospheric levels of TCl_g will additionally be impacted by emission sources that
92 are relatively poorly constrained, including combustion and disinfection. Increasing levels of
93 chlorinated species from known and unknown pathways was observed in a recent ice core study,

94 which estimated an increase of up to 170% of Cl_y (= BrCl + HCl + Cl + ClO + HOCl + ClNO₃ +
95 ClNO₂ + ClOO + OCLO + 2·Cl₂ + 2·Cl₂O₂ + ICl) from preindustrial times to the 1970s could be
96 attributed to mostly anthropogenic sources (Zhai et al., 2021).

97 Understanding TCl_g source and sink chemistry is not only important for the ambient
98 atmosphere but also for indoor environments. Uncertainty in sources and levels of chemicals,
99 including chlorine-containing compounds, indoors is related to heterogeneity in sources and
100 individual indoor environments, and the fact that relatively few studies have focused on indoor
101 chemistry compared to outdoor. The role of chlorinated species on indoor air quality has been
102 investigated in a few studies (Mattila et al., 2020; Wong et al., 2017; Dawe et al., 2019; Giardino
103 and Andelman, 1996; Shepherd et al., 1996; Doucette et al., 2018; Nuckols et al., 2005). Most
104 studies have focused on cleaning with chlorine-based cleaners, in which HOCl and other inorganic
105 compounds have been observed in the gas phase at high levels (Wong et al., 2017; Wang et al.,
106 2019; Mattila et al., 2020). Some studies have reported the presence of organic chlorinated species
107 such as chloroform and carbon tetrachloride above bleach cleaning solutions indoors (Odabasi,
108 2008; Odabasi et al., 2014), and chloroform has been observed during water-based cleaning
109 activities, such as showering and clothing washing (Nuckols et al., 2005; Shepherd et al., 1996;
110 Giardino and Andelman, 1996).

111 Constraining the Cl budget is critical to better understanding its contributions to climate,
112 air quality, and human health. Robust total Cl measurements are useful because it is not always
113 feasible to routinely deploy individual measurements of the large number of Cl-containing
114 compounds (Table S1). As described above, estimates of TCl_g from models and summed
115 measurements have demonstrated gaps in our knowledge. It is therefore essential to have a method
116 capable of measuring true TCl_g to explain discrepancies between model and measured estimates

117 due to unknown species. Measurements of total elemental composition in the condensed phase,
118 including total Cl, have been used for monitoring and managing both known and unknown
119 compounds (Miyake et al., 2007c, a; Yeung et al., 2008; Miyake et al., 2007b; Kannan et al., 1999;
120 Xu et al., 2003; Kawano et al., 2007). However, TCI_g methods have been limited to offline analysis
121 of scrubbed sample gas (e.g., flue); these methods rely on multiple extraction steps and the
122 application of condensed-phase total Cl analyses, such as combustion ion chromatography
123 (Miyake et al., 2007a; Kato et al., 2000) or neutron activation analysis (Berg et al., 1980; Xu et al.,
124 2006, 2007). Because offline techniques suffer from extraction uncertainties and do not have the
125 temporal resolution to effectively probe fast ~~source and sink~~-chemistry in the atmosphere, in-situ
126 measurements of total elemental gaseous composition have been developed for several elements
127 (Hardy and Knarr, 1982; Veres et al., 2010; Roberts et al., 1998; Maris et al., 2003; Yang and
128 Fleming, 2019). For example, total nitrogen has been measured using Pt-catalyzed thermolysis
129 coupled to online chemiluminescence detection (Stockwell et al., 2018). Using a similar approach,
130 we describe here a method for TCI_g , where catalyzed thermolysis is coupled to a high time-
131 resolution HCl cavity ring-down spectrometer (CRDS). This technique relies on the complete
132 thermolysis of TCI_g , which yields chlorine atoms. These Cl atoms readily form HCl via hydrogen
133 abstraction (R1), in this case from propane (or its thermolysis products) that is supplied in excess.

134 The objectives of this paper are to: (i) Develop and validate an instrument capable of in-
135 situ measurement of TCI_g through conversion to HCl and detection by CRDS; and (ii) demonstrate
136 application of the technique to outdoor and indoor TCI_g measurements.

137 **2. Materials and experimental methods**

138 **2.1. Chemicals**

139 Commercially available reagents were purchased from Sigma-Aldrich ([Oakville, Ontario, Canada](#)):

140 dichloromethane (DCM, HPLC grade, [Oakville, Ontario, Canada](#)), 1-chlorobutane (CB,

141 99.5%, [Milwaukee, Wisconsin, USA](#)), cis-1,3-dichloropropene (DCP, 97%, [Milwaukee,](#)

142 [Wisconsin, USA](#)), [trichlorobenzene \(TrCB, 99%\), tetrachlorobenzene \(TeCB, 98%\),](#)

143 [pentachlorobenzene \(PeCB, 96 %\), sodium chloride,](#) and 52 mesh sized platinum catalyst (99.9 %,

144 [Milwaukee, Wisconsin, USA](#)). [Toluene \(HPLC grade\) was purchased from BDH VWR](#)

145 ([Mississauga, Ontario, Canada](#)). Nitrogen (grade 4.8) and propane (C₃H₈, 12.7% in nitrogen, v/v)

146 gas was from Praxair (Toronto, Ontario, Canada). Experiments used deionized water generated by

147 a Barnstead Infinity Ultrapure Water System (Thermo Fisher Scientific, Waltham, Massachusetts,

148 USA; 18.2 MΩ cm⁻¹). [A permeation device \(PD\) described previously was used to generate](#)

149 [gaseous HCl](#) (Furlani et al., 2021). [Chlorine-free](#) [zero](#) air was generated by a custom-made

150 zero-air generator.

151 **2.2. HCl and total chlorine (HCl-TCl) instrument**

152 The main components of the HCl-TCl (Figure 1) are platinum catalyst mesh, a quartz glass

153 flow tube, a split-tube furnace (Protégé Compact, 1100°C max temperature, Thermcraft

154 incorporated, North Carolina, USA), and a CRDS HCl analyzer (Picarro G2108 Hydrogen

155 Chloride Gas Analyzer). The platinum catalyst consisted of ~2 g platinum mesh with a total

156 combined surface area of 134 cm². Sample gas was mixed with critical orifice-regulated (Lenox

157 laser, Glen Arm, Maryland, USA, 30 psi; SS-4-VCR-2-50) propane gas (62 ± 6 standard cubic

158 centimetres per minute (sccm)), provided in excess prior to introduction to the furnace to promote

159 ([R1](#)). [The added P](#)ropane does not fully [eombust thermolyze](#) at temperatures < 650 °C, which can

160 lead to spectral interferences in the CRDS analyzer (Figure S1) and should only be added when

161 temperatures exceed 650°C (Furlani et al., 2021). All lines and fittings were made of
162 perfluoroalkoxy (PFA) unless stated otherwise. The mixing line carrying clean air dilution flows
163 was controlled by a 10 L min⁻¹ mass flow controller (MFC, GM50A, MKS instruments, Andover,
164 Massachusetts, USA). The length of the sample gas tubing to the furnace was 0.6 m, and the
165 transfer line between the furnace and CRDS was 0.2 m. The furnace transfer line met an overflow
166 tee when delivering flows greater than the CRDS flowrate of 2 L min⁻¹. The coupled CRDS -can
167 capture transient fast HCl formation processes on the timescale of a few minutes, limited by the
168 high adsorption activity of HCl on inlet surfaces (discussed further in Section 3.3)-effeets. The
169 CRDS collects data at 0.5 Hz, which was averaged to 30 sec for the purposes of this work. Limits
170 of detection (LODs) for the CRDS were calculated as three times the Allan–Werle deviation in
171 raw signal intensity when overflowing the inlet with zero air directed into the CRDS for ~ 10 h.
172 The 30-sec limit of detection (LOD) is 18 pptv and well below expected HCl from TCl_g conversion
173 (Furlani et al., 2021).

182 (PTFE) (13 mm length by 3.17 mm o.d.). The polymers allow a consistent mass of standard gas to
183 permeate at a given temperature and pressure. The method for temperature and flow control of the
184 PDs is described in detail in Lao et al. (2020). Briefly, an aluminum block that was temperature-
185 controlled (OmegaTM; CN 7823, Saint-Eustache, QC, Canada) using a cartridge heater (OmegaTM;
186 CIR-2081/120V, Saint-Eustache, QC, Canada) housed the PD and was regulated to 30.0 ± 0.1 °C.
187 Dry N₂ gas flowed through a PFA housing tube (1.27 cm o.d.) in the block that contained the PD.
188 Stable flows of carrier gases passed through the housing tube in the oven were achieved using a
189 50 μ m diameter critical orifice (Lenox laser, Glen Arm, Maryland, USA, 30 psi; SS-4-VCR-2-50)
190 and were 120 ± 12 , 99 ± 9.9 and 120 ± 12 sccm for DCM, CB, and DCP, respectively. Flows were
191 measured using a DryCal Definer 220 (Mesa Labs, Lakewood, Colorado, USA). The mass
192 emission rate of each organochlorine from the PDs was quantified gravimetrically over a period
193 of approximately 4 weeks (mass accuracy ± 0.001 g). Mass emission rates for each PD were
194 determined as 640 ± 10 , 240 ± 40 , and $1.20 \times 10^4 \pm 0.02 \times 10^4$ ng min⁻¹ (n=3, $\pm 1\sigma$) at 30 °C for
195 DCM, CB, and DCP, respectively.

196 **2.4. HCl-TCl optimization**

197 Gas phase standards of DCM, CB, and DCP were used to test the conversion efficiency of
198 chlorinated compounds to form HCl. Bond dissociation energies for carbon-Cl bonds typically
199 range between 310 and 410 kJ mol⁻¹ (Tables S1, S2). The split-tube furnace has a process controller
200 capable of increasing or decreasing temperature at a set °C min⁻¹, which allowed us to identify the
201 temperature at which enough energy was provided to break the bonds. By introducing a consistent
202 amount of each of the organochlorines, separately, to the HCl-TCl set over a simple temperature
203 ramping program we could monitor in real-time the conditions necessary to break the bonds by
204 measuring the formation of the resulting HCl. The conversion operating temperature was

205 determined when complete conversion of the measured TCI_g for the tested compounds when the
206 measured HCl plateaued and was sustained at 100% conversion based on PD emission rates..

207 To determine the optimal residence time in the quartz tube with the Pt catalyst, flows of
208 $0.6\text{--}5.5 \text{ L min}^{-1}$ containing DCM sample gas in clean air were tested yielding a range of residence
209 times between 0.5 and 4.5 sec in the furnace. Temperature remained constant at 825°C throughout
210 the experiment, and a dilution flow of 4.0 L min^{-1} of clean air was added to the sample flow exiting
211 the furnace before introduction to the CRDS.

212 We tested the HCl transmission of the HCl-TCI at 2 mixing ratios (18 and 10 ppbv) using
213 a 12 M HCl PD with zero air dilution flows of 3.5 or 5 L min^{-1} using a 5 L min^{-1} MFC (GM50A,
214 MKS instruments, Andover, Massachusetts, USA). The HCl recovery through the furnace was
215 tested by comparing measured HCl mixing ratios through HCl-TCI to those with the furnace flow
216 tube replaced by a similar length of tubing. A heat gun (Master Varitemp® vt-750c) was used to
217 heat the flow tube entrance to $\sim 80^\circ\text{C}$ to minimize HCl sorption. We tested the HCl-TCI conversion
218 efficiency for 5 different mixing ratios of three organochlorine PD standards (DCM, CB, and DCP)
219 under three conditions: (1) both Pt catalyst and added propane, (2) only Pt catalyst, and (3) only
220 added propane. Each gas was tested individually under the same conditions; sample gas from PDs
221 was mixed with propane and immediately diluted into clean air using a 10 L min^{-1} MFC (GM50A,
222 MKS instruments, Andover, Massachusetts, USA). The dilution flows ranged from $2.2\text{--}9.0 \text{ L min}^{-1}$.
223 The sampling lines were the same lengths as stated previously. In this experiment, the CRDS
224 flowrate of 2 L min^{-1} was sufficient to give an optimal residence time of 1.5 sec through the HCl-TCI
225 (see Section 3.1). In all experiments the CRDS subsampled through the furnace from the main
226 transfer line and the excess gas was directed outdoors through a waste line containing a carbon
227 trap (Purakol, Purafil, Inc, Doraville, Georgia, USA). We tested the HCl-TCI conversion efficiency

228 for two different quantities of three chlorobenzenes (TrCB, TeCB, and PeCB). Due to their high
229 boiling points, PDs of these compounds could not be prepared. Instead, small volumes of
230 approximately 1 mM solutions of these compounds dissolved in toluene were directly introduced
231 to the HCl-TCI while it was sampling room air. oom air measurements of TCI_g were consistently
232 >1 ppbv. These were measured before each experiment and did not affect the peak integration
233 described below. With a short piece of tubing used as an inlet, 1 and 2 μL of each compound was
234 injected onto the inner surface of the tubing, which was heated to ~ 100 °C with a heat gun to
235 facilitate volatilization. The resulting signals were integrated over a time period of 2.5 hours to
236 obtain the total quantity of HCl detected by the CRDS, which was used to calculate conversion
237 efficiency. To account for uncertainties in peak integration, a high and low peak area boundary
238 was determined, with the average peak area taken for each injection. Duplicates of each injected
239 quantity were performed, except for 1 μL TrCB, which was performed in triplicate.

240 To determine if there was any positive bias in the TCI_g , measurement from the conversion
241 of particulate chloride (pCl^-), NaCl aerosols were generated by flowing 2 L min^{-1} of chlorine free
242 zero air through a nebulizer containing a solution of 2% w/w NaCl in deionized water. The aerosol
243 flow was then mixed with 1 L min^{-1} of chlorine free dry zero air to achieve a total flow of 3 L
244 min^{-1} , The HCl-TCI (2 L min^{-1}) then sampled off this main mixing line. Chloride was added after
245 monitoring background zero air levels. After ~ 3 hours of measuring the converted pCl^- , a PTFE
246 filter (2 μm pore size, 47 mm diameter, TISCH scientific, North Bend, Ohio, USA) was added
247 inline onto the inlet of the HCl-TCI.

248 2.5. Outdoor air HCl-TCI measurements

249 Outdoor air sampling was performed ~~between 00:00 on July 7 to 20:00 on July 11, August~~
250 ~~6 and November 17–19, 2021–2022~~ (Eastern daylight time, EDT). The sampling site was the air

251 quality research station located on the roof of the Petrie Science and Engineering building at York
252 University in Toronto, Ontario, Canada (43.7738° N, 79.5071° W, 220 m above sea level). The
253 HCl-TCl was co-located with a Campbell scientific weather station paired with a cr300 datalogger.
254 All inlet lines and fittings were made of PFA unless stated otherwise. All indoor inlet lines and
255 fittings were kept at room temperature ~~(20 to 25 °C) while outdoor temperatures ranged from 25~~
256 ~~to 28 °C on August 6, and 0 to 17 °C in November~~. A mass flow controller (GM50A, MKS
257 instruments, Andover, Massachusetts, USA) regulated a sampling flow of 14.7 L min⁻¹ using a
258 diaphragm pump through a 2.4 m sampling inlet (I.D. of 0.375") from outdoors. The outdoor air
259 was pulled through a 2.5 µm particulate matter cut-off URG Teflon Coated Aluminum Cyclone
260 (URG Corporation, Chapel Hill, North Carolina, USA) ~~with a 2.5 µm particulate matter cut-off to~~
261 ~~remove the larger particles and then passed through a PTFE filter (2 µm pore size, 47 mm diameter,~~
262 ~~TISCH scientific, North Bend, Ohio, USA~~). The CRDS subsampled 2 L min⁻¹ through the furnace
263 off the main inlet line, yielding a total inlet flow of 16.7 L min⁻¹. The apparatus had zero air
264 overflow the inlet 1 hour prior to and after outdoor sampling. The CRDS sample flow passed first
265 through a PTFE filter (2 µm pore size, 47 mm diameter, ~~TISCH scientific, North Bend, Ohio,~~
266 ~~USA~~) and then two high efficiency particulate air (HEPA) filters contained within the CRDS outer
267 cavity metal compartment heat-regulated to 45 °C. Instances of flagged instrument errors in the
268 CRDS data during ambient observations were removed as standard practice in quality control
269 procedures ~~(Furlani et al., 2021)~~.

270 2.6. Indoor air HCl-TCl and HOCl analyzer measurements

271 To test indoor applications of the HCl-TCl, a 1 m² area of laboratory floor was cleaned with
272 a commercial spray bottle cleaner (1.84 % sodium hypochlorite w/w) and emissions were
273 compared with an HOCl analyzer. The HOCl analyzer is a commercial instrument designed to

274 quantify gaseous hydrogen peroxide (H_2O_2) using CRDS (Picarro PI2114 Hydrogen Peroxide
275 Analyzer; Picarro Inc.). The instrument is also sensitive to HOCl due to similar absorbance
276 wavelengths of their first overtone stretches in the near IR. The wavelengths monitored have been
277 altered to selectively detect HOCl. Details on instrument calibration and validation are provided
278 in Stubbs et al. (2022) [\[Stubbs et al., in prep\]](#).

279 The distance from the suspended 2 m inlet lines of both instruments to the floor was ~1 m.
280 The flowrate through the furnace and inlet was the 2 L min^{-1} CRDS flowrate. The flowrate for the
281 HOCl analyzer was 1 L min^{-1} . The sectioned off area was cleaned four times, spraying 32 times
282 for each application using the commercial cleaner. Three of these events were measured using the
283 HCl-TCl and HOCl analyzer, while one event was measured using the HCl CRDS only.

284 **3. Results and Discussion**

285 **3.1. HCl-TCl temperature and residence time optimization**

286 We validated this method by testing conversion efficiency of organochlorines under different
287 operating parameters and conditions. Testing all TCl_g species is not feasible, but by testing
288 compounds that contain strong Cl-containing bonds, we infer at least equal efficacy of the system
289 in the breakage of relatively weaker Cl-containing bonds (Tables S1 and S2). We selected very
290 strong Cl-containing bonds (i.e., alkyl, allyl, and aryl chlorides) and used them as a proxy for
291 compounds containing weaker Cl bonds; therefore, by demonstrating their complete conversion
292 we set precedent for conversion of all TCl_g . The temperature of the furnace is a key factor in
293 accomplishing complete thermolysis, and the minimum temperature of the furnace containing the
294 Pt catalyst to break the C-Cl bonds in DCM was determined. A simple temperature ramping
295 program was used to determine the breakthrough temperature. The temperature was increased at a
296 rate of 2.7 $^{\circ}\text{C min}^{-1}$ starting at 300 $^{\circ}\text{C}$ and ending at 800 $^{\circ}\text{C}$. The temperature breakthrough was

297 observed when complete conversion of the expected HCl for the tested compounds (based on PD
298 emission rate) was stable after reaching the optimal temperature. It was found to be ~800 °C for
299 the tested organochlorines (Figure S2).

300 Determining the optimal residence time of sample gas in the HCl-TCl is also essential for
301 an optimized TCl_g conversion method. Using a temperature slightly above the observed
302 breakthrough temperature of 800 °C determined above (825 °C), six residence times were tested
303 with DCM, ranging from 0.5 to 4.5 seconds in the HCl-TCl ([Figure 2](#)[Figure 2](#)). At each residence
304 time the conversion efficiency was determined, where conversion efficiency was calculated as
305 follows:

306 Conversion efficiency = $\frac{\text{Measured } TCl_g}{\text{Expected } TCl_g} \times 100 \%$ E24

307 The optimal residence time was ~1.5 seconds, corresponding to a conversion efficiency of 100.1
308 $\pm 0.1 \%$. The uncertainty in conversion efficiency measurements is the variability in the measured
309 HCl signal for 30 minutes after a signal plateau was observed. The reported uncertainty does not
310 include uncertainties in mixing, or turbulence induced surface effects, which we cannot quantify.
311 When residence times were lower (i.e., sample gas traveled more quickly through the system) than
312 1.5 seconds, the conversion efficiencies were lower by 2 – 10 %, the measured HCl signal was
313 more erratic, and it took longer to stabilize. When residence times were higher (i.e., sample gas
314 traveled more slowly through the system) than 1.5 seconds, the conversion efficiencies were
315 comparable ($\pm 2 \%$), but the measured HCl suffered from longer equilibration times ([~30 minutes,](#)
316 [more than double the 1.5 residence time](#)) and therefore a slower response time, likely due to
317 increased surface effects of HCl after exiting the furnace. An optimal residence time of 1.5 seconds

318 was selected for all HCl-TCI experiments for its good conversion efficiency and reasonable
319 response time (see Table S3).

320
321 **Figure 2.** Conversion efficiency of DCM plotted against residence time in the HCl-TCI at 825 °C.
322 Error bars represent the percent relative standard deviation of the measured HCl by the CRDS over
323 ~30 minutes, after signal has plateaued. Grey vertical line denotes the selected residence time.
324 Note that the error bars are represented by the precision of the instrument, and we expect there
325 would be greater experiment-to-experiment variability.

326
327 **3.2. HCl-TCI conversion efficiency**
328 The efficiency of HCl throughput in the HCl-TCI was tested. Initial tests resulted in
329 transmission efficiencies of $81.2\% \pm 1.4$ ($n = 3$) and 88.1% ($n = 1$) for 18 ppbv and 10 ppbv HCl,
330 respectively. At the inlet to the furnace, a small piece of the quartz tube is not heated. We
331 hypothesized that complete transmission of HCl was hindered through sorption to that portion of
332 quartz tubeglass. Repeating the experiment with heat applied led to increased throughput
333 efficiencies of 85.7% (18 ppbv, $n = 1$) and 93.9% (10 ppbv, $n = 1$). Therefore, good HCl throughput
334 efficiency was demonstrated overall, with the cause of minor HCl losses identified to be sorption
335 losses to room temperature glass. Conversion of particulate chloride (pCl^-) was observed to take

336 place in the HCl-TCl (Figure S3), but once a filter was introduced the signal returned to
337 background levels-. Thus, to capture only gaseous TCl_g from samples that may contain particulate
338 chloride, a particulate filter should be used.

339 The conversion efficiency of each of the three two chosen organochlorines alkyl chlorine and
340 one allyl chlorine compounds using the HCl-TCl was tested at 5 different mixing ratios. The
341 mixing ratios tested for DCM were 41, 54, 80, 111, and 165 ppbv. The mixing ratios tested for CB
342 were 3.5, 4.6, 6.8, 9.5, and 14 ppbv. The mixing ratios tested for DCP were 121, 259, 468, 651,
343 and 967 ppbv. See table S4 for summary of mixing ratios used, all lower mixing ratios were
344 generated by diluting the highest mixing ratio of each compound by chlorine-free zero air. All
345 three showed good linearity and near 1:1 correlation with the HCl expected to be formed from the
346 PD under standard operating conditions (Figure 3). Due to differences in PD emission rates, the
347 values in Figure 3 are normalized to the highest mixing ratio to visualize comparisons more easily.
348 Under condition (1) With both Pt and propane the HCl-TCl conversion was 99.6 ± 3.2, 104.8 ±
349 5.6, and 102.7 ± 7.8% for DCM, CB, and DCP, respectively (Table 1), as the average conversion
350 efficiency ± relative standard deviation. From Figure 3 the comparison between expected and
351 measured TCl_g is illustrated by near unity in the orthogonal distance regression slope ($\pm 1\sigma$, the
352 error in the regression analysis), and was 0.996 ± 0.012 , 1.048 ± 0.060 , and 1.027 ± 0.061 for
353 DCM, CB, and DCP, respectively. With only the Pt catalyst (condition (2)), the HCl-TCl
354 conversion was 80.7 ± 0.4 , 54.1 ± 1.6 , and $54.3 \pm 3.5\%$ for DCM, CB, and DCP, respectively
355 (Figure S34, Table 1). This result indicates the added hydrogen source (propane) is needed to
356 promote R1. Although necessary in this laboratory scenario, some ambient conditions may be rich
357 enough hydrogen-containing molecules that excess propane is not needed. However, providing
358 propane in excess ensures the presence of an abundance of hydrogen atoms that can be readily

359 abstracted by Cl atoms via R1. When the Pt catalyst was removed ([condition \(3\)](#)), the HCl-TCI
360 conversion was 94.4 ± 4.6 , 44.2 ± 0.9 , and $41.7 \pm 3.4\%$ for DCM, CB, and DCP, respectively
361 (Figure S34, Table 1). The observed dependence of the Pt catalyst indicates that a reactive surface
362 is important to achieve complete thermolysis at $825\text{ }^{\circ}\text{C}$. The relatively higher conversion for DCM
363 in the absence of the Pt catalyst or hydrogen source may be attributed to its lower bond dissociation
364 energy (310 kJ mol^{-1}) compared to estimated bond dissociation energies for CB and DCP (CB

366

367 **Figure 3.** HCl measured by CRDS plotted against the expected HCl from HCl-TCl converted
 368 DCM (red circle), 1-chlorobutane (blue diamond), and 1,3-dichloropropene (green square) under
 369 condition (1). All values are normalized to the highest expected HCl concentration to better
 370 illustrate deviations from unity (dashed-black line). Error bars on the y-axis represent 1σ in the
 371 HCl signal over 10 minutes. Error bars on the x-axis represent the uncertainty in the PD used to
 372 generate DCM.

373

374 **Table 1.** Conversion efficiency for tested Cl-containing organochlorine compounds under
 375 different the three conditions (condition 1: both Pt and propane; condition 2: Pt only; condition 3:
 376 propane only). Note that chlorobenzenes were only tested under final Pt and propane
 377 conditions. Conversion efficiency was determined from the orthogonal distance regression slope
 378 and $\pm \sigma$ and propagated error from individual PDs.

Tested TCI_g species	<u>Cl Bond</u> dissociation energy (kJ mol^{-1})	Conversion efficiency (%)		
		<u>Condition 1</u> Pt and propane	<u>Condition 2</u> Pt only	<u>Condition 3</u> Propane only
Dichloromethane (DCM) ^a	310	99.6 ± 3.2	80.7 ± 2.4	94.4 ± 6.6
1-Chlorobutane (CB) ^a	410	104.8 ± 5.6	54.1 ± 6.6	44.2 ± 5.9
1, 3-Dichloropropene (DCP) ^a	350	102.7 ± 7.8	54.3 ± 5.2	41.7 ± 5.1
Trichlorobenzene (TrCB) ^b	400	97.0 ± 19.9		
Tetrachlorobenzene (TeCB) ^b	400	90.6 ± 10.3		
Pentachlorobenzene (PeCB) ^b	400	90.2 ± 14.8		

379 ^aConversion efficiency was determined from the orthogonal distance regression slope and $\pm \sigma$ and propagated error
 380 from individual permeation devices.

381 ^bConversion efficiency was determined directly by the quantity (mol) of HCl measured from liquid injections of 1
 382 mM standards. The error represents $\pm \sigma$ of measurements for $n = 5$ (TrCB) or $n = 4$ (TeCB, PeCB) injections.

383 inferred from Table S2 ($\sim 410 \text{ kJ mol}^{-1}$), and DCP from tetrachloroethylene (350 kJ mol^{-1} in Table
 384 S1)). It is possible that a higher temperature could lead to full conversion of TCI_g in the absence
 385 of Pt catalyst; however, that was not explored in this study. To further validate the HCl- TCI_g , the
 386 conversion efficiency of three aryl chlorine compounds were tested under the final operating
 387 conditions (i.e., Condition 1, in the presence of both Pt and added propane). The TCI_g measured
 388 from the three aryl compounds was unity, within the uncertainty of the measurement (Table 1).

389 - The results for all three-six compounds show that the HCl- TCI_g is capable of complete
 390 conversion of mono and polychlorinated species on sp^3 and sp^2 carbons using the determined
 391 temperature and flow conditions. The complete thermolysis of the strongest C-Cl bond on the
 392 primary alkyl chloride (CB) demonstrates the efficacy of the HCl- TCI_g . Breaking these relatively
 393 strong C-Cl bonds, with consistent conversion efficiency across alkyl, allyl, and aryl C-Cl bonds,
 394 is a good proof of concept for complete conversion of all bonds of similar or weaker bond energies
 395 that characterize all other TCI_g . To practically validate the HCl- TCI_g under real-world conditions
 396

397 with atmospherically relevant TCI_g mixtures and mixing ratios we also deployed and configured
398 the system to measure outdoor and indoor air.

399 **3.3. Performance metrics of HCl-TCl**

400 Using a flow of zero air through the HCl-TCl, method limits of detection (LODs) were
401 calculated as three times the Allan-Werle deviation (Figure 4) when overflowing a 20 cm inlet
402 (3.17 mm i.d.) with zero air for one hour. The LODs determined in the CRDS measurements for 2
403 second, 1 minute, 5 minute, and 1 hour integration times were 73, 15, 10, and 8 pptv, respectively.
404 The response time of the instrument was assessed during experiments with DCM, CB, and CP.
405 The time for the signal to decay after removal of the PDs was determined to 37 % (1/e) and 90 %
406 (t_{90}) of the maximum signal. The maximum time to achieve 1/e was 23 seconds, while the
407 maximum time to achieve t_{90} was 189 seconds (Table S3). These are comparable to the response
408 times for the HCl CRDS instrument itself (Furlani et al. 2021), suggesting the addition of the inlet
409 furnace has a modest impact on the residence time. Given the high mixing ratios used to test the
410 response times, we argue that under most conditions relevant to indoor and outdoor atmospheric
411 chemistry, a sample integration time of one minute will minimize any time response effects. Data
412 for outdoor and indoor sampling described in Sections 3.4 and 3.5 were therefore averaged to one
413 minute. During all experiments with gaseous reagents, no evidence of catalyst performance
414 degradation was observed.

415
 416 **Figure 4.** Allan-Werle deviation (3σ) in the HCl-TCl purged with zero-air (black line) shown
 417 with the ideal deviation (no drift, solid blue line) and associated error in the deviation (dashed
 418 blue line).

419 **3.3.3.4. HCl-TCl applications to outdoor air**

420 We deployed the system to measure ambient outdoor air, which we compare to the expected

421 TCl_g range from complete thermolysis of total Cl previously measured Cl-containing compounds,
 422 expected to be between 3.3 and 19 ppbv (Table S1). Global background levels of long-lived
 423 chlorine-containing species (LLCl_g) are well established (WMO (World Meteorological
 424 Organization), 2018) and were calculated by equation 32 using data from Table S1:

425
$$\text{LLCl}_g = 3 * [\text{CCl}_3\text{F}] + 2 * [\text{CCl}_2\text{F}_2] + 4 * [\text{CCl}_2\text{FCCl}_2\text{F}] + 4 * [\text{CCl}_3\text{CClF}_2] + 3 * [\text{CCl}_3\text{CF}_3] +$$

 426
$$2 * [\text{CClF}_2\text{CClF}_2] + 2 * [\text{CCl}_2\text{FCF}_3] + [\text{CClF}_2\text{CF}_3] + [\text{CHClF}_2] + [\text{CH}_2\text{ClCF}_3] + 2 * [\text{CH}_3\text{CCl}_2\text{F}] +$$

 427
$$[\text{CBrClF}_2] + 4 * [\text{CCl}_4] \quad \text{E3}$$

428 A global background for LLCl_g of approximately 2.6 ppbv is expected if only considering the
 429 controlled very long-lived species ((WMO (World Meteorological Organization), 2018), Table
 430 S1). The effects of particulate chloride on TCl_g conversion were not explored here. The conditions
 431 required to convert chloride to chlorine atoms is typically achieved using high energy photons or
 432 by electron beams, which deliver energy much greater than possible in our system (Delahay, 1982;
 433 Kurepa and Belic, 1978). Thus, chloride, if it enters the system, is assumed to not be converted

434 and measured. The apparatus subsampled off a main inlet pulling ambient air (Figure 4) in summer
435 (August 6) and winter (November 17–19). The maximum, minimum, and mean median of
436 observed ambient TCI_g on August 6 were 6.0536.3, 3.42.0, and 4.23.1 ppbv, respectively, and
437 was 3.5, 2.0, and 2.5 ppbv respectively from November 17–19 (Figure 5). Measurements of HCl
438 alone were not made during these periods but reported ranges of HCl mixing ratios for this
439 sampling location from Furlani et al. (2021) and Angelucci et al. (2021) are typically below
440 110 pptv, with intermittent events up to 600 pptv. As expected, most ambient TCI_g measurements
441 were above the expected mixing ratio of LLCl_g . There is clear evidence of TCI_g sources beyond
442 LLCl_g at the sampling site, with several plumes of elevated TCI_g intercepted. For example, the
443 maximum TCI_g measurement was made in a plume just after noon on July 7. Another plume was
444 detected on July 11, with a maximum TCI_g of 42.1 ppbv. Though the purpose of this study was not
445 to determine sources of TCI_g , we observed that plumes containing elevated TCI_g arrived from the
446 S-SW of the sampling site, where several facilities that had reported tens to thousands of kg of
447 yearly emissions to air of Cl-containing species are located (Figure S5). Mixing ratios of TCI_g
448 were higher in the summer season when compared to the winter, suggesting a seasonal variance
449 on the levels of TCI_g . The mean August TCI_g was 60% higher than the expected baseline of known
450 long lived species. In contrast, levels of TCI_g in the during the winter were near the expected global
451 baseline. We generally observed higher TCI_g during periods of lower relative humidity (RH),
452 illustrated by the lower levels of TCI_g and high RH observed during November. There was no
453 observed impact on observed TCI_g due to changes in wind direction or wind speed and likely
454 indicates TCI_g is relatively well mixed. Our observed seasonal differences in TCI_g could have been
455 caused, in part, by differences in meteorology (i.e., higher temperature in summer, higher relative
456 humidity in winter) through changes in mixing and/or deposition. However, it seems likely that

457 higher summer emissions, which have been observed for individual chlorinated species (Bin et al.,
458 2014; Melymuk et al., 2012; Zhang et al., 2014) played an important role in the higher summertime
459 TCI_g . Rapid temporal changes in TCI_g indicate the utility of an in-situ technique, which could be
460 used to constrain sources and sinks of TCI_g .

461

462
 463 **Figure 45.** Monitoring meteorological conditions and one-minute averaged TCl_g in outdoor air
 464 through HCl-TCl ; (a) from 10 AM to 1 PM August 6, and (b) from 12 PM November 7 to
 465 11, 202217 to 6 PM November 19. Grey dashed line represents the background mixing ratio for
 466 LLCl_g long-lived TCl_g species from Table S1.

467 **3.4.3.5. HCl-TCl application to indoor cleaning**

468 We applied a chlorine-based cleaning product four times in a well-lit indoor room and
 469 measured TCl_g using the HCl-TCl and HOCl analyzer during three of the cleaning events (Figure
 470 65). One cleaning experiment was done without the HCl-TCl and had a maximum of 370 pptv
 471 HCl . These levels are comparable to peak HCl levels of ~ 500 pptv observed from surface
 472 application of bleach (Dawe et al., 2019). Consistent with previous speciated measurements
 473 (Mattila et al., 2020; Wong et al., 2017), HCl , HOCl , and TCl_g levels increased rapidly over ~ 5
 474 minutes after the application of the cleaning product. The maximum levels of TCl_g from HCl-TCl
 475 during application 1, 2, and 3, were 49.2, 80.0, and 69.7 ppbv, respectively. The maximum levels
 476 of HOCl from applications 1, 2, and 3, were 19.6, 24.2, and 16.8 ppbv, respectively, corresponding
 477 to 24 to 40 % of peak TCl_g and 14 to 22 % of integrated TCl_g . These TCl_g levels were several times
 478 higher than observed in outdoor air (Section 3.3) and were within the range expected from previous
 479 experiments (Table S1). The levels of chlorinated species observed during bleaching events is

variable, between 15 to 100s of ppbv (Mattila et al., 2020; Odabasi, 2008; Wang et al., 2019; Wong et al., 2017). By comparison, our highest observed mixing ratio was 80 ppbv. Because the multiphase chemical processes involved in bleach application are complex and poorly understood, it is difficult to compare levels between similar studies, given that the underlying ambient conditions can be very different. In addition, physical parameters, such as volume of cleaning solution applied, room size, and ventilation, can all affect observed mixing ratios. For example, studies have observed that gaseous NH₃ partitioning into aqueous bleach can produce large and variable amounts of chloramines, NH₂Cl, NHCl₂, and NCl₃ (Mattila et al., 2020; Wong et al., 2017). In our experiments, there was on average 82 ± 4 % of integrated TCl_g that could not be accounted for by the HOCl measurementfor which we cannot account. Additional chlorinated species have previously been observed to be emitted from surface bleaching include ClNO₂, NH₂Cl, NHCl₂, NCl₃, and several chlorinated organics (Odabasi, 2008; Mattila et al., 2020; Wong et al., 2017) which likely also contributed to our measured TCl_g. We observed that TCl_g decayed ~15% faster than the air exchange rate (0.72 h⁻¹), indicating additional chemical loss pathways or surface interactions (Figure S46). We observed a shorter lifetime of HOCl relative to TCl_g, which is consistent with faster decay rates observed for HOCl and similar TCl_g species by Wong et. al., (2017). The HOCl started decreasing after ~300 s had elapsed while the TCl_g levels were still increasing. This suggests that reactions involving HOCl may have led to additional TCl_g species, which has been observed in laboratory studies (Wang et al., 2019).

In-situ measurements of TCl_g could provide additional insight into sources of chlorinated species to indoor environments by creating a total inventory from which the contributions of individual measured species can be compared and used to elucidate unknown TCl_g levels and mechanisms in real-time. Furthermore, several chlorinated species that have previously been

503 observed to be emitted from surface bleaching, including Cl_2 , HOCl , ClNO_2 , NH_2Cl , NHCl_2 , and
504 NCl_3 (Mattila et al., 2020; Wong et al., 2017), have been measured by chemical ionization mass
505 spectrometry (CIMS). Quantifying chlorinated species using CIMS remains challenging due to the
506 required calibrations and difficulty in generating pure gas phase standards. It is therefore desirable
507 to have a technique such as the one proposed in this study that does not require calibrations or
508 knowledge of potential unknown TCI_g species. A combination of the two methods would help
509 constrain the total levels while still observing speciation for key TCI_g species.

510

511
512
513
514
515

Figure 56. One-minute average HCl (purple/black), HOCl (orange/dark blue), and TCl_g (black/orange) observed during cleaning spray events. Mixing ratios were background corrected prior to each cleaning event. Each subsequent application of cleaner is illustrated by a lighter shade for HOCl and TCl_g.

516

517 4. Conclusions

518 In this work we developed, optimized, validated, and applied a method capable of converting
519 TCl_g into gaseous HCl amenable for detection by CRDS-detection. Our TCl_g measurement
520 technique, the HCl-TCl, is composed of a platinum catalyst mesh inside a quartz glass flow tube
521 all contained within a split-tube furnace. The temperature and flow rate were optimized at 825 °C
522 and 1.5 seconds, respectively using DCM. These conditions were validated by the complete
523 conversion of organochlorine compounds with strong C-Cl bonds. The HCl-TCl was used to
524 measure TCl_g outdoors, observing a range of 2.0–536.36.0 ppbv. Levels mostly were
525 comparable to (winter) or exceeded (summer) the calculated expected background mixing ratio of
526 long-lived TLLCl_g. We also applied the HCl-TCl to an indoor environment during commercial
527 bleach spray cleaning events and observed varying increases in TCl_g (50–80 ppbv), which was in

528 reasonable agreement with levels observed in previous speciated measurements. The agreement of
529 HCl-TCl outdoor and indoor measurements with available bottom-up estimates indicates its
530 efficacy under real-world scenarios. Rapid changes in TCl_g were observed in both outdoor and
531 indoor environments indicating the utility of an in-situ technique to constrain the sources and
532 chemistry of TCl_g, as well as its impact on air quality, climate, and health. We anticipate this
533 approach could be used in several applications, including comparisons to speciated measurements
534 of chlorinated compounds and to further explore Cl reactivity and cycling with respect for indoor
535 and outdoor TCl_g.

536 **Acknowledgements**

537 We acknowledge the Sloan Foundation and Natural Sciences Engineering and Research Council
538 of Canada for funding. We thank [Leigh Crilley](#), [Melodie Lao](#), and [Yashar Iranpour](#) for collecting
539 air exchange rate data, [and Andrea Angelucci for collecting meteorological data](#), [Dirk Verdoold](#)
540 for the custom quartz tube, [and Chris Caputo, John Liglio, Rob McLaren, and Trevor](#)
541 [VandenBoer for helpful discussions](#). PME thanks the European Research Council. TFK is a
542 Canada Research Chair in Environmental Analytical Chemistry. This work was undertaken, in
543 part, thanks to funding from the Canada Research Chairs program.

544 **Author contributions**

545 TCF, [RY, JS, and LRC](#) collected and analyzed the data. TCF, [RY, LRC](#), and CJY conceived of
546 and designed the experiments with input from PME and TFK. Funding was obtained by TFK and
547 CJY. The manuscript was written by TCF, [RY, and CJY](#) with input from all authors.

548 **Data availability**

549 [Outdoor and indoor datasets submitted to Federated Research Data Repository as Furlani, T.C.,](#)
550 [Ye, R., Stewart, J., Crilley, L.R., Edwards, P.M., Kahan,T.F., Young, C.J. \(2022\). Outdoor and](#)
551 [indoor gaseous total chlorine measurement in Toronto Canada. Federated Research Data](#)
552 [Repository. DOI will be updated when available.](#)

553 [Competing interests](#)

554 [The authors declare no competing interests.](#)

555 **5. References**

556 Adcock, K. E., Reeves, C. E., Gooch, L. J., Leedham Elvidge, E. C., Ashfold, M. J.,
557 Brenninkmeijer, C. A. M., Chou, C., Fraser, P. J., Langenfelds, R. L., Mohd Hanif, N.,
558 O'Doherty, S., Oram, D. E., Ou-Yang, C.-F., Phang, S. M., Samah, A. A., Röckmann, T.,
559 Sturges, W. T., and Laube, J. C.: Continued increase of CFC-113a (CCl₃CF₃) mixing ratios in
560 the global atmosphere: emissions, occurrence and potential sources, *Atmos. Chem. Phys.*, 18,
561 4737–4751, <https://doi.org/10.5194/acp-18-4737-2018>, 2018.

562 Andrews, S. J., Carpenter, L. J., Apel, E. C., Atlas, E., Donets, V., Hopkins, J. R., Hornbrook, R.
563 S., Lewis, A. C., Lidster, R. T., Lueb, R., Minaeian, J., Navarro, M., Punjabi, S., Riemer, D., and
564 Schauffler, S.: A comparison of very short lived halocarbon (VSLS) and DMS aircraft
565 measurements in the tropical west Pacific from CAST, ATTREX and CONTRAST, *Atmos.*
566 *Meas. Tech.*, 9, 5213–5225, <https://doi.org/10.5194/amt-9-5213-2016>, 2016.

567 Berg, W. W., Crutzen, P. J., Grahek, F. E., Gitlin, S. N., and Sedlacek, W. A.: First
568 measurements of total chlorine and bromine in the lower stratosphere, *Geophys Res Lett*, 7, 937–
569 940, <https://doi.org/10.1029/GL007i011p00937>, 1980.

570 Blankenship, A., Chang, D. P. Y., Jones, A. D., Kelly, P. B., Kennedy, I. M., Matsumura, F.,
571 Pasek, R., and Yang, G.: Toxic combustion by-products from the incineration of chlorinated
572 hydrocarbons and plastics, *Chemosphere*, 28, 183–196,
573 [https://doi.org/10.1016/0045-6535\(94\)90212-7](https://doi.org/10.1016/0045-6535(94)90212-7), 1994.

574 Butz, A., Dinger, A. S., Bobrowski, N., Kostinek, J., Fieber, L., Fischerkeller, C., Giuffrida, G.
575 B., Hase, F., Klappenbach, F., Kuhn, J., Lübcke, P., Tirpitz, L., and Tu, Q.: Remote sensing of
576 volcanic CO₂, HF, HCl, SO₂, and BrO in the downwind plume of Mt. Etna, *Atmos Meas Tech*,
577 10, 1–14, <https://doi.org/10.5194/amt-10-1-2017>, 2017.

578 Dawe, K. E. R., Furlani, T. C., Kowal, S. F., Kahan, T. F., Vandenboer, T. C., and Young, C. J.:
579 Formation and emission of hydrogen chloride in indoor air, *Indoor Air*, 70–78,
580 <https://doi.org/10.1111/ina.12509>, 2019.

581 Doucette, W. J., Wetzel, T. A., Dettenmaier, E., and Gorder, K.: Emission rates of chlorinated
582 volatile organics from new and used consumer products found during vapor intrusion
583 investigations: Impact on indoor air concentrations, *Environ Forensics*, 19, 185–190,
584 <https://doi.org/10.1080/15275922.2018.1475433>, 2018.

585 Fernando, S., Jobst, K. J., Taguchi, V. Y., Helm, P. A., Reiner, E. J., and McCarry, B. E.:
586 Identification of the Halogenated Compounds Resulting from the 1997 Plastimet Inc. Fire in
587 Hamilton, Ontario, using Comprehensive Two-Dimensional Gas Chromatography and
588 (Ultra)High Resolution Mass Spectrometry, *Environ Sci Technol*, 48, 10656–10663,
589 <https://doi.org/10.1021/es503428j>, 2014.

590 Finlayson-Pitts, B. J.: Chlorine Atoms as a Potential Tropospheric Oxidant in the Marine
591 Boundary Layer, *Research on Chemical Intermediates*, 19, 235–249,
592 <https://doi.org/10.1163/156856793X00091>, 1993.

593 Furlani, T. C., Veres, P. R., Dawe, K. E. R., Neuman, J. A., Brown, S. S., VandenBoer, T. C.,
594 and Young, C. J.: Validation of a new cavity ring-down spectrometer for measuring tropospheric
595 gaseous hydrogen chloride, *Atmos. Meas. Tech. Discuss.*, 2021, 1–30,
596 <https://doi.org/10.5194/amt-2021-105>, 2021.

597 Giardino, N. J. and Andelman, J. B.: Characterization of the emissions of trichloroethylene,
598 chloroform, and 1,2-dibromo-3-chloropropane in a full-size, experimental shower., *J Expo Anal
599 Environ Epidemiol*, 6, 413–423, 1996.

600 Hardy, J. E. and Knarr, J. J.: Technique for Measuring the Total Concentration of Gaseous Fixed
601 Nitrogen Species, *J Air Pollut Control Assoc*, 32, 376–379,
602 <https://doi.org/10.1080/00022470.1982.10465412>, 1982.

603 Haskins, J. D., Jaeglé, L., Shah, V., Lee, B. H., Lopez-Hilfiker, F. D., Campuzano-Jost, P.,
604 Schroder, J. C., Day, D. A., Guo, H., Sullivan, A. P., Weber, R., Dibb, J., Campos, T., Jimenez,
605 J. L., Brown, S. S., and Thornton, J. A.: Wintertime Gas-Particle Partitioning and Speciation of
606 Inorganic Chlorine in the Lower Troposphere Over the Northeast United States and Coastal
607 Ocean, *Journal of Geophysical Research: Atmospheres*, 123, 12,812–897,916,
608 <https://doi.org/10.1029/2018JD028786>, 2018.

609 Henschler, D.: Toxicity of Chlorinated Organic Compounds: Effects of the Introduction of
610 Chlorine in Organic Molecules, *Angewandte Chemie International Edition in English*, 33, 1920–
611 1935, <https://doi.org/https://doi.org/10.1002/anie.199419201>, 1994.

612 Kannan, K., Kawano, M., Kashima, Y., Matsui, M., and Giesy, J. P.: Extractable
613 Organohalogens (EOX) in Sediment and Biota Collected at an Estuarine Marsh near a Former
614 Chloralkali Facility, *Environ Sci Technol*, 33, 1004–1008, <https://doi.org/10.1021/es9811142>,
615 1999.

616 Kato, M., Urano, K., and Tasaki, T.: Development of Semi- and Nonvolatile Organic Halogen as
617 a New Hazardous Index of Flue Gas, *Environ Sci Technol*, 34, 4071–4075,
618 <https://doi.org/10.1021/es000881+>, 2000.

619 Kawano, M., Falandysz, J., and Wakimoto, T.: Instrumental neutron activation analysis of
620 extractable organohalogens in the Antarctic Weddell seal (*Leptonychotes weddelli*), *J*
621 *Radioanal Nucl Chem*, 272, 501–504, <https://doi.org/10.1007/s10967-007-0611-5>, 2007.

622 Keene, William. C., Khalil, M. A. K., Erickson, David. J., McCulloch, A., Graedel, T. E., Lobert,
623 J. M., Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G., Midgley, P., Moore, R. M.,
624 Seuzaret, C., Sturges, W. T., Benkovitz, C. M., Koropalov, V., Barrie, L. A., and Li, Y. F.:
625 Composite global emissions of reactive chlorine from anthropogenic and natural sources:
626 *Reactive Chlorine Emissions Inventory*, *Journal of Geophysical Research: Atmospheres*, 104,
627 8429–8440, <https://doi.org/10.1029/1998JD100084>, 1999.

628 Khalil, M. A. K., Moore, R. M., Harper, D. B., Lobert, J. M., Erickson, D. J., Koropalov, V.,
629 Sturges, W. T., and Keene, W. C.: Natural emissions of chlorine-containing gases: *Reactive*
630 *Chlorine Emissions Inventory*, *Journal of Geophysical Research: Atmospheres*, 104, 8333–8346,
631 <https://doi.org/10.1029/1998JD100079>, 1999.

632 Lao, M., Crilley, L. R., Salehpoor, L., Furlani, T. C., Bourgeois, I., Neuman, J. A., Rollins, A.
633 W., Veres, P. R., Washenfelder, R. A., Womack, C. C., Young, C. J., and VandenBoer, T. C.: A
634 portable, robust, stable and tunable calibration source for gas-phase nitrous acid (HONO), *Atmos*
635 *Meas Tech*, 13, 5873–5890, <https://doi.org/10.5194/amt-13-5873-2020>, 2020.

636 Lobert, J. M., Keene, W. C., Logan, J. A., and Yevich, R.: Global chlorine emissions from
637 biomass burning: *Reactive Chlorine Emissions Inventory*, *Journal of Geophysical Research*
638 *Atmospheres*, 104, 8373–8389, <https://doi.org/10.1029/1998JD100077>, 1999.

639 Maris, C., Chung, M. Y., Lueb, R., Krischke, U., Meller, R., Fox, M. J., and Paulson, S. E.:
640 Development of instrumentation for simultaneous analysis of total non-methane organic carbon
641 and volatile organic compounds in ambient air, *Atmos Environ*, 37, 149–158,
642 [https://doi.org/https://doi.org/10.1016/S1352-2310\(03\)00387-X](https://doi.org/https://doi.org/10.1016/S1352-2310(03)00387-X), 2003.

643 Massin, N., Bohadana, A. B., Wild, P., Héry, M., Toomain, J. P., and Hubert, G.: Respiratory
644 symptoms and bronchial responsiveness in lifeguards exposed to nitrogen trichloride in indoor
645 swimming pools., *Occup Environ Med*, 55, 258 LP – 263, <https://doi.org/10.1136/oem.55.4.258>,
646 1998.

647 Mattila, J. M., Lakey, P. S. J., Shiraiwa, M., Wang, C., Abbatt, J. P. D., Arata, C., Goldstein, A.
648 H., Ampollini, L., Katz, E. F., DeCarlo, P. F., Zhou, S., Kahan, T. F., Cardoso-Saldaña, F. J.,
649 Ruiz, L. H., Abeleira, A., Boedicker, E. K., Vance, M. E., and Farmer, D. K.: Multiphase
650 Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during
651 Bleach Cleaning, *Environ Sci Technol*, 54, 1730–1739, <https://doi.org/10.1021/acs.est.9b05767>,
652 2020.

653 Miyake, Y., Kato, M., and Urano, K.: A method for measuring semi- and non-volatile organic
654 halogens by combustion ion chromatography, *J Chromatogr A*, 1139, 63–69,
655 <https://doi.org/https://doi.org/10.1016/j.chroma.2006.10.078>, 2007a.

656 Miyake, Y., Yamashita, N., Rostkowski, P., So, M. K., Taniyasu, S., Lam, P. K. S., and Kannan,
657 K.: Determination of trace levels of total fluorine in water using combustion ion chromatography
658 for fluorine: A mass balance approach to determine individual perfluorinated chemicals in water,
659 *J Chromatogr A*, 1143, 98–104, [https://doi.org/https://doi.org/10.1016/j.chroma.2006.12.071](https://doi.org/10.1016/j.chroma.2006.12.071),
660 2007b.

661 Miyake, Y., Yamashita, N., So, M. K., Rostkowski, P., Taniyasu, S., Lam, P. K. S., and Kannan,
662 K.: Trace analysis of total fluorine in human blood using combustion ion chromatography for
663 fluorine: A mass balance approach for the determination of known and unknown organofluorine
664 compounds, *J Chromatogr A*, 1154, 214–221,
665 [https://doi.org/https://doi.org/10.1016/j.chroma.2007.03.084](https://doi.org/10.1016/j.chroma.2007.03.084), 2007c.

666 Montzka, S. A., Dutton, G. S., Portmann, R. W., Chipperfield, M. P., Davis, S., Feng, W.,
667 Manning, A. J., Ray, E., Rigby, M., Hall, B. D., Siso, C., Nance, J. D., Krummel, P. B., Mühle,
668 J., Young, D., O'Doherty, S., Salameh, P. K., Harth, C. M., Prinn, R. G., Weiss, R. F., Elkins, J.
669 W., Walter-Terrinoni, H., and Theodoridi, C.: A decline in global CFC-11 emissions during
670 2018–2019, *Nature*, 590, 428–432, <https://doi.org/10.1038/s41586-021-03260-5>, 2021.

671 Nuckols, J. R., Ashley, D. L., Lyu, C., Gordon, S. M., Hinckley, A. F., and Singer, P.: Influence
672 of tap water quality and household water use activities on indoor air and internal dose levels of
673 trihalomethanes, *Environ Health Perspect*, 113, 863–870, <https://doi.org/10.1289/ehp.7141>,
674 2005.

675 Odabasi, M.: Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach-
676 Containing Household Products, *Environ Sci Technol*, 42, 1445–1451,
677 <https://doi.org/10.1021/es702355u>, 2008.

678 Odabasi, M., Elbir, T., Dumanoglu, Y., and Sofuoglu, S.: Halogenated volatile organic
679 compounds in chlorine-bleach-containing household products and implications for their use,
680 *Atmos Environ*, 92, 376–383, <https://doi.org/10.1016/j.atmosenv.2014.04.049>, 2014.

681 Pan, L. L., Atlas, E. L., Salawitch, R. J., Honomichl, S. B., Bresch, J. F., Randel, W. J., Apel, E.
682 C., Hornbrook, R. S., Weinheimer, A. J., Anderson, D. C., Andrews, S. J., Baidar, S., Beaton, S.
683 P., Campos, T. L., Carpenter, L. J., Chen, D., Dix, B., Donets, V., Hall, S. R., Hanisco, T. F.,
684 Homeyer, C. R., Huey, L. G., Jensen, J. B., Kaser, L., Kinnison, D. E., Koenig, T. K., Lamarque,
685 J.-F., Liu, C., Luo, J., Luo, Z. J., Montzka, D. D., Nicely, J. M., Pierce, R. B., Riemer, D. D.,
686 Robinson, T., Romashkin, P., Saiz-Lopez, A., Schauffler, S., Shieh, O., Stell, M. H., Ullmann,
687 K., Vaughan, G., Volkamer, R., and Wolfe, G.: The Convective Transport of Active Species in
688 the Tropics (CONTRAST) Experiment, *Bull Am Meteorol Soc*, 98, 106–128,
689 <https://doi.org/10.1175/BAMS-D-14-00272.1>, 2017.

690 Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L., Fraser, P. J., Ganesan, A. L.,
691 Gasore, J., Harth, C. M., Hermansen, O., Kim, J., Krummel, P. B., Li, S., Loh, Z. M., Lunder, C.
692 R., Maione, M., Manning, A. J., Miller, B. R., Mitrevski, B., Mühle, J., O'Doherty, S., Park, S.,
693 Reimann, S., Rigby, M., Saito, T., Salameh, P. K., Schmidt, R., Simmonds, P. G., Steele, L. P.,
694 Vollmer, M. K., Wang, R. H., Yao, B., Yokouchi, Y., Young, D., and Zhou, L.: History of

695 chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric
696 Gases Experiment (AGAGE), *Earth Syst. Sci. Data*, 10, 985–1018, <https://doi.org/10.5194/essd-10-985-2018>, 2018.

698 Raff, J. D., Njegic, B., Chang, W. L., Gordon, M. S., Dabdub, D., Gerber, R. B., and Finlayson-
699 Pitts, B. J.: Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen
700 oxides with hydrogen chloride, *Proceedings of the National Academy of Sciences*, 106, 13647
701 LP – 13654, <https://doi.org/10.1073/pnas.0904195106>, 2009.

702 Riedel, T. P., Wolfe, G. M., Danas, K. T., Gilman, J. B., Kuster, W. C., Bon, D. M., Vlasenko,
703 A., Li, S.-M., Williams, E. J., Lerner, B. M., Veres, P. R., Roberts, J. M., Holloway, J. S., Lefer,
704 B., Brown, S. S., and Thornton, J. A.: An MCM modeling study of nitryl chloride (ClNO₂)
705 impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental
706 outflow, *Atmos. Chem. Phys.*, 14, 3789–3800, <https://doi.org/10.5194/acp-14-3789-2014>, 2014.

707 Roberts, J. M., Bertman, S. B., Jobson, T., Niki, H., and Tanner, R.: Measurement of total
708 nonmethane organic carbon (Cy): Development and application at Chebogue Point, Nova Scotia,
709 during the 1993 North Atlantic Regional Experiment campaign, *Journal of Geophysical
710 Research: Atmospheres*, 103, 13581–13592, <https://doi.org/10.1029/97JD02240>,
711 1998.

712 Saiz-Lopez, A. and Von Glasow, R.: Reactive halogen chemistry in the troposphere, *Chem Soc
713 Rev*, 41, 6448–6472, <https://doi.org/10.1039/c2cs35208g>, 2012.

714 Schwartz-Narbonne, H., Wang, C., Zhou, S., Abbatt, J. P. D., and Faust, J.: Heterogeneous
715 Chlorination of Squalene and Oleic Acid, *Environ Sci Technol*, 53, 1217–1224,
716 <https://doi.org/10.1021/acs.est.8b04248>, 2019.

717 Shepherd, J. L., Corsi, R. L., and Kemp, J.: Chloroform in Indoor Air and Wastewater: The Role
718 of Residential Washing Machines., *J Air Waste Manag Assoc*, 46, 631–642,
719 <https://doi.org/10.1080/10473289.1996.10467497>, 1996.

720 Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob,
721 D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-
722 Roman, C., Mahajan, A. S., and Ordóñez, C.: Global impacts of tropospheric halogens (Cl, Br, I)
723 on oxidants and composition in GEOS-Chem, *Atmos. Chem. Phys.*, 16, 12239–12271,
724 <https://doi.org/10.5194/acp-16-12239-2016>, 2016.

725 Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and Von Glasow, R.:
726 Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts, *Chem Rev*, 115, 4035–4062,
727 <https://doi.org/10.1021/cr5006638>, 2015.

728 Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, *Reviews of
729 Geophysics*, 37, 275–316, <https://doi.org/10.1029/1999RG900008>, 1999.

730 Stockwell, C. E., Kupc, A., Witkowski, B., Talukdar, R. K., Liu, Y., Selimovic, V., Zarzana, K.
731 J., Sekimoto, K., Warneke, C., Washenfelder, R. A., Yokelson, R. J., Middlebrook, A. M., and
732 Roberts, J. M.: Characterization of a catalyst-based conversion technique to measure total

733 particulate nitrogen and organic carbon and comparison to a particle mass measurement
734 instrument, *Atmos. Meas. Tech.*, 11, 2749–2768, <https://doi.org/10.5194/amt-11-2749-2018>,
735 2018.

736 Stubbs, A., Lao, M., Wang, C., Abbatt, J., Hoffnagle, J., VandenBoer, T., and Kahan, T.: Near-
737 source hypochlorous acid emissions from indoor bleach cleaning, *Environ Sci Process Impacts*,
738 Submitted, 2022.

739 Unsal, V., Cicek, M., and Sabancilar, İ.: Toxicity of carbon tetrachloride, free radicals and role
740 of antioxidants, *Rev Environ Health*, 36, 279–295, <https://doi.org/doi:10.1515/reveh-2020-0048>,
741 2021.

742 Veres, P., Gilman, J. B., Roberts, J. M., Kuster, W. C., Warneke, C., Burling, I. R., and de
743 Gouw, J.: Development and validation of a portable gas phase standard generation and
744 calibration system for volatile organic compounds, *Atmos. Meas. Tech.*, 3, 683–691,
745 <https://doi.org/10.5194/amt-3-683-2010>, 2010.

746 Wang, C., Collins, D. B., and Abbatt, J. P. D.: Indoor Illumination of Terpenes and Bleach
747 Emissions Leads to Particle Formation and Growth, *Environ Sci Technol*, 53, 11792–11800,
748 <https://doi.org/10.1021/acs.est.9b04261>, 2019.

749 White, C. W. and Martin, J. G.: Chlorine Gas Inhalation, *Proc Am Thorac Soc*, 7, 257–263,
750 <https://doi.org/10.1513/pats.201001-008SM>, 2010.

751 WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2018,
752 Report No., Global Ozone Research and Monitoring Project, Geneva, Switzerland, 588 pp. pp.,
753 2018.

754 Wong, J. P. S., Carslaw, N., Zhao, R., Zhou, S., and Abbatt, J. P. D.: Observations and impacts
755 of bleach washing on indoor chlorine chemistry, *Indoor Air*, 27, 1082–1090,
756 <https://doi.org/10.1111/ina.12402>, 2017.

757 Xu, D., Zhong, W., Deng, L., Chai, Z., and Mao, X.: Levels of Extractable Organohalogens in
758 Pine Needles in China, *Environ Sci Technol*, 37, 1–6, <https://doi.org/10.1021/es025799o>, 2003.

759 Xu, D., Tian, Q., and Chai, Z.: Determination of extractable organohalogens in the atmosphere
760 by instrumental neutron activation analysis, *J Radioanal Nucl Chem*, 270, 5–8,
761 <https://doi.org/10.1007/s10967-006-0302-7>, 2006.

762 Xu, D., Dan, M., Song, Y., Chai, Z., and Zhuang, G.: Instrumental neutron activation analysis of
763 extractable organohalogens in PM2.5 and PM10 in Beijing, China, *J Radioanal Nucl Chem*, 271,
764 115–118, <https://doi.org/10.1007/s10967-007-0115-3>, 2007.

765 Yang, M. and Fleming, Z. L.: Estimation of atmospheric total organic carbon (TOC) – paving the
766 path towards carbon budget closure, *Atmos Chem Phys*, 19, 459–471,
767 <https://doi.org/10.5194/acp-19-459-2019>, 2019.

768 Yeung, L. W. Y., Miyake, Y., Taniyasu, S., Wang, Y., Yu, H., So, M. K., Jiang, G., Wu, Y., Li,
769 J., Giesy, J. P., Yamashita, N., and Lam, P. K. S.: Perfluorinated Compounds and Total and

770 Extractable Organic Fluorine in Human Blood Samples from China, Environ Sci Technol, 42,
771 8140–8145, <https://doi.org/10.1021/es800631n>, 2008.

772 Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C.,
773 Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Roberts, J. M.,
774 Griffith, S., Dusanter, S., Stevens, P. S., Flynn, J., Grossberg, N., Lefer, B., Holloway, J. S.,
775 Peischl, J., Ryerson, T. B., Atlas, E. L., Blake, D. R., and Brown, S. S.: Chlorine as a primary
776 radical: Evaluation of methods to understand its role in initiation of oxidative cycles, Atmos
777 Chem Phys, 14, 3427–3440, <https://doi.org/10.5194/acp-14-3427-2014>, 2014.

778 Zhai, S., Wang, X., McConnell, J. R., Geng, L., Cole-Dai, J., Sigl, M., Chellman, N., Sherwen,
779 T., Pound, R., Fujita, K., Hattori, S., Moch, J. M., Zhu, L., Evans, M., Legrand, M., Liu, P.,
780 Pasteris, D., Chan, Y.-C., Murray, L. T., and Alexander, B.: Anthropogenic Impacts on
781 Tropospheric Reactive Chlorine Since the Preindustrial, Geophys Res Lett, 48, e2021GL093808,
782 <https://doi.org/https://doi.org/10.1029/2021GL093808>, 2021.

783 Zhang, W., Jiao, Y., Zhu, R., Rhew, R. C., Sun, B., and Dai, H.: Chloroform (CHCl₃) Emissions
784 From Coastal Antarctic Tundra, Geophys Res Lett, 48, e2021GL093811,
785 <https://doi.org/https://doi.org/10.1029/2021GL093811>, 2021.

786