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Abstract. Despite recent progress, satellite retrievals of anthropogenic SO2 still suffer from relatively low signal-to-noise 

ratios. In this study, we demonstrate a new machine learning data analysis method to improve the quality of satellite SO2 10 

products. In the absence of large ground truth datasets for SO2, we start from SO2 slant column densities (SCDs) retrieved 

from the Ozone Monitoring Instrument (OMI) using a data-drive, physically based algorithm and calculate the ratio between 

the SCD and the root mean square (RMS) of the fitting residuals for each pixel. To build the training data, we select presumably 

clean pixels with small SCD/RMS ratios (SRRs) and set their target SCDs to zero. For polluted pixels with relatively large 

SRRs, we set the target to the original retrieved SCDs. We then train neural networks (NNs) to reproduce the target SCDs 15 

using predictors including SRRs for individual pixels, solar zenith, viewing zenith and phase angles, scene reflectivity and O3 

column amounts, as well as the monthly mean SRRs. For data analysis, we employ two NNs: 1) one trained daily to produce 

analysed SO2 SCDs for polluted pixels each day and 2) the other trained once every month to produce analysed SCDs for less 

polluted pixels for the entire month. Test results for 2005 show that our method can significantly reduce noise and artifacts 

over background regions. Over polluted areas, the monthly mean NN analysed and original SCDs generally agree to within 20 

±15%, indicating that our method can retain SO2 signals in the original retrievals except for large volcanic eruptions. This is 

further confirmed by running both the NN analysed and the original SCDs through a top-down emission algorithm to estimate 

the annual SO2 emissions for ~500 anthropogenic sources, with the two datasets yielding similar results. We also explore two 

alternative approaches to the NN-based analysis method. In one, we employ a simple linear interpolation model to analyse the 

original SCD retrievals. In the other, we develop a PCA-NN algorithm that uses OMI measured radiances, transformed and 25 

dimension-reduced with a principal component analysis (PCA) technique, as inputs to NNs for SO2 SCD retrievals. While the 

linear model and the PCA-NN algorithm can reduce retrieval noise, they both underestimate SO2 over polluted areas. Overall, 

the results presented here demonstrate that our new data analysis method can significantly improve the quality of existing OMI 

SO2 retrievals. The method can potentially be adapted for other sensors and/or species and enhance the value of satellite data 

in air quality research and applications. 30 
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1 Introduction 

Sulfur dioxide (SO2) and its oxidation product in the atmosphere, sulfate aerosols, have significant impacts on air quality, 

visibility, ecosystems, and the weather and climate. For over two decades, spaceborne hyperspectral ultraviolet (UV) 

instruments (e.g., Eisinger and Burrows, 1998; Krotkov et al., 2006; Nowlan et al., 2011; Theys et al., 2017) have been 

providing global observations of anthropogenic SO2 sources such as coal-fired power plants, metal smelters, and the oil and 35 

gas industry (e.g., Fioletov et al., 2016; McLinden et al., 2016; Zhang et al., 2019). More recently, the quality of satellite SO2 

data products has substantially improved thanks to the development of data driven retrieval techniques. In particular, the 

principal component analysis (PCA) based algorithm (Li et al., 2013; 2017a; 2020) and the covariance-based retrieval 

algorithm (COBRA, Theys et al., 2021) have helped to reduce the noise and artifacts of SO2 retrievals from several sensors 

including the Ozone Monitoring Instrument (OMI), Ozone Mapping and Profiler Suite (OMPS), and TROPOspheric 40 

Monitoring Instrument (TROPOMI), enabling the detection and quantification of relatively small point sources (e.g., Fioletov 

et al., 2015, Theys et al., 2021).  

Despite these progresses, satellite remote sensing of anthropogenic SO2 remains challenging. The signal of 

anthropogenic SO2 is relatively weak as compared with volcanic sources. With an atmospheric lifetime of ~1 day (e.g., Lee et 

al., 2011), SO2 emitted from human activities is also more concentrated in the boundary layer, where the sensitivity of satellite 45 

instruments is limited by the low surface albedo, strong Rayleigh scattering, and interferences from O3 absorption in the UV 

(e.g., Krotkov et al., 2008). As a result, the noise in satellite SO2 retrievals is relatively large even for data driven algorithms. 

For example, the standard deviation (1-σ noise) of OMI PCA SO2 slant column densities (SCDs) over the remote Pacific is 

~0.2-0.3 DU (Dobson Unit, 1 DU = 2.69 × 1016 molecules/cm2, Li et al., 2020), far greater than the typical SCDs retrieved 

outside of the most polluted areas (e.g., Persian Gulf, eastern China, and Norilsk, Russia). The retrieval noise can be reduced 50 

by spatially and temporally averaging the data (Krotkov et al., 2008). However, relatively small but noticeable artifacts still 

exist in monthly or annual mean OMI SO2 (e.g., negative values over arid and semi-arid areas), indicating systematic biases 

that cannot be averaged out. While there was little drift in the mean OMI SO2 SCDs over remote regions from 2005 to 2019, 

the retrieval noise grew by ~10% during the same period (Li et al., 2020), presumably due to instrument degradation. With the 

recent large decreases in SO2 emissions and signals in many regions (e.g., Krotkov et al., 2016; Li et al., 2017b), the increase 55 

in retrieval noise makes the analyses and applications of satellite SO2 data even more challenging, especially for long-term 

monitoring. It is thus imperative to further enhance the quality of satellite SO2 data products.   

In recent years, machine learning has emerged as a powerful tool in satellite remote sensing of atmospheric 

composition. Capable of incorporating large, diverse datasets and modelling complex, nonlinear functions, techniques such as 

neural networks (NN) and random forests (RF) have been utilized to solve various problems. For instance, a number of studies 60 

trained NN or RF models to infer surface concentrations of pollutants from satellite observations, including particulate matter 

(e.g., Huang et al., 2021; Liu et al., 2019; Zheng et al., 2021), NO2 (e.g., Chan et al., 2021), and SO2 (e.g., Zhang et al. 2022). 

NNs have also been used to speed up radiative transfer calculations (e.g., Castellanos and da Silva, 2019; Nada et al., 2019) 
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and to retrieve O3 profiles (e.g., Muller et al., 2003; Xu et al., 2017) and total columns (Muller et al., 2004), isoprene amounts 

(Wells et al., 2020), and aerosol layer height (Chimot et al., 2017). For SO2, De Santis et al. (2021) demonstrated a NN retrieval 65 

algorithm using the operational TROPOMI product for training in their case study of Mt. Etna. Piscini et al. (2014) attempted 

NN-based SO2 and volcanic ash retrievals using thermal infrared measurements from MODIS (the Moderate Resolution 

Imaging Spectroradiometer). Hedelt et al. (2019) also developed near-real-time volcanic SO2 height retrievals using the Full-

Physics Inverse Learning Machine (FP-ILM) method, a technique later adapted for OMI by Fedkin et al. (2021). While these 

studies have demonstrated the potential of machine learning for SO2 retrievals, they all focus on volcanic SO2. To our 70 

knowledge, so far there have been no published studies demonstrating the use of machine learning techniques for 

anthropogenic SO2 retrievals. 

A major obstacle in developing machine learning retrieval algorithms for anthropogenic SO2 is the lack of high-

quality, ground-truth training data. As mentioned above, existing satellite SO2 products provide global coverage, but the signal-

to-noise ratios are typically small for anthropogenic sources. Ground air quality monitors generally offer good data quality and 75 

long-term measurements, but they do not represent the entire atmospheric column. Aircraft measurements and surface based 

remote sensing instruments (e.g., MAX-DOAS) have been used to evaluate satellite retrievals, but they are quite sparse. The 

FP-ILM method circumvents this data availability issue by using a large set of model-simulated synthetic radiance spectra in 

training. However, the models may not fully represent the various geophysical processes and instrument characteristics that 

affect satellite measurements. This can lead to substantial errors, and FP-ILM retrievals of volcanic SO2 height are currently 80 

limited to satellite pixels with sizable SO2 amounts (> 20 DU). 

Here, we introduce a new data analysis method to further improve the quality of satellite retrieved SO2. In the absence 

of sufficient ground truth data, we compile our training data by analysing existing OMI SO2 SCD retrievals and the associated 

fitting errors, assuming that retrievals with greater SCDs and smaller fitting errors can be trusted more than those with smaller 

SCDs and larger errors. This allows us to train NNs to reduce noise and artifacts in the original retrievals, meanwhile retaining 85 

SO2 signals over major emission source areas. The rest of the paper is organized as follows: Section 2 describes our 

methodology and setups for NN training. Section 3 provides some example results. This is followed by a more detailed 

discussion on the NN analysed SCDs in Section 4 and conclusions in Section 5.            

2 Data and methodology 

The flowchart in Fig. 1a presents an overview of our data analysis method. We start from existing OMI PCA SO2 retrievals 90 

(Section 2.1) and calculate the ratio between the SCD and the root mean square (RMS) of the fitting residuals (SCD/RMS 

ratio, SRR) for each pixel, as well as the statistics of the SRRs for the entire month. This provides input to a data classification 

scheme (Fig. 1b, Section 2.2) that assigns OMI pixels from each day into different groups ("clean", "polluted", "in-between" 

and "high-SRR"). The pixels within each group are then either processed with one of the two neural networks (pre-trained 

NN1 for clean and in-between pixels, daily trained NN2 for polluted pixels, Fig. 1c, Section 2.3) or retain their original 95 
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retrieved SCDs (for high-SRR pixels). In the end, the OMI pixels from different groups are merged into the final analysed 

SCD dataset. 

2.1 Analysis of OMI SO2 data  

To demonstrate our methodology, we use data from OMI, a Dutch/Finnish UV/Visible spectrometer that has been flying on 

the National Aeronautics and Space Administration (NASA)'s Aura spacecraft in a Sun synchronous orbit since 2004 (Levelt 100 

et al., 2018). OMI measures backscattered solar radiation between 270 and 500 nm in the local afternoon (local equator crossing 

time: ~13:45) at a relatively high spatial (13 × 24 km2 at nadir) and spectral (~0.5 nm) resolution. We focus on the year 2005, 

when all cross-track positions (rows) of OMI's 2-dimensional detectors were taking nominal measurements, providing daily 

global coverage.  

For SO2 data, we use SCDs retrieved from NASA version 2 OMI standard SO2 algorithm based on the PCA spectral 105 

fitting technique. The algorithm has been described in detail elsewhere (Li et al., 2020) and is only briefly introduced here. 

The algorithm uses OMI-measured Sun-normalized Earthshine radiances within the spectral range of 310.5-340 nm and 

processes each row of individual OMI orbits separately. The ~1600 OMI pixels from a given row in a given orbit are first 

filtered to exclude those with large solar zenith angles (SZA > 75º) or potentially strong SO2 signals (e.g., volcanic plumes by 

examining the ozone residuals at 313/314 and 314/315 nm wavelength pairs, see Li et al., 2017a for details). Next, the spectra 110 

of the remaining pixels are analysed utilizing a PCA technique to extract spectral features (principal components, PCs). The 

leading PCs that account for the most spectral variances are typically associated with geophysical (e.g., O3 absorption and 

rotational Raman scattering, RRS) or instrumental (e.g., dark current, wavelength shift) factors that interfere with SO2 

retrievals. For each pixel, up to 30 leading PCs, along with the SO2 cross sections, are fit to the measured radiances to estimate 

the SO2 SCD while minimizing the interferences. This multi-step (data filtering, PCA analysis, and spectral fitting) procedure 115 

is iterated a few times. To avoid collinearity in fitting, the PCs are also examined to exclude those potentially containing SO2 

spectral signatures. For this study, the standard algorithm has been modified to use the new collection 4 OMI level 1B (L1B) 

radiance and irradiance data, instead of the collection 3 data for the current standard OMI SO2 product. No obvious differences 

were found between the SCDs retrieved from the two collections. In addition, the RMS of the fitting residuals (i.e., the 

differences between the measured and the fit normalized radiance spectra) for each pixel has been added to the output. 120 

In order to compare the SO2 signal vs. the fitting error, we calculate the SCD/RMS ratio (SRR) for each pixel. The 

pixel-level SRRs are also gridded into monthly mean (SRRm) at 0.25º × 0.25º resolution (Fig. 2). At middle and low latitudes, 

the overall spatial distribution of SRRm (Fig. 2b) is quite similar to that of the monthly mean SCDs (Fig. 2a). On the other 

hand, the bias in SRRm is smaller at high latitudes due to generally greater fitting errors at larger SZAs, allowing us to better 

distinguish polluted areas from background regions. In the following steps (Sections 2.2 and 2.3), SRRm is utilized as an 125 

indicator of the likelihood of an OMI SO2 retrieval over a certain area to represent a positive SO2 value. For each day of the 

month, we also calculate the mean and standard deviation of SRRs for 3º latitude bands, using all pixels within each band after 
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removing outliers (SRRs outside of ±5σ from the mean). The monthly medians of the daily mean (𝑆𝑅𝑅######) and standard deviation 

(𝜎!"") are then taken from each latitude band as inputs to the OMI pixel classification scheme (Section 2.2) 

2.2 Classification of OMI pixels 130 

The purpose of the pixel classification scheme (Fig. 1b) is to compile a training dataset by selecting pixels in two categories: 

1) the first for clean pixels in which the retrieved SCDs are relatively small while the fitting errors are relatively large (i.e., 

negative or small positive SRRs) so that they can be considered largely SO2-free and 2) the second in which the retrieved SCDs 

are large while the fitting errors are relatively small (i.e., large SRRs). In this category for polluted pixels, the retrieved SCDs 

are assumed to be close to the truth. There are two additional categories. The third is for pixels that fall in-between the clean 135 

and polluted categories. For these pixels, an unambiguous classification cannot be made and they are excluded from the training 

dataset. The fourth category (high SRR) is for pixels that have very large SRRs (> 300). Such pixels are few but are also 

excluded from the training, as they tend to have a disproportionally large influence on the trained NNs. 

In addition to the SRRs of individual OMI pixels, the classification scheme also takes into account the location 

(latitude/longitude) of the pixels, as well as the general performance of the PCA algorithm for the latitude bands in which they 140 

are located. A pixel with a specific SCD/RMS ratio of SRRi is considered to be polluted, if: 

𝑆𝑅𝑅# > 𝑆𝑅𝑅###### + a1	𝜎!"" .            (1) 

The pixel would be considered to be clean, if: 

𝑆𝑅𝑅# < 𝑆𝑅𝑅###### + a2 𝜎!"" ,           (2) 

where 𝑆𝑅𝑅###### and 𝜎!"" are the monthly medians of the daily mean and standard deviation of SRRs for the corresponding latitude 145 

band, respectively. a1 and a2 are scaling factors (see Fig. 1b for values) that have been adjusted through trial and error in order 

to 1) minimize the artifacts in NN analysed SCDs over background areas and 2) maximize the retained original SO2 signals 

over polluted areas. Both factors depend on the location of the pixels and the monthly mean SRRs (SRRm). As shown in Fig. 

1b, a1 and a2 are large, if the pixel is located in an area with a small SRRm (< 3). In this case, the area is generally unpolluted 

and the likelihood of a pixel containing a positive SO2 value is low. Thus, more pixels are classified as clean. On the other 150 

hand, for polluted areas with large SRRm (> 5), both a1 and a2 are kept small so that more pixels would be classified as polluted. 

For areas that are moderately polluted (i.e., 3 < SRRm < 5), a1 and a2 are linearly interpolated based on the SRRm. One may 

also notice that a1 and a2 are smaller for low (30ºS-30ºN) and middle (30ºS-60ºS and 30ºN-60ºN) latitudes than for high 

latitudes. This helps to reduce the positive bias in the original SCDs near the northern edge of the domain (Fig. 2a). We also 

tested a simple classification scheme with constant a1 and a2 everywhere, and found that it produces relatively large positive 155 

biases over high latitudes and negative biases over low latitude source areas, as compared with the more complicated scheme 

described above. It should also be pointed out that the areas affected by the south Atlantic anomaly (SAA) are not subject to 

classification and excluded from the training dataset. 

 Using the classification scheme, one can also develop a simple method to reduce retrieval artifacts, by assuming that 

clean pixels should have zero SCDs while polluted pixels should retain their original SCDs and by estimating SCDs for pixels 160 
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that fall in-between through a linear interpolation (between zero and the original SCDs). As will be demonstrated in Section 

4.4, such an approach produces negative biases over polluted areas. It is thus advantageous to employ the more complex NN-

based method for the present study.   

2.3 Training of neural networks  

For training data, we use the OMI pixels identified as either clean or polluted by the classification scheme. For a typical day, 165 

approximately ~800000 out of ~1 million OMI pixels are classified as clean, and ~10000 (~1%) as polluted. Given the scarcity 

of ground truth SO2 data, we set the training target (SCDtarget) to zero for the clean pixels and to the original SCDs for the 

polluted pixels. Note that unlike the PCA spectral fitting algorithm, data from all 60 rows are pooled together in the training 

so that a relatively large sample of polluted pixels is available. We also include several candidate predicators in the training 

data, including SCD/RMS ratios for the individual pixels (SRRi), the monthly mean SCD/RMS ratios (SRRm) where the pixels 170 

are located, the cosines of solar zenith angles (SZA, q0), viewing zenith angles (q) and phase angles (f), the O3 column amounts 

from the OMI total O3 product (OMTO3, Bhartia, 2005), and the scene reflectivity (R) at 354 nm from the OMI Raman cloud 

product (OMCLDRR, Joiner and Vasilkov, 2006). The function of a neural network (NN) is then to use the input predictors 

or features to predict the output SCDtarget: 

𝑆𝐶𝐷$%&'($ = 𝑓))(𝑆𝑅𝑅# , 𝑆𝑅𝑅*, 𝜃+, 𝜃, 𝜙, 𝑅, 𝑂,) .        (3) 175 

To optimize the set of predictors, we carried out a number of tests using different combinations (See Table 1 for 

example results). Among the predictors, SRRi is well correlated with SCDtarget and has the largest impact on the performance 

of the NNs. Indeed, the NN without SRRi produces the lowest correlation coefficient (r) and the largest root mean square error 

(RMSE) between the analysed SCDs (SCDNN) and SCDtarget (Table 1). SRRm provides geospatial context for the NNs so that 

higher SCDs tend to be assigned to polluted areas. In the particular example in Table 1, a simple NN using just SRRi and SRRm 180 

as predictors produces SCDNN that agrees reasonably well with SCDtarget (r = 0.958, RMSE = 0.0517 DU). The angles, O3 

column amounts, and scene reflectivity all affect the signal-to-noise ratio of OMI measurements and the quality of SO2 

retrievals (Li et al., 2020). Adding them as predictors generally leads to small but noticeable improvements in the performance 

of the NNs (Table 1). While the NN with all seven predictors has slightly worse performance than the NN without SRRm for 

this case, including SRRm as a predictor helps to retain signals over SO2 source areas. We also tested additional predictors 185 

(e.g., the terrain pressure and the scene pressure) and found no discernible improvements in the overall performance of the 

NNs. Hereafter we use all seven predictors as specified in Eq. 3 in the NNs.  

The architecture of the NNs in this study (Fig. 1c) is similar to that employed by Joiner et al. (2021, 2022) for 

reconstruction of RGB images from hyperspectral radiances. A similar architecture has also been used to capture changes in 

gross primary production (GPP) from satellite reflectance data (Joiner and Yoshida, 2020). Briefly, the artificial feedforward 190 

NNs are implemented in IDL (Interactive Data Language) and contain two hidden layers, each with 14 nodes (twice the number 

of predictors), and an output layer with one node. Experiments using more (up to 30) nodes in each hidden layer yield little 

difference in the performance of the NNs. The activation functions are a soft sign for the first hidden layer, a logistic (sigmoid) 
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for the second hidden layer, and a bent identity for the output layer. If we replace the activation functions in both hidden layers 

with ReLU (Rectified Linear Unit), the NNs converge faster in training but increase the SCDs over background areas by ~0.01-195 

0.02 DU (Fig. S1). An adaptive moment estimation (Adam) optimizer (Kingma and Ba, 2014) with a learning rate of 0.1 is 

used to minimize the error. Inputs and outputs are normalized so that they each have a mean of zero and a unit standard 

deviation.   

For each month, we train a neural network (NN1, Fig. 1) utilizing data from 5 days (the 5th, 10th, 15th, 20th and 25th 

days of the month). Half of the clean and polluted pixels are used in the training and the rest for evaluation. We notice that 200 

NN1 well reproduces SCDtarget for clean pixels and also for polluted pixels that have SCDs up to ~4-5 DU, but it produces a 

low bias for larger SCDs. This is likely due to the imbalance between the clean and polluted categories in the training data. To 

mitigate this issue, we use the pre-trained NN1 only for clean and in-between pixels (Fig. 1a) and a separate neural network 

(NN2) for polluted pixels from each day (Fig. 1a). NN2 has the same architecture as NN1 but is trained daily with half of the 

polluted pixels. Alternatively, we can also train NN2 using data from multiple days and apply the pre-trained multi-day model 205 

to the entire month. As compared with the daily trained NN2, SCDNN produced by the multi-day model is similar but slightly 

lower over some polluted areas (e.g., eastern China). To maximize the retained SO2 signals over those regions, we use daily 

trained NN2 in the present study.  

 In the final step (Fig. 1a), the SCDNN outputs from NN1 and NN2 are merged with the original SCDs for high-SRR 

pixels to produce the final NN analysed SCDs. 210 

3 Results 

3.1 Daily comparisons of SO2 SCDs  

In Fig. 3, we compare the NN analysed SO2 SCDs (SCDNN) and the target SCDs (SCDtarget) from the 16th of January, April, 

July and October 2005, for independent pixels that are not part of the training. There is generally good agreement between 

SCDNN and SCDtarget, with r > 0.93 and RMSE at ~0.02-0.03 DU for all four days. The vast majority of clean pixels as identified 215 

by the classification scheme have SCDNN between -0.1 and 0.1 DU, indicating substantial reduction in the retrieval noise as 

compared with the original retrievals (1-σ noise of ~0.2-0.3 DU), although a small fraction of the clean pixels still have SCDNN 

as large as ±0.5 DU. The slopes from the linear regression analysis are between 0.95 and 0.98, suggesting slight underestimates 

in SCDNN. There is also some scatter for the polluted pixels particularly at higher SCDs (> 2 DU). The number of pixels having 

large SCDtarget are relatively small and this limit in the training data may affect the performance of NNs under high SCD 220 

conditions (such as for volcanic plumes). We repeated the analysis for the whole year and found similar results for most days. 

On average, the correlation coefficient from the daily comparisons is 0.948 ± 0.0309 (hereafter results are shown as mean ± 

standard deviation), the RMSE is 0.0343 ± 0.0194 DU, while the slope is 0.966 ± 0.0409. There are four days with RMSE > 

0.1 DU (April 6, June 11, July 13, and August 14). All four have relatively large errors over areas affected by volcanic plumes, 
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again suggesting that the NN performance may deteriorate at high SCDs. Overall, the comparisons here point to quite good 225 

performance of the NNs in reproducing the target SCDs.      

As compared with the original SCDs, the NN analysed SCDs have much reduced noise and artifacts over background 

areas and largely retain SO2 signals over polluted regions. This is evident from Fig. 4 which shows the original SO2 SCDs, the 

NN analysed SCDs, their differences, and the mean SCDs for different latitude bands over generally clean areas (monthly 

mean SRR < 3) for April 16, 2005 as an example. As can be seen from the figure, the NN analysed SCDs show little variation 230 

with latitudes as compared with the original PCA retrievals (Fig. 4d). The differences between the two (Fig. 4c) are similar to 

the original SCDs (Fig. 4a) over most background areas, as ~80% of the pixels are identified as clean and have SCDNN within 

±0.1 DU. The differences are quite small over polluted regions (e.g., eastern China, Sichuan Basin, Norilsk), as pixels over 

those areas tend to be classified as polluted and have SCDNN close to their original retrievals. It is worth mentioning that even 

though the SAA affected areas are excluded from training, the analysed SCDs over those areas still show smaller noise than 235 

the original ones. One potential reason is that retrievals over the SAA areas tend to have relatively large RMS, and the use of 

SRRs partially cancels out the relatively noisy SCDs. 

3.2 Comparisons of monthly SO2 SCDs 

The monthly maps in Fig. 5 for March 2005 show consistent results with the daily comparisons in Section 3.1. While the 

monthly mean SCDs from the original PCA retrievals (Fig. 5a) are close to zero for most background areas, biases are evident 240 

over certain regions. For example, there are patches of negative SCDs (approximately -0.1 DU) at ~40-60ºN and over the 

oceans near the equator. Another noticeable feature is the negative bias over the relatively bright arid and semi-arid land 

surfaces such as the Sahara desert, the Arabian peninsula, and the Taklimakan and Gobi deserts. It is possible that the retained 

PCs (derived from hundreds of pixels from each OMI row) do not fully capture certain interfering factors for those areas. The 

exact reasons for these artifacts are unknown and beyond the scope of the present study. In any case, they are largely removed 245 

through our NN-based analysis (Fig. 5b). Meanwhile, there is no obvious difference between the original and analysed SCDs 

over major SO2 source areas (Fig. 5c), evidence that the NNs have learned to preserve the SO2 signals over those areas.  

One may notice that outside of the source regions, the difference map in Fig. 5c is not identical to the original SCD 

map in Fig. 5a. For example, the differences are slightly more negative than the original SCDs over parts of Canada, Mongolia, 

and Russia. Most pixels have SCDNN near zero, but some pixels with noisy, positive original SCDs could be misclassified as 250 

polluted, resulting in a small positive bias in SCDNN for these areas. This is also noticeable in Fig. 5d that shows the mean 

original and NN analysed SCDs within 1º latitude bands over clean areas. The NN SCDs have generally less structure, 

indicating reduced artifacts, but a positive bias of ~0.02 DU can be found north of 60ºN. Mean SCD maps for other months 

(January, April, July, October 2005, see Fig. S2 in the supplemental information) show quite similar results. For areas/periods 

strongly influenced by relatively large volcanic eruptions (e.g., Sierra Negra (Galapagos Islands) eruption in October 2005), 255 

the NNs have difficulty completely reproducing the strong SO2 signals. This again points to the slightly deteriorated 

performance of NNs under high SO2 conditions, as already discussed. 
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A close-up look at the NN-analysed SCDs and their differences from the original SCDs over eastern China is given 

in Fig. 6. For polluted areas (analysed SCDs > 0.15 DU), the relative differences are typically within ±20%, with a mean of 

4% (with the original SCDs being greater). For background areas, the relative differences are close to ±100% as expected for 260 

clean pixels. Comparisons for other major anthropogenic source areas including India, the Middle East, South Africa, the 

eastern U.S., and Norilsk, Russia yield similar results (see Figs. S3-S7 in the supplemental information). The mean relative 

differences for polluted areas in these regions are all within ±15%, ranging between -11% for the eastern U.S. and 14% for the 

Middle East. In comparison, the relative differences for areas affected by large volcanic plumes are greater, for example 

reaching 20% on average over part of the southeast Pacific during the October 2005 Sierra Negra eruption (see Fig. S8 in the 265 

supplemental information). 

4 Discussion 

4.1 Original and analysed SO2 SCDs as a function of SRRs  

The results presented in Section 3 demonstrate that our NN-based analysis can reduce noise and artifacts for clean pixels, 

meanwhile largely retaining the original SCDs for polluted pixels. However, some key questions remain unanswered. Namely, 270 

given the somewhat subjective criteria used in the pixel classification scheme (Section 2.2) to build the training data, do we 

risk removing real SO2 signals as noise (i.e., over-correction) and/or keeping noise/artifacts as signals (i.e., under-correction)? 

Another related question is: how do the NNs treat pixels that are not in the training data (i.e., the pixels that fall in-between 

the clean and polluted categories)? To shed light on these issues, we calculate the monthly mean SO2 SCDs as a function of 

pixel-level SCD/RMS ratios (SRRi) from the original retrievals (Panel a of Figs. S9-S13 in the supplemental information) and 275 

the analysed data (Panel b of Figs. S9-S13 in the supplemental information), as well as their differences (Fig. 7, left) for March 

2005. In addition, we also calculate the mean original and NN analysed SCDs as a function of latitude for different ranges of 

SRRi (Fig. 7, right).  

For pixels having 𝑆𝑅𝑅# < 𝑆𝑅𝑅###### (see Section 2.1 for definitions of 𝑆𝑅𝑅######	 and 𝜎!""), the original SCD map (Fig. S9a) 

shows no obvious hotspots even over the major SO2 source areas. All such pixels would be classified as clean and indeed the 280 

mean NN analysed SCDs (Fig. S9b) from these pixels are zero everywhere. The mean analysed SCDs (Fig. 7b) are also near 

zero at all latitudes.  

The next group of pixels have 𝑆𝑅𝑅######  < 𝑆𝑅𝑅# < 𝑆𝑅𝑅###### + 𝜎!"" (Fig. 7, second row). Most pixels in this group, except for 

those near large SO2 sources at low latitudes (30ºS-30ºN), would also be classified as clean. Similar to the first group, there 

are no obvious SO2 hotspots in the original SCD map (Fig. S10a). The analysed SCDs (Fig. S10b) are similarly near zero 285 

almost everywhere, with notable exceptions over some degassing volcanoes (Anatahan, Nyiragongo, and Vanuatu) and heavily 

polluted areas (Sichuan Basin and Norilsk). The case of Norilsk is particularly interesting. Given the thresholds for high 

latitudes (Fig. 1b), all pixels in this group over Norilsk would be classified as clean, but the NNs seem to be able to override 
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the classification based on factors other than SRRs. The mean analysed SCDs are around zero for all latitude bands, smaller 

than the original SCDs (Fig. 7d). 290 

For the group of pixels having intermediate SRRs (𝑆𝑅𝑅###### + 𝜎!"" < 𝑆𝑅𝑅# < 𝑆𝑅𝑅###### + 2𝜎!"", Fig. 7, third row), the original 

SCD map (Fig. S11a) contains enhanced SO2 signals over source areas but also artifacts over background regions. The pixels 

in this group would be classified as clean, polluted, or in-between depending on their SRRi and locations. In general, the NNs 

are able to largely eliminate the artifacts and retain signals over SO2 source areas for this group (Fig. 7e), although there are 

remaining small positive biases both near the northern edge of the domain and at lower latitudes (e.g., around 30ºS) as shown 295 

in Fig. 7f.  

For the following group (𝑆𝑅𝑅###### + 2𝜎!"" < 𝑆𝑅𝑅# < 𝑆𝑅𝑅###### + 3𝜎!"", Fig. 7, fourth row), almost all pixels would have a 

classification of either polluted or in-between. NNs reduce the retrieval artifacts in this group particularly at middle to high 

latitudes (Figs. 7g and 7h). The relatively small changes at low latitudes can probably be attributed to the more relaxed 

thresholds for pixels to be classified as polluted and in-between (Section 2.2). Using more stringent thresholds may further 300 

reduce the artifacts in the tropics, but this may also lead to low bias over pollution sources (See Fig. 8b for example).  

For the final group (𝑆𝑅𝑅# > 𝑆𝑅𝑅###### + 3𝜎!"", Fig. 7, fifth row), almost all pixels are identified as polluted. As a result, 

the differences between the original and the analysed SCDs are quite small except over the SAA affected areas (Figs. 7i and 

7j at around 30ºS) where the pixels are not part of the training data and the noise is reduced by the NNs. Overall, it is 

encouraging that the NN analysed SCDs show improvements over the original ones for all ranges of the SRRs. 305 

4.2 Sensitivity of NN analysed SCDs to the pixel classification scheme 

We further test the sensitivity of NN analysed SCDs to the settings of the pixel classification scheme, by altering the a1 and a2 

parameters (Eq. 1 and 2). In one experiment, we scale both parameters by 90% (i.e., reduced by 10% from the baseline values 

as specified in Fig. 1b). This leads to more pixels being classified as polluted and greater monthly mean SCDs (Fig. 8a). The 

increase in the SCDs is ~0.01-0.02 DU on average over relatively clean areas (Fig. 8c) and slightly larger over some source 310 

areas (e.g., eastern China) but typically less than 0.1 DU. In another experiment, both a1 and a2 are scaled by 110% (i.e., 

increased by 10% from the baseline values), resulting in SCD reductions of ~0.01 DU over clean areas (Fig. 8c). Some source 

areas (e.g., Norilsk) show slightly more reductions (Fig. 8b) that are still typically less than 0.1 DU. Overall, the tests here 

point to moderate sensitivity of the NN-based analysis to the settings of the pixel classification scheme. An overly stringent 

scheme may lead to over-correction and low biases over source areas, whereas an overly relaxed scheme may result in positive 315 

biases. For our particular study, any over- or under-correction appears to be minor for major source areas, given the relatively 

small differences between the analysed and the original SCDs (see Sect. 3.2). But if one is to apply the technique to other 

datasets (e.g., different instruments and/or species), the pixel classification scheme will need to be tested and optimized. For 

long-term analysis of a dataset from a single instrument (e.g., OMI SO2 for the entire mission), the scheme will need to be 

verified using data from different years, although we envision that a constant set of a1 and a2 parameters over time will probably 320 
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be more suitable to avoid artificial trends introduced by time-dependent parameters. For future studies, we plan to develop a 

more systematic way for pixel classification, for example, by using more objective metrics. 

4.3 SO2 emission estimates using the original and NN analysed SCDs 

Another test involves running both the original and NN analysed SCDs through a top-down emission estimation algorithm to 

derive annual SO2 emissions from large point sources. Here we focus on anthropogenic sources, given the low bias in the NN 325 

analysed SCDs for large volcanic plumes. We infer SO2 emissions by fitting oversampled and smoothed OMI vertical column 

densities (VCDs) to a 3-parameter (i.e., total mass, lifetime and plume spread) function of horizontal coordinates and wind 

speeds (Fioletov et al., 2015). To convert SCDs to VCDs, we use the same air mass factors (AMFs, VCD = SCD/AMF) as in 

Fioletov et al. (2016). For wind fields, we use the average winds between the surface and ~1 km from GEOS-5 Forward 

Processing for Instrument Teams (FP-IT) assimilated products that have been co-located with OMI (OMUFPITMET; available 330 

at https://disc.gsfc.nasa.gov/datasets/OMUFPITMET_003/summary). The OMI pixels are then rotated around known source 

locations according to wind directions such that all observations are aligned in the upwind-downwind direction (Fioletov et 

al., 2015). Following Fioletov et al. (2016), we prescribe the SO2 lifetime (6 h) and the parameter describing the spread of the 

emitted plume (20 km) to obtain more robust fitting results. Only one parameter, the total SO2 mass, is estimated from the fit. 

We further derive SO2 emissions by dividing the fitted total SO2 mass by the prescribed lifetime. For fitting uncertainty, we 335 

calculate the one standard deviation error in the fitted parameter by taking the square root of the diagonal elements of the 

covariance matrix of the parameter. 

As shown in Fig. 9a, the two sets of emission estimates agree quite well (r > 0.99, slope > 0.96), suggesting the NN 

analysis has largely preserved SO2 signals in the original retrievals. In general, the estimated emissions using the NN analysed 

SCDs are slightly smaller than those based on the original retrievals, particularly for relatively small sources (< 20 kt, 103 340 

tonnes, per year). While on the surface this may suggest loss of some real SO2 signals in our analysis for relatively small 

sources, the emission uncertainties (Fig. 9b) for those sources also become much smaller when using the NN analysed data. 

This leads to greater emission/uncertainty ratios (Fig. 9c) for those sources, implying that the reduced noise/artifacts in the 

analysed data may facilitate SO2 source detection and quantification. We note that the results here should be interpreted with 

caution, given that OMI sensitivity to sources < 30 kt/year is quite limited (Fioletov et al., 2015).  345 

4.4 Can a simple linear interpolation model reproduce NN analysed SCDs? 

Given the seemingly simple assumptions made about the clean and polluted pixels during the training process (Section 2.3), 

one may also ask whether there is any advantage to using the NN-based data analysis approach. To test this, we apply the same 

pixel classification scheme as described in Section 2.2 and build a simple model by assigning zero SCDs to the clean pixels, 

the original SCDs to the polluted pixels, and by linearly interpolating between zero and the original SCDs for pixels that fall 350 

in-between (based on the SRRs for those pixels and the corresponding thresholds as defined in Eq. 1 and Eq. 2).  
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The mean SCDs for March 2005 (Fig. 10a), produced with this simple linear interpolation model, appear to be quite 

similar to those produced with the NN-based analysis (Fig. 5b). This is not surprising since the majority of pixels are classified 

as clean, and NN analysed SCDs for those pixels are also close to zero. The plot of mean SCDs as a function of latitude (Fig. 

10c) also indicates overall comparable results for relatively clean areas between the two methods, although the linear model 355 

has more obvious step changes at 30ºN and 30ºS probably related to the pixel classification scheme. Over pollution source 

areas (e.g., eastern China), on the other hand, the linear model has a substantial negative bias as compared with the NN-based 

approach (see the SCD difference map in Fig. 10b). Additionally, the noise is also larger over the SAA areas for the linear 

model. This comparison demonstrates some advantages in the NN-based approach, particularly for preserving SO2 signals 

over source areas. It should be mentioned that the simple linear model tested here can be potentially improved by including 360 

more predictors such as those used in the NNs (e.g., monthly SRRs, the Sun-satellite geometry, and O3). But such a multi-

regression model may need to be optimized locally for different regions and can be more challenging to implement, as 

compared with the NNs.  

4.5 Implementation of a PCA-NN SO2 fitting algorithm 

So far, we have relied on the output from the existing PCA SO2 algorithm as input to the NNs; therefore, our method can be 365 

viewed as an additional data processing step following the spectral fit. For a potential alternative to this approach, we also 

attempt to build an NN-based SO2 SCD fitting algorithm that uses the measured radiances as inputs and the NN analysed SCDs 

for training targets. As with the PCA SO2 algorithm, the NN fitting algorithm uses the logarithm of Sun-normalized Earthshine 

radiances at 310.5-340 nm and processes each OMI row separately with individually trained NNs. We pool the data from 12 

days in 2005 (the 10th day of each month), generating a training dataset that contains about 200000 pixels for each row. To 370 

reduce the data dimension of the inputs, a PCA technique is combined with the NNs in this PCA-NN fitting algorithm as in 

Joiner et al. (2022). We conduct PCA on the radiance spectra and include the coefficients of the first 50 leading PCs as 

predictors in the NNs. Experiments using fewer (as few as 20) or more (up to 100) PCs generally result in larger errors in the 

retrieved SCDs. In addition to the PC coefficients, the NNs also use four other parameters (solar zenith angles, O3 column 

amounts, scene reflectivity, and monthly mean SRR ratios) as predictors. Viewing zenith angles are not included since the 375 

training is carried out separately for each row. We also exclude the phase angles, given that adding them as a predictor leads 

to no discernible improvements in the algorithm performance. The SRRs for individual pixels are also excluded, as the PCA-

NN algorithm is designed to run independently from the PCA SO2 algorithm after the training phase. While the monthly mean 

SRRs also originate from the PCA retrievals, they essentially provide geospatial context on the spatial distribution of SO2 and 

can be potentially replaced with other datasets such as SO2 emission inventories or model simulated SO2. 380 

For the PCA-NN algorithm, we utilize a NN architecture similar to that in Fig. 1c, with the only difference being that 

the number of nodes in each hidden layer is now 108 (twice the number of the predictors). For each row, we train an NN using 

half of the pixels and the rest for evaluation. The pre-trained NNs are then applied to SO2 SCD retrievals for April 16, 2005, a 

day not used in the training.  
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The results shown in Fig. 11 indicate that the PCA-NN algorithm can reduce the retrieval noise over background 385 

areas as compared with the original PCA SO2 algorithm. However, over polluted areas and degassing volcanoes, the PCA-NN 

retrieved SO2 is biased low (Fig. 11c). This suggests that the PCA-NN algorithm, with its present implementation, cannot yet 

achieve the same level of performance as our NN-based data analysis on the original PCA retrievals. It is possible that due to 

the much smaller number of polluted pixels as compared with the clean ones, some spectral signatures of SO2 are lost in the 

first 50 or even 100 PCs, leading to the low bias over polluted areas. The NNs may need to include more PCs as predictors or 390 

directly use radiances without the transformation. A separate set of NNs trained on a refined dataset that contains more polluted 

pixels may also help to mitigate the bias. But applying these NNs to retrievals would require some prior knowledge about the 

status of the pixels (whether they are polluted or clean). Also, the PCA-NN retrievals show some striping features, probably 

reflecting the different performance of the NNs for different rows despite the use of the same architecture. The reason for this 

row-to-row change in performance is not yet understood. Nonetheless, the PCA-NN algorithm shows promises and will be the 395 

subject of more in-depth studies in the future. For example, the training performance may improve if the architecture is 

optimized for each row. 

5 Conclusions 

We have developed a new machine learning based method to analyse satellite retrieved atmospheric composition data, with 

the aim to reduce the noise and artifacts while retaining the signals in the original retrievals. To demonstrate this approach, we 400 

use OMI SO2 SCDs retrieved with the PCA-based spectral fitting algorithm as an example. A key parameter in the analysis 

method is the SRR, the ratio between the retrieved SCD and the RMS of the fitting residuals. Based on prior knowledge about 

the global distribution of SO2 pollution (from existing in situ measurements and model simulations), we assume that a given 

pixel with a small (large) SRR is likely clean (polluted) and its real SCD should be close to zero (the original retrieved SCD). 

This allows us to overcome the lack of ground truth data and build a training dataset for SO2 by selecting clean and polluted 405 

pixels from the original retrievals. 

We then train neural networks (NNs) using the compiled dataset. The NNs contain two hidden layers with 14 nodes 

each and one node in the output layer for the analysed SCDs. The predictors for the NNs include SRRs for individual pixels, 

solar zenith, viewing zenith and phase angles, scene reflectivity, and O3 column amounts, as well as the monthly mean SRRs. 

The latter provide context for the spatial distribution of SO2, whereas the other predictors (angles, O3 and reflectivity) affect 410 

the quality of the original SCDs. The function of the NNs is to connect these predictors to the target SCDs (zero for clean 

pixels, the original SCDs for polluted pixels in the training data). For data analysis, we employ a hybrid model (Fig. 1) that 

includes two NNs: 1) an NN pre-trained using 5 days of data from each month to produce analysed SO2 SCDs for pixels that 

are clean or moderately polluted (i.e., those with SRRs in between clean and polluted pixels) for the entire month and 2) an 

NN trained daily to produce analysed SCDs for the polluted pixels each day. This hybrid model helps to maximize the retained 415 

SO2 signals over source areas. 
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Results for 2005 show that the NNs can well reproduce the target SCDs and largely reduce noise and artifacts in the 

original retrievals. For polluted areas, the monthly mean SCDs from the analysis are mostly within ±15% from the original 

retrievals, indicating that the NNs are able to preserve SO2 signals. This is confirmed by another experiment in which the NN 

analysed and original SCDs are used to estimate the SO2 emissions for ~500 anthropogenic sources in 2005, with both datasets 420 

yielding largely similar results. For relatively small sources (< 20 kt/year), the emission estimates based on the analysed SCDs 

are generally smaller, but the uncertainties for those sources are reduced even more, although OMI has quite limited sensitivity 

to such small sources. One remaining issue is that the NNs perform slightly worse for high SO2 conditions such as plumes 

from large volcanic eruptions (e.g., the 2005 Sierra Negra eruption). This will be the focus of future studies to further improve 

the method. Also the NNs analysed SCDs show moderate sensitivity to the settings of the pixel classification scheme. Therefore 425 

the scheme needs to be tested, especially for different instruments and/or species, to minimize over- or under-correction. 

Overall, it is quite encouraging that the NNs seem to have improved the quality of SCDs for pixels from different ranges of 

SRRs.  

We also compare two alternative approaches with the NN-based analysis method. In one test, we employ a simple 

linear interpolation model to analyse the original retrievals. The linear model can largely match the performance of NNs over 430 

background areas, but underestimates SO2 over polluted regions. In another test, we develop a PCA-NN algorithm that first 

transforms OMI measured radiances using a PCA technique and then uses the resulting PC coefficients as predictors in NNs 

(trained with NN analysed SCDs) for SO2 retrievals. Again, the PCA-NN algorithm can reduce retrieval noise but also has a 

low bias over SO2 source areas. One advantage of the PCA-NN algorithm is its computation speed (approximately a factor of 

two faster than the original PCA algorithm in our limited tests) that can make it useful for high resolution instruments such as 435 

TROPOMI or TEMPO (Tropospheric Emissions: Monitoring of Pollution). Further improvement in the PCA-NN SO2 

algorithm may be possible through, for example, refinement of the training data and will be the subject for follow-up studies. 

The lack of the high-quality training data has been a major obstacle for training NNs to conduct retrievals using radiances (or 

PCA transformed radiances). Our analysis method can contribute to such efforts by providing training data with improved 

quality as compared with the original retrievals. 440 

In summary, our new machine learning based data analysis method shows promises in further improving satellite 

retrievals of atmospheric composition. In a way, our analysis method can be viewed as a more advanced version of the Pacific 

sector correction (PSC), a quite common and well-established practice to reduce retrieval artifacts for species such as SO2 

(e.g., Theys et al., 2017). While we focus on OMI SO2 in this study, the method can also be potentially applied to other 

instruments (e.g., TROPOMI) and/or species (e.g., HCHO). The improved data quality from such analyses will likely enhance 445 

the value of satellite data in air quality research and applications such as reducing the uncertainty in top-down emission 

estimates. 
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Table 1. The correlation coefficent (r) and root mean square error (RMSE) between the NN analysed OMI SO2 SCDs (SCDNN) 580 

using different predictors and the target SCDs (SCDtarget). The NNs are trained using data from July 5, 10, 15, 20 and 25, 2005. 

The comparisons shown here are for pixels from the same days but not included in the training.  

Predictors r RMSE (DU) 

SRRi 0.642* 0.180* 
 

SRRi + SRRm 0.958 0.0517 

SRRi + SRRm + q 0.962 0.0491 

SRRi + SRRm + R + q 0.968 0.0451 

SRRi + SRRm + R + q0 + q 0.976 0.0393 

SRRi + SRRm + R + q0 + q + f 0.976 0.0392 

SRRm + R + q0 + q + f + O3 0.793 0.111 

SRRi + R + q0 + q + f + O3 0.978 0.0374 

SRRi + SRRm + R + q0 + q + f + O3 0.976 0.0388 

*Results shown are from a simple linear regression anlysis. 
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 585 
Figure 1: (a) Flow chart of the SO2 analysis method. (b) Scheme for classification of OMI pixels as "clean", "polluted", "in-between" 
and "high-SRR". (c) Setups of the neural networks for SO2 SCD analysis. 
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Figure 2: (a) Monthly mean OMI SO2 SCDs for March 2005 showing enhanced SO2 signals over major anthropogenic source areas 
(e.g., China, the eastern U.S., India, and South America) as well as degassing volcanoes. Note the positive bias at northern high 590 
latitudes. (b) Monthly mean SCD/RMS ratio (SRR) from the same sample of OMI pixels as in (a). The SRR map also shows major 
SO2 sources but has reduced bias at high latitudes as compared with the SCD map. 
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Figure 3: Scatter plots between the NN analysed SO2 SCDs and the target SO2 SCDs for clean and polluted OMI pixels from the 
16th day of (a) March, (b) April, (c) July, and (d) October 2005. Only pixels not used in the training of the neural networks are 595 
shown. Colours represent the number of data points within each 0.1 DU (in NN SCDs) by 0.1 DU (in target SCDs) bin. The solid line 
in each panel represents the best fit through the data from the simple linear regression analysis between NN and target SCDs. The 
slope and intercept from the regression are given in each panel, along with the correlation coefficient (r), root mean square error 
(RMSE), and number of pixels (N). 
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 600 

Figure 4: The (a) original, (b) NN analysed OMI SO2 SCDs and (c) their differences for April 16, 2005. (d) Mean SO2 SCDs for 1º 
latitude bands over generally clean areas (monthly mean SRR < 3), calculated from (red) the original and (blue) NN analysed SCDs 
for the same day.  
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 605 

 
Figure 5: Similar to Figure 4 but showing monthly means for March 2005.  
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 610 
Figure 6: (a) The NN analysed SO2 SCDs and (b) their relative differences from the original SCDs over eastern China for March 
2005.  
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Figure 7: Left: the differences between the original and the NN analysed OMI SO2 SCDs for March 2005. Right: the mean (red) 
original and (blue) NN analysed SCDs for 3º latitude bands for the same month. Different rows show results from pixels that have 615 
SCD/RMS ratios (SRRi) within different ranges based on the monthly medians of the daily mean (𝑺𝑹𝑹######) and standard deviation 
(𝝈𝑺𝑹𝑹) of SRRs for their corresponding latitude bands: (a-b) SRRi < 𝑺𝑹𝑹######, (c-d) 𝑺𝑹𝑹###### < SRRi < 𝑺𝑹𝑹###### + 𝝈𝑺𝑹𝑹, (e-f) 𝑺𝑹𝑹######  + 𝝈𝑺𝑹𝑹 < SRRi 
< 𝑺𝑹𝑹######  + 2𝝈𝑺𝑹𝑹, (g-h) 𝑺𝑹𝑹######  + 2𝝈𝑺𝑹𝑹 < SRRi < 𝑺𝑹𝑹######  + 3𝝈𝑺𝑹𝑹 and (i-j) SRRi > 𝑺𝑹𝑹######  + 3𝝈𝑺𝑹𝑹. 
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Figure 8: (a) Differences in the analysed OMI SO2 SCDs for March 2005 between NNs trained using pixels classified with a1 and a2 620 
(see Eqs. 1 and 2) scaled to 90% of the baseline values in the classification scheme and those trained with the baseline scheme. (b) 
Same as (a) but for a1 and a2 scaled to 110% of the baseline values. (c) Mean SCDs for 1º latitude bands over relatively clean areas 
(monthly mean SRR < 3) using NNs trained with pixels from different classification schemes: (black) the baseline a1 and a2, (blue) 
a1 and a2 scaled to 90% and (red) a1 and a2 scaled to 110% of the baseline values. 
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 625 
Figure 9: Scatter plots comparing (a) the annual emission estimates for 485 large point sources for 2005, (b) the uncertainties in the 
emission estimates, and (c) the ratios between the emission estimates and the uncertainties using the NN analysed vs. the original 
SCDs. All sources shown here are anthropogenic and have emission estimates at least twice the uncertainties for both datasets. 
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Figure 10: (a) Monthly mean OMI SO2 SCDs for March 2005, analysed using a simple linear interpolation model. (b) The differences 
in the analysed SCDs between the linear model and the neural networks. (c) Mean SCDs for 1º latitude bands over generally clean 
areas (monthly mean SRR < 3), calculated from the SCDs from (red) the linear interpolation model and (blue) the NNs.  
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Figure 11: OMI SO2 SCDs for April 16, 2005 retrieved using (a) the original PCA algorithm and (b) a PCA-NN algorithm, (c) the 
differences between the two retrievals, and (d) mean SO2 SCDs for 1º latitude bands over relatively clean areas (monthly mean SRR 
< 3), calculated from (red) the original and (blue) PCA-NN retrievals.  
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