

1 **Development and Validation of a New In-Situ Technique**
2 **to Measure Total Gaseous Chlorine in Air**

3

4 Teles C. Furlani¹, RenXi Ye¹, Jordan Stewart^{1,2}, Leigh R. Crilley¹, Peter M. Edwards², Tara F.
5 Kahan³, Cora J. Young^{1*}

6 ¹ Department of Chemistry, York University, Toronto, Canada

7 ² Department of Chemistry, University of York, York, UK

8 ³ Department of Chemistry, University of Saskatchewan, Saskatoon, Canada

9

10 *Correspondence to: youngcj@yorku.ca

11

12 **Abstract**

13 Total gaseous chlorine (TCl_g) measurements can improve our understanding of unknown sources
14 of Cl to the atmosphere. Existing techniques for measuring TCl_g have been limited to offline
15 analysis of extracted filters and do not provide suitable temporal information on fast atmospheric
16 process. We describe high time-resolution in-situ measurements of TCl_g by thermolyzing air over
17 a heated platinum (Pt) substrate coupled to a cavity ring-down spectrometer (CRDS). The method
18 relies on the complete decomposition of TCl_g to release Cl atoms that react to form HCl, for which
19 detection by CRDS has previously been shown to be fast and reliable. The method was validated
20 using custom organochlorine permeation devices (PDs) that generated gas-phase dichloromethane
21 (DCM), 1-chlorobutane (CB), and 1,3-dichloropropene (DCP). The optimal conversion
22 temperature and residence time through the high-temperature furnace was 825 °C and 1.5 seconds,
23 respectively. Complete conversion was observed for six organochlorine compounds, including
24 alkyl, allyl, and aryl C-Cl bonds, which are amongst the strongest Cl-containing bonds. The
25 quantitative conversion of these strong C-Cl bonds suggests complete conversion of similar or

26 weaker bonds that characterize all other TCI_g . We applied this technique to both outdoor and indoor
27 environments and found reasonable agreements in ambient background mixing ratios with the sum
28 of expected HCl from known long-lived Cl species. We measured the converted TCI_g in an indoor
29 environment during cleaning activities and observed varying levels of TCI_g comparable to previous
30 studies. The method validated here is capable of measuring in-situ TCI_g and has a broad range of
31 potential applications.

32 1. Introduction

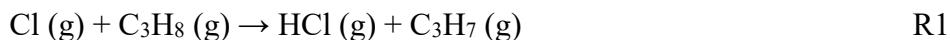
33 Chlorine (Cl) containing compounds in the atmosphere can impact air quality, climate, and
34 health (Saiz-Lopez and Von Glasow, 2012; Simpson et al., 2015; Massin et al., 1998; White and
35 Martin, 2010). Gaseous chlorinated compounds are either organic (e.g., dichloromethane,
36 chloroform, and carbon tetrachloride) or inorganic (e.g., Cl_2 , HCl , and ClNO_2), with inorganic Cl
37 being more reactive under most atmospheric conditions. In this work, total gaseous Cl (TCI_g) refers
38 to all gas-phase Cl -containing species weighted to their Cl content, including both inorganic and
39 organic species. While groups of chlorinated species are often considered based on reactivity
40 considerations (e.g., reactive chlorine, Cl_y), TCI_g includes all molecules that contain one or more
41 Cl atoms:

$$42 \text{TCI}_g = 4*[\text{CCl}_4] + 3*[\text{CHCl}_3] + 2*[\text{CH}_2\text{Cl}_2] + [\text{CH}_3\text{Cl}] + 2*[\text{Cl}_2] + [\text{HOCl}] + \dots \quad E1$$

43 Impacts on air quality and climate are due to the high reactivity of atomic Cl produced by common
44 atmospheric reactions (e.g., photolysis and oxidation) of Cl -containing compounds (Riedel et al.,
45 2014; Sherwen et al., 2016; Haskins et al., 2018). The Cl cycle is important to atmospheric
46 composition in the stratosphere and troposphere, affecting species including methane, ozone, and
47 particles (both formation and composition), which influence air quality and climate (Solomon,
48 1999; Riedel et al., 2014; Young et al., 2014; Sherwen et al., 2016). High levels of some TCI_g

49 species (e.g., Cl_2 and carbon tetrachloride) are known to be toxic (White and Martin, 2010; Unsal
50 et al., 2021). The implications of many TCl_g species on human health are not well understood for
51 low level exposure for extended periods of time. Potential health impacts of organic chlorinated
52 compounds include hepatotoxicity, nephrotoxicity, and genotoxicity (Unsal et al., 2021;
53 Henschler, 1994). Impacts of inorganic chlorinated species include the chlorination of squalene, a
54 major part of human skin oils, by HOCl (Schwartz-Narbonne et al., 2019); respiratory irritation
55 and airway obstruction by Cl_2 (White and Martin, 2010); and increased incidence of asthma and
56 other chronic respiratory issues following exposure to chloramines (Massin et al., 1998).

57 Sources of Cl to the atmosphere are highly variable and depend on both direct emissions
58 and indirect regional Cl activation chemistry (Finlayson-Pitts, 1993; Raff et al., 2009; Khalil et al.,
59 1999). Direct emissions of TCl_g can come from numerous natural and anthropogenic activities
60 such as, but not limited to, ocean and volcanic emissions, biomass burning, disinfection (i.e.,
61 household cleaning, pool emission, etc), use of solvents and heat transfer coolants, and incineration
62 of chlorinated wastes (Blankenship et al., 1994; Lobert et al., 1999; Keene et al., 1999; Butz et al.,
63 2017; Wong et al., 2017; Fernando et al., 2014). Activation of Cl is another source, occurring when
64 atmospheric processes transform relatively unreactive chloride (Cl^- , such as sea salt, NaCl) into
65 reactive gaseous chlorine (Cl_g), which will contribute to TCl_g . Understanding global levels of TCl_g
66 is difficult due to complex emissions and chemistry. Our best estimates come from modelling
67 studies combined with collaborative efforts to compose policy reports on halogenated substances,
68 such as the World Meteorological Organization (WMO) Scientific Assessment of Stratospheric
69 Ozone Depletion (WMO (World Meteorological Organization), 2018). Mixing ratio estimates of
70 halogenated species from this report are summed from individual measurements (e.g., National
71 Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases


72 Experiment (AGAGE)). The WMO report includes flask (captured gas from clean air sectors) and
73 in-situ measurements from field campaigns and routine sampling sites (e.g., CONvective
74 Transport of Active Species in the Tropics (CONTRAST)) (Prinn et al., 2018; Pan et al., 2017;
75 Andrews et al., 2016; Montzka et al., 2021; Adcock et al., 2018). In the most recent WMO report
76 (2018), a decrease of 12.7 ± 0.9 pptv Cl yr^{-1} in total tropospheric Cl was determined for Montreal
77 Protocol-controlled substances (e.g., chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons
78 (HCFCs)). The decrease in Montreal Protocol-controlled emissions has been slightly offset by an
79 increase in relatively short-lived substances (e.g., dichloromethane) that are not controlled by the
80 Montreal Protocol (WMO (World Meteorological Organization), 2018). Despite the emissions of
81 these regulated chlorinated species being relatively well-constrained, new sources for some of
82 these compounds have appeared in the recent past. For example, unexpected increases observed in
83 CFC-11 emissions suggested new unreported production (WMO (World Meteorological
84 Organization), 2018). A new source of chloroform was also recently identified and attributed to
85 halide containing organic matter derived from penguin excrement in the Antarctic tundra (Zhang
86 et al., 2021). Atmospheric levels of TCI_g will additionally be impacted by emission sources that
87 are relatively poorly constrained, including combustion and disinfection. Increasing levels of
88 chlorinated species from known and unknown pathways was observed in a recent ice core study,
89 which estimated an increase of up to 170% of Cl_y ($= \text{BrCl} + \text{HCl} + \text{Cl} + \text{ClO} + \text{HOCl} + \text{ClNO}_3 +$
90 $\text{ClNO}_2 + \text{ClOO} + \text{OCIO} + 2\cdot\text{Cl}_2 + 2\cdot\text{Cl}_2\text{O}_2 + \text{ICl}$) from preindustrial times to the 1970s could be
91 attributed to mostly anthropogenic sources (Zhai et al., 2021).

92 Understanding TCI_g source and sink chemistry is not only important for the ambient
93 atmosphere but also for indoor environments. Uncertainty in sources and levels of chemicals,
94 including Cl-containing compounds, indoors is related to heterogeneity in sources and individual

95 indoor environments, and the fact that relatively few studies have focused on indoor chemistry
96 compared to outdoor. The role of chlorinated species on indoor air quality has been investigated
97 in a few studies (Mattila et al., 2020; Wong et al., 2017; Dawe et al., 2019; Giardino and Andelman,
98 1996; Shepherd et al., 1996; Doucette et al., 2018; Nuckols et al., 2005). Most studies have focused
99 on cleaning with Cl-based cleaners, in which HOCl and other inorganic compounds have been
100 observed in the gas phase at high levels (Wong et al., 2017; Wang et al., 2019; Mattila et al., 2020).
101 Some studies have reported the presence of organic chlorinated species such as chloroform and
102 carbon tetrachloride above bleach cleaning solutions indoors (Odabasi, 2008; Odabasi et al., 2014),
103 and chloroform has been observed during water-based cleaning activities, such as showering and
104 clothing washing (Nuckols et al., 2005; Shepherd et al., 1996; Giardino and Andelman, 1996).

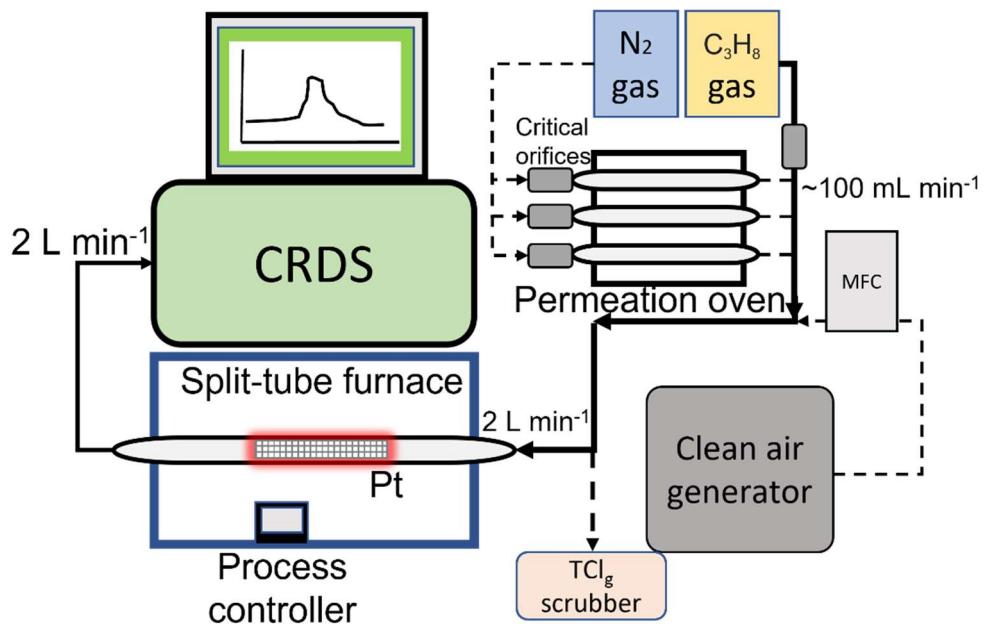
105 Constraining the Cl budget is critical to better understanding its contributions to climate,
106 air quality, and human health. Robust total Cl measurements are useful because it is not always
107 feasible to routinely deploy individual measurements of the large number of known Cl-containing
108 compounds (Table S1). As described above, estimates of TCl_g from models and summed
109 measurements have demonstrated gaps in our knowledge. It is therefore essential to have a method
110 capable of measuring true TCl_g to explain discrepancies between model and measured estimates
111 due to unknown species. Measurements of total elemental composition in the condensed phase,
112 including total Cl, have been used for monitoring and managing both known and unknown
113 compounds (Miyake et al., 2007c, a; Yeung et al., 2008; Miyake et al., 2007b; Kannan et al., 1999;
114 Xu et al., 2003; Kawano et al., 2007). However, TCl_g methods have been limited to offline analysis
115 of scrubbed sample gas (e.g., flue); these methods rely on multiple extraction steps and the
116 application of condensed-phase total Cl analyses, such as combustion ion chromatography
117 (Miyake et al., 2007a; Kato et al., 2000) or neutron activation analysis (Berg et al., 1980; Xu et al.,

118 2006, 2007). Because offline techniques suffer from extraction uncertainties and do not have the
119 temporal resolution to effectively probe fast chemistry in the atmosphere, in-situ measurements of
120 total elemental gaseous composition have been developed for several elements (Hardy and Knarr,
121 1982; Veres et al., 2010; Roberts et al., 1998; Maris et al., 2003; Yang and Fleming, 2019). For
122 example, total nitrogen has been measured using Pt-catalyzed thermolysis coupled to online
123 chemiluminescence detection (Stockwell et al., 2018). Using a similar approach, we describe here
124 a method for TCI_g , where catalyzed thermolysis is coupled to a high time-resolution HCl cavity
125 ring-down spectrometer (CRDS). This technique relies on the complete thermolysis of TCI_g , which
126 yields chlorine atoms. These Cl atoms readily form HCl via hydrogen abstraction (R1), in this case
127 from propane (or its thermolysis products) that is supplied in excess.

128 The objectives of this paper are to: (i) Develop and validate an instrument capable of in-
129 situ measurement of TCI_g through conversion to HCl and detection by CRDS; and (ii) demonstrate
130 application of the technique to outdoor and indoor TCI_g measurements.

131 **2. Materials and experimental methods**

132 **2.1. Chemicals**


133 Commercially available reagents were purchased from Sigma-Aldrich (Oakville, Ontario,
134 Canada): dichloromethane (DCM, HPLC grade), 1-chlorobutane (CB, 99.5%), cis-1,3-
135 dichloropropene (DCP, 97%), trichlorobenzene (TrCB, 99%), tetrachlorobenzene (TeCB, 98%),
136 pentachlorobenzene (PeCB, 96 %), sodium chloride, and 52 mesh sized platinum catalyst (99.9
137 %). Toluene (HPLC grade) was purchased from BDH VWR (Mississauga, Ontario, Canada).
138 Nitrogen (grade 4.8) and propane (C_3H_8 , 12.7% in nitrogen, v/v) gas was from Praxair (Toronto,
139 Ontario, Canada). Experiments used deionized water generated by a Barnstead Infinity Ultrapure
140 Water System (Thermo Fisher Scientific, Waltham, Massachusetts, USA; $18.2 \text{ M}\Omega \text{ cm}^{-1}$). A

141 permeation device (PD) described previously was used to generate gaseous HCl (Furlani et al.,
142 2021). Chlorine-free zero air was generated by a custom-made zero-air generator.

143 **2.2. HCl and total chlorine (HCl-TCl) instrument**

144 The main components of the HCl-TCl (Figure 1) are platinum catalyst mesh, a quartz glass
145 flow tube, a split-tube furnace (Protégé Compact, 1100°C max temperature, Thermcraft
146 incorporated, North Carolina, USA), and a CRDS HCl analyzer (Picarro G2108 Hydrogen
147 Chloride Gas Analyzer). The platinum catalyst consisted of ~2 g platinum mesh with a total
148 combined surface area of 134 cm². Sample gas was mixed with critical orifice-regulated (Lenox
149 laser, Glen Arm, Maryland, USA, 30 psi; SS-4-VCR-2-50) propane gas (62 ± 6 standard cubic
150 centimetres per minute (sccm)), provided in excess prior to introduction to the furnace to promote
151 (R1). The added propane does not fully thermolyze at temperatures < 650 °C, which can lead to
152 spectral interferences in the CRDS analyzer (Figure S1) and should only be added when
153 temperatures exceed 650°C (Furlani et al., 2021). All lines and fittings were made of
154 perfluoroalkoxy (PFA) unless stated otherwise. The mixing line carrying clean air dilution flows
155 was controlled by a 10 L min⁻¹ mass flow controller (MFC, GM50A, MKS instruments, Andover,
156 Massachusetts, USA). The length of the sample gas tubing to the furnace was 0.6 m, and the
157 transfer line between the furnace and CRDS was 0.2 m. The furnace transfer line met an overflow
158 tee when delivering flows greater than the CRDS flowrate of 2 L min⁻¹. The coupled CRDS can
159 capture transient fast HCl formation processes on the timescale of a few minutes, limited by the
160 high adsorption activity of HCl on inlet surfaces (discussed further in Section 3.3). The CRDS
161 collects data at 0.5 Hz. Limits of detection (LODs) for the CRDS were calculated as three times
162 the Allan–Werle deviation in raw signal intensity when overflowing the inlet with zero air directed

163 into the CRDS for \sim 10 h. The 30-sec LOD is 18 pptv and well below expected HCl from TCI_g
164 conversion (Furlani et al., 2021a).

166 **Figure 1.** Sampling schematic showing the key components of the HCl-TCI coupled to the CRDS
167 analyzer. Dashed lines indicate parts of the apparatus used only during validation. Not to scale.

168 2.3. Preparation of organochlorine permeation devices (PDs)

169 Organochlorine PDs were prepared as follows: approximately 200 μL of DCM, CB, or DCP
170 was pipetted into a 50 mm PFA tube (3 mm i.d. with 1 mm thickness), thermally sealed at one end
171 and plugged at the other end with porous polytetrafluoroethylene (PTFE) (13 mm length by 3.17
172 mm o.d.). The polymers allow a consistent mass of standard gas to permeate at a given temperature
173 and pressure. The method for temperature and flow control of the PDs is described in detail in Lao
174 et al. (2020). Briefly, an aluminum block that was temperature-controlled (OmegaTM; CN 7823,
175 Saint-Eustache, QC, Canada) using a cartridge heater (OmegaTM; CIR-2081/120V, Saint-Eustache,
176 QC, Canada) housed the PD and was regulated to 30.0 ± 0.1 °C. Dry N_2 gas flowed through a PFA
177 housing tube (1.27 cm o.d.) in the block that contained the PD. Stable flows of carrier gases passed
178 through the housing tube in the oven were achieved using a 50 μm diameter critical orifice (Lenox

179 laser, Glen Arm, Maryland, USA, 30 psi; SS-4-VCR-2-50) and were 120 ± 12 , 99 ± 9.9 and 120
180 ± 12 sccm for DCM, CB, and DCP, respectively. Flows were measured using a DryCal Definer
181 (Mesa Labs, Lakewood, Colorado, USA). The mass emission rate of each organochlorine from
182 the PDs was quantified gravimetrically over a period of approximately 4 weeks (mass accuracy \pm
183 0.001 g). Mass emission rates for each PD were determined as 640 ± 10 , 240 ± 40 , and 1.20×10^4
184 $\pm 0.02 \times 10^4$ ng min $^{-1}$ ($n=3$, $\pm 1\sigma$) at 30 °C for DCM, CB, and DCP, respectively.

185 **2.4. HCl-TCl optimization**

186 Gas phase standards of DCM, CB, and DCP were used to test the conversion efficiency of
187 chlorinated compounds to form HCl. Bond dissociation energies for carbon-Cl bonds typically
188 range between 310 and 410 kJ mol $^{-1}$ (Tables S1, S2). The split-tube furnace has a process controller
189 capable of increasing or decreasing temperature at a set °C min $^{-1}$, which allowed us to identify the
190 temperature at which enough energy was provided to break the bonds. By introducing a consistent
191 amount of each of the organochlorines, separately, to the HCl-TCl set over a simple temperature
192 ramping program we could monitor in real-time the conditions necessary to break the bonds by
193 measuring the formation of the resulting HCl. The operating temperature was determined when
194 complete conversion of the measured TCl $_g$ for the tested compounds was sustained at 100%
195 conversion based on PD emission rates.

196 To determine the optimal residence time in the quartz tube with the Pt catalyst, flows of
197 0.6 – 5.5 L min $^{-1}$ containing DCM sample gas in clean air were tested yielding a range of residence
198 times between 0.5 and 4.5 sec in the furnace. Temperature remained constant at 825 °C throughout
199 the experiment, and a dilution flow of 4.0 L min $^{-1}$ of clean air was added to the sample flow exiting
200 the furnace before introduction to the CRDS.

201 We tested the HCl transmission of the HCl-TCl at 2 mixing ratios (18 and 10 ppbv) using
202 a 12 M HCl PD with zero air dilution flows of 3.5 or 5 L min⁻¹ using a 5 L min⁻¹ MFC (GM50A,
203 MKS instruments, Andover, Massachusetts, USA). The HCl recovery through the furnace was
204 tested by comparing measured HCl mixing ratios through HCl-TCl to those with the furnace flow
205 tube replaced by a similar length of tubing. A heat gun (Master Varitemp® vt-750c) was used to
206 heat the flow tube entrance to ~80 °C to minimize HCl sorption. We tested the HCl-TCl conversion
207 efficiency for 5 different mixing ratios of three organochlorine PD standards (DCM, CB, and DCP)
208 under three conditions: (1) both Pt catalyst and added propane, (2) only Pt catalyst, and (3) only
209 added propane. Each gas was tested individually under the same conditions; sample gas from PDs
210 was mixed with propane and immediately diluted into clean air using a 10 L min⁻¹ MFC. The
211 dilution flows ranged from 2.2–9.0 L min⁻¹. The sampling lines were the same lengths as stated
212 previously. In this experiment, the CRDS flowrate of 2 L min⁻¹ was sufficient to give an optimal
213 residence time of 1.5 sec through the HCl-TCl (see Section 3.1). In all experiments the CRDS
214 subsampled through the furnace from the main transfer line and the excess gas was directed
215 outdoors through a waste line containing a carbon trap (Purakol, Purafil, Inc, Doraville, Georgia,
216 USA). We also tested the HCl-TCl conversion efficiency for two different quantities of three
217 chlorobenzenes (TrCB, TeCB, and PeCB). Due to their high boiling points, PDs of these
218 compounds could not be prepared. Instead, small volumes of approximately 1 mM solutions of
219 these compounds dissolved in toluene were directly introduced to the HCl-TCl while it was
220 sampling room air. Room air measurements of TCl_g were consistently >1 ppbv. These were
221 measured before each experiment and did not affect the peak integration described below. With a
222 short piece of tubing used as an inlet, 1 and 2 µL of each compound was injected onto the inner
223 surface of the tubing, which was heated to ~100 °C with a heat gun to facilitate volatilization. The

224 resulting signals were integrated over a time period of 2.5 hours to obtain the total quantity of HCl
225 detected by the CRDS, which was used to calculate conversion efficiency. To account for
226 uncertainties in peak integration, a high and low peak area boundary was determined, with the
227 average peak area taken for each injection. Duplicates of each injected quantity were performed,
228 except for 1 μL TrCB, which was performed in triplicate.

229 To determine if there was any positive bias in the TCI_g , measurement from the conversion
230 of particulate chloride (pCl^-), NaCl aerosols were generated by flowing 2 L min^{-1} of chlorine free
231 zero air through a nebulizer containing a solution of 2% w/w NaCl in deionized water. The aerosol
232 flow was then mixed with 1 L min^{-1} of chlorine free dry zero air to achieve a total flow of 3 L
233 min^{-1} , The HCl-TCl (2 L min^{-1}) then sampled off this main mixing line. Chloride was added after
234 monitoring background zero air levels. After \sim 3 hours of measuring the converted pCl^- , a PTFE
235 filter (2 μm pore size, 47 mm diameter, TISCH scientific, North Bend, Ohio, USA) was added
236 inline onto the inlet of the HCl-TCl.

237 **2.5. Outdoor air HCl-TCl measurements**

238 Outdoor air sampling was performed between 00:00 on July 7 to 20:00 on July 11, 2022
239 (Eastern daylight time, EDT). The sampling site was the air quality research station located on the
240 roof of the Petrie Science and Engineering building at York University in Toronto, Ontario,
241 Canada (43.7738° N, 79.5071° W, 220 m above sea level). The HCl-TCl was co-located with a
242 Campbell Scientific weather station paired with a cr300 datalogger. All inlet lines and fittings were
243 made of PFA unless stated otherwise. All indoor inlet lines and fittings were kept at room
244 temperature. A mass flow controller (GM50A, MKS instruments, Andover, Massachusetts, USA)
245 regulated a sampling flow of 14.7 L min^{-1} using a diaphragm pump through a 2.4 m sampling inlet
246 (I.D. of 0.375") from outdoors. The outdoor air was pulled through a 2.5 μm particulate matter

247 cut-off URG Teflon Coated Aluminum Cyclone (URG Corporation, Chapel Hill, North Carolina,
248 USA) to remove larger particles and then passed through a PTFE filter (2 μm pore size, 47 mm
249 diameter, TISCH scientific, North Bend, Ohio, USA). The CRDS subsampled 2 L min^{-1} through
250 the furnace off the main inlet line, yielding a total inlet flow of 16.7 L min^{-1} . The apparatus had
251 zero air overflow the inlet 1 hour prior to and after outdoor sampling. The CRDS sample flow
252 passed first through a PTFE filter (2 μm pore size, 47 mm diameter) and then two high efficiency
253 particulate air (HEPA) filters contained within the CRDS outer cavity metal compartment heat-
254 regulated to 45 $^{\circ}\text{C}$. Instances of flagged instrument errors in the CRDS data during ambient
255 observations were removed as standard practice in quality control procedures. [The dataset can be](#)
256 [found in Furlani et al., \(2022\)](#).

257 **2.6. Indoor air HCl-TCl and HOCl analyzer measurements**

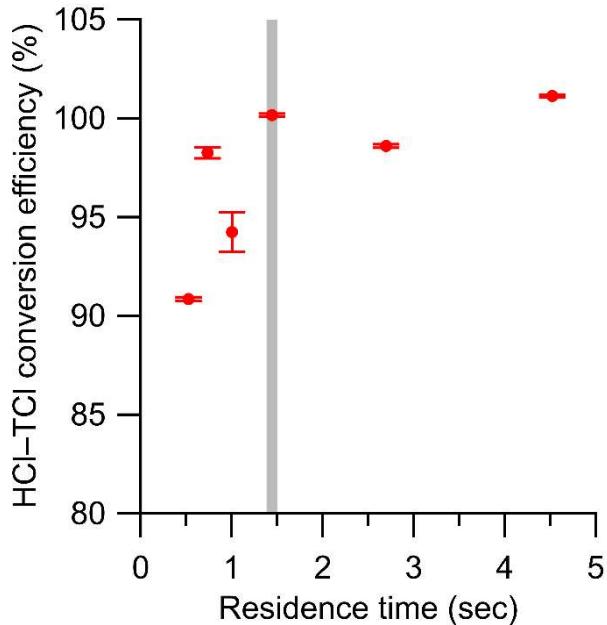
258 To test indoor applications of the HCl-TCl, a 1 m^2 area of laboratory floor was cleaned with
259 a commercial spray bottle cleaner (1.84 % sodium hypochlorite w/w) and emissions were
260 compared with an HOCl analyzer. The HOCl analyzer is a commercial instrument designed to
261 quantify gaseous hydrogen peroxide (H_2O_2) using CRDS (Picarro PI2114 Hydrogen Peroxide
262 Analyzer; Picarro Inc.). The instrument is also sensitive to HOCl due to similar absorbance
263 wavelengths of their first overtone stretches in the near IR. The wavelengths monitored have been
264 altered to selectively detect HOCl. Details on instrument calibration and validation are provided
265 in Stubbs et al. [\(2022\)](#).

266 The distance from the suspended 2 m inlet lines of both instruments to the floor was \sim 1 m.
267 The flowrate through the furnace and inlet was the 2 L min^{-1} CRDS flowrate. The flowrate for the
268 HOCl analyzer was 1 L min^{-1} . The sectioned off area was cleaned four times, spraying 32 times
269 for each application using the commercial cleaner. Three of these events were measured using the

270 HCl-TCI and HOCl analyzer, while one event was measured using the HCl CRDS only. [The](#)
271 [dataset can be found in Furlani et al., \(2022\).](#)

272 3. Results and Discussion

273 3.1. HCl-TCI temperature and residence time optimization


274 We validated this method by testing conversion efficiency of organochlorines under different
275 operating parameters and conditions. Testing all TCl_g species is not feasible, but by testing
276 compounds that contain strong Cl-containing bonds, we infer at least equal efficacy of the system
277 in the breakage of relatively weaker Cl-containing bonds (Tables S1 and S2). We selected strong
278 Cl-containing bonds (i.e., alkyl, allyl, and aryl chlorides) and used them as a proxy for compounds
279 containing weaker Cl bonds; therefore, by demonstrating their complete conversion we set
280 precedent for conversion of all TCl_g . The temperature of the furnace is a key factor in
281 accomplishing complete thermolysis, and the minimum temperature of the furnace containing the
282 Pt catalyst to break the C-Cl bonds in DCM was determined. A simple temperature ramping
283 program was used to determine the breakthrough temperature. The temperature was increased at a
284 rate of $2.7\text{ }^{\circ}\text{C min}^{-1}$ starting at $300\text{ }^{\circ}\text{C}$ and ending at $800\text{ }^{\circ}\text{C}$. The temperature breakthrough was
285 observed when complete conversion of the expected HCl for the tested compounds (based on PD
286 emission rate) was stable after reaching the optimal temperature. It was found to be $\sim 800\text{ }^{\circ}\text{C}$ for
287 the tested organochlorines (Figure S2).

288 Determining the optimal residence time of sample gas in the HCl-TCI is also essential for
289 an optimized TCl_g conversion method. Using a temperature slightly above the observed
290 breakthrough temperature of $800\text{ }^{\circ}\text{C}$ determined above ($825\text{ }^{\circ}\text{C}$), six residence times were tested
291 with DCM, ranging from 0.5 to 4.5 seconds in the HCl-TCI ([Figure 2](#)[Figure 2](#)). At each residence

292 time the conversion efficiency was determined, where conversion efficiency was calculated as
293 follows:

294 Conversion efficiency = $\frac{\text{Measured TCl}_g}{\text{Expected TCl}_g} \times 100 \%$ E2

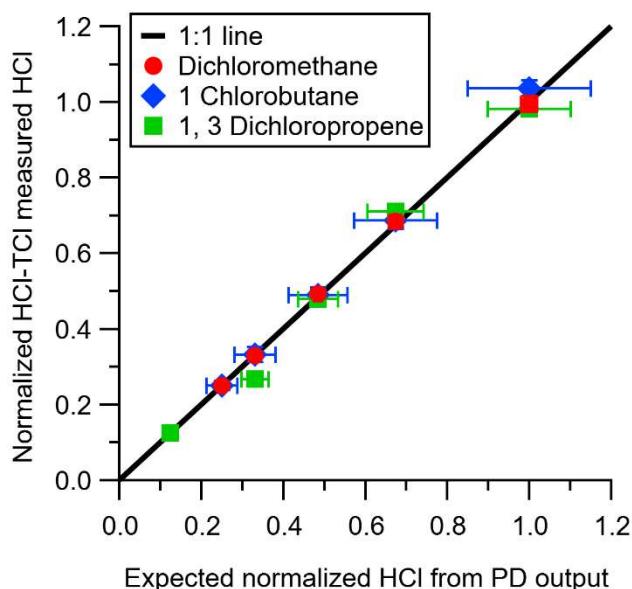
295 The optimal residence time was ~1.5 seconds, corresponding to a conversion efficiency of 100.1
296 $\pm 0.1 \%$. The uncertainty in conversion efficiency measurements is the variability in the measured
297 HCl signal for 30 minutes after a signal plateau was observed. The reported uncertainty does not
298 include uncertainties in mixing, or turbulence induced surface effects, which we cannot quantify.
299 When residence times were lower (i.e., sample gas traveled more quickly through the system) than
300 1.5 seconds, the conversion efficiencies were lower by 2 – 10 %, the measured HCl signal was
301 more erratic, and it took longer to stabilize. When residence times were higher (i.e., sample gas
302 traveled more slowly through the system) than 1.5 seconds, the conversion efficiencies were
303 comparable ($\pm 2 \%$), but the measured HCl suffered from longer equilibration times (~30 minutes,
304 more than double the 1.5 residence time) and therefore a slower response time, likely due to
305 increased surface effects of HCl after exiting the furnace. An optimal residence time of 1.5 seconds
306 was selected for all HCl-TCl experiments for its good conversion efficiency and reasonable
307 response time (see Table S3).

308

309 **Figure 2.** Conversion efficiency of DCM plotted against residence time in the HCl-TCl at 825 °C.
 310 Error bars represent the percent relative standard deviation of the measured HCl by the CRDS over
 311 ~30 minutes, after signal has plateaued. Grey vertical line denotes the selected residence time.
 312 Note that the error bars are represented by the precision of the instrument, and we expect there
 313 would be greater experiment-to-experiment variability.

314

315 **3.2. HCl-TCl conversion efficiency**


316 The efficiency of HCl throughput in the HCl-TCl was tested. Initial tests resulted in
 317 transmission efficiencies of $81.2\% \pm 1.4$ ($n = 3$) and 88.1% ($n = 1$) for 18 ppbv and 10 ppbv HCl,
 318 respectively. At the inlet to the furnace, a small piece of the quartz tube is not heated. We
 319 hypothesized that complete transmission of HCl was hindered through sorption to that portion of
 320 quartz tube. Repeating the experiment with heat applied led to increased throughput efficiencies
 321 of 85.7% (18 ppbv, $n = 1$) and 93.9% (10 ppbv, $n = 1$). Therefore, good HCl throughput efficiency
 322 was demonstrated overall, with the cause of minor HCl losses identified to be sorption losses to
 323 room temperature glass. Conversion of particulate chloride (pCl^-) was observed to take place in
 324 the HCl-TCl (Figure S3), but once a filter was introduced the signal returned to background levels.
 325 Thus, to capture only gaseous TCl_g from samples that may contain particulate chloride, a

326 particulate filter should be used. Use of a filter could introduce blow on (i.e., partitioning of semi-
327 volatile species) and/or blow off (i.e., processing of particulate chloride) artifacts. We have
328 previously shown that HCl—likely to be the most surface active component of TCl_g—is not greatly
329 impacted by the presence of filters (Furlani et al., 2021), indicating blow on effects are likely
330 minimal. However, the extent to which blow on effects should be considered will depend on the
331 composition of the TCl_g mixture and the temperature. Blow off effects will depend on ambient
332 particulate chloride levels and can be mitigated by regularly changing the filter to prevent
333 significant particulate chloride accumulation.

334 The conversion efficiency of each of the two alkyl chlorine and one allyl chlorine compounds
335 using the HCl-TCl was tested at 5 different mixing ratios. See Table S4 for summary of mixing
336 ratios used; all lower mixing ratios were generated by diluting the highest mixing ratio of each
337 compound by chlorine-free zero air. All three showed good linearity and near 1:1 correlation with
338 the HCl expected to be formed from the PD under standard operating conditions (Figure 3). Due
339 to differences in PD emission rates, the values in Figure 3 are normalized to the highest mixing
340 ratio to visualize comparisons more easily. With both Pt and propane the HCl-TCl conversion was
341 99.6 ± 3.2 , 104.8 ± 5.6 , and $102.7 \pm 7.8\%$ for DCM, CB, and DCP, respectively (Table 1), as the
342 average conversion efficiency \pm relative standard deviation. From Figure 3 the comparison
343 between expected and measured TCl_g is illustrated by near unity in the orthogonal distance
344 regression slope ($\pm 1\sigma$, the error in the regression analysis), and was 0.996 ± 0.012 , 1.048 ± 0.060 ,
345 and 1.027 ± 0.061 for DCM, CB, and DCP, respectively. With only the Pt catalyst, the HCl-TCl
346 conversion was 80.7 ± 0.4 , 54.1 ± 1.6 , and $54.3 \pm 3.5\%$ for DCM, CB, and DCP, respectively
347 (Figure S4, Table 1). This result indicates the added hydrogen source (propane) is needed to
348 promote R1. Although necessary in this laboratory scenario, some ambient conditions may be rich

349 enough in hydrogen-containing molecules that excess propane is not needed. However, providing
 350 propane in excess ensures the presence of an abundance of hydrogen atoms that can be readily
 351 abstracted by Cl atoms via R1. When the Pt catalyst was removed, the HCl-TCl conversion was
 352 94.4 \pm 4.6, 44.2 \pm 0.9, and 41.7 \pm 3.4% for DCM, CB, and DCP, respectively (Figure S4, Table
 353 1). The observed dependence of the Pt catalyst indicates that a reactive surface is important

354

355

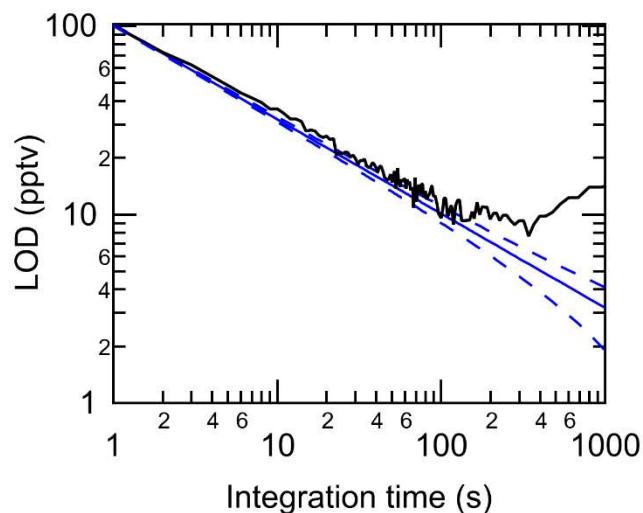
356 **Figure 3.** HCl measured by CRDS plotted against the expected HCl from HCl-TCl converted
 357 DCM (red circle), 1-chlorobutane (blue diamond), and 1,3-dichloropropene (green square) under
 358 condition (1). All values are normalized to the highest expected HCl concentration to better
 359 illustrate deviations from unity (black line). Error bars on the y-axis represent 1 σ in the HCl signal
 360 over 10 minutes. Error bars on the x-axis represent the uncertainty in the PD used to generate
 361 DCM.

362 **Table 1.** Conversion efficiency for tested Cl-containing compounds under different conditions
 363 (both Pt and propane; Pt only; propane only). Note that chlorobenzenes were only tested under
 364 final Pt and propane conditions.

Tested TCl _g species	Cl bond dissociation energy (kJ mol ⁻¹)	Conversion efficiency (%)		
		Pt and propane	Pt only	Propane only
Dichloromethane (DCM) ^a	310	99.6 \pm 3.2	80.7 \pm 2.4	94.4 \pm 6.6
1-Chlorobutane (CB) ^a	410	104.8 \pm 5.6	54.1 \pm 6.6	44.2 \pm 5.9
1, 3-Dichloropropene (DCP) ^a	350	102.7 \pm 7.8	54.3 \pm 5.2	41.7 \pm 5.1

Trichlorobenzene (TrCB) ^b	400	97.0 ± 19.9		
Tetrachlorobenzene (TeCB) ^b	400	90.6 ± 10.3		
Pentachlorobenzene (PeCB) ^b	400	90.2 ± 14.8		

^aConversion efficiency was determined from the orthogonal distance regression slope and $\pm \sigma$ and propagated error from individual permeation devices.


^bConversion efficiency was determined directly by the quantity (mol) of HCl measured from liquid injections of 1 mM standards. The error represents $\pm \sigma$ of measurements for n = 5 (TrCB) or n = 4 (TeCB, PeCB) injections.

365 to achieve complete thermolysis at 825 °C. The relatively higher conversion for DCM in the
 366 absence of the Pt catalyst or hydrogen source may be attributed to its lower bond dissociation
 367 energy (310 kJ mol⁻¹) compared to estimated bond dissociation energies for CB and DCP (CB
 368 inferred from Table S2 (~410 kJ mol⁻¹), and DCP from tetrachloroethylene (350 kJ mol⁻¹ in Table
 369 S1)). It is possible that a higher temperature could lead to full conversion of TCl_g in the absence
 370 of Pt catalyst; however, that was not explored in this study. To further validate the HCl-TCl, the
 371 conversion efficiency of three aryl chlorine compounds were tested under the final operating
 372 conditions (i.e., in the presence of both Pt and added propane). The TCl_g measured from the three
 373 aryl compounds was unity, within the uncertainty of the measurement (Table 1).

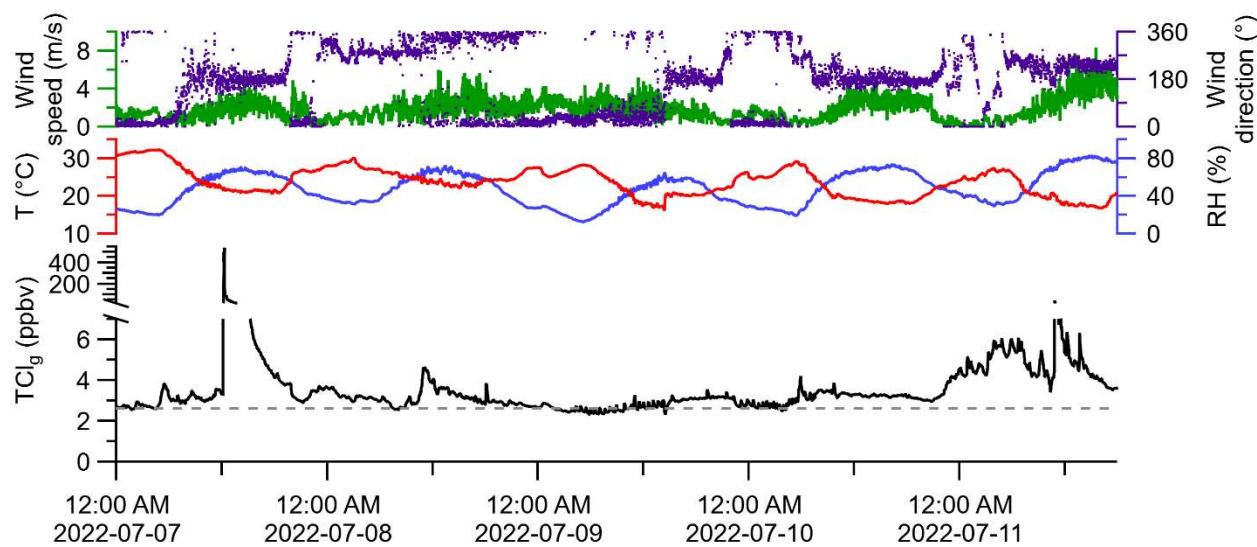
374 The results for all six compounds show that the HCl-TCl is capable of complete conversion
 375 of mono and polychlorinated species on sp³ and sp² carbons using the determined temperature and
 376 flow conditions. The complete thermolysis of the strongest C-Cl bond on the primary alkyl
 377 chloride (CB) demonstrates the efficacy of the HCl-TCl. Breaking these relatively strong C-Cl
 378 bonds, with consistent conversion efficiency across alkyl, allyl, and aryl C-Cl bonds, is a good
 379 proof of concept for complete conversion of all bonds of similar or weaker bond energies that
 380 characterize all other TCl_g. To practically validate the HCl-TCl under real-world conditions with
 381 atmospherically relevant TCl_g mixtures and mixing ratios we also deployed and configured the
 382 system to measure outdoor and indoor air.

388 **3.3. Performance metrics of HCl-TCl**

389 Using a flow of zero air through the HCl-TCl, method limits of detection (LODs) were
390 calculated as three times the Allan-Werle deviation (Figure 4) when overflowing a 20 cm inlet
391 (3.17 mm i.d.) with zero air for one hour. The LODs determined in the measurements for 2 second,
392 1 minute, 5 minute, and 1 hour integration times were 73, 15, 10, and 8 pptv, respectively. The
393 response time of the instrument was assessed during experiments with DCM, CB, and CP. The
394 time for the signal to decay after removal of the PDs was determined to 37 % (1/e) and 90 % (t_{90})
395 of the maximum signal. The maximum time to achieve 1/e was 23 seconds, while the maximum
396 time to achieve t_{90} was 189 seconds (Table S3). These are comparable to the response times for
397 the HCl CRDS instrument itself (Furlani et al., 2021), suggesting the addition of the inlet furnace
398 has a modest impact on the residence time. Given the high mixing ratios used to test the response
399 times, we argue that under most conditions relevant to indoor and outdoor atmospheric chemistry,
400 a sample integration time of one minute will minimize any time response effects. Data for outdoor
401 and indoor sampling described in Sections 3.4 and 3.5 were therefore averaged to one minute.
402 During all experiments with gaseous reagents, no evidence of catalyst performance degradation
403 was observed.

405 **Figure 4.** Allan-Werle deviation (3σ) in the HCl-TCl purged with zero-air (black line) shown
406 with the ideal deviation (no drift, solid blue line) and associated error in the deviation (dashed
407 blue line).

408 **3.4. HCl-TCl applications to outdoor air**


409 We deployed the system to measure ambient outdoor air, which we compare to the expected
410 TCl_g range from complete thermolysis of previously measured Cl-containing compounds,
411 estimated to be between 3.3 and 19 ppbv (Table S1). Global background levels of long-lived
412 chlorine-containing species (LLCl_g) are well established (WMO (World Meteorological
413 Organization), 2018) and were calculated by equation 3 using data from Table S1:

$$414 \text{LLCl}_g = 3*[\text{CCl}_3\text{F}] + 2*[\text{CCl}_2\text{F}_2] + 4*[\text{CCl}_2\text{FCCl}_2\text{F}] + 4*[\text{CCl}_3\text{CClF}_2] + 3*[\text{CCl}_3\text{CF}_3] + \\ 415 2*[\text{CClF}_2\text{CClF}_2] + 2*[\text{CCl}_2\text{FCF}_3] + [\text{CClF}_2\text{CF}_3] + [\text{CHClF}_2] + [\text{CH}_2\text{ClCF}_3] + 2*[\text{CH}_3\text{CCl}_2\text{F}] + \\ 416 [\text{CBrClF}_2] + 4*[\text{CCl}_4] \quad E3$$

417 A global background for LLCl_g of approximately 2.6 ppbv is expected ((WMO (World
418 Meteorological Organization), 2018), Table S1). The maximum, minimum, and median of
419 observed ambient TCl_g were 536.3, 2.0, and 3.1 ppbv, respectively (Figure 5). Measurements of
420 HCl alone were not made during these periods but reported ranges of HCl mixing ratios for this
421 sampling location from Furlani et al. (2021) and Angelucci et al. (2021) were typically below 110
422 pptv, with intermittent events up to 600 pptv. The filter present in the inlet was unlikely to have
423 led to artifacts in this measurement. Particulate chloride is negligible in continental summertime
424 environments (Kolesar et al., 2018), indicating blow off artifacts would be minimal. As expected,
425 most ambient TCl_g measurements were above the expected mixing ratio of LLCl_g . It is possible
426 that semi-volatile chlorinated species could have partitioned to the filter, acting as a blow on effect,
427 and leading to an underestimate of TCl_g . However, the warm temperatures during sampling (13 to
428 31 °C) and high observed TCl_g levels suggest this was not a large effect. There is clear evidence
429 of TCl_g sources beyond LLCl_g at the sampling site, with several plumes of elevated TCl_g
430 intercepted. For example, the maximum TCl_g measurement (536.3 ppbv) was made in a plume just

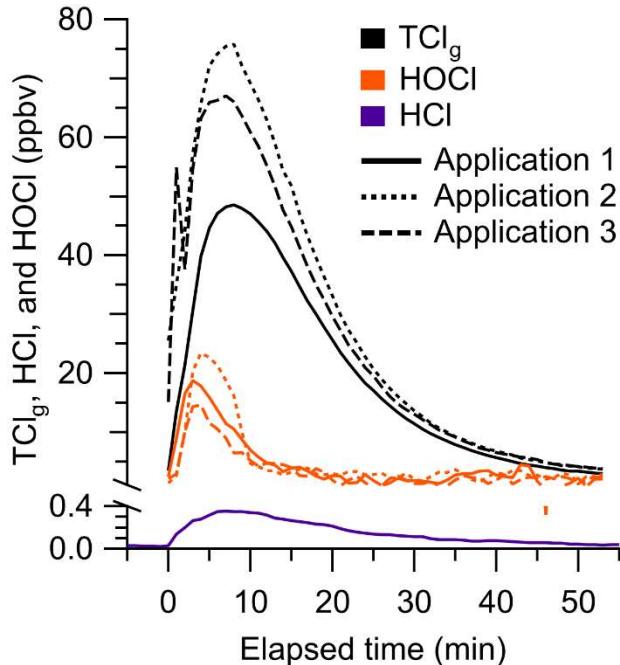
431 after noon on July 7. Another plume was detected on July 11, with a maximum TCI_g of 42.1 ppbv.
432 Though the purpose of this study was not to determine sources of TCI_g , we observed that plumes
433 containing elevated TCI_g arrived from the S-SW of the sampling site, where several facilities that
434 had reported tens to thousands of kg of yearly emissions to air of Cl-containing species are located
435 (Figure S5).

436

437

438 **Figure 5.** Monitoring meteorological conditions and one-minute averaged TCI_g in outdoor air
439 through HCl-TCl from July 7 to 11, 2022. Grey dashed line represents the background mixing
440 ratio for LLCI_g .

441 **3.5. HCl-TCl application to indoor cleaning**


442 We applied a chlorine-based cleaning product four times in a well-lit indoor room and
443 measured TCI_g using the HCl-TCl and HOCl analyzer during three of the cleaning events (Figure
444 6). One cleaning experiment was done without the HCl-TCl and had a maximum of 370 pptv HCl.
445 These levels are comparable to peak HCl levels of ~500 pptv observed from surface application
446 of bleach (Dawe et al., 2019). Consistent with previous speciated measurements (Mattila et al.,
447 2020; Wong et al., 2017), HCl, HOCl, and TCI_g levels increased rapidly over ~5 minutes after the
448 application of the cleaning product. The maximum levels of TCI_g from HCl-TCl during application

1, 2, and 3, were 49.2, 80.0, and 69.7 ppbv, respectively. The maximum levels of HOCl from applications 1, 2, and 3, were 19.6, 24.2, and 16.8 ppbv, respectively, corresponding to 24 to 40 % of peak TCI_g and 14 to 22 % of integrated TCI_g . These TCI_g levels were several times higher than most observed in outdoor air (Section 3.4) and were within the range expected from previous experiments (Table S1). The levels of chlorinated species observed during bleaching events is variable, between 15 to 100s of ppbv (Mattila et al., 2020; Odabasi, 2008; Wang et al., 2019; Wong et al., 2017). By comparison, our highest observed mixing ratio was 80 ppbv. Because the multiphase chemical processes involved in bleach application are complex and poorly understood, it is difficult to compare levels between similar studies, given that the underlying ambient conditions can be very different. In addition, physical parameters, such as volume of cleaning solution applied, room size, and ventilation, can all affect observed mixing ratios. For example, studies have observed that gaseous NH_3 partitioning into aqueous bleach can produce large and variable amounts of chloramines, NH_2Cl , NHCl_2 , and NCl_3 (Mattila et al., 2020; Wong et al., 2017). In our experiments, there was on average 82 ± 4 % of integrated TCI_g that could not be accounted for by the HOCl measurement. Additional chlorinated species that have previously been observed to be emitted from surface bleaching include ClNO_2 , NH_2Cl , NHCl_2 , NCl_3 , and several chlorinated organics (Odabasi, 2008; Mattila et al., 2020; Wong et al., 2017) which likely also contributed to our measured TCI_g . We observed that TCI_g decayed $\sim 15\%$ faster than the air exchange rate (0.72 h^{-1}), indicating additional chemical loss pathways or surface interactions (Figure S6). We observed a shorter lifetime of HOCl relative to TCI_g , which is consistent with faster decay rates observed for HOCl and similar TCI_g species by Wong et. al., (2017). The HOCl started decreasing after ~ 300 s had elapsed while the TCI_g levels were still increasing. This

471 suggests that reactions involving HOCl may have led to additional TCl_g species, which has been
472 observed in laboratory studies (Wang et al., 2019).

473 In-situ measurements of TCl_g could provide additional insight into sources of chlorinated
474 species to indoor environments by creating a total inventory from which the contributions of
475 individual measured species can be compared and used to elucidate unknown TCl_g levels and
476 mechanisms in real-time. Furthermore, several chlorinated species that have previously been
477 observed to be emitted from surface bleaching, including Cl₂, HOCl, ClNO₂, NH₂Cl, NHCl₂, and
478 NCl₃ (Mattila et al., 2020; Wong et al., 2017), have been measured by chemical ionization mass
479 spectrometry (CIMS). Quantifying chlorinated species using CIMS remains challenging due to the
480 required calibrations and difficulty in generating pure gas phase standards. It is therefore desirable
481 to have a technique such as the one proposed in this study that does not require calibrations or
482 knowledge of potential unknown TCl_g species. A combination of the two methods would help
483 constrain the total levels while still observing speciation for key TCl_g species.

484

485

486 **Figure 6.** One-minute average HCl (purple), HOCl (orange), and TCl_g (black) observed during
 487 cleaning spray events. Mixing ratios were background corrected prior to each cleaning event. Each
 488 subsequent application of cleaner is illustrated by a lighter shade for HOCl and TCl_g.

489

490 **4. Conclusions**

491 In this work we developed, optimized, validated, and applied a method capable of converting
 492 TCl_g into gaseous HCl for detection by CRDS. Our TCl_g measurement technique, the HCl-TCl, is
 493 composed of a platinum catalyst mesh inside a quartz glass flow tube all contained within a split-
 494 tube furnace. The temperature and flow rate were optimized at 825 °C and 1.5 seconds,
 495 respectively using DCM. These conditions were validated by the complete conversion of
 496 organochlorine compounds with strong C-Cl bonds. The HCl-TCl was used to measure TCl_g
 497 outdoors, observing a range of 2.0 to 536.3 ppbv. Levels mostly exceeded the expected background
 498 mixing ratio of LLCl_g. We also applied the HCl-TCl to an indoor environment during commercial
 499 bleach spray cleaning events and observed varying increases in TCl_g (50–80 ppbv), which was in
 500 reasonable agreement with levels observed in previous speciated measurements. The agreement of

501 HCl-TC1 outdoor and indoor measurements with available bottom-up estimates indicates its
502 efficacy under real-world scenarios. Rapid changes in TCl_g were observed in both outdoor and
503 indoor environments indicating the utility of an in-situ technique to constrain the sources and
504 chemistry of TCl_g , as well as its impact on air quality, climate, and health. We anticipate this
505 approach could be used in several applications, including comparisons to speciated measurements
506 of chlorinated compounds and to further explore Cl reactivity and cycling with respect for indoor
507 and outdoor TCl_g .

508 **Acknowledgements**

509 We acknowledge the Sloan Foundation and Natural Sciences Engineering and Research Council
510 of Canada for funding. We thank Melodie Lao and Yashar Iranpour for collecting air exchange
511 rate data, Andrea Angelucci for collecting meteorological data, Dirk Verdoold for the custom
512 quartz tube, and Chris Caputo, John Liggio, Rob McLaren, and Trevor VandenBoer for helpful
513 discussions. PME thanks the European Research Council. TFK is a Canada Research Chair in
514 Environmental Analytical Chemistry. This work was undertaken, in part, thanks to funding from
515 the Canada Research Chairs program.

516 **Author contributions**

517 TCF, RY, JS, and LRC collected and analyzed the data. TCF, RY, LRC, and CJY conceived of
518 and designed the experiments with input from PME and TFK. Funding was obtained by TFK and
519 CJY. The manuscript was written by TCF, RY, and CJY with input from all authors.

520 **Data availability**

521 Outdoor and indoor datasets [can be found in Furlani et al. \(2022,](#)
522 <https://doi.org/10.20383/103.0649>). submitted to Federated Research Data Repository as Furlani,

523 [T.C., Ye, R., Stewart, J., Crilley, L.R., Edwards, P.M., Kahan, T.F., Young, C.J. \(2022\). Outdoor](#)
524 [and indoor gaseous total chlorine measurement in Toronto Canada. Federated Research Data](#)
525 [Repository. DOI will be updated when available.](#)

526 **Competing interests**

527 The authors declare no competing interests.

528 **5. References**

529 Adcock, K. E., Reeves, C. E., Gooch, L. J., Leedham Elvidge, E. C., Ashfold, M. J.,
530 Brenninkmeijer, C. A. M., Chou, C., Fraser, P. J., Langenfelds, R. L., Mohd Hanif, N.,
531 O'Doherty, S., Oram, D. E., Ou-Yang, C.-F., Phang, S. M., Samah, A. A., Röckmann, T.,
532 Sturges, W. T., and Laube, J. C.: Continued increase of CFC-113a (CCl₃CF₃) mixing ratios in
533 the global atmosphere: emissions, occurrence and potential sources, *Atmos. Chem. Phys.*, 18,
534 4737–4751, <https://doi.org/10.5194/acp-18-4737-2018>, 2018.

535 Andrews, S. J., Carpenter, L. J., Apel, E. C., Atlas, E., Donets, V., Hopkins, J. R., Hornbrook, R.
536 S., Lewis, A. C., Lidster, R. T., Lueb, R., Minaeian, J., Navarro, M., Punjabi, S., Riemer, D., and
537 Schauffler, S.: A comparison of very short lived halocarbon (VSLS) and DMS aircraft
538 measurements in the tropical west Pacific from CAST, ATTREX and CONTRAST, *Atmos.*
539 *Meas. Tech.*, 9, 5213–5225, <https://doi.org/10.5194/amt-9-5213-2016>, 2016.

540 Berg, W. W., Crutzen, P. J., Grahek, F. E., Gitlin, S. N., and Sedlacek, W. A.: First
541 measurements of total chlorine and bromine in the lower stratosphere, *Geophys Res Lett*, 7, 937–
542 940, <https://doi.org/10.1029/GL007i011p00937>, 1980.

543 Blankenship, A., Chang, D. P. Y., Jones, A. D., Kelly, P. B., Kennedy, I. M., Matsumura, F.,
544 Pasek, R., and Yang, G.: Toxic combustion by-products from the incineration of chlorinated
545 hydrocarbons and plastics, *Chemosphere*, 28, 183–196,
546 [https://doi.org/10.1016/0045-6535\(94\)90212-7](https://doi.org/10.1016/0045-6535(94)90212-7), 1994.

547 Butz, A., Dinger, A. S., Bobrowski, N., Kostinek, J., Fieber, L., Fischerkeller, C., Giuffrida, G.
548 B., Hase, F., Klappenbach, F., Kuhn, J., Lübcke, P., Tirpitz, L., and Tu, Q.: Remote sensing of
549 volcanic CO₂, HF, HCl, SO₂, and BrO in the downwind plume of Mt. Etna, *Atmos Meas Tech*,
550 10, 1–14, <https://doi.org/10.5194/amt-10-1-2017>, 2017.

551 Dawe, K. E. R., Furlani, T. C., Kowal, S. F., Kahan, T. F., Vandenboer, T. C., and Young, C. J.:
552 Formation and emission of hydrogen chloride in indoor air, *Indoor Air*, 70–78,
553 <https://doi.org/10.1111/ina.12509>, 2019.

554 Doucette, W. J., Wetzel, T. A., Dettenmaier, E., and Gorder, K.: Emission rates of chlorinated
555 volatile organics from new and used consumer products found during vapor intrusion

556 investigations: Impact on indoor air concentrations, Environ Forensics, 19, 185–190,
557 <https://doi.org/10.1080/15275922.2018.1475433>, 2018.

558 Fernando, S., Jobst, K. J., Taguchi, V. Y., Helm, P. A., Reiner, E. J., and McCarry, B. E.:
559 Identification of the Halogenated Compounds Resulting from the 1997 Plastimet Inc. Fire in
560 Hamilton, Ontario, using Comprehensive Two-Dimensional Gas Chromatography and
561 (Ultra)High Resolution Mass Spectrometry, Environ Sci Technol, 48, 10656–10663,
562 <https://doi.org/10.1021/es503428j>, 2014.

563 Finlayson-Pitts, B. J.: Chlorine Atoms as a Potential Tropospheric Oxidant in the Marine
564 Boundary Layer, Research on Chemical Intermediates, 19, 235–249,
565 <https://doi.org/10.1163/156856793X00091>, 1993.

566 Furlani, T., Ye, R., Stewart, J., Crilley, L., Edwards, P., Kahan, T., and Young, C.: Outdoor and
567 indoor gaseous total chlorine measurement in Toronto Canada [data set], Federated Research
568 Data Repository, <https://doi.org/10.20383/103.0649>, 2022.

569 Furlani, T. C., Veres, P. R., Dawe, K. E., Neuman, J. A., Brown, S. S., VandenBoer, T. C., and
570 Young, C. J.: Validation of a new cavity ring-down spectrometer for measuring tropospheric
571 gaseous hydrogen chloride., Atmos Meas Tech, 14, 5859–5871,
572 <https://doi.org/https://doi.org/10.5194/amt-2021-105>, 2021.

573 Giardino, N. J. and Andelman, J. B.: Characterization of the emissions of trichloroethylene,
574 chloroform, and 1,2-dibromo-3-chloropropane in a full-size, experimental shower., J Expo Anal
575 Environ Epidemiol, 6, 413–423, 1996.

576 Hardy, J. E. and Knarr, J. J.: Technique for Measuring the Total Concentration of Gaseous Fixed
577 Nitrogen Species, J Air Pollut Control Assoc, 32, 376–379,
578 <https://doi.org/10.1080/00022470.1982.10465412>, 1982.

579 Haskins, J. D., Jaeglé, L., Shah, V., Lee, B. H., Lopez-Hilfiker, F. D., Campuzano-Jost, P.,
580 Schroder, J. C., Day, D. A., Guo, H., Sullivan, A. P., Weber, R., Dibb, J., Campos, T., Jimenez,
581 J. L., Brown, S. S., and Thornton, J. A.: Wintertime gas-particle partitioning and speciation of
582 inorganic chlorine in the lower troposphere over the northeast United States and coastal ocean,
583 Journal of Geophysical Research: Atmospheres, 123, 12,897-12,916,
584 <https://doi.org/10.1029/2018JD028786>, 2018.

585 Henschler, D.: Toxicity of Chlorinated Organic Compounds: Effects of the Introduction of
586 Chlorine in Organic Molecules, Angewandte Chemie International Edition in English, 33, 1920–
587 1935, <https://doi.org/https://doi.org/10.1002/anie.199419201>, 1994.

588 Kannan, K., Kawano, M., Kashima, Y., Matsui, M., and Giesy, J. P.: Extractable
589 Organohalogens (EOX) in Sediment and Biota Collected at an Estuarine Marsh near a Former
590 Chloralkali Facility, Environ Sci Technol, 33, 1004–1008, <https://doi.org/10.1021/es9811142>,
591 1999.

592 Kato, M., Urano, K., and Tasaki, T.: Development of Semi- and Nonvolatile Organic Halogen as
593 a New Hazardous Index of Flue Gas, *Environ Sci Technol*, 34, 4071–4075,
594 <https://doi.org/10.1021/es000881+>, 2000.

595 Kawano, M., Falandysz, J., and Wakimoto, T.: Instrumental neutron activation analysis of
596 extractable organohalogens in the Antarctic Weddell seal (*Leptonychotes weddelli*), *J*
597 *Radioanal Nucl Chem*, 272, 501–504, <https://doi.org/10.1007/s10967-007-0611-5>, 2007.

598 Keene, William. C., Khalil, M. A. K., Erickson, David. J., McCulloch, A., Graedel, T. E., Lobert,
599 J. M., Aucott, M. L., Gong, S. L., Harper, D. B., Kleiman, G., Midgley, P., Moore, R. M.,
600 Seuzaret, C., Sturges, W. T., Benkovitz, C. M., Koropalov, V., Barrie, L. A., and Li, Y. F.:
601 Composite global emissions of reactive chlorine from anthropogenic and natural sources:
602 Reactive Chlorine Emissions Inventory, *Journal of Geophysical Research: Atmospheres*, 104,
603 8429–8440, <https://doi.org/10.1029/1998JD100084>, 1999.

604 Khalil, M. A. K., Moore, R. M., Harper, D. B., Lobert, J. M., Erickson, D. J., Koropalov, V.,
605 Sturges, W. T., and Keene, W. C.: Natural emissions of chlorine-containing gases: Reactive
606 Chlorine Emissions Inventory, *Journal of Geophysical Research: Atmospheres*, 104, 8333–8346,
607 <https://doi.org/10.1029/1998JD100079>, 1999.

608 Kolesar, K. R., Mattson, C. N., Peterson, P. K., May, N. W., Prendergast, R. K., and Pratt, K. A.:
609 Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application,
610 *Atmos Environ*, 177, 195–202, <https://doi.org/10.1016/j.atmosenv.2018.01.008>, 2018.

611 Lao, M., Crilley, L. R., Salehpoor, L., Furlani, T. C., Bourgeois, I., Neuman, J. A., Rollins, A.
612 W., Veres, P. R., Washenfelder, R. A., Womack, C. C., Young, C. J., and VandenBoer, T. C.: A
613 portable, robust, stable and tunable calibration source for gas-phase nitrous acid (HONO), *Atmos*
614 *Meas Tech*, 13, 5873–5890, <https://doi.org/10.5194/amt-13-5873-2020>, 2020.

615 Lobert, J. M., Keene, W. C., Logan, J. A., and Yevich, R.: Global chlorine emissions from
616 biomass burning: Reactive Chlorine Emissions Inventory, *Journal of Geophysical Research*
617 *Atmospheres*, 104, 8373–8389, <https://doi.org/10.1029/1998JD100077>, 1999.

618 Maris, C., Chung, M. Y., Lueb, R., Krischke, U., Meller, R., Fox, M. J., and Paulson, S. E.:
619 Development of instrumentation for simultaneous analysis of total non-methane organic carbon
620 and volatile organic compounds in ambient air, *Atmos Environ*, 37, 149–158,
621 [https://doi.org/https://doi.org/10.1016/S1352-2310\(03\)00387-X](https://doi.org/https://doi.org/10.1016/S1352-2310(03)00387-X), 2003.

622 Massin, N., Bohadana, A. B., Wild, P., Héry, M., Toomain, J. P., and Hubert, G.: Respiratory
623 symptoms and bronchial responsiveness in lifeguards exposed to nitrogen trichloride in indoor
624 swimming pools., *Occup Environ Med*, 55, 258 LP – 263, <https://doi.org/10.1136/oem.55.4.258>,
625 1998.

626 Mattila, J. M., Lakey, P. S. J., Shiraiwa, M., Wang, C., Abbatt, J. P. D., Arata, C., Goldstein, A.
627 H., Ampollini, L., Katz, E. F., DeCarlo, P. F., Zhou, S., Kahan, T. F., Cardoso-Saldaña, F. J.,
628 Ruiz, L. H., Abeleira, A., Boedicker, E. K., Vance, M. E., and Farmer, D. K.: Multiphase
629 Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during

630 Bleach Cleaning, *Environ Sci Technol*, 54, 1730–1739, <https://doi.org/10.1021/acs.est.9b05767>,
631 2020.

632 Miyake, Y., Kato, M., and Urano, K.: A method for measuring semi- and non-volatile organic
633 halogens by combustion ion chromatography, *J Chromatogr A*, 1139, 63–69,
634 <https://doi.org/https://doi.org/10.1016/j.chroma.2006.10.078>, 2007a.

635 Miyake, Y., Yamashita, N., Rostkowski, P., So, M. K., Taniyasu, S., Lam, P. K. S., and Kannan,
636 K.: Determination of trace levels of total fluorine in water using combustion ion chromatography
637 for fluorine: A mass balance approach to determine individual perfluorinated chemicals in water,
638 *J Chromatogr A*, 1143, 98–104, <https://doi.org/https://doi.org/10.1016/j.chroma.2006.12.071>,
639 2007b.

640 Miyake, Y., Yamashita, N., So, M. K., Rostkowski, P., Taniyasu, S., Lam, P. K. S., and Kannan,
641 K.: Trace analysis of total fluorine in human blood using combustion ion chromatography for
642 fluorine: A mass balance approach for the determination of known and unknown organofluorine
643 compounds, *J Chromatogr A*, 1154, 214–221,
644 <https://doi.org/https://doi.org/10.1016/j.chroma.2007.03.084>, 2007c.

645 Montzka, S. A., Dutton, G. S., Portmann, R. W., Chipperfield, M. P., Davis, S., Feng, W.,
646 Manning, A. J., Ray, E., Rigby, M., Hall, B. D., Siso, C., Nance, J. D., Krummel, P. B., Mühle,
647 J., Young, D., O'Doherty, S., Salameh, P. K., Harth, C. M., Prinn, R. G., Weiss, R. F., Elkins, J.
648 W., Walter-Terrinoni, H., and Theodoridi, C.: A decline in global CFC-11 emissions during
649 2018–2019, *Nature*, 590, 428–432, <https://doi.org/10.1038/s41586-021-03260-5>, 2021.

650 Nuckols, J. R., Ashley, D. L., Lyu, C., Gordon, S. M., Hinckley, A. F., and Singer, P.: Influence
651 of tap water quality and household water use activities on indoor air and internal dose levels of
652 trihalomethanes, *Environ Health Perspect*, 113, 863–870, <https://doi.org/10.1289/ehp.7141>,
653 2005.

654 Odabasi, M.: Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach-
655 Containing Household Products, *Environ Sci Technol*, 42, 1445–1451,
656 <https://doi.org/10.1021/es702355u>, 2008.

657 Odabasi, M., Elbir, T., Dumanoglu, Y., and Sofuooglu, S.: Halogenated volatile organic
658 compounds in chlorine-bleach-containing household products and implications for their use,
659 *Atmos Environ*, 92, 376–383, <https://doi.org/10.1016/j.atmosenv.2014.04.049>, 2014.

660 Pan, L. L., Atlas, E. L., Salawitch, R. J., Honomichl, S. B., Bresch, J. F., Randel, W. J., Apel, E.
661 C., Hornbrook, R. S., Weinheimer, A. J., Anderson, D. C., Andrews, S. J., Baidar, S., Beaton, S.
662 P., Campos, T. L., Carpenter, L. J., Chen, D., Dix, B., Donets, V., Hall, S. R., Hanisco, T. F.,
663 Homeyer, C. R., Huey, L. G., Jensen, J. B., Kaser, L., Kinnison, D. E., Koenig, T. K., Lamarque,
664 J.-F., Liu, C., Luo, J., Luo, Z. J., Montzka, D. D., Nicely, J. M., Pierce, R. B., Riemer, D. D.,
665 Robinson, T., Romashkin, P., Saiz-Lopez, A., Schauffler, S., Shieh, O., Stell, M. H., Ullmann,
666 K., Vaughan, G., Volkamer, R., and Wolfe, G.: The Convective Transport of Active Species in
667 the Tropics (CONTRAST) Experiment, *Bull Am Meteorol Soc*, 98, 106–128,
668 <https://doi.org/10.1175/BAMS-D-14-00272.1>, 2017.

669 Prinn, R. G., Weiss, R. F., Arduini, J., Arnold, T., DeWitt, H. L., Fraser, P. J., Ganesan, A. L.,
670 Gasore, J., Harth, C. M., Hermansen, O., Kim, J., Krummel, P. B., Li, S., Loh, Z. M., Lunder, C.
671 R., Maione, M., Manning, A. J., Miller, B. R., Mitrevski, B., Mühle, J., O'Doherty, S., Park, S.,
672 Reimann, S., Rigby, M., Saito, T., Salameh, P. K., Schmidt, R., Simmonds, P. G., Steele, L. P.,
673 Vollmer, M. K., Wang, R. H., Yao, B., Yokouchi, Y., Young, D., and Zhou, L.: History of
674 chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric
675 Gases Experiment (AGAGE), *Earth Syst. Sci. Data*, 10, 985–1018, <https://doi.org/10.5194/essd-10-985-2018>, 2018.

677 Raff, J. D., Njegic, B., Chang, W. L., Gordon, M. S., Dabdub, D., Gerber, R. B., and Finlayson-
678 Pitts, B. J.: Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen
679 oxides with hydrogen chloride, *Proceedings of the National Academy of Sciences*, 106, 13647
680 LP – 13654, <https://doi.org/10.1073/pnas.0904195106>, 2009.

681 Riedel, T. P., Wolfe, G. M., Danas, K. T., Gilman, J. B., Kuster, W. C., Bon, D. M., Vlasenko,
682 A., Li, S.-M., Williams, E. J., Lerner, B. M., Veres, P. R., Roberts, J. M., Holloway, J. S., Lefer,
683 B., Brown, S. S., and Thornton, J. A.: An MCM modeling study of nitryl chloride (ClNO₂)
684 impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental
685 outflow, *Atmos. Chem. Phys.*, 14, 3789–3800, <https://doi.org/10.5194/acp-14-3789-2014>, 2014.

686 Roberts, J. M., Bertman, S. B., Jobson, T., Niki, H., and Tanner, R.: Measurement of total
687 nonmethane organic carbon (Cy): Development and application at Chebogue Point, Nova Scotia,
688 during the 1993 North Atlantic Regional Experiment campaign, *Journal of Geophysical
689 Research: Atmospheres*, 103, 13581–13592, <https://doi.org/10.1029/97JD02240>,
690 1998.

691 Saiz-Lopez, A. and Von Glasow, R.: Reactive halogen chemistry in the troposphere, *Chem Soc
692 Rev*, 41, 6448–6472, <https://doi.org/10.1039/c2cs35208g>, 2012.

693 Schwartz-Narbonne, H., Wang, C., Zhou, S., Abbatt, J. P. D., and Faust, J.: Heterogeneous
694 chlorination of squalene and oleic acid, *Environ Sci Technol*, 53, 1217–1224,
695 <https://doi.org/10.1021/acs.est.8b04248>, 2019.

696 Shepherd, J. L., Corsi, R. L., and Kemp, J.: Chloroform in Indoor Air and Wastewater: The Role
697 of Residential Washing Machines., *J Air Waste Manag Assoc*, 46, 631–642,
698 <https://doi.org/10.1080/10473289.1996.10467497>, 1996.

699 Sherwen, T., Schmidt, J. A., Evans, M. J., Carpenter, L. J., Großmann, K., Eastham, S. D., Jacob,
700 D. J., Dix, B., Koenig, T. K., Sinreich, R., Ortega, I., Volkamer, R., Saiz-Lopez, A., Prados-
701 Roman, C., Mahajan, A. S., and Ordóñez, C.: Global impacts of tropospheric halogens (Cl, Br, I)
702 on oxidants and composition in GEOS-Chem, *Atmos. Chem. Phys.*, 16, 12239–12271,
703 <https://doi.org/10.5194/acp-16-12239-2016>, 2016.

704 Simpson, W. R., Brown, S. S., Saiz-Lopez, A., Thornton, J. A., and Von Glasow, R.:
705 Tropospheric Halogen Chemistry: Sources, Cycling, and Impacts, *Chem Rev*, 115, 4035–4062,
706 <https://doi.org/10.1021/cr5006638>, 2015.

707 Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, *Reviews of*
708 *Geophysics*, 37, 275–316, <https://doi.org/10.1029/1999RG900008>, 1999.

709 Stockwell, C. E., Kupc, A., Witkowski, B., Talukdar, R. K., Liu, Y., Selimovic, V., Zarzana, K.
710 J., Sekimoto, K., Warneke, C., Washenfelder, R. A., Yokelson, R. J., Middlebrook, A. M., and
711 Roberts, J. M.: Characterization of a catalyst-based conversion technique to measure total
712 particulate nitrogen and organic carbon and comparison to a particle mass measurement
713 instrument, *Atmos. Meas. Tech.*, 11, 2749–2768, <https://doi.org/10.5194/amt-11-2749-2018>,
714 2018.

715 Unsal, V., Cicek, M., and Sabancilar, İ.: Toxicity of carbon tetrachloride, free radicals and role
716 of antioxidants, *Rev Environ Health*, 36, 279–295, <https://doi.org/doi:10.1515/reveh-2020-0048>,
717 2021.

718 Veres, P., Gilman, J. B., Roberts, J. M., Kuster, W. C., Warneke, C., Burling, I. R., and de
719 Gouw, J.: Development and validation of a portable gas phase standard generation and
720 calibration system for volatile organic compounds, *Atmos. Meas. Tech.*, 3, 683–691,
721 <https://doi.org/10.5194/amt-3-683-2010>, 2010.

722 Wang, C., Collins, D. B., and Abbatt, J. P. D.: Indoor Illumination of Terpenes and Bleach
723 Emissions Leads to Particle Formation and Growth, *Environ Sci Technol*, 53, 11792–11800,
724 <https://doi.org/10.1021/acs.est.9b04261>, 2019.

725 White, C. W. and Martin, J. G.: Chlorine Gas Inhalation, *Proc Am Thorac Soc*, 7, 257–263,
726 <https://doi.org/10.1513/pats.201001-008SM>, 2010.

727 WMO (World Meteorological Organization): Scientific Assessment of Ozone Depletion: 2018,
728 Report No., Global Ozone Research and Monitoring Project, Geneva, Switzerland, 588 pp. pp.,
729 2018.

730 Wong, J. P. S., Carslaw, N., Zhao, R., Zhou, S., and Abbatt, J. P. D.: Observations and impacts
731 of bleach washing on indoor chlorine chemistry, *Indoor Air*, 27, 1082–1090,
732 <https://doi.org/10.1111/ina.12402>, 2017.

733 Xu, D., Zhong, W., Deng, L., Chai, Z., and Mao, X.: Levels of Extractable Organohalogens in
734 Pine Needles in China, *Environ Sci Technol*, 37, 1–6, <https://doi.org/10.1021/es025799o>, 2003.

735 Xu, D., Tian, Q., and Chai, Z.: Determination of extractable organohalogens in the atmosphere
736 by instrumental neutron activation analysis, *J Radioanal Nucl Chem*, 270, 5–8,
737 <https://doi.org/10.1007/s10967-006-0302-7>, 2006.

738 Xu, D., Dan, M., Song, Y., Chai, Z., and Zhuang, G.: Instrumental neutron activation analysis of
739 extractable organohalogens in PM2.5 and PM10 in Beijing, China, *J Radioanal Nucl Chem*, 271,
740 115–118, <https://doi.org/10.1007/s10967-007-0115-3>, 2007.

741 Yang, M. and Fleming, Z. L.: Estimation of atmospheric total organic carbon (TOC) – paving the
742 path towards carbon budget closure, *Atmos Chem Phys*, 19, 459–471,
743 <https://doi.org/10.5194/acp-19-459-2019>, 2019.

744 Yeung, L. W. Y., Miyake, Y., Taniyasu, S., Wang, Y., Yu, H., So, M. K., Jiang, G., Wu, Y., Li,
745 J., Giesy, J. P., Yamashita, N., and Lam, P. K. S.: Perfluorinated Compounds and Total and
746 Extractable Organic Fluorine in Human Blood Samples from China, *Environ Sci Technol*, 42,
747 8140–8145, <https://doi.org/10.1021/es800631n>, 2008.

748 Young, C. J., Washenfelder, R. A., Edwards, P. M., Parrish, D. D., Gilman, J. B., Kuster, W. C.,
749 Mielke, L. H., Osthoff, H. D., Tsai, C., Pikelnaya, O., Stutz, J., Veres, P. R., Roberts, J. M.,
750 Griffith, S., Dusanter, S., Stevens, P. S., Flynn, J., Grossberg, N., Lefer, B., Holloway, J. S.,
751 Peischl, J., Ryerson, T. B., Atlas, E. L., Blake, D. R., and Brown, S. S.: Chlorine as a primary
752 radical: Evaluation of methods to understand its role in initiation of oxidative cycles, *Atmos
753 Chem Phys*, 14, 3427–3440, <https://doi.org/10.5194/acp-14-3427-2014>, 2014.

754 Zhai, S., Wang, X., McConnell, J. R., Geng, L., Cole-Dai, J., Sigl, M., Chellman, N., Sherwen,
755 T., Pound, R., Fujita, K., Hattori, S., Moch, J. M., Zhu, L., Evans, M., Legrand, M., Liu, P.,
756 Pasteris, D., Chan, Y.-C., Murray, L. T., and Alexander, B.: Anthropogenic Impacts on
757 Tropospheric Reactive Chlorine Since the Preindustrial, *Geophys Res Lett*, 48, e2021GL093808,
758 <https://doi.org/https://doi.org/10.1029/2021GL093808>, 2021.

759 Zhang, W., Jiao, Y., Zhu, R., Rhew, R. C., Sun, B., and Dai, H.: Chloroform (CHCl₃) Emissions
760 From Coastal Antarctic Tundra, *Geophys Res Lett*, 48, e2021GL093811,
761 <https://doi.org/https://doi.org/10.1029/2021GL093811>, 2021.

762