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Abstract. Atmospheric visibility, or meteorological optical range (MOR), is governed by light extinction by aerosols. State-

of-the-art visibility sensors, such as employed in meteorological observatories and airports, infer MOR by either measuring 

transmittance or scattering. While these sensors yield robust measurements with reasonable accuracy (10% to 20%), they 10 

measure in situ. MOR from these sensors may thus not be representative of MOR further away, for example, under conditions 

with stratified aerosol types. This includes off-shore sites near the sea surface during conditions with advection fog, sea spray 

or mist. Elastic backscatter lidar can be used to measure light extinction and has previously demonstrated to be a powerful 

method to infer visibility. Lidar can measure visibility not just near the instrument, but further away (remotely) and single-

ended, whilst capable of measuring profiles of MOR along atmospheric slant paths. Continuous-wave (CW) Doppler wind 15 

lidar systems make up one of the most widespread type of elastic backscatter lidar and are typically used in wind resource 

assessment. Using these existing platforms for remote and single-ended measurement of MOR-profiles could allow for new 

and valuable applications. However, the low light extinction associated with this type of lidar excludes the use of the extinction 

coefficient for MOR retrieval, but leaves the backscatter coefficient as a possible proxy for MOR, though with an accuracy 

expected to be inferior to the former method. We analysed backscatter data from CW wind lidar and co-measured MOR from 20 

visibility sensors from two campaigns (Cabauw, Netherlands and Pershore, United Kingdom) and found backscatter from CW 

wind lidar to be a viable proxy of MOR if calibrated against a visibility sensor. The expected accuracy of the method is low 

and of order of few kilometres. This means MOR from CW wind lidar could be used in safety uncritical problems, such as 

assessment of visibility of man-made objects, including wind turbines. The high sensitivity of the lidar backscatter to aerosol 

type and size distribution could open up additional applications, such as volcanic plume monitoring. 25 

1 Introduction 

Visibility is how well we can see something. More specifically, atmospheric visibility is the maximum horizontal distance an 

object can be seen through the atmosphere with the naked eye. Visibility is traditionally estimated doing exactly that, namely 

by measuring the maximum distance a dark object with a suitable size can be seen on the horizon against the surrounding sky. 
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The visibility of a distant object is a function of several factors, including the object’s colour, the angle of the sun and Earth’s 30 

curvature. However, at constant illumination by the sun, the governing physical mechanism of visibility is the extinction of 

light by scattering through aerosols suspended in the atmosphere. This leads to the definition of meteorological optical range 

(MOR), which quantifies that part of visibility that is caused by light extinction. The MOR therefore provides a quantifiable 

estimate of atmospheric visibility. The world meteorological organization defines MOR as the length of path in the atmosphere 

required to reduce the luminous flux in a collimated beam from an incandescent lamp, at a color temperature of 2700 K, to 5 35 

per cent of its original value, the luminous flux being evaluated by means of the photometric luminosity function of the 

International Commission on Illumination (Jones et al., 1990). Note that a blackbody temperature of 2700 K corresponds to 

about 1100 nm. For daylight conditions, MOR is commonly defined as the horizontal range for which the light intensity 

contrast between the object and the surrounding sky is either 𝐶𝐶𝑡𝑡=2%, or, as later suggested, 5% (Middleton 1947, Dabberdt 

and Eigsti 1981; Nebuloni, 2005). Adopting the well-known Bouguer–Lambert–Beer law and 𝐶𝐶𝑡𝑡=5%, MOR can be written 40 

as 

𝑀𝑀𝑀𝑀𝑀𝑀 =  
−ln (𝐶𝐶𝑡𝑡)

𝜎𝜎
≈ 3

𝜎𝜎
 ,                      (1) 

where 𝜎𝜎 is the atmospheric extinction coefficient (in units of m-1). Hence, by measuring the light extinction 𝜎𝜎, MOR can be 

derived. In practice, MOR is evaluated at a wavelength of 550 nm, close to the human eye’s sensitivity maximum (Nebuloni, 

2005). In the rest of the paper the terms visibility and MOR are used interchangeably. 45 

The traditional method of estimating MOR using human visual observation of targets of well-defined distance and 

albedo delivers values reasonably close to MOR from Eq. (1) and has the advantage that the visibility does not need to be 

translated into a quantity perceptible to humans. The WMO recommends to measure visibility at a height ca. 2 m above ground, 

close to human line of sight (Jones et al., 1990).   

This is also the height at which state of the art visibility sensors, or visiometers, determine MOR. These visiometers 50 

either measure atmospheric transmittance along an optical path of fixed distance or the intensity of forward scattered light, 

from which the extinction coefficient can be retrieved (Crosby, 2003; Werner et al. 2005). One main difference between these 

two approaches is that unlike the transmissivity metre, a sensor measuring forward scattering needs a very small optical path 

only (~10 cm), i.e. it measures in situ, which makes alignment and maintenance easy. Arguably, this risks to sample a portion 

of the sky that is not representative of the wider atmospheric conditions. Both of these approaches are bound to measure 55 

visibility at the height they are mounted at, usually few metres above ground level (agl) and both are double-ended, meaning 

the receiver is located at the opposite end of the optical transmitter. 

The aerosol number density, and thus the visibility, is generally a function of height agl. Especially offshore, a strong 

vertical stratification at the sea/atmosphere interface due to condensation caused by advection is to be expected. A visibility 

sensor mounted a few metres above the sea surface (e.g. at the beach or on a buoy) could be immerged in a layer of spray or 60 

haze, giving a biased visibility reading. An effective visibility measured vertically, rather than horizontally, considering aerosol 

stratification effects in the boundary layer, or, more generally, a slant optical range (SOR, Werner et al., 2005) may be more 

desirable for some applications (Fig.1). For large features, such as mountains or man-made structures exceeding 100 m height, 
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it may be more beneficial to measure an effective visibility at or near the actual line of sight between the observer’s eye and 

the feature, which would be significantly higher above ground than only a few metres. For example, the height at half distance 65 

for a 100 m high object located 10 km away from the observer would be ~50 m agl. 

 

Figure 1. Visibility of wind turbines offshore. The wind turbines are forming an optical contrast against a clear sky with moderate 
mist near the sea surface, which reduces visibility for the lower parts of the wind turbines. Photo from: SSE Renewables. 

Light detection and ranging (lidar) allows a spatially integrated measurement of atmospheric visibility, in a single 70 

ended manner and remotely, with ranges of hundreds to kilometres away from the lidar. MOR measured with pulsed elastic 

backscatter lidar, including ceilometers, has shown good agreement with standard in-situ sensors, such as transmissometer and 

visibility sensors (Werner et al., 2005; Pantazis et al., 2017; Hongda et al., 2017; Hu et al., 2021). Shang et al. (2017) compared 

visibility from a pulsed backscatter lidar with visibility from a visibility sensor and found excellent agreement. Lidar is ideal 

for atmospheric sounding, which means it is able to measure visibility not only at a single location remotely, but at several 75 

points along the lidar line of sight, yielding a visibility profile. The return power of pulsed backscatter lidar is a function of 

both the backscatter coefficient and the atmospheric extinction coefficient. Therefore, the lidar return signal contains 

information about the atmospheric extinction and hence the visibility. The retrieval of the visibility is based on solving the 

lidar equation for both the atmospheric extinction coefficient and the backscatter coefficient. Retrieval techniques include 

inversion (e.g. Werner et al., 2005) and iterative measurements starting from an aerosol free reference height (Pantazis et al., 80 

2017).  

Single-ended retrieval of visibility inferred from the backscatter coefficient only has successfully been demonstrated 

too (Curcio et al., 1958; Vogt 1968), but, as opposed to lidar, by using polychromatic light. The backscatter coefficient has a 

higher sensitivity to the size of the aerosols along the beam path and hence to the aerosol size distribution (SD) than the 

extinction coefficient. These fluctuations are smoothed considerably when the emitted photons are polychromatic, leading to 85 

accuracies of the order of 20% (Twomey and Howell, 1965), which is comparable to forward scattering visiometers (Biral 
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SWS Series user manual, 2017; Cambell Scientific CS125 user manual, 2016; Crosby, 2003). Vogt (1968) found that the 

backscatter coefficient is useful to infer visibility, but it needs to be calibrated against a visibility sensor in an atmosphere 

similar (similar mean aerosol SD) to the one of its intended use. Monochromatic light, as commonly used in lidar, was found 

to yield a poorer, more scattered correlation between backscattered light intensity and visibility, with an associated scattering 90 

around 50% of backscattered intensity for a given visibility (Twomey and Howell, 1965).  

Amplitude modulated direct detection continuous wave (CW) lidar has also been proposed and demonstrated to 

measure MOR by relating it to the phase shift between transmitted and received photons (Schappert 1971; Kreid 1976; Button, 

1977). Provided a homogenous atmosphere, the phase shift depends on the extinction coefficient, avoiding the dependence on 

the backscatter coefficient (Kreid 1976).  95 

Coherent CW Doppler wind lidar has not been used yet to measure visibility. Thousands of these lidars are being 

deployed worldwide, especially in wind resource assessment campaigns (Emeis et al., 2007). Coherent CW wind lidars are 

designed to measure wind field quantities such as speed, direction and turbulence index at heights between tens and few 

hundreds of metres. Similar to other backscatter lidar systems, a CW Doppler wind lidar measures the light power returned 

from atmospheric aerosols moving with the wind stream lines. Therefore, CW wind lidar is in principle able to measure 100 

visibility, in particular SOR, single-ended and remotely and at different heights (profiling). However, the influence of 

atmospheric extinction scales with measurement range and wavelength (light with longer wavelength is scattered less). Due to 

the longer wavelength (~1550 nm) of most CW wind lidars compared with visible backscatter lidars described above, at normal 

working ranges (up to 300 m), the return signal is not sensitive to atmospheric extinction, but is practically governed by the 

backscatter coefficient only. This leaves the backscatter coefficient (henceforth termed backscatter) as the most obvious proxy 105 

of visibility of a CW wind lidar. 

The aforementioned studies do suggest a correlation between visibility and backscatter, but at relatively poor 

accuracy, since CW wind lidar is inherently monochromatic. The accuracy may, however, suffice for non-safety critical 

applications, such as estimates of minimum or maximum visibility. An example would be the visibility of manmade structures 

such as wind turbines, towers or bridges. A relation between signal strength of CW wind lidar and visibility is evident from 110 

everyday operation, but has not been quantified yet. Thousands of wind lidar systems already in operation worldwide could 

be used to yield a useful remote measure of visibility add no extra cost. This could open new applications of these existing 

systems in commercial or scientific applications. Systems used for scientific or observational use could provide for a denser, 

more global data set of visibility. In the present case study, we use datasets from two different measurement campaigns, in 

Cabauw (Netherlands) and Pershore (UK), to assess if backscatter from CW wind lidar can be used to retrieve meaningful 115 

estimates of visibility. The wind lidar used in both campaigns and the visibility sensors are briefly detailed. After that, two 

methods to retrieve visibility from backscatter are described. Results from the two methods are presented thereafter and 

discussed before conclusions are drawn.  
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2 Method and Material 120 

2.1 CW wind lidar operating principles 

Both vertical profiling wind lidars used in the two measurement campaigns are of type ZX 300 (ZX Lidars, UK, formerly 

ZephIR Lidar). An overview of some of the properties and settings of the ZX 300 as deployed at Cabauw is given in Table 1. 

The ZX 300 is a homodyne coherent detection CW focusing wind lidar. The laser beam is transmitted through a constantly 

rotating prism (wedge) to perform a so-called velocity azimuth display (VAD) scan with a scanning cone angle of ~30˚ (with 125 

respect to zenith). Up to 10 measurement heights can be configured, in addition to a pre-fixed height of 39 m agl, which are 

permuted through in descending order. Once a measurement height is set by focusing the laser beam, the focus performs a 

circular scan for 1-second, split into 50 points with ~20 ms integration time, separated by 360/50˚. The 50 measurements are 

used to reconstruct the vertical and horizontal wind speed components. The optimum height range is 10–200 m above the 

instrument, although higher heights can be set in the software. By virtue of the geometrical focusing, the probe length increases 130 

quadratically with measurement distance (height): at 10 m height above the instrument, the -3dB probe length is 0.07 m, 

whereas at 200 m it is 30 m. CW focusing wind lidars can be sensitive to clouds that are above the maximum range, as the 

contribution to the Doppler signal from clouds in the tail of the laser pulse profile can be comparable to the aerosol signal at 

the preselected focusing height (Smith et al., 2006). A cloud removal algorithm is used to correct for this effect, which involves 

a measurement at an additional higher altitude. For a CW coherent wind lidar, such as the ZX 300, the time-averaged optical 135 

signal power 𝑃𝑃𝑆𝑆 backscattered by aerosols into the receiving telescope is given to a good approximation by (Harris et al., 2001) 

𝑃𝑃𝑆𝑆 = 𝜋𝜋𝑃𝑃𝑇𝑇𝛽𝛽(𝜋𝜋)𝜆𝜆,           (2) 

where 𝑃𝑃𝑇𝑇 is the transmitted laser power and 𝛽𝛽(𝜋𝜋) is the atmospheric backscatter coefficient, and 𝜆𝜆 is the laser wavelength. 

Note that Eq. (2) contains no dependence on either the focus range or the system aperture size. With a typical value of 10-8 m-

1 sr-1 for 𝛽𝛽(𝜋𝜋) in relatively clear boundary layer air a transmitted power PT of typically ~1 W and 𝜆𝜆 ~1.5 𝜇𝜇m, the received 140 

power 𝑃𝑃𝑆𝑆 derived from Equation (2) is of order 5×10-14 W (50 femtowatts) only. Assuming shot noise limited detection, the 

carrier-to-noise-ratio of a coherent CW lidar is given by (Harris et al., 2001) 

𝐶𝐶𝐶𝐶𝑀𝑀 = 𝜂𝜂𝜂𝜂𝑆𝑆
ℎ𝑐𝑐
𝜆𝜆  Δ𝜈𝜈[1+𝐷𝐷(𝜈𝜈)]

,            (3) 

where 𝜂𝜂 is the quantum efficiency of the detector, ℎ is Planck’s constant, 𝑐𝑐  the speed of light, Δ𝜈𝜈 the coherent detection 

bandwidth and 𝐷𝐷(𝜈𝜈) is the detector dark noise spectral density. Combining Eqns. (2) and (3) yields the relationship used to 145 

retrieve the backscatter coefficient: 

𝛽𝛽(𝜋𝜋) =
�ℎ𝑐𝑐𝜆𝜆 �Δ𝜈𝜈 [1+𝐷𝐷(𝜈𝜈)]𝑁𝑁𝑁𝑁

𝜋𝜋𝜂𝜂𝜋𝜋𝜂𝜂𝑡𝑡
≡ 𝑍𝑍 𝐵𝐵,          (4) 

with 𝐶𝐶𝐶𝐶𝑀𝑀 ≡ 𝐶𝐶𝐵𝐵, where 𝐶𝐶 is the number of bins of the discrete Doppler spectrum of the lidar, 𝐵𝐵 is the average heterodyne 

signal power spectral density per bin and computed as 

 𝐵𝐵 = 1
𝑁𝑁
∑ 𝑃𝑃𝑖𝑖𝑁𝑁−1
𝑖𝑖=0  ,           (5) 150 
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where 𝑃𝑃𝑖𝑖 is the power spectral density of bin 𝑖𝑖. Plugging in numbers typical for a ZX 300 yields 𝑍𝑍 =1.3×10-6 m-1 sr-1, which is 

a constant for a given transmitted optical power. If not written otherwise, backscatter values are henceforth written as 𝛽𝛽(𝜋𝜋)/𝑍𝑍. 
 

Table 1. Key parameters of a ZX 300 wind lidar. The measurement heights are specific to the Cabauw site, all other parameters are 
generic. 155 

Laser wavelength 1560 nm 
Optical laser power 1.3 W 
Ranging Geometric focusing 
Horizontal wind retrieval VAD scan 
Measuring heights 11, 20, 39, 80, 140, 200, 252 m agl 
Scan dwell time  1 s 
Height instrument  1 m 

 

2.2 Description of data and field site 

Data from a visibility sensor and from the wind lidar are retrieved for two sites: Cabauw, Netherlands and the UK remote 

sensing test site in Pershore, UK.  

The UK remote sensing test facility at Pershore is located in a flat, rural setting at a former airbase (52.143° N, 2.037° 160 

W, Fig. 2a). The Pershore data set covers 24 months, from 1/1/2018 to 1/1/2020. A single visibility sensor of type Campbell 

Scientific 120/125 was available at Pershore, mounted at 2 m agl on a mast on a meteorological measurement site operated by 

the UK Met Office, located ~600 m away from the lidar (Fig. 2b). The Campbell Scientific 120/125 uses a 42˚ scatter angle 

(Cambell Scientific CS125 user manual). The measurement accuracy is ±10% (visibility up to 10 km), ±15% (visibility up to 

15 km) and ±20% for visibilities above 15 km. 165 

The Cabauw Experimental Site for Atmospheric Research (CESAR) is located in an extended and flat polder 

landscape, about 40 km off the coast, 0.7 m below mean sea level (51.971˚ N, 4.927˚ E; Fig. 2a), run by the Royal Netherlands 

Meteorological Institute (KNMI) and is part of the Ruisdael Observatory. The visibility data used were acquired during a wind 

measurement campaign described in detail in Knoop et al. (2021) and their measurement is part of a regular observation 

program (Bosveld, 2020). The coinciding data from the wind lidar and the visibility sensors for Cabauw used here cover about 170 

24 months, from 15/2/2018 to 29/2/2020. The visibility was measured with visiometers of type Biral SWS100 at heights agl 

of 10 m and 20 m at a meteorological mast called mast B, and at 40 m, 80 m, 140 m and 200 m at mast A (depicted in Fig. 2c). 

The visiometers measure the forward scattered intensity at 45˚ (Biral SWS100 user manual). The accuracy of the visibilities 

as reported in the user manual are between ±10% (up to 16 km) and ±20 km (16 km to 30 km). The relevant measurement 

heights agl of the wind lidar were 11 m, 20 m, 39 m, 80 m, 100 m, 140 m and 200 m (Table 1). The ZX 300 wind lidar was 175 
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located 293 m away from mast A and 267 m away from mast B (Fig. 2b). Due to the extended probe length of the lidar, height 

mismatches of 1 m between lidar measurement height and sensor height are expected to be insignificant. 

Both visiometer types at Cabauw and Pershore use the same principle of operation, so that the differences between 

the two types of visiometers are expected to be much smaller than between visiometer and wind lidar. All data from the 

visibility sensors are time series with visibility in units of metres. As stated above, the backscatter coefficients from the wind 180 

lidars are time series in units of 1.3×10-6 m-1 sr-1. Both wind and visibility data are averaged over 10 min long periods.  

 
Figure 2. Location of lidar and visibility sensors (visiometers). (a) Pershore (United Kingdom, UK) and Cabauw (Netherlands, NL). 
(b) Visiometer at Pershore with meteorological mast in the background where the wind lidar is located. (c) ZX 300 wind lidar at 
Cabauw with meteorological mast A in the background. 185 

 

2.3 Retrieval of visibility from the backscatter coefficient 

2.3.1 Method A: Directly converting backscatter to visibility 

The retrieved backscatter coefficients from Eq. (4) are directly related to visibility as follows. The ratio between the extinction 

and the backscatter coefficient, the extinction-to-backscatter ratio (also called lidar ratio) 𝑆𝑆 is used to estimate the extinction 190 

coefficient from the backscatter coefficient as (Doherty et al., 1999) 

𝜎𝜎 = 𝛽𝛽(𝜋𝜋)𝑆𝑆,          (6) 

where 𝛽𝛽(𝜋𝜋) is the backscatter coefficient. 𝑆𝑆 is assumed to be constant (Young and Vaughan, 2009). However, 𝑆𝑆 can vary for 

common atmospheric aerosols from 1 to about 100 sr, depending on the SD, shape, and chemical composition of the particles 
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(Fernald et al., 1972; Doherty et al., 1999), as will be discussed further below. The empirical power law by Ångström is used 195 

to relate the extinction coefficient measured at the lidar wavelength of ~1550 nm to 550 nm (Nebuloni, 2005; Schuster et al., 

2006; Shang et al., 2017) as 

𝜎𝜎0 = 𝜎𝜎1 �
𝜆𝜆1
𝜆𝜆0
�
𝛼𝛼

,          (7) 

where 𝛼𝛼 is the Ångström coefficient, 𝜆𝜆0 and 𝜆𝜆1 are the wavelengths corresponding to the extinction coefficients 𝜎𝜎0 and 𝜎𝜎1, 

respectively. Combining Eqs. (1), (6) and (7) yields an approximative MOR of 200 

𝑀𝑀𝑀𝑀𝑀𝑀 ≈ 3

𝛽𝛽(𝜋𝜋)𝑆𝑆�𝜆𝜆1𝜆𝜆0
�
𝛼𝛼 ,          (8) 

which is used to relate backscatter from the lidar to visibility. 𝜆𝜆0 and 𝜆𝜆1 are set to 1560 nm (Table 1) and 550 nm, respectively. 

The two unknowns, 𝛼𝛼 and 𝑆𝑆, depend on the aerosol type, and are a non-unique combination, which can be obtained by 

matching the converted backscatter with the visibility from the in situ sensor. A typical value for 𝛼𝛼 has been empirically 

determined as 1.4 for visibilities between 6 and 20 km (Nebuloni et al., 2005), which is adopted here.  205 

 

2.3.2 Method B: Fitting a transfer function  

Coinciding visibility and backscatter data are selected and binned into 120 values of backscatter and 80 values of visibilities. 

Figure 3 3 shows a scatter plot of the resulting distribution, representing a 2D-histogram, with the logarithm of the inverse 

visibilities plotted against the logarithm of the lidar backscatter.  210 

For the Cabauw visibility data, depending on the availability of both backscatter and visibility at a given height, and 

depending on the height, there are between ~13000 and ~25000 samples, that is, coinciding visibility/backscatter pairs. There 

appears to be a secondary mode (Figs. 3a and b), the origin of which is not entirely clear. A reasonable explanation could be a 

contaminated visibility sensor window beyond the capability of the self-correcting algorithm of the visibility sensor, or it could 

be residual cloud contribution. Visibilities greater than 20 km in the visiometer data were set to 20 km during acquisition, 215 

which explains the disproportionally high accumulation of values at that visibility. Most of the data is concentrated below 20 

km visibility, which therefore is deemed an appropriate upper range. It becomes clear from Figure 3a, that the data correlate 

linearly only for a limited parameter range. Towards lower visibilities, the dependence becomes increasingly nonlinear. Only 

visibilities of at least 4 km are considered, which helps to select a data range with reasonably linear correlation between 

backscatter and inverse visibility and excludes the impact of fog or cloud on the visiometer readings.  220 

For Pershore, visibility data from a single height only (2 m agl) were available. The nearest lidar data was for a 

measurement range of 10 m agl, which was only available for a relatively short period, corresponding to only ~9000 coinciding 

value pairs (samples). Therefore, lidar data from 39 m were chosen, associated with ~28000 coinciding samples (Fig. 3b). The 

vertical separation is justified further below. There appear to be two modes: A correlation with relatively flat slope for high 

visibilities, where data density is highest, and a steeper mode for visibilities below ~20 km. The nonlinearity of the visibility 225 

with backscatter could be attributed to different contributions to the average aerosol size distribution (Curcio et al., 1958). 
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After binning, for each visibility, a threshold 𝑡𝑡 is applied over the spectrum of backscatter values, which is computed 
as  
𝑡𝑡 = 𝜇𝜇 + 𝛿𝛿,          (9) 
where 𝜇𝜇 is the mean sample density of the backscatter spectrum and 𝛿𝛿 is an adjustable parameter. The thresholding is used to 230 

exclude spectral outliers and artefacts (deemed to be unlikely values) and to tighten the distribution of backscatter values at 

given visibilities (reduce variance), corresponding to a forced reduction in samples. After thresholding, the first moment of the 

backscatter distribution (centroid) is retrieved for each of the 80 visibilities. This corresponds to a maximum likelihood 

estimation of the backscatter, i.e., the estimation of the expectation value of the distribution of backscatter-visibility sample. 

The retrieved backscatter values for all 80 visibilities are then used for a linear fit, which also is a measure of linear correlation 235 

between visibility and lidar backscatter. The linear fit is then used as a transfer function (similar to a calibration) to translate a 

measured backscatter value from the wind lidar to visibility (or vice versa if desired).  

   
Figure 3. Overview correlation plots of inverse visibility versus backscatter (both logarithmised). For better readability, y-tick labels 
of visibility are shown. (a) For Cabauw, with backscatter distribution at 12 km visibility. Visibility measured at 40 m agl, backscatter 240 
from 39 m agl. (b) For Pershore, with backscatter distribution at 12 km visibility. Visibility measured at 2 m agl, backscatter from 
39 m agl. The backscatter is logarithmic to facilitate display due to its large dynamic range.  
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3. Results 

3.1 Method A 245 

 

Figure 4. Linking backscatter from 39 m agl to visibility for Cabauw using Method A. (a) Lidar ratio is 70 (continental). (b) Lidar 
ratio is 28 (marine), the Ångström coefficient is 2.0 for both. The visibility sensor data are from 40 m agl. 

Equation (8) is used to estimate visibility from wind lidar backscatter for Cabauw from the full visibility range (no selection 

or filtering is applied, see Fig. 3). The visibility estimate, Eq. (8), is very sensitive to the Ångström coefficient, whereas the 250 

choice of the lidar ratio is rather forgiving. The lidar ratio was held constant at 70 sr, representing a continental tropospheric 

SD (Jäger et al., 1995, Doherty et al., 1999). Changing the Ångström coefficient from the initial value of 1.4, which largely 

overestimated visibilities from the visiometer, to 2.0, associated with a finer, more continental aerosol dominating the 

backscatter, improved the fit considerably (Fig. 4a). The scatter of the data (Figs. 3a and b) translates into mismatches between 

the timeseries of backscatter and visibility. This does not explain why for some periods the visibilities match well (21/11 to 255 

25/11/2018) and for some they do not (19/11, 29/11 to 3/12/2018). A more marine type lidar ratio of 28 sr (Doherty et al., 

1999) associated with a larger aerosol mode size improves the fit somewhat for early December 2018, whilst largely 

overestimating the visibilities from the visibility sensor overall (Fig. 4b). The mean absolute error (MAE) for the whole period 

of 24 months of data is 8.6 km for a lidar ratio of 70, and over 21 km for a lidar ratio of 28, suggesting that the dominant 

aerosol at Cabauw is of continental type. The poor agreement for midday 19/11 and around 30/11 persists (Fig. 4a). This may 260 

partly be due to the visiometer data levelling off at 20 km visibility. The backscatter at midday of 19/11 was indeed ~4 times 

lower than during the morning of 19/11, hence with the same combination of 𝑆𝑆 = 70 sr, 𝛼𝛼 = 2, thus leading to a fourfold 

increase in visibility (~58 km) as retrieved from the lidar backscatter. The aerosol SD and hence the Ångström coefficient and 

the lidar ratio usually vary over time, but in a confined manner (Doherty et al., 1999), thus leading to mismatches as in Fig. 4. 

The fitting would, therefore, need to be done daily. As demonstrate above, by varying the Ångström coefficient, a coarse fit 265 

could be produced, which could then be fine-tuned using the lidar ratio. Of course, this yields a nonunique solution. For 

example, 𝑆𝑆 = 28 sr, 𝛼𝛼 = 2.6 yield a similar fit as in Fig. 4a, including MAE. Therefore, assumptions about the lidar ratio and 

Ångström coefficient would have to be made or lidar ratio and Ångström coefficient would need to be measured separately in 

parallel to lidar backscatter, such as with a nephelometer in combination with a sun photometer (Doherty et al., 1999). While 
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Method A is an interesting exercise, it is questionable whether it would be practical enough in obtaining a general transfer 270 

function between lidar backscatter and visibility.  

 

3.2 Method B 

To that end method B was applied to the Cabauw data. A limited visibility range in the 2D-histogram of [4 km, 20 km] (Fig. 

3a) was selected in order to increase linearity of the correlation. This was followed by thresholding using 𝜇𝜇 + 1.5 (Fig. 5a). 275 

After the thresholding is applied, the secondary mode has little influence on the fit, due to the relatively few points associated 

with these backscatter/visibility pairs (Fig. 5b). The resulting histogram reveals a good correlation between visibilities from 

the visibility sensor and the backscatter values from the wind lidar.  

The lidar backscatter coefficient can be quite dynamic, changing by several factors within minutes. To assess whether 

the 10 min averaging window caused any deterioration of the correlation, the time series were offset by up to 5 minutes before 280 

averaging, with no significant effect on the correlation.  

The ratio of the number of measurements with a given visibility versus the number of total measurements can be 

computed to assess how frequent a given minimum visibility is. Using the visibility sensor data only, about 60% of the time, 

visibility is at least 8 km (Fig. 5c). This may be compared with the fraction of measurements for a given visibility as retrieved 

from the centroid backscatter values, which are in line, but slightly off, especially for the higher visibilities (68%, Fig. 5c). 285 

This is caused by the slight nonlinearity in the correlation plot (Fig. 5a).  

Method B was applied to the Pershore data set (Fig. 6a). Owing to the spread in backscatter, the R-squared value is 

significantly lower than for Cabauw (0.80). The intercept for the Cabauw data is smaller than that for Pershore, whilst the 

slope is slightly steeper, which indicates that the annual average backscatter is below that of Cabauw for all visibilities 

considered here. This becomes easily visible when comparing the 1D- histograms (Figs. 5b and 6b). This implies that for the 290 

same backscatter, the visibility at Pershore is smaller than at Cabauw. In line with the lower R-squared of the fit (Fig. 6a), the 

discrepancy is higher between the prevalence of a given visibility for lidar derived versus sensor derived visibilities (Fig. 6c). 

For example, a minimum visibility of 8 km was measured 62% of the time with the visiometer, but 82% of the time using lidar 

derived visibilities from the transfer function. The closest agreement is for visibilities around 13 km, which is similar to 

Cabauw (Fig. 5c).  295 
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Figure 6. Visiometer readings versus lidar backscatter, for Pershore. 39 m (2 m) agl for lidar (visiometer). Data covers full range 300 
from 01/01/2018 to 01/01/2020. (a) 2D-histogram. Overlain are the centroid BS ((red dots), transfer function (black), 80% cumulative 
probability (green) for each visibility. (b) 1D slice at visibility of 12 km. (c) Relative fraction of total measurement for a given visibility 
using the fitted BS values and the visiometer data only.  

 

3.2.1 Height dependence Cabauw 305 

Only Cabauw data are considered since Pershore data was available for a single height only. While the correlation plots and 

the transfer functions for different heights of sensor and lidar do not reveal it directly (Fig. 7a to f), the visibilities computed 

from the fitted transfer functions of these correlations, show an upwards trend with increasing height (Fig. 8). It appears that 

visibility below ~80 m agl varies only little with height, which is in line with general observations of a vertically weakly 

exponential decrease in lidar signal strength (hence backscatter) that becomes significant above ~100 m agl. The temporal 310 

mean of the visibilities between 4 km and 19.5 km from the visiometers follow a similar trend (Fig. 8).  

To assess the severity of separating visiometer height and lidar probe vertically, lidar backscatter from 39 m was 

correlated with visibilities from sensor heights not matching the lidar height. For the correlation of 39 m lidar vs. 200 m 

visiometer data, the difference in visibility to the visibility from the collocated sensor/lidar data (lidar at 39 m, visiometer at 

Figure 5. Visiometer readings versus lidar backscatter, for Cabauw. 39 m (40 m) agl for lidar (visiometer). Data covers full range 
from 13/07/2018 to 29/02/2020. (a) 2D-histogram. Overlain are the centroid BS (red dots), transfer function (black), 80% 
cumulative probability (green) for each visibility. (b) 1D slice at visibility of 12 km. (c) Relative fraction of total measurement for 
a given visibility using the fitted BS values and the visiometer data only.  
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40 m agl) is 35% (~3 km), with R-squared dropping to 0.81. Below that height, the difference is within 9% (800 m), that is, 315 

1%, 9%, 3%, 3% with an R-Squared of 0.96, 0.97, 0.95, 0.89 for 10 m, 20 m, 80 m, 140 m, respectively. This is comparable 

to the relative change in visibility for heights up to 80 m agl. This indicates that, at least for this case, the visibility sensor and 

lidar probe height may be separated by few tens of metres, provided a generally well-mixed atmosphere within the layer, in 

which the sensor and lidar probe are located (as assumed for Pershore). This is also suggested by the time series of the visibility 

sensors, which, for the heights of 10 m, 20 m, 40 m and 80 m agl largely correlate. Whilst this can be often be assumed for the 320 

continental boundary layer, especially during daytime, when convective mixing takes place, this would less likely to be 

expected offshore, for instance, due to the presence of advection fog near the sea surface, causing strong vertical gradients in 

aerosol density and SD.  

Figure 7. 2D-histograms for various measurement heights agl. (a) 10 m. (b) 20 m. (c) 40 m (d) 80 m. (e) 140 m. (f) 200 m above ground 
level. Overlain are: Centroid backscatter (red dots), transfer function (black), 80% cumulative probability (green) for each visibility 325 

 

Figure 8. Visibility computed from all six transfer function (in Fig. 7) for three different backscatter values (in units of 1.3×10-6 m-1 
sr-1) and temporal mean (15/2/2018 to 29/2/2020) of visiometer readings between visibilities of 4 km and 19.5 km as a function of 
height.  
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 330 

3.2.2 Seasonality 

Figure 9 shows 2D-histograms for 40 m agl, which underwent the same processing, as described in Method B, but split by 

seasons. The threshold has been lowered to 𝜇𝜇 + 1 to partially compensate for the decrease in sample number which, if below 

~4000, may deteriorate the linear correlation. The correlation still deteriorates for summer, due to fewer data points and a 

larger scattering (only ~2500 data points vs ~8000 for other the seasons), especially for the less frequent lower visibilities. For 335 

Cabauw, the backscatter for all visibilities undergoes a strong shift to lower values from spring to summer to then remain 

relatively unchanged until autumn. Between autumn and winter, the backscatter mainly for the lower visibilities decreases, 

causing a decrease in slope of the transfer function. A backscatter of 0.4 (-0.4 in Fig. 9a) would give a visibility of ~13 km in 

spring, ~9 km during summer and winter and 8 km during autumn. For Pershore, the backscatter is distributed differently with 

respect to visibility, but indicates a decrease from spring to summer and an increase from summer to autumn. A backscatter of 340 

0.4 corresponds to visibilities of 2500 m, 1800 m, 4400 m, 1300 m (spring, summer, autumn, winter).   

Reorganizing the backscatter data into monthly averages shows a clear seasonality for both Cabauw and Pershore 

(Fig. 10), which the 2D histograms do not reveal directly. As with the 2D-histograms, the monthly averages show a systematic 

difference in backscatter between the two sites that will be discussed further below. For both sites, the backscatter is highest 

in the winter and lowest in the summer (Fig. 9). A backscatter minimum around July has been measured with different CW 345 

wind lidars in other locations in the Northern Hemisphere. Analysing monthly mean backscatter from Pershore for 9 years 

(2012 to 2020) resulted in a standard deviation of monthly mean backscatter over the years between 0.02 (July) and 0.09 

(March). The z-score varied between 0.04 and 2.1. Depending on the year and month, the monthly mean backscatter, therefore, 

differed from the mean over 9 years by 0.04 to 2.1 standard deviations.  
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 350 
Figure 9. Cabauw data histograms split by seasons for visiometer height 40 m agl. (a) Spring. (b) Summer. (c) Autumn. (d) Winter. 

 

 
Figure 10. Monthly mean backscatter 39 m agl. (a) For Cabauw. (b) For Pershore. 
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3.2.3 Visibility time series 

Figure 11 shows a visibility time series for Cabauw derived from lidar backscatter using the fitted transfer function (method 355 

B), covering the same period as Fig. 4 (method A). The lidar visibility was derived from lidar backscatter from 39 m agl against 

visibilities from the sensor at 40 m agl (Fig. 5). At places, the lidar derived visibilities agree well with visibilities from the 

visiometer (e.g. 21/11 to 26/11/2018), sometimes they largely disagree (e.g. 27/11), leading to an MAE of ~4 km for the whole 

24 months covered by the data (an improvement over the MAE for method A, Fig. 4) and 2.1 km for the plotted period (Fig. 

11a). The seasonality in the transfer function (Figs. 9 and 10) and the fact that the visiometer data are part of the fitting process, 360 

suggest that the closer the data acquisition period used for fitting the transfer function matches the period to predict visibilities, 

the better the agreement should become. Since the time series in Fig. 11 up to November corresponds to autumn, a reasonable 

period to choose data from should be autumn. When using data from autumn only to fit the transfer function, the MAE increases 

slightly from 2.1 km to 2.8 km, which is somewhat unexpected and will be investigated further below. The agreement around 

27/11, however, improves (Fig. 11b). The MAE for the whole period of 24 months increased from ~4 km to ~5 km, as one 365 

would expect, since autumn only data were used to estimate visibility for all four seasons. When only data acquired in 

November are used for prediction (two months of data, 11/2018 and 11/2019), the agreement for the period displayed worsens 

(MAE 2.6 km), while the MAE for the whole 24 months remains at ~5 km (Fig. 11c). A very similar result is obtained, when 

data from November 2019 only are used to predict visibilities for the period displayed (Fig. 11d).  

These tests do not support the hypothesis that the agreement between lidar derived visibilities and visiometer readings 370 

improves when the periods for fitting and predicting visibility match more closely. To assess that, other time periods underwent 

the same procedure with similar outcome. It was also found that limiting the data acquisition period has a similar effect as 

increasing the threshold. Regardless if spring, summer, autumn or winter is chosen, the overall MAE and the MAE of the 

period of interest decrease to comparable amounts (4 to 5 km and ~2 km, respectively). Limiting the data period further may 

decreases the number of data and hence the goodness of the fit, at which point the MAE may increase. Increasing the threshold 375 

above a certain level may have the same effect. In practice, therefore, increasing the threshold of the fit has the same effect as 

limiting the data period for fitting (improves MAE), at least for the limited data set available here. For a very large data set 

(e.g. 10 years of data), however, matching the data period for the fit to that for the prediction could possibly be more beneficial 

than a simple thresholding of the 2D-histogram.  

Decreasing the range of visibilities was also tested. It was found that MAE improved, at the cost of a lower dynamic 380 

range of visibilities in the time series, since the lidar derived visibility time series covers only visibilities that were used in the 
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fit of the transfer function. For instance, decreasing the range of visibilities to [7, 15] km led to a MAE of 1.6 km and 2.1 km, 

for the plotted period and the whole 24 months, respectively. 

Figure 11. Lidar derived visibility time series and readings from visiometer for Cabauw. Also shown is the mean absolute error 
(MAE) between the two time series. MAE is for the plotted period only, MAE all is for whole data period of 24 months. (a) Fit used 385 
all data. (b) Fit used autumn data only. (c) Fit used data from Novembers only. (d) Fit used data from November 2019 only. Lidar 
derived visibilities outside the [4,20] km range used for retrieval have been excluded from the calculation of MAE, but are plotted 
to illustrate the effect of extrapolating the transfer function outside that range. 

Figure 12 shows the visibility time series for Pershore, derived from lidar backscatter from 39 m agl against visiometer 

visibilities at 2 m agl (Fig. 6). Compared to Cabauw, the data for Pershore are less tightly clustered around the centroid 390 

backscatter values, especially for lower visibilities, which might be due to fewer data for these visibilities. Since the fit can 

approximately be interpreted as the visibility that corresponds to a given mean backscatter value with the width of the 

distribution indicating deviation, the larger spread of backscatter values leads to a correspondingly larger MAE between the 

time series of the lidar derived visibility and sensor visibility (Fig. 12). In other words, a given backscatter value corresponds 

to a larger range of visibilities. Increasing the threshold reduces the spread of the backscatter values at given visibilities (Figs. 395 

6a and b) and, in fact, it reduces the MAE between the time series (Fig. 12a). An optimum threshold of 𝜇𝜇 + 1.5 was found 

(Eq. (9)), which avoids deteriorating the linear fit (R-squared). As the threshold is increased, slope and intercept approach 

similar values as those for Cabauw. However, since the scale is logarithmic, even small differences lead to significant 

discrepancies in visibility and backscatter. The intercept visibility for Cabauw remains lower than for Pershore. For a given 

backscatter, and the visibility ranges regarded here, visibility remains smaller for Pershore than for Cabauw. A reduction in 400 
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MAE (overall MAE) from 3.8 km (4.8 km) to 3.5 km (4.4 km) is achieved when autumn data are selected (Figs. 12a and b). 

MAE remains unchanged for November data and decreases to 3.2 km (4.2 km) if only November 2019 data are used to predict 

visibilities. 

 

 405 

Figure 12. Lidar derived visibility time series and readings from visiometer for Pershore. Also shown is the mean absolute error 
(MAE) between the two time series. MAE is for the plotted period only, MAE all is for whole data period of 24 months. (a) Fit used 
all data. (b) Fit used autumn data only. (c) Fit used data from Novembers only. (d) Fit used data from November 2019 only. Lidar 
derived visibilities outside the [4,20] km range used for retrieval have been excluded from the calculation of MAE, but are plotted 
to illustrate the effect of extrapolating the transfer function outside that range. 410 

 

4 Discussion 

The backscatter values at a given visibility form a fairly mono-modal distribution. The transfer function is the linear least 

square fit of the first moments (centroids) of the distribution of backscatter values at given visibilities. It maps the most 

common backscatter value to visibility. The linear relationship between the centroids of the logarithmic backscatter and 415 

logarithmic inverse visibilities over a limited parameter range is in line with theory (Eq. (1)) and previous results (Curcio 1958; 

Twomey and Howell, 1965; Nebuloni, 2005). The smaller the range of visibilities considered, the more linear the relationship 

between logarithmic visibilities and backscatter, and hence the larger the R-squared value of the transfer function becomes. 

One would therefore expect that decreasing the visibility range would lead to enhanced agreement between sensor and lidar 
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derived visibilities, i.e., MAE decreases. While this is the case, it has little practical relevance, since the visibilities the transfer 420 

function would try to match were not included in the fit of the transfer function.  

Assuming that the lidar backscatter probability density is monomodal, thresholding is applied to the distribution to 

remove artefacts and reduce the spread of the distribution at a given visibility. The transfer function changes after thresholding 

is applied. For example, for Cabauw the difference in visibility as a result of applying a threshold of 𝜇𝜇 + 0 versus 𝜇𝜇 + 1, 

depending on the backscatter, amounts to a few hundred metres. Thresholding reduces data points and therefore may decrease 425 

the “goodness” of the linear fit, by increasing R-squared, which means the fit error variance (squared error) increases. One 

would expect this to ultimately cause an increase in MAE, since the fitted transfer function explains the data less well. On the 

other hand, the thresholding decreases the spread of backscatter values at a given visibility and decreases MAE with respect 

to visibilities from the visiometers, provided the number of data points is sufficient to form a mono-modal distribution (> 1 

points around the centroid). The results, therefore, indicate that an optimum threshold exists that maximises R-squared, at the 430 

same time minimises MAE with reference measurements from the visiometers. In the present work this optimum has been 

roughly approached by trial and error, but certainly there is potential for an improved procedure. 

The backscatter undergoes seasonal cycling and annual mean values of different years and monthly means between 

different years are reasonably comparable (Fig. 10). Since the monthly mean backscatter traces quite well the cycling in gross 

primary productivity (Fleischer et al., 2015), it could be attributed to aerosol removal processes by leaved vegetation (Wedding 435 

et al., 1975). Other possible mechanisms include peaks in primary biological material (Held et al., 2008), a seasonality of 

condensed water aerosol in the planetary boundary layer and seasonal variations in boundary layer height, which influences 

dilution of aerosols. 

Although both sites have the same qualitative seasonality in backscatter, when sorted by visibility in a 2D histogram 

(Figs. 5 and 6), the trends are dissimilar, indicating that a given backscatter does not imply the same visibility at a different 440 

location. In fact, the backscatter at Pershore is systematically lower than at Cabauw. As mentioned above, differences between 

the visiometers should be insignificant. There is a contribution from the transmitted optical power of the wind lidars at the two 

sites. The transmitted power between units may vary by ~6%. Adding differences in receiver sensitivities between the two, the 

maximum expected difference in backscatter is of the order of 10%. As the observed differences are far greater than that, they 

are in all likelihood related to the local aerosol properties, more specifically, to different dominant aerosol types. For instance, 445 

a visibility of 12 km corresponds to a backscatter of ~0.4 at Cabauw and ~0.18 at Pershore. Given that on a scale of minutes, 

the lidar backscatter value at a given site may easily vary by several factors, this difference is small. However, as it represents 

an average over many minutes, it is significant. Averaged on a monthly basis, the backscatter values at Cabauw are 

systematically greater than those for Pershore for each month of the year (Figs. 5 and 6). During the summer months, the 

backscatter at Cabauw is about three times larger, during winter about two times larger than at Pershore (Figs. 9 and 10), 450 

suggesting differences in local atmospheric backscattering characteristics that may change with season. Interestingly, the 

backscatter values scatter considerably more around the expectation value for Pershore than for Cabauw. While we do not 

have an explanation for it, it also appears to be related to the site-specific average aerosol type.  
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These results are coherent with previous findings that reported a strong dependence of backscatter to the governing 

aerosol mode (Twomey and Howell, 1964; Vogt 1968), as stated in the introduction of this paper. Although the extinction-to-455 

backscatter ratio (lidar ratio) is often assumed to be constant (including method A), this assumption is strictly speaking only a 

fair approximation for homogenous scattering (such as Rayleigh scattering). As the size of the scattering particle increases, 

Rayleigh scattering is replaced by the Mie scattering model, which, assuming spherical aerosols, is predominant for the present 

study. Under Mie scattering, the assumption of isotropic scattering breaks down and the angular distribution of the scattered 

electromagnetic field develops a directivity, i.e., an imbalance in the light intensities between forward scattering angles 460 

(measured by visiometers) and the backscatter angle of 𝜋𝜋 (measured by the wind lidar), which varies with size parameter 𝛼𝛼 =

2𝜋𝜋𝜋𝜋/𝜆𝜆 and therefore with particle radius 𝜋𝜋 and wavelength 𝜆𝜆 (Vogt 1968, Shang et al., 2017). As the extinction-to-backscatter 

ratio of a spherical particle changes with particle size, backscatter may vary strongly as particle type and size changes, even 

along the beam, while the extinction coeffect varies only by a little bit (Tworney and Howell, 1965). The visiometers measure 

forward scattering, and hence aerosol extinction, at angles with minimum sensitivity to changes in Mie-scattering intensity 465 

upon change of particle type and size. 

Since extinction and backscatter coefficients are quantities integrated over SD and size parameter, the fluctuation of 

the lidar ratio (and hence backscatter) with particle size is smoothed. Real world aerosol SD are far from being homogeneous 

and a smoothing effect can be expected. This also implies that the use of polychromatic light yields a backscatter intensity less 

dependent on the aerosol SD than the highly monochromatic light of a coherent wind lidar. The result by Tworney and Howell 470 

(1965) suggests that the use of monochromatic light contributes to the spread observed in the correlation between backscatter 

and visibility with a factor of ~2, but it does not explain a systematic offset. The latter is more likely to be caused by a different 

local aerosol SD to which the backscatter is more sensitive than forward scatter at the angular ranges used in the visibility 

sensors.  

With the abovesaid, it appears likely that different aerosol types (or SDs) may give a similar forward scattering 475 

intensity, hence similar visibility sensor reading, but different backscatter values. Different sites are associated with a different 

predominant (mean) aerosol SD, which, therefore, qualitatively could explain not only the variance (spread) of the lidar 

backscatter value for a given visibility (e.g. Fig. 6a), but also the offset by a factor of 2 to 3 between the two distributions of 

the two sites (Fig. 6). Of course, since aerosol density affects backscatter, a mean aerosol number density systematically lower 

throughout the year would certainly contribute to the observed offset. Since the difference in transfer function is in all 480 

likelihood related to differences in the predominant, local aerosol SD and/or particle number density, this indicates that after 

calibrating the backscatter measured by the CW wind lidar (method B), the lidar could be used to measure visibility. The same 

applies to method A. 

Since the predominant aerosol SD in the planetary boundary layer is a function of location and the transfer function 

has been found to vary between different locations, the transfer function is probably not generalizable, but site specific. Even 485 

if the transfer function was similar for aerosol SD typical to a certain setting (e.g. marine, near coastal), it would not necessarily 
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be transferrable to a different location, since the local aerosol SD could become atypical, for instance, if the location is near a 

heavy polluter, such as a dense urban area.  

The more it is known about the dominant aerosol probed by the lidar the more the transfer function could potentially 

be applied to different locations with similar average aerosol SDs. It is therefore desirable to gain more information on the 490 

predominant aerosol type at Pershore and Cabauw. This would require a different set of instruments, which is beyond the scope 

of this work. Pershore is located in a rural area. During the predominant south-westerly and westerly winds, air coming from 

the Atlantic Ocean passes a strip of land about 300 km wide before it reaches Pershore. This area lacks major industry hubs or 

urban areas that would concentrate sea or road traffic and act as strong polluters. The dominant aerosol SD is thus likely a rural 

one, which might be disturbed by road traffic. This is indicated by a pronounced difference in the transfer function fitted on 495 

weekend and weekday data and which could also be confirmed by observation.  

During the predominant south-westerly winds, the aerosol type and number density around Cabauw is expected to be 

heavily influenced by road traffic aerosol from the Rotterdam suburban area, including the sea port (Karl et al., 2016), and 

remnants of combustion aerosol from the southeast of England, notably the London area (Fig. 2a). The strong concentration 

of aerosols from both road and sea traffic and industrial air pollution downwind of Rotterdam and Rotterdam harbour may 500 

explain the larger average backscatter at Cabauw and hence the difference in intercept of the transfer functions between the 

two sites. The difference in slope, on the other hand, is likely dominated by the difference in the lidar ratio, i.e., it is due to 

different dominating aerosol type(s) at the two sites. 

Splitting the data into day and night may also yield hints as to which extent man-made aerosols are dominating. 

However, other diurnal mechanisms most certainly will affect aerosol type and number density, and hence lidar backscatter, 505 

such as meteorological processes, for example boundary layer mixing processes (Stanier et al., 2004). Interestingly, for 

Cabauw (Figs. 13a and b) the backscatter significantly increases during the night (18:00 to 6:00) for both 19 km visibility (by 

~40%, from 0.215 to 0.290) and 5000 m visibility (by ~20%, from 0.673 to 0.808). A backscatter of 0.5 (-0.3 in Fig. 13) would 

give a visibility of ~7.1 km for the day fit and ~9.5 km if considering night time data only. For Pershore (Figs. 13c and d), no 

significant change in backscatter was found during night time for 19 km visibility, but a pronounced decrease for 5 km visibility 510 

of 20% (from 0.328 to 0.261). Though not adequate to indicate man-made aerosol, splitting the data into day and night is 

insightful as it further demonstrates the sensitivity of linking visibility to lidar backscatter. For practical application that target 

daylight visibility, it may be advisable to exclude night-time data before fitting the transfer function.  
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  515 
Figure 13. Comparison of 2D-histograms between day and night time at 39 m lidar probe height (a) Cabauw day. (b) Cabauw, night. 
(c) Pershore, day. (d) Pershore, night. To account for the reduced sample size, the threshold was reduced to 𝝁𝝁 + 𝟏𝟏. 

In the Mie-scattering regime, which assumes spherical particles, the polarisation of light is preserved. The polarisation 

transmitted by the wind lidar is random and the polarisation of transmitted and received photons is assumed to be equal. 

Depolarization effects by aerosols could, however, influence backscatter intensity. The technique used by the visiometers, on 520 

the other hand, is polarization insensitive. Two aerosol types, spherical (e.g. water droplets) and non-spherical (e.g. sea salt 

aerosols), may thus cause similar scattering intensities, but due to a change in polarization (depolarisation) caused by the non-

sperical aerosol, the backscatter as detected by the wind lidar may differ, which will contribute to a site-specific transfer 

function. 

For Cabauw, lidar backscatter derived visibility was found to be height dependent (Fig. 8), in line with the observation 525 

that under cloud free conditions backscatter from CW-wind lidar usually tends to slightly decrease with height in the lower 

part of the planetary boundary layer. The coherence of vertical trends of visibility as seen between wind lidar and the visiometer 

and lidar is encouraging in that it suggests that once calibrated, a CW wind lidar may indeed be useful in generating profiles 

of SOR in situations where visiometers at heights above tens of m agl are not available or feasible.  

 530 
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Conclusions 

Backscatter data from two CW-wind lidar systems, one at Cabauw (Netherlands) and one at Pershore (UK) have been analysed 

with the aim to retrieve meteorological optical range (visibility). Directly relating backscatter to visibilities was found less 

practical due to the need for additional input parameters. Correlating lidar backscatter coefficients with co-measured visibilities 

from visiometers and fitting a linear transfer function to points of maximum likelihood backscatter was found to be more 535 

viable, as it would not rely on secondary measurements acquired in parallel.  

For larger ranges of visibility and backscatter coefficients, the correlation was found to be less linear, which means 

the method deems practical only over a limited parameter range. This can be explained by different aerosol types and size 

distributions at play for different backscatter coefficients. Furthermore, differences in local dominant aerosol type lead to 

differences in extinction-to-backscatter ratio between the two sites and thus differences in the transfer function. In other words, 540 

two different aerosol types may give a similar forward scattering intensity, hence similar visibility sensor reading, but a 

different backscatter and thus a different wind lidar-derived visibility. Therefore, backscatter measurements from CW wind 

lidar are only representative and repeatable for environments with similar aerosol SDs. More long-term tests are needed to 

assess to which extend the calibration needs to be repeated or if it needs to be repeated if the location is kept fixed. 

In line with previous findings, the result suggests that backscatter from CW-wind lidar is useful to infer visibility, but 545 

it needs to be calibrated against a visibility sensor in an atmosphere similar (similar mean aerosol type) to the one of its intended 

use, ideally over the course of a year to capture seasonal variation. It may also be helpful in the future to confirm or refine this 

conclusion by measuring at more sites globally and categorize them into sites with similar predominant mean aerosol SD. 

Getting visibility data from more sites is desirable to test how site specific the transfer function is and how comparable it is 

between similar environmental settings. As far as the two sites assessed in this study are concerned, even after calibrating the 550 

lidar backscatter with an in-situ visibility sensor at the site of intended use, the expected accuracy in terms of mean absolute 

error is over a kilometre. The method would thus deem suitable only for safety uncritical applications, such as industrial (e.g. 

visibility of wind turbines, oil rigs from the shore etc.) or in scientific research. A possible application could include the 

statistical estimation of the frequency of wind turbines visibility. This could especially be interesting for offshore sites, where, 

for economic reasons, the distance between the windfarm and the shore has to be minimized. The MOR derived from 555 

backscatter could be one of several input parameters amongst other parameters, such as solar angle, object colour, Earth’s 

curvature, or cloud cover. Since the backscatter depends critically on the aerosol SD, this could potentially open up applications 

where sensitivity to aerosol chemistry is desired, such as pollution monitoring or detecting changes in particular matter 

properties during passive and eruptive degassing phases of volcanoes, which are linked to physiochemical processes inside the 

volcanoes’ plumbing systems.  560 
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Data availability 

Cabauw tower and surface data sets are available as: Meteo profiles - validated tower profiles of wind, dew point, temperature 

and visibility at 10 minute interval from https://dataplatform.knmi.nl/dataset/cesar-tower-meteo-lb1-t10-v1-2 and Meteo 

surface - validated observations of common atmospheric variables at 10 minute interval from 565 

https://dataplatform.knmi.nl/dataset/cesar-surface-meteo-lb1-t10-v1-0. Pershore visibility data are available at 

https://zenodo.org/record/6325902#.YiDrNejP2Uk (Queißer et al., 2022). Backscatter data is available from the first and 

second author on request.  
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