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Abstract— Mixing-layer-height (MLH) retrieval methods using
backscattered lidar signals from a ceilometer (Jenoptik CHM
-15k Nimbus) and temperature profiles from a microwave
radiometer (MWR) and Humidity And Temperature PRO-
filer (HATPRO) radiometer physics GmbH (RPG) are compared
in terms of their complementary capabilities and associated
uncertainties. The extended Kalman filter (EKF) is used for
MLH retrieval from backscattered lidar signals, and the par-
cel method is used for MLH retrieval from MWR-derived
potential-temperature profiles. The two principal sources of
uncertainty in ceilometer-based MLH estimates are: 1) incorrect
layer attribution (~hundreds of meters) and 2) noise-induced
errors (about 50 m at 30). MWR MLH uncertainties comprise:
1) the total uncertainty in the retrieved potential tempera-
ture profile and 2) +0.5 K uncertainty in the surface tem-
perature. Ceilometer- and MWR-based MLH estimates are,
in turn, compared with reference to MLH estimates from
radiosoundings. Twenty-one measurement days from the high
definition clouds and precipitation for advancing climate pre-
diction (HD(CP)?) Observational Prototype Experiment (HOPE)

Manuscript received September 28, 2021; revised February 2, 2022;
accepted February 21, 2022. Date of publication March 10, 2022; date of
current version April 12, 2022. This work was supported in part by the Min-
isterio de Ciencia e Investigacion (MCIN)/Agencia Estatal de Investigacion
(AEI)/10.13039/501100011033/FEDER under Project PGC2018-094132-B-
100 and Project MDM-2016-0600 (CommSensLab Excellence Unit) and
in part by the European Commission collaborated under Project H2020
Aerosol, Clouds and Trace gases Research InfraStructure-IMplementation
Project (ACTRIS-IMP) (GA-871115) and Project H2020 Sustainable ACESS
to ATMOspheric Research Facilities (ATMO-ACCESS) (GA-101008004).
The work of Marcos P. Aradjo da Silva was supported in part by
MCIN/AEI/10.13039/501100011033 under Grant PRE2018-086054 and in
part by the European Social Fund (FSE) “El FSE invierte en tu futuro.”
(Corresponding author: Francesc Rocadenbosch.)

Marcos P. Aratdjo da Silva is with the CommSensLab-UPC, Depart-
ment of Signal Theory and Communications, Universitat Politecnica
de Catalunya (BarcelonaTech—UPC), 08034 Barcelona, Spain (e-mail:
marcos.silva@upc.edu).

Francesc Rocadenbosch is with the CommSensLab-UPC, Department of
Signal Theory and Communications, Universitat Politécnica de Catalunya
(BarcelonaTech—UPC), 08034 Barcelona, Spain, and also with the Institute
of Space Studies of Catalonia (IEEC), 08034 Barcelona, Spain (e-mail:
roca@tsc.upc.edu).

Robin L. Tanamachi is with the Department of Earth, Atmospheric, and
Planetary Sciences, Purdue University, West Lafayette, IN 47907 USA
(e-mail: rtanamachi @purdue.edu).

Umar Saeed is with the Department of Communications and Networking,
Aalto University, 00076 Espoo, Finland.

Digital Object Identifier 10.1109/TGRS.2022.3158401

, and Umar Saeed

campaign at Jiilich, Germany, are considered. It is shown
that the MWR can track the full mixed layer (ML) diurnal
cycle (i.e., including morning and evening transitions) with
height-increasing error bars. The ceilometer-EKF MLH estimates
are much smaller errorbars than those from the MWR under the
well-developed clear-sky ML, but the ceilometer-EKF is prone to
ambiguous tracking some multilayer scenarios (e.g., the residual
layer). We, therefore, introduce the synergistic MLH retrieval
approach that combines both ceilometer and MWR estimates in
order to optimize the benefits of both.

Index Terms— Atmospheric boundary layer (ABL) height,
ceilometers, error analysis, laser radar, lidar, microwave radiom-
etry, mixed layer (ML), remote sensing, signal processing.

I. INTRODUCTION

CCURATE monitoring of the atmospheric boundary

layer (ABL) is a subject of wide interest. The ABL,
by definition, is directly affected by interactions with the
surface of the Earth on a time scale of an hour or less [1], and
it is also the layer of the atmosphere within which humans live.
The mixed layer height (MLH) is a parameter of interest for
many applications, including weather forecasting, air quality
and chemical dispersion models, and aviation. In fair weather
conditions, the interior of the ABL is well-mixed by convective
turbulence (hence the term “mixed layer” or ML) and exhibits
near-constant potential temperature (¢) and water vapor mixing
ratio (r) throughout most of its depth. However, no remote
or in situ instrument exists that can directly measure MLH.
Instead, a proxy or tracer for the top of the ML must be used.
Such tracers include gradients of aerosols, temperature, wind
characteristics, or energy fluxes [2], [3]. Ground-based remote-
sensing instruments that can detect these tracers include lidar,
radar, and sonar, which are active and microwave radiometer
(MWR), which is passive.

Because of the varying properties of these MLH tracers and
estimation methods, their accuracy varies widely. Different
studies have proven the reliability of MWR retrievals by
comparison with radiosoundings. Radiosondes (RS), usually
comprising an expendable, balloon-borne package of sen-
sors, are a recognized reference instrument for boundary
layer (BL) monitoring. Xu et al. [4] compared MWR-derived
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temperature profiles averaged over a 30-min (full-span) win-
dow centered around the radiosonde profiles. Analyzing 403
(760) radiosonde launches from clear-sky (cloudy) days, they
obtained correlation coefficients > 0.85 up to ~7 km above
ground level (AGL). Good agreement between MWR- and
radiosonde-derived temperatures is also described by Lohn-
ert and Maier [5], who reported differences lower than 0.5
K between the profiles up to 4-km AGL. In relation to
MLH assessment, Collaud Coen et al. [6] applied the parcel
method [7] to MWR- and radiosonde-retrieved 6 profiles,
obtaining median bias of —25.5 m and coefficient of deter-
mination p> = 0.75 (p = 0.87) over 100 samples. In a
related study, Moreira et al. [8] found excellent agreement
during convective conditions with a root mean square error
(RMSE) = 190 m and p = 0.96.

The MWR has higher temporal resolution (e.g., a few
minutes) than the radiosonde, whose operational frequency
may be as low as two launches per day. However, its
vertical resolution decreases with height, hence increasing
uncertainty in retrieved quantities. In contrast, the lidar is
an active remote sensing instrument designed to measure
vertical profiles of aerosol backscattering with high spa-
tiotemporal resolution. Aerosol concentrations are usually
relatively high and constant throughout the ML and much
lower aloft, thereby enabling lidar-based MLH estimation.
In a fair-weather convective BL (CBL), MLH-lidar and
MLH-MWR tend to converge. Belegante et al. [9] compared
MLH estimates retrieved from elastic-lidar range-corrected-
signal (RCS) profiles averaged over 30-min intervals with
those from MWR-derived virtual potential temperature, finding
high correlation (p 0.98) in CBL conditions. However,
during evening transition times (ETTs) (ETT; i.e., at and
after sunset, when thermally driven turbulent mixing ceases),
MLH-MWR is more accurate than MLH-lidar, which gener-
ally tended to track the residual layer (RL) (i.e., a remnant
layer left over from earlier turbulent mixing) height [9].
Cimini et al. [10], using training data from multifrequency,
multiangle MWR and lidar observations, designed a multi-
variate linear regression method to assess the mixing-layer
height (MLH) directly from MWR brightness—temperature
observations instead of retrieved profiles.

Lange er al. [11] (CommSensLab-UPC) estimated MLH
by applying an extended Kalman filter (EKF) [12] to
backscattered lidar returns (hereafter, MLH-LC-EKF). They
showed that, for a CBL with moderate-to-low signal-to-noise
ratio (SNR > 5), MLH-LC-EKF was more accurate than
classical approaches, such as the threshold [13], gradient [14],
logarithmic gradient [15], inflection point [16], and variance
methods [17]. In addition, Banks ef al. [18] showed the
MLH-LC-EKF reliability against radiosonde-derived Bulk
Richardson Number profiles and against weather research
and forecasting (WRF) model predictions for clear-air
and preconvective storm cases. Based upon these works,
Moreira et al. [8] found correlated results among MLH
estimates in the CBL derived from LC-EKF, MWR, and
Doppler wind lidar (DWL) combinations. The EKF has
also been used as an MLH retrieval method when applied
to S-band radar returns [19], [20]. In a different context,
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TABLE I

LIST OF ACRONYMS AND ABBREVIATIONS USED
THROUGHOUT THIS MANUSCRIPT

Acronym Definition Reference(s)
ABL Atmospheric boundary Tayer 1
CBL Convective boundary Jayer 1
ML (Well-)mixed layer 1
FT Free troposphere 1
EZ Entrainment zone 1
RL Residual Tayer 1
MLH Mixed layer height 1
CBH Cloud base height
MTT Morning transition time [1]
ETT Evening transition time [1]

JOYCE Julich ObservatorY for Cloud [25]
Evolution
HOPE HD(CP)? Observational Proto- [23]
type Experiment
MWR Microwave radiometer [257, 126]
LC Lidar ceilometer [24]
DWL Doppler wind lidar [26], [27]
RS Radiosonde [281-[30]
EKF Extended Kalman filter [12]
VVSTD Vertical Velocity Standard Devi- [271, T31]
ation
MLH-MWR MLH estimated by application [31, T71
of the parcel method to MWR
measurements
MLH-LC-EKF  MLH estimated by application [T1], T19]
of the EKF method to LC mea-
surements
MLH-DWL MLH estimated by application [27]
of the VVSTD method to DWL
measurements
MLH-RS MLH estimated by application [31, T71
of the parcel method to RS
measurements
SYN Synergistic method optimally — This manuscript
combining MLH-MWR and
MLH-LC-EKF
MLH-SYN MLH estimated by the SYN  This manuscript
method

Barrera-Verdejo et al., [21] combined brightness—temperature
information from an MWR and water-vapor mixing-ratio
Raman lidar profiles in order to derive absolute humidity
vertical profiles.

Most of the previous work done for ML retrieval using
backscattered lidar signals or temperature profiles has been
focused on “stand-alone” retrieval methods only. However,
tentative derivation of a synergistic algorithm spanning the
full diurnal cycle and the study of the uncertainty sources
associated with MLH estimation and their statistical impact
on the retrievals has not received much attention [22].

To fill this void, this article focuses on synergistic retrieval
of MLH estimates with low uncertainty by combining ceilome-
ter and MWR MLH-based retrievals using the EKF and the
parcel method as respective estimators. Toward this end, this
article aims to study: 1) the performance of these two com-
monly used algorithms under different atmospheric scenarios;
2) the impact of key error sources, namely, measurement
and retrieval errors, on MLH estimates; and 3) evaluate the
performance of the proposed synergistic ceilometer-MWR
method. The simplified processing chain of the ceilometer and
MWR data is summarized in Fig. 1.

This article is organized as follows. Section II introduces
instruments and datasets. Section III revisits the proposed
MLH estimation methods and related error sources, assesses
their uncertainties on the MLH estimates via error propaga-
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Fig. 1. Block diagram illustrating the ceilometer (top) and MWR (bottom) processing chains used to estimate the mixing-layer height (MLH) and related

error estimates. z is the vertical coordinate (height). £(z) is the attenuated backscatter, v(z) is the related corrupting noise, zfﬁlﬁo is MLH-LC-EKF, Az, is
the uncertainty of MLH-LC-EKF due to incorrect layer attribution, and UI\IZLH is the MLH error component due to noise. 7 (v, ¢) is the MWR brightness
temperature measured at frequency v and elevation angle ¢, 7'(z) is the retrieved temperature profile, Azy is the MLH-MWR error component due to the

total uncertainty of 7'(z), and Azg, is the MLH-MWR error component due to uncertainty in the auxiliary measured surface temperature Tp.

AZE/E}E{O and

AZMLWI-]I{ stand for the total estimated errors for MLH-LC-EKF and MLH-MWR, respectively.

tion from both ceilometer- and MWR-based methods, and
introduces the synergistic method (SYN). Section IV presents
statistical analysis and discussion of results based on 20 days
selected from the high definition clouds and precipitation for
advancing climate prediction (HD(CP)?) Observational Proto-
type Experiment (HOPE) [23] campaign. Finally, Section V
gives concluding remarks.

Due to the various combinations of BL terminology, instru-
ments, and methods used in this article, we provide an
acronym table for ease of reference (see Table I).

II. INSTRUMENTS AND DATASET

Data used in this work was collected at the Jiilich
ObservatorY for Cloud Evolution (JOYCE), which is located
in Forschungszentrum, Jiilich, Germany [50°54'31" N,
6°24'49” E, 111-m mean sea level (MSL)]. The topography
in the area of JOYCE is generally flat apart from large
lignite open-pit mines. Farming, open-cast coal mining
areas with major power plants and patchy settlements
characterized the 50-km periphery. The climate is
characterized by a temperate, humid climate with warm
summers [25]. JOYCE contains a number of active and
passive permanently installed remote sensing, and in situ
instruments aimed to the study of clouds and atmosphere.
The HOPE campaign [23] was conducted at JOYCE from
April 2013 to May 2013. One of the principal aims of HOPE
was to characterize the evolution of the ABL over JOYCE
for forecasting applications. We chose to examine the data

from this campaign because they contain long-duration,
simultaneous observation of MLH tracers by multiple
independent instruments, a situation ideal for validation. For
brevity, only those JOYCE instruments used in HOPE are
described in the following. The reader is referred to [25],
[32] for a complete listing.

A. Ceilometer

A lidar ceilometer is a single-wavelength elastic-backscatter
lidar characterized by a low energy-aperture product. Under
moderate-to-clear-air atmospheres (optical thickness, 7 < 1)
and, particularly, toward the near-infrared, the profile of the
attenuated-backscatter coefficient is essentially proportional to
the aerosol concentration in the ABL [11], [24], [27].

Two LCs are used in this work. The first is a Jenoptik
CHM-15k Nimbus, an 8 — uJ, 1064-nm wavelength,
5-ns-pulse duration, and 5-to-7-kHz repetition-rate ceilometer.
Under clear-sky conditions, the maximum sounding range is
about 15 km with a range resolution of 15 m. The temporal
resolution of the instrument is 15 s. The Jenoptik ceilometer
is a biaxial system with separate optics for the transmitter and
receiver so that the optical overlap is reached at about 350 m.
The instrument provides range- and overlap-corrected profiles
of the normalized backscattered power (i.e., the attenuated
backscatter-coefficient profile).

The second LC used in the HOPE campaign was a
Vaisala CT25K used to monitor cloud-base height (CBH)
and precipitation and to complement Jenoptik’s observations
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below 350 m (night-time and morning/afternoon transition
periods). The Vaisala CT25K is a 1.6 — uJ, 905-nm wave-
length, 100-ns pulse duration, and 5.6-kHz repetition-rate LC
designed to retrieve profiles of the attenuated-backscatter coef-
ficient in the sounding range from 60 m to 7 km, with a range
resolution of approximately 30 m. The temporal resolution
of the instrument is 15 s (including 3.3 s for processing
and data transmission). Because of the lower pulse energy of
the Vaisala LC compared to the Jenoptik (and because both
systems operate in similar, near-infrared wavelengths), Jenop-
tik’s vertical profiles of the attenuated backscatter coefficient
exhibit a comparatively high SNR.

B. MWR: Humidity And Temperature PROfiler (HATPRO)

An MWR measures the radiative emission of atmospheric
gases. The emissions from molecular oxygen, in particular, are
proportional to atmospheric temperature when the water vapor
mixing ratio remains constant. Measurements at different
frequency bands and elevation angles can be used to derive
several physical quantities, such as temperature, water vapor,
integrated water vapor, and liquid water path. The Humidity
And Temperature PROfiler (HATPRO) MWR manufactured
by radiometer physics GmbH (RPG) [25], [26] measures
the atmospheric brightness temperature at 14 frequencies in
two bands and at six angles (depending on user’s settings).
Measurements in the K-band (seven channels), 22-31 GHz,
are used for water vapor and liquid water retrieval, and in
the V-band, 51-58 GHz, for temperature retrieval. The MWR
instrument exhibits good temporal resolution (about 2.7 min).
In principle, MWR can operate in all conditions except for rain
when the radiation measured is dominated by the emission and
scattering from raindrops.

Brightness—temperature measurements are converted into a
temperature profile by means of a statistical retrieval algo-
rithm [33]-[36] together with auxiliary atmospheric temper-
ature and pressure data. The latter is measured separately
by surface-based in situ sensors. Ultimately, the retrieved
potential temperature profile is used to estimate the MLH.
In this formulation, two main error sources are delineated:
1) MLH estimation errors, Azy, originating as a total uncer-
tainty in the retrieved temperature profile (A7 (z) in Fig. 1)
and 2) MLH errors due to uncertainties in the auxiliary
measurement of surface temperature, Azz,. MLH estimates
and related errors are computed according to the different
spatial resolutions of each instrument. The MWR-derived tem-
perature profile exhibits a coarse (=50 m) vertical resolution
that increases with height [5], [35], which is specific to the
retrieval algorithm and to the number of measurement channels
(sounding frequencies) being used. Because the number of
independent pieces of information contained in the brightness
temperature measurements at different frequencies and scan-
ning angles is limited, the resulting Degree of Freedom (DoF)
is low (= 4 for temperature BL profiling) [5]. As a result,
the vertical resolution of the retrieved quantities substantially
decreases (i.e., becomes coarser) with height. As a general
rule, the vertical resolution is approximately equal to the height
above the surface. For example, the vertical resolution at 1-km
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AGL is roughly 1 km (i.e., the retrieved temperature at 1-km
AGL is valid for the 500—-1500-m layer).

C. Doppler Wind Lidar

Because the free troposphere (FT) is generally not as
turbulent as the ML, vertical gradients in the standard devi-
ation (STD) of velocity can be used as a tracer of the
MLH [31], [37]. A DWL indirectly measures the ABL mixing
process via vertical wind velocity variance [26], [27]. Driven
by the technological progress in the wind energy industry
in the last couple of decades, economical and useful DWL
systems have been developed [38].

The DWL used in the HOPE campaign is the HALO
Photonics Streamline Wind Lidar [27], [38], [39], a coherent
system with an average pulse energy of 100 xJ and a frequency
of 15 kHz. The vertical resolution of this system is 30 m,
and the maximum range is about 8 km. However, in practice,
its effective maximum range becomes limited by the reduced
aerosol content above the ABL.

D. Radiosonde

The Radiosonde is a de facto standard for reference in the
atmospheric sciences [28]-[30]. Radiosondes measure in situ
profiles of the atmospheric thermodynamic state (temperature,
pressure, water vapor, and wind) and are usually launched
attached to a large balloon. A radiosonde can rise up to 40 km
in height over the course of several hours, though most
water-vapor sensors usually cease to operate properly below
the tropopause (~15 km in the midlatitudes).

The radiosonde used in this work is the Graw DFM-09
manufactured by Graw GmbH, which includes temperature,
pressure, humidity, and Global Positioning System (GPS) sen-
sors (20 channels). Wind speed and direction are determined
from the changes in the GPS position and GPS velocity
vector. The transmission rate is one full set of observations per
second. The main drawbacks of using radiosondes for MLH
determinations are the sparse temporal resolution (due to the
expense associated with each launch) and horizontal drift on
the ascent. During the HOPE campaign, 226 soundings were
launched up to a maximum of six per day (07:00, 09:00, 11:00,
13:00, 15:00, and 17:00 UTC; local time, LT=UTC+1 h) from
a site located 3.8-km southeast of JOYCE.

III. METHODS AND UNCERTAINTIES
OF MLH ESTIMATION

When comparing ceilometers and MWRs, the instruments
at the focus of this article, ceilometers, typically have higher
vertical resolution (e.g., 15 m for the Jenoptik CHM-15k
Nimbus ceilometer versus 50 m or greater for the MWR).
Because the ceilometer relies on attenuated backscatter returns
from atmospheric aerosols and molecules, which are prox-
ies of the thermodynamic state of the atmosphere, to iden-
tify the MLH, layer-attribution problems are very common.
On the other hand, MWR-derived temperature profiles have
a much coarser vertical resolution than profiles from LCs
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(see Section II). In addition, parcel method-based MLH esti-
mates suffer from uncertainties associated with surface tem-
perature Azz,. We now explore these sources of uncertainty
in greater detail.

A. MLH Estimation From Ceilometer Data

MLH Estimation Method: Several classical methods for LC-
based MLH estimation, such as the gradient method [14], [40],
the inflection-point method [16], and the variance method [17],
among others [13], [41], are based on the detection of a
meaningful ML-to-FT sharp transition in the vertical profile
of the attenuated backscatter coefficient. However, thermal
updrafts, intermittent turbulence, and measurement noise often
lead to time-inconsistent MLH retrievals even in single aerosol
layer scenarios. Apart from noise, these fluctuations represent
real physical processes in the atmosphere, but they can com-
plicate MLH tracking. To counteract detrimental effects of
these fluctuations on MLH tracking, backscatter profiles are
often time and/or height averaged [11]. Therefore, temporal
resolution of LC-based MLH estimates is usually relatively
low (~30 min). LC-based algorithms for MLH estimation
(in convective and stable regimes) in recent literature [6],
[42], [43] use time-continuity and morphological criteria based
on a combination of empirically tuned gradient and variance
criteria, signal and SNR conditions, and climatological data.

In this study, we apply the EKF MLH estimation
method [11], [19], which departs from previous works of [44],
using a time-adaptive, optimal predictive model to delineate
the shape of the sharp ML-to-FT transition [see Fig. 2(a)].
The Kalman filter is essentially the Wiener solution [45] of
the optimal filter problem in which one wants to compute
a statistical estimate of an unknown signal (the MLH as a
function of time) using a related signal (i.e., the ceilometer
attenuated backscatter height profile as a function of time) to
produce the estimate as an output. The two main distinguish-
ing features of the Kalman filter formulation are: 1) vector
modeling of the random processes under study (i.e., the MLH
and shape parameters defining the ML-to-FT transition as a
function of time) and 2) recursive processing of the input noisy
measurements (the ceilometer’s) at each successive discrete
time. This time-adaptive behavior of the filter is based on
minimization of the mean squared error over time of the
so-called a posteriori error covariance matrix (the term a pos-
teriori meaning “once the filter is updated with the present-
time measurement,” i.e., from the ceilometer). The reader
is referred to [11], [19] for a complete derivation of the
EKF-based method for MLH tracking in LC data (hereafter,
MLH-LC-EKF), particularly Appendix A of [11] for a sum-
mary of the filter’s constitutive equations and proof of its
optimality. In Section III-A1 the MLH-LC-EKF is briefly sum-
marized for self-contained purposes and notation definition.

As a result, MLH-LC-EKF [11] enables consistent
time-tracking of the MLH without the need of averaging
techniques or training from ancillary climatological records.
Because the filter estimates are generated at the same temporal
and spatial resolutions of the input measurement data, the
filter can even be implemented as a real-time processor. The
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Fig. 2. Example of the MLH-LC-EKF estimation technique (April 20, 2013,
0600-1000 UTC). (a) ML-to-FT transition model. (Gray trace) Example of
background-subtracted attenuated backscatter-coefficient profile measured by
the LC. (Black curve) Fit erf-model profile described in [11]. (b) MLH-LC-
EKF a priori error, UI\‘ZI:H, a posteriori error, al\ﬁLH, and state-noise STD,
UI\%LH, as a function of time. (c) Temporal evolution of search boundaries zp,

2}, 25, and z5.

best performance of the EKF with reference to the classical
methods above has been shown in [11], [18], [46] with
reference to different parameterizations of the WRF model.
1) Review of the MLH-LC-EKF: Central to the MLH-LC-
EKF method is the assumption of the erf-like ML-to-FT model

V2

where zypy is the MLH, a is a scaling factor related to the
entrainment zone (EZ) thickness (2.77a~") [31], [40], A is

h(z; zvims a, A, ¢) = %{1 — erf[ (Z—ZMLH)] }—i—C (1)
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the total backscatter coefficient, and ¢ is the FT molecular
backscatter background, which acts as an offset term to the
filter.

The erf model depicted in Fig. 2(a) models the ML-to-FT
transition of the attenuated backscatter coefficient measured
by the ceilometer. This model is used as a proxy of the total
atmospheric backscatter coefficient under the assumption of
clear-to-moderately cloudy sky conditions (optical thickness,
7 < 1). The shape parameters of this model profile along with
the MLH parameter itself give rise to the formulation of the
state vector (to be estimated)

)

where subscript k is a discrete time. zmp 1S the key para-
meter of interest, and ay, Ay, and ¢, are auxiliary parameters
determining the change in shape of the ML-to-FT interface
with time.

The state-vector model represents the transition of the state
vector from time #; to #r41. It is formulated as

T
X = [2MLBks k> Ak, k]

3)

where w; is the state-noise vector with diagonal covariance
matrix and Q, = E[w,w]], where E denotes the ensem-
ble mean (or expectation) operator [47]. For enhanced filter
stability [48], Q, is modeled in stationary diagonal form as
0= diag[oé], 09 = 0> Oa> 04, 0], Where o, 04,04,
and o, are the guessed STDs associated with the state-vector
components, zvrg, 4, A, and c, respectively. For example,
0y Models the STD of the MLH (a random variable) around
its mean value. In practice, for simplicity, the input vector oo
is constructed as

Xjr1 = Xj + Wy

“)

where uo is the so-called Q-intensity factor (a scalar) and
X, denotes the initial guess of the state vector at filter startup
to be specified by the user. In what follows, we have used
to = 0.1 (10%). This means that, if we assume an initial-
ization zyrp,o = 1500 m, then we expect MLH fluctuations
of approximately £150 m (10%) at lo. Because the state
vector is recursively recomputed at each filter step, an intensity
factor ug = 0.1 is usually more than sufficient to search
the full ML height span. Increasing this factor above 10%
increases the search “nervousness” of the filter. This effect is
usually not beneficial because it may lead the filter to jump
between different aerosol layers and, hence, be more prone to
divergence. The initial guess vector £, can easily be estimated
by plotting the erf model against one measured ceilometer
attenuated backscatter profile, as shown in Fig. 2(a).

The measurement model relates the ceilometer measurement
vector, yi, to the state vector as

0o = poXy

(5)

where h is the erf-like ML-to-FT function model given by
5 above, vy is the observation noise at time f; with noise
covariance matrix, Ry E[vvf ], and z is the vertical
range. The measurement vector, yi (yl,k, Vs« yN,k),
is the noise-corrupted ceilometer attenuated backscatter signal

Vi = h(xg) + vk
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at discrete ranges, z = z;,i = 1,..., N. Because there is
only one single measurement realization available at each
time f;, the instantaneous noise covariance matrix Ry is
estimated in piecewise form over range cells instead of time
cells, as described in [19], (19). The nonlinear model of 5 is
linearized through its Jacobian, which is passed to the filter.

2) Error Sources: There are two key sources of uncertainty
concerning MLH estimation from ceilometer data: 1) layer-
attribution errors and 2) noise-induced errors.

(i) Impact of Layer-Attribution Errors on the Estimated
MLH, Az, : Layer-attribution errors arise from the existence
of multiple layers or gradients in the attenuated backscatter
profile. Depending upon the number of layers and their separa-
tion, the estimated MLH can be significantly different from the
actual MLH. For example, during the ETT (ETT; also called
the afternoon-to-evening transition or AET, see [49]) under
quiescent conditions, the ML is replaced by the RL [1]. In this
case, it often happens that the MLH-LC-EKF estimate follows
the RL because RL-to-FT aerosol gradient characteristics are
similar to those of the ML top [50], particularly in the 1-2-h
period following local sunset. Provision of acceptable initial
guesses for the state vector, £, state-vector covariance, Q,
and a priori state-vector error covariance matrix, Py, are key
to preventing layer-attribution errors. This is especially true
during the morning transition time (MTT) (MTT, i.e., at and
after local sunrise), when the ML starts to develop and there
are relatively steep backscatter aerosol gradients between the
ML and the RL or FT above. An example of this phenomenon
is illustrated in Fig. 3(a). Previous work on assessing the
uncertainty of the MLH estimate due to layer-attribution errors
has been carried out by [50].

The a priori and a posteriori error-covariance matrices are
defined as

P, =E[e e;"], P;=E[ece]] (6)
respectively, where e, = x; — X7 is the a priori error and
ex = Xxp — Xy is the a posteriori error, i.e., before and after
assimilating the current measurement (yx). Here, xj is the
true atmospheric state (unknown), and %; and X; are the
a priori and a posteriori state vectors estimated by the filter,
respectively.

Covariance matrices P, and P, are updated with each
successive step of the recursive loop of the filter [see Fig. 2(b)]
as a function of the current information available to the filter
at time #; (actual Kalman or projection gain, Ky, linearized
Jacobian, state vector, xj, state-vector covariance matrix, Py,
and measurement-noise covariance matrix, Rj) and initial
settings at #y. The initial guess of the a priori state-vector error
covariance matrix, P, is a rough estimate of the uncertainty
associated with the initial guess of the state vector, %,
in the form of a diagonal matrix Py = diag[e}],op =
(O'eszLH, Oe.as Oe, As Je,c), where o, x, X = [zmLu, a, A, c] rep-
resents the assumed uncertainty of the initial guess and Xy =
[ZMLH,O,aO,Ao,co]T at 1o level. op is shorthand notation
for op-. We compute the input vector op as

)

op = ipXy
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(a) Attenuated ceilometer backscatter (in a.u.) measured by the Jenoptik CHM-15 and (b) MWR-retrieved potential temperature (in K) for 20 April

2013 at Jiilich, Germany. In panel (a), magenta dots (along with noise-related error bars) represent MLH-LC-EKF. In both panels, white diamonds represent

; ; ; MWR
MLH-MWR with associated uncertainty Azyy'y

(blue error bars); black squares are MLH-RS; green dots MLH-DWL; and yellow dots are CBH estimates

from the Vaisala CT25. In both panels, the solid black line represents a lower bound (120 m) on MLH-DWL.

where up denotes the P-intensity factor to be specified by
the user. Factors in the range up = 0.1-0.3(10%-30%) have
been used in the examples of Section IV with up = 0.3
the default setting. High/low values (0.3/0.1) tend to
increase/decrease the search span of the filter during the first
iterations. For example, assuming that zyrp,o = 1500 m, the
setting up = 0.3 tells the filter that the user expects the MLH
to be roughly at 1500 £ 450 m at filter startup. P- and Q-
intensity factors are partially coupled parameters because of
the recursive nature of the filter, and therefore, the guidelines
above are just orientative. Layer-attribution errors are common
because, irrespective of the user’s initializations for £, and
op, successful filter operation is always conditioned to the
existence of aerosol gradients. Therefore, Az, can only be
known by comparison to a reference instrument (e.g., the
radiosonde).

(ii) Impact of Observation Noise and Resulting a Posteriori
Error on the Estimated MLH, o, ,;: Noise-induced errors are
due to the presence of noise in f’(z) and propagate an error
to the MLH-LC-EKEF estimate. The recursive loop of the EKF
provides by itself convenient error estimates (P, , Py, and Q)
of the estimated state vector and, therefore, of the estimated
MLH at each discrete time f#;.

Fig. 2(b) shows the estimated a priori and a posteriori errors
for the case shown in Fig. 3 computed as the time-dependent
STDs, oy g and oy 4y - respectively. These are compared to
the time-static state noise STD, oy3 . STDS 0y 1y 4+ Ofiiiss
and O'I\%LH’ « are computed as the square root of the first diagonal
element of these matrices during the recursive loop of the filter.
The error of the instantaneous MLH-LC-EKF estimate at time
t is given by the a posteriori error as

EKF _ _P
OMLH,k — OMLH,k

®)

which is the key error indicator of interest. In Fig. 2(b), it can
be seen that the a posteriori error magnitude, oy, iy - is always
smaller than the a priori error, oy ; . This variance reduction,

2 - 2 e
(owiie)” < (owpk) > means that the assimilation of the

present measurement y; counteracts the detrimental effects of
observation noise. The latter term merges into a single body
both measurement noise v(z) (with Ry being estimated run
time) and modeling noise (i.e., approximation of the ML-
to-FT transition by the erf model used in MLH-LC-EKF).
JI\%_H,,( is just a reference baseline of the user’s assumed
MLH variability. Fig. 2)(c) depicts time evolution of search
boundaries z;, z, 25, and z, [see Fig. 2(a)] during the first
four hours of data processing [11].

The error estimates above are obviously subordinated to
filter convergence and tracking of the ML-to-FT interface
(i.e., no attribution errors). Otherwise, the total error from
sources 1) and 2) above can be calculated by using the error
superposition principle as (see Fig. 1)

(C))

A0 = /| Azl + |l

B. MLH Estimation From DWL Data

To estimate the MLH from DWL measurements, the STD
of time-height profiles of vertical velocity are calculated
every 5 min within a £15 min window. Second, the STD
is corrected for instrument noise [51]. Finally, the MLH is
estimated as the first height at which the Vertical Velocity
STandard Deviation (VVSTD) falls below a predetermined
threshold [27], [52], [53] (hereafter, MLH-DWL).

Useable thresholds for VVSTD range from 0.2 to
0.4 m-s~!' [52], [53]. Based on the work of [27], who studied
the sensitivity of the mixing layer height derived from differ-
ent thresholds, here, we use a 0.4-m-s~! threshold. Because
0.4 m-s~! is at the high end of the accepted range, it represents
a major source of uncertainty.

DWL-based estimates of ML height (MLH-DWL) are gen-
erally limited to daytime hours when the BL is turbulent due to
solar heating and thermally driven ML overturn. MLH-DWLs
at night are less reliable because aerosol content is reduced
in stable situations at night. In addition, mixing layer height
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values below 120 m AGL are rejected as the DWL is not
sufficiently sensitive below this height.

The uncertainty associated with the DWL-derived MLH
is estimated by applying a 25% variation to the nominal
threshold (thy = 0.4 m-s~! £0.1 m-s™") [27]. Upper and
lower uncertainty bounds are derived from the MLH estima-
tions using 0.5- and 0.3-m-s~! thresholds, respectively, minus
the MLH estimation using the nominal 0.4-m-s~! threshold.
Formally,

DWL,+ _

DWL (th=0.440.1)
OMLHk = -

DWL (th=0.4)
<MLH,k <MLH,k

(10)

where the plus (minus) superscript in JI\IZLWI},’ki denotes the
upper (lower) uncertainty bound, which is computed by insert-
ing threshold th = 0.4 4+ 0.1 m-s™! (th=0.4 —0.1 m:s™") in
the first term of the right-hand side of (10) above. A similar
approach was previously employed by Villalonga et al. [54].

C. MLH Estimation From MWR Data

1) MLH Estimation Method: The parcel method is com-
monly used for MLH estimation using potential temperature
data [3], [7]. For a given profile of physical temperature, 7 (z),
retrieved from brightness measurements, the first step is to
convert it to potential temperature profile, 6(z), by using

NG A
bz = m(p(z))

where pg is the surface atmospheric pressure, p(z) is the
atmospheric pressure profile, R = 287 J - K~! . kg7! is
the universal gas constant, and C, = 1004 J - K~! . kg™!
is the specific heat capacity for dry air at a constant pres-
sure [55]. Physically, the potential temperature represents the
temperature an air parcel at an altitude z if it were lowered, dry
adiabatically, to the surface. In the parcel method, the MLH
is defined as the lowest point in a given potential temperature
profile for which 0(z) > 6(0), where 6(0) is the surface value
of the potential temperature. Small scale effects (e.g., surface
properties and shielding of the sensor) can bias the estimate of
surface temperature 7 (0) = 6(0), to which the parcel method
is very sensitive [6], [56].

Changes in 0(z) with respect to height, (d6/dz), are
indicative of the stability of the atmosphere with respect to
displacement of unsaturated air parcels. The atmosphere is
stable when (df/dz) > 0, neutral when (d6/dz) = 0, and
unstable when (df/dz) < 0. Under quiescent conditions in
the daytime, the ML is characterized by continuous convective
mixing, driven from below by buoyant thermal plumes from
the relatively warm surface and, sometimes, from above,
by evaporatively driven downdrafts initiated within clouds in
the EZ. As a result of this continuous mixing, the interior
of the ML exhibits nearly uniform temperature and moisture
throughout most of its depth. Thus, (df/dz) = 0 in the ML
and negative in the surface layer (unstable), (d0/dz) < O.
At the top of the ML, an increase in temperature and reduction
in moisture delineates the EZ, i.e., a transition layer between
the ML and the FT. The MLH is typically computed as falling
halfway between the top of the ML and the bottom of the FT,

Y
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near where the magnitudes of the temperature and/or moisture
gradients are maximized.

While the parcel method was designed for use with sound-
ing data, Stull [1] (p. 474) cautions against estimating MLH
using only a single radiosounding. This is because a single
radiosounding may not be representative of average conditions
in a horizontally heterogeneous ML, as would be the case in
a convectively active BL characterized by thermal updrafts
and downdrafts. MWR offers a partial solution to this issue
in that it provides a time series of potential temperature
profiles. Temporal averaging can ameliorate to some extent the
perturbations caused by individual updrafts and downdrafts,
allowing longer term (e.g., ~O[30 min-1 h)] trends in MLH
to be discerned.

To estimate the MLH from MWR data, first, MWR
potential-temperature profiles are interpolated to a uniform
vertical resolution of 10 m. Second, a five-point (50 m) moving
average is applied to smooth the profiles [27]. Then, the
MLH-MWR is derived by using as a surface temperature refer-
ence, 0(0), from the JOYCE meteorological tower at 2 m, thus
assuring reliable retrievals [6]. The tower-derived temperature,
which has a raw temporal resolution of 6 min, is interpolated
to the MWR temporal resolution (2.7 min).

In Fig. 3, we present an example comparison of MLH-
LC-EKF [see Fig. 3(a)] with MLH-MWR [see Fig. 3(b)].
In spite of the relatively coarse spatial resolution (which
decreases with height) of the MWR potential temperature
profiles, it can be seen that MLH-MWR follows the overall
trend of the radiosonde-derived MLH and particularly during
morning (0600-1000 UTC) and evening (1600-1900 UTC)
TTs MTT and ETT, respectively. The MLH-MWR captures
the collapse of the convective BL during the latter period,
after sunset, while the MLH-LC-EKF estimate continues to
follow the elevated RL.

2) Error Estimation: The uncertainty associated with MLH-
MWR has been approximated by two main error sources
(see Fig. 1): 1) total uncertainty in the retrieved temperature
profile 7 (z) and consequent error propagated to the MLH
calculation, which gives rise to a MLH error, Azy and
2) uncertainty in the estimated surface temperature, Ty
(or, equivalently, £(0)), which gives rise to a MLH error, Azy,.

a) Assessment of the MWR-retrieved temperature-profile
error in the estimated MLH, Azy: A study on the performance
of the retrieved temperature profile [35] using a long-term
dataset of representative atmospheric profiles and noise lev-
els found uncertainty in the 0.1-0.5 K range. A synthetic
brightness temperature dataset generated from over 10000
radiosoundings (of which 5334 were used for training and
4954 were used as a validation dataset) was used to test
the performance of the statistical retrieval algorithm (analo-
gous to multiregression algorithm [57]). Altitude-dependent
temperature uncertainties, A7 (z), were generated, varying
from 0.44 K on the ground to 1.60 K at 4 km. An example
of the height-dependent temperature-retrieval kernels is given
in Fig. 7 of [5].

In order to assess the uncertainty of MLH-MWR due to
temperature-retrieval errors, Azy, we adopt the following
approach. At each time instant, the retrieved height-dependent
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Fig. 4. Overview of MLH-MWR (parcel method) estimation errors
(April 24, 2013, 1401 UTC, Jiilich, Germany). (a) MLH-MWR error arising
from the uncertainty inherent in the MWR retrieval of the temperature
profile, Azz. Upper (dashed gray)- and lower (solid gray)-bound profiles
are obtained by adding and subtracting the height-dependent temperature
error-perturbation profile, Af(z), to the nominal potential-temperature profile,
6(z) (solid black line). The white diamond represents MLH-MWR obtained
from the nominal profile, and the black squares are corresponding MLH-
MWR obtained from the perturbed profiles. (b) MLH-MWR error due to the
uncertainty in the measured surface temperature, Az, obtained by adding
and subtracting 0.5 K from the reference temperature.

temperature errors, AT(z), are converted into potential-
temperature errors, Af(z). These are added to and subtracted
from the retrieved potential temperature profile, resulting in
the delineation of its “upper” and “lower” error bounds. In
this approach, the uncertainty in the temperature profile acts
like a bias, i.e., a consistent underestimation or overestimation
throughout the profile (see also [58]). The parcel method is
then applied to all three of these profiles [see Fig. 4(a)]:
1) Opwr(z) + AO(z) or the upper error-bound profile for the
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potential temperature; 2) Oyrwr(z) or the nominal profile; and
3) Omwr(z) — AB(z) or the lower error-bound profile, and
consequently, a MLH error bar is obtained. Fig. 4(a) shows
an example error bar calculation for the temperature profiles
retrieved from HATPRO MWR measurements at Jiilich, Ger-
many, at 1401 UTC on April 24, 2013. It can be observed that
retrieval errors on the order of less than 2 K throughout the
vertical profile introduce an uncertainty of about Az &~ 500 m
in the MLH estimates.

b) Assessment of surface-temperature errors on the
estimated MLH, Azr,: Following a similar perturbation
approach, the uncertainty of the estimated MLH due to
surface-temperature errors Az, is calculated by adding and
subtracting the approximate uncertainty in the surface tem-
perature (£0.5 K) [35] to Ty. Fig. 4(b) shows three result-
ing MLH estimations. As a result of this perturbation in
the surface temperature 7j, the uncertainty in the MLH is
about 150-300 m.

Finally, the total error from error sources (a) and (b) above
is computed by error superposition (see Fig. 1) as

‘Az%ﬁﬂ =/ |Azr|? + |AZT0|2.

D. MLH Estimation From Radiosonde Data

The procedure to estimate the nominal MLH from RS
data is the parcel method (refer to Section III-C). RS-MLH
errorbars are derived in similar fashion to Section III-C2-B
assuming £0.5 K surface temperature uncertainty. Unlike the
uncertainty for temperature profiles 7' (z) retrieved from MWR,
however, the uncertainty associated with RS-measured 7 (z)
is not altitude dependent, but constant (£0.5 K) with height.
Thus, AzﬁSLH| = £ 150-300 m.

12)

E. 30-min Averaged MLH Retrievals and Error Assessment

In order to intercompare MLH retrievals in a meaningful
statistical sense, we standardize MLH-LC-EKF, MLH-MWR,
and MLH-DWL to a common temporal resolution of 30 min
via maximum likelihood (MaxL) as [59]

Z k Tk / o k2
> l/ a;
where X stands for the instrument or method used (X =
EKF, MWR, DWL), 1, is the center time of the 30-min time
window (f, = 0630, 0700, ..., 2000 UTC), z; (formally, z; =
Zaig) 18 the instantaneous MLH estimated at time 7 € [1, —
1S min, ..., #;+ 15 min], i.e., with the raw temporal resolution
of the instrument/method X, and oy (formally, o = oy, ;) is
the associated uncertainty of MLH estimate zj. oy is computed
via (8), (12), and (10) for the MLH-LC-EKF, MLH-MWR, and
MLH-DWL, respectively.

The associated 30-min MLH uncertainty is computed

as
ox () = \/og, (t) + 0%, ()

where oy, is the STD of the estimated MLH by instrument or
method X (a proxy of the instantaneous MLH variability)

5)

MLHy (1) = 13)

(14)

ox, = std(zx)
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and oy, is the uncertainty associated with the MLH estimation
by instrument or method X

1
) =[S e

In Section IV, intercomparisons of 30-min MLH will be per-
formed on pairs of instruments. Bias between instruments X
and Y is computed as

(16)

bias™Y (1) = MLHx (1) — MLHy (;,) (17)
and bias variability as
aoal () = Vox (t)? + oy (). (18)

F. Ceilometer-MWR Synergistic (SYN) Method

The MLH-LC-EKF and MLH-MWR methods feature con-
trasting behaviors, as exemplified in Fig. 3(a). On the one
hand, MLH-MWR uncertainties span several hundred meters
(blue error bars) and expand with height as a consequence
of the MWR coarser spatial resolution at higher altitudes.
On the other hand, MLH-LC-EKF have much smaller uncer-
tainties (magenta error bars), on the order of tens of meters,
which lie within those of MLH-MWR when the ABL is well
developed (e.g., 1000-1400 UTC). However, during the ETT
(1500-1800 UTC), MLH-LC-EKF detaches from the ABL,
following the RL, instead.

Accordingly, we are motivated to introduce a synergistic
MLH estimation method (SYN), which yields an optimal MLH
estimate (MLH-SYN) that improves upon MLH-MWR and
MLH-LC-EKF estimates considered in isolation. The SYN
method combines the 30-min MLH retrievals and associated
uncertainties of these two methods as follows: the MLH
estimate provided by the SYN, MLHgyn, is computed as
follows:

1) The maximum likelihood between MLH-LC-EKF and
MLH-MWR as

MLHggk (1) MLHywr (1)
JéKF (tn) JI\Z/IWR (tn)

1/0'}%1(1:(%) + 1/0'I\%IWR(th)
it Texr(th) N Ivwr () # 9  (19)

MLHsyn () =

in two situations.

a) When their respective MLH uncertainty intervals
[see (14)], Iexr(t) [MLHgkr(f;) — 0Ogkr
(th), MLHgke(f7) + oexe(tn)] and Ivywr ()
[MLHnwr (1) omwr (1), MLHmwr (1)
omwr (1) ]l overlap at least partially [i.e., (19)].
When 1, falls in a strongly convective period, I =
[1000-1400] UTC. I corresponds to mid-afternoon
at the JOYCE site when, assuming quiescent
atmospheric conditions, the CBL reaches its max-
imum depth and maturity. In a more generalized
formulation, / would be location-dependent.

+

b)

The associated uncertainty for the synergistic MaxL
estimate of (19) above is given by

1
osyn(th) = \/l/o'ngF(th) + l/O'I\Z/IWR(th) . e

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

2) The MLH-MWR estimates elsewhere (i.e., out of state-
ments (i.a) and (i.b) above). Formally,

{MLHSYN(fh) = MLHmwr (7) @n

asyn(th) = omwr (tr)-

In this latter case, the uncertainty of the MLH-SYN is
equal to that of MLH-MWR [see (14)].

Equation (19) is essentially the MaxL definition given
by (13) but applied to each pair of MLH estimates, EKF,
and MWR at each 30-min time step, #;. The SYN method
is discussed next in Section IV-A.

In case (i), this formulation balances MLH-LC-EKF and
MLH-MWR estimates by attributing higher weight to the
estimates with lower uncertainty. Typically, MLH-LC-EKF is
favored during the mid-afternoon peak in CBL growth. Case
(ii) typifies MLH development or decay during MTT and
ETT, respectively. During these periods, MLH-LC-EKF and
MLH-MWR tend to diverge, and the SYN method retains
MLH-MWR as the most reliable estimate. This constraint
ensures that the SYN method avoids MLH-LC-EKF tracking
the RL (i.e., layer-attribution error).

IV. DISCUSSION

30-min MLH-SYN estimates are compared to MLH-LC-
EKF, MLH-MWR, and MLH-DWL (see Section III) consid-
ered in isolation with reference to MLH-RS. The statistical
analysis is limited to the 0600-2030 UTC time interval, which
delineates the CBL diurnal cycle, including MTT and ETT
over the JOYCE site. Section IV-A discusses the SYN in
the context of one “textbook” clear-day example. Section IV-
B gives an overview of the campaign dataset. Section IV-C
evaluates performance statistics of the different MLH retrieval
methods for the whole campaign.

A. SYN Example

Case day 20 April 2013 [see Fig. 3(a)] is used to exemplify
the SYN retrieval in Fig. 5(a). MLH estimates derived from
the different methods are plotted with 30-min resolution (13).
This day was characterized by a cloud-capped mixing layer
from 0700 to 1100 UTC and by clear sky otherwise. For visual
reference in the plots next, MTT is defined as [0600—1000)
UTC, ETT as [1400-2030) UTC, and peak CBL growth time
as [1000-1400) UTC. Solar noon at JOYCE is 1130 UTC.

From 0600 to 0800 UTC, MLH-LC-EKF, MLH-MWR and
MLH-DWL track closely with one another but fall below
MLH-RS [see Fig. 5(a)]. The MLH-LC-EKF agreed well with
MLH-MWR despite the presence of aerosols in the 500—
1000-m layer. In contrast, MLH-DWL fell slightly below
MLH-MWR because of the relatively weak turbulence in
the early morning and the the use of a constant VVSTD
threshold (see Section III-B). MLH estimates from all methods
coincided from 0800 to 1500 UTC. In other words, during
most of this interval (case (i.a) in Section III-F), the MLH-
LC-EKF and MLH-MWR errorbars [computed as the +3¢
value from (14)] partially or totally overlapped, and hence,
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Fig. 5.

Performance of the SYN algorithm and MLH-LC-EKF, MLH-MWR, and MLH-DWL methods in isolation with reference to MLH-RS estimates as

function of hour of day (case 20 April 2013, Fig. 3). (a) 30-min MLH estimates (13). (b) MLH bias (17). (c) MLH bias variability (18). Labels A, B, and C
indicate typical MTT, peak convective, and ETT intervals, respectively (see Section IV-A).

the MLH-SYN) was the MaxL estimate between the MLH-
LC-EKF and MLH-MWR retrievals in isolation (19) with an
associated uncertainty given by (20).

During the strongly convective interval, 1000 to 1400 UTC
(case (i.b) in Section III-F), the ML-to-FT gradient was
sharply defined, and reliability of MLH-LC-EKF increased,
with values closer to MLH-RS. In this interval, the ML was
free from layer attribution errors, and the MLH-SYN was
constrained to the MaxL value between MLH-LC-EKF and
MLH-MWR, irrespective of whether their individual error bars
overlapped (e.g., at 1400 UTC). The latter shows the case
of thermal updrafts causing MLH-MWR and MLH-DWL to
jump slightly above the smoother MLH-LC-EKF time series.
As a result of the smaller MLH-LC-EKEF error bars during this
interval, the MLH-SYN followed MLH-LC-EKF and inherited
its smaller uncertainty (20).

After 1500 UTC (i.e., the start of the ETT), each MLH
estimate started to develop a distinct behavior: MLH-DWL fell
quickly as thermal turbulence decayed, whereas MLH-MWR
decreased smoothly, thus coinciding with the radiosonde
at 1700 UTC. In contrast, MLH-LC-EKF kept on tracking the
elevated aerosol layer, which became the RL. In this situation,

MLH-SYN followed MLH-MWR (case (ii) in Section III-F),
with MLH-SYN error bars overlapping MLH-MWR error
bars [plotted in dark red and blue, respectively, in Fig. 5(a)],
therefore avoiding layer-attribution errors typical of MLH-LC-
EKF in the ETT.

Bias performance of the different MLH estimation methods
with reference to MLH-RS is shown in Fig. 5(b). MLH-SYN
and MLH-MWR (labeled SYN-RS and MWR-RS, respec-
tively) yielded bias (17) of less than 150 m during the
whole period (0600-1400 UTC). In addition, MLH-SYN
bias variability (18) was always lower than that of MLH-
MWR (see Fig. 5(c), SYN-RS and MWR-RS bars), which
increases our confidence in the SYN algorithm. In the highly
convective time interval B, it is evident that the MLH-LC-
EKF bias variability is much lower than that of MLH-MWR
(see Fig. 5(c), EKF-RS and MWR-RS bars). MLH-DWL bias
in the 0900-1500 UTC interval (corresponding to the well-
developed ML) was £~100 m, comparable to MLH-SYN bias.
However, outside of this interval (e.g., at 0700 and 1700 UTC,
empty green circles) MLH-DWL bias dramatically increased
to 300 and 600 m, respectively. As mentioned in Section III-B,
this is a consequence of using a constant VVSTD threshold.
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B. Dataset Overview

Having examined a single case day in detail, we now expand
our analysis to consider the entire dataset from the 31-day
HOPE campaign (April 1 to June 6, 2013), which included
80 radiosondes.

Twenty-one days were selected from this set with a total of
55 radiosondes available. Selected days were either clear-sky
days (cloud cover below 3 km lower than 10%, eight days)
or cloudy days (cloud cover below 3 km not greater than
70%, 13 days): clear-sky days included days with single [see
Fig. 5(a)] or multiple aerosol layers [see Fig. 6(a)] in the
TTs. Cloudy days were characterized by a cloud-capped BL
[see Fig. 6(b)], sometimes with additional midlevel clouds
well above the BL [see Fig. 6(c)]. Eight of the selected days
included light drizzle events (< 0.5 mm/h, < 30 min/event,
accumulated rain (0600-2000 UTC) < 0.1 mm), which usually
occurred during MTT or ETT. Excluded days (ten) were days
with cloud cover below 3 km greater than 70% (seven days)
and rainy days (rain intensity >= 0.5 mm/h, two days).

During the period of peak CBL growth (1000-1430 UTC),
CBHs are usually at the same height as the MLH [see
Fig. 6(b)], as is common in the spring and summer time [27].
MLH-RS using the parcel method overestimated the MLH at
11, 13, and 15 UTC by some 300 m, which motivated us
to compare MLH-RS with the MLH retrieved using another
thermodynamically based alternative, the bulk Richardson
number (BRN) method [27]. Like the parcel method, the
BRN method is also based on the temperature profile but less
sensitive to perturbations in the surface temperature, Ty. For
consistency when computing statistics for the whole campaign,
we retain MLH-RS using the parcel method.

Virga (precipitation streamers attached to the base of the
clouds, e.g., in Fig. 6(c) from 1730-2000 UTC) was also
problematic for MLH-LC-EKF, which tended to track the
sharp gradient at the cloud tops from 1800 UTC onward.
Because cloud cover strongly changes the incoming solar
radiation and, consequently, ML growth, cloudy days are
particularly challenging for MLH-DWL, which uses VVSTD
as a proxy of the turbulent mixing. Qualitatively, the SYN
algorithm delineated fairly well the typical ML diurnal cycle
[see Fig. 6(a)—(c)].

C. Performance Statistics

In this subsection, statistical measures of central ten-
dency and variability for the 21-day sample considered
are used to demonstrate the superiority of MLH-SYN over
MLH-MWR and MLH-LC-EKF estimates considered in iso-
lation. Definitions for the statistical indicators are given in
Appendix A.

During the course of this research, it was found that
MLH-DWL performance statistics for the whole campaign
are inferior to those of the other MLH estimation methods,
mainly because MLH-DWL is hampered by the use of a
fixed VVSTD threshold. In particular, during MTT and ETT,
intermittent turbulence tends to cause MLH-DWL instability
if the threshold is not adjusted. Dynamic adjustment of the
VVSTD threshold in MLH-DWL falls beyond the scope of
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Fig. 6. As in Fig. 5(a), but representing the three typical atmospheric modes
observed during the HOPE campaign: (a) clear-sky day (April 22, 2013) show-
ing multiple aerosol layers from 0600 to 1000 UTC; (b) partially cloud-capped
BL day (April 13, 2013); and (c) midlevel cloud day (May 16, 2013) with
virga from 1730 to 2000 UTC. In (b), red squares are MLH estimates made
using BRN derived from RS 6(z) profiles. Black and red stars at 1700 UTC
indicate the stable BL height estimates retrieved by the gradient method and
BRN, respectively.

the present work. MLH-DWL performance characteristics will
nonetheless be reported in this study in order to motivate future
research in this area.

1) MLH Estimates by the Different Methods: MLH esti-
mates averaged over the selected 21 days as a function of
hour of day (local time) are shown in Fig. 7(a). While
both MLH-MWR and MLH-EKF methods were based on
21 samples [one for each hour, each day; see Fig. 7(b)], MLH-
DWL furnished fewer samples during MTT (0600-0800 UTC)
and ETT (1600-2030 UTC), open green circles). In these
time intervals, MLH-DWL was often <120 m, and such
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Fig. 7. Means and uncertainties of 30-min MLH estimates over the selected 21 clear-sky days as a function of hour of day in UTC (LT=UTC+1h). (a) (Top
panel) means (A.1) of MLH-SYN (red solid trace), MLH-LC-EKF (magenta dots), MLH-MWR (white diamonds), MLH-DWL (green dots), and MLH-RS
(black squares). (b) Number of case days (out of 21 total days) used to compute mean values. (¢) Median values (markers) and interquartile ranges (bars) of

the 30-min MLH uncertainties (14).

estimates were rejected as outliers by the reasoning discussed
in Section III-B.

The best agreement among all MLH estimation methods
occurred from 1000 to 1400 UTC. As previously mentioned,
this is the interval in which, under quiescent conditions,
intensive, thermally driven convection deepens the CBL, and,
consequently, MLH reaches its highest altitudes of the daily
cycle [1]. The MLH-LC-EKF attribution-layer error clearly
evidenced during MTTs and ETTs, during which the SYN
algorithm successfully took over. From 0600 to 0900 UTC, the
MLH-LC-EKF exceeded MLH from other estimators, reveal-
ing that MLH-LC-EKF retrievals were frequently affected by
the persistent aerosol layers from the previous night. During
early the morning, the MLH-SYN followed MLH-MWR.
Both rose in concert with MLH-RS 0700 and at 0900 UTC.
MLH-SYN, MLH-MWR, and MLH-DWL rose together until
1400 UTC. As exemplified by previously discussed case
of April 20, 2013 (see Fig. 5), the disagreement among
all MLH estimation methods grew sharply from 1500 UTC
onward (i.e., the start of the ETT) when the turbulence
decayed, the CBL separated from the RL, and the stable
BL began to form in response to the reversal of surface

radiative flux. MLH-LC-EKF tracked this RL. While MLH-
DWL properly tracked the turbulence decay, it exhibited worse
agreement than MLH-MWR with MLH-RS at 1700 UTC
[see Fig. 7(a)].

30-min MLH estimation uncertainty (14), as a function of
hour of day, is shown in Fig. 7(c) by computing medians
and interquartile ranges (25-to-75-th percentiles) for the total
sample of 21 days. MLH-LC-EKF exhibited much lower
medians (by 240 m) and spreads than MLH-MWR in all hours
of the strongly convective period (e.g., 140 m, 1000-1400
UTC). This result further favors the SYN algorithm during
this interval.

2) Performance of the SYN Method and of MWR and EKF
Methods in Isolation With Reference to RS Retrievals:

a) MLH bias versus RS: MLH mean bias (MB) [see
Fig. 8(a) and (A.3)] is computed as the difference between
the 21-day means of MLH-SYN, MLH-MWR, MLH-DWL,
and MLH-RS estimates in a 30-min time window centered at
the RS launch time.

MLH-SYN and MLH-MWR yielded mean biases less
than £150 m overall (SYN-RS and MWR-RS labels in
Fig. 8(a), respectively), and —150 m during the convective
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interval (B; 1000-1400 UTC). The latter is consistent with
the findings of [18] (see Fig. 4(a) therein) who estimated bias
of ~200 m for MLH-LC-EKF. As expected, MLH-LC-EKF
[EKF-RS label in Fig. 8(a)] performed poorly outside the
1000-1400 UTC convective interval (B), during the MTT and
ETT. Its V-shaped MB curve reaches 4200 and +400 m at
0700 and 1700 UTC, respectively.

b) MLH bias-to-RS variability: MLH bias-to-RS variabil-
ity [see Fig. 8(b)] is computed as the STD given by (A.4).
Because all the MLH estimates are subject to the same
atmospheric, day-to-day variability, comparative differences in
bias STD among them are attributable to their individual per-
formance. Therefore, each hourly set of vertical bars ranks the
different MLH estimation methods by bias performance with
reference to RS. Thus, in the convective interval (1000-1400
UTC), MLH-LC-EKF and MLH-SYN had the lowest bias
STD (EKF-RS and SYN-RS labels, respectively). In contrast,
during TTs, MLH-MWR and MLH-SYN exhibited the lowest
bias STD. In summary, the the SYN algorithm performed best
over the whole daily interval because it inherited the superior
performance characteristics of its constituent methods. MLH-
LC-EKF performance in TTs was—as expected—worst [see
Fig. 8(a)]. MLH-DWL only gave usable estimates between
900 and 1500 UTC, and even then, its performance (green
bars) was always worse than that of the MWR (blue bars).
Outside of this interval, there were retrieval issues (empty
green dots) related either to the selection of a fixed VVSTD
threshold or MLHs below the instrument minimum measurable
height of 120 m.

c) Correlation and regression analysis: Fig. 9 com-
pares the different MLH retrievals to MLH-RS [e.g.,
X MLHgrs and Y MLHpwr in panel (a)]. Two
time intervals were investigated: (i) one capturing the full

daytime diurnal cycle [0600-2030) UTC, which included
55 radiosondes and (ii) the shorter, strongly convective period
in the local afternoon [0930-1430) UTC, which included
28 radiosondes. MLH MB values in each of these two time
intervals were comparable for both SYN and MWR meth-
ods. In addition, the MB obtained in time intervals (i) and
(ii) (red and blue text labels, respectively) for each method
approximately coincided with the average of the hourly
biases plotted in Fig. 8(a) in these intervals. The root-mean-
square error (RMSE) was slightly lower for the SYN method
(RMSE{)y = 247 m and RMSE{j\yx = 278 m; see labels)
and relatively high for the DWL RMSE{ = 393 m. The
latter value is in accordance with the RMSE of 359 m (0800—
1600 UTC) reported by Schween et al. [27]. All RMSE indi-
cators improved in convective time interval 2) because of the
lower variability of the MLH.

The significance of the indicators above warrant some com-
ments. Gross outliers were particularly abundant during TTs.
Gross outliers are defined as biased estimates (MLHy-MLHgs,
X = SYN, EKF, MWR, DWL) above 10 of the mean of
the associated MLH bias histogram computed hourly. To fur-
ther improve the significance of results, gross outliers were
removed prior to evaluating correlation statistics via a similar
procedure as that described in [18] and [60]. When Fig. 9 was
regenerated after gross outliers were removed (not shown),
the linear regression lines (“RL” subscript in Fig. 9) became
virtually coincident with the 1:1 line, indicating virtually no
bias. Furthermore, MLH-SYN remained superior to MLH-
MWR and MLH-DWL. In the diurnal time interval (i) above,
the SYN exhibited p{y ;, = 0.98 and RMSE{}y |, = 76 m,
followed by the MWR, p{fwr 1, = 0.96 and RMSE{{yg 1, =
103 m, and the DWL, piy; 1, = 0.95 and RMSE{Ry, |, =
157 m. Over the convective time interval (ii), the SYN
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achieved piyx 1, = 0.99 and RMSESYy |, = 41m (compared
to p&'v)vR,lo, = 0.94 and RMSEI(\%VR,M = 86m prior to gross
outlier removal).

V. CONCLUSION

A synergistic MLH retrieval algorithm combining MWR
and ceilometer-based estimates was presented along with per-
formance statistics covering 21 days of the HOPE campaign.
The SYN method used a maximum-likelihood algorithm (see
Section III-F) that combined MLH-LC-EKF and related error
uncertainties in the strongly convective BL time interval (local
afternoon, which, at JOYCE, is 1000-1400 UTC) with MLH-
MWR and associated uncertainties outside of this interval.
MLH-LC-EKF were derived from the ML-to-FT gradient in
the attenuated backscatter profile by using a Kalman filter,
yielding time-adaptive MLH estimates with a temporal res-
olution equal to that of the LC. MLH-MWR was estimated
by the parcel method applied to MWR-derived temperature
profiles.

The motivation for creating MLH-SYN, which combined
MLH estimates by different methods, was the inherent weak-
nesses each method exhibited in isolation. Specifically, MLH-
LC-EKF tends to track aerosol gradients, which led the filter
to follow RLs during MTT and ETT. The latter was the most
common layer-attribution error. In experiments, the EKF was
able to detect gradients as low as 1.5-1 times the mean FT
level [see Fig. 2(a)]. Assuming no attribution errors, the MLH
uncertainty was given by the a posteriori error of the filter

(see Section III-A2). We, therefore, formulated MLH-SYN
to equal MLH-LC-EKF in the strongly convective afternoon
interval (1000-1400 UTC). Outside this interval, MLH-MWR
proved more reliable with an uncertainty given by the inherent
error in the MWR-retrieved temperature profile and parcel-
method surface-temperature error (see Section III-C). MLH-
DWL was excluded from the formulation of MLH-SYN;
intermittent turbulence, particularly during the ETT, along
with the assumption of a fixed VVSTD threshold, was the
major issue.

The variability in MLH estimation uncertainty matched
that of its component algorithms (MLH-MWR and
MLH-LC-EKF) as a function of time of day [see Fig. 7(b)].
Specifically, during the strongly convective interval
(1000-1400 UTC), the MLH-SYN exhibited ~40 m (median)
compared to 2140 m by MLH-MWR, which indicates that
SYN inherited the steady tracking performance of the MLH-
LC-EKFE. Outside this interval, the variability of MLH-SYN
approached that of MLH-MWR.

Comparative performance of the different MLH estimation
methods with reference to MLH-RS was also addressed.
The statistical analysis over the 21-day sample showed that
MLH MB was inflated by gross outliers associated with
TTs and day-to-day atmospheric variability. In addition, the
parcel method (used in both MLH-MWR and MLH-RS) was
particularly sensitive to the accuracy of surface tempera-
ture Ty. Nonrepresentativeness of Ty on specific days involv-
ing complex micrometeorological effects was a challenging
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difficulty. Nonetheless, with reference to radiosoundings
(with and without outlier removal from the data collection),
the SYN algorithm outperformed all other MLH estima-
tion methods in isolation. In the diurnal®[convective]
time interval, MLH-SYN achieved a correlation coef-
ficient p{y\(}, = 0.98 and RMSE, RMSE{}y,, = 76 m
(RMSEgQN’M = 41 m). These results compare favorably
MLH-MWR alone: p\pig 1, = 0.94 and RMSEQRwg 1
103 m (RMSE{{yg |, = 86 m).

To sum wup, although SYN wused the simplistic
assumption of a fixed strongly convective time interval
(1000-1400 UTC), the time-adaptive combination of two
largely independent methods for MLH tracking, one based on
aerosol gradient-based observations (MLH-LC-EKF) and the
other temperature-based (MLH-MWR), has shown superior
MLH tracking skill. Further research is planned to extend
this methodology over the whole diurnal cycle, as well
as to explore further synergy with DWL sensors. Besides,
a comparison of all the sources of uncertainty in terms of
how they balance and propagate would be an interesting
study for the remote sensing community.

to

APPENDIX A
MEASURES OF CENTRAL TENDENCY AND VARIABILITY

The mean of the 30-min MLH for the instrument/method
combination, X, denoted pmrm,x(#), is computed at time ¢,
as

N
1
pax () = > MLHx (14, di) (A.1)
i=1
where N = 21 is the total number of selected days (statistical
sample) and d; denotes the ith day, i = 1,...,N. The

variability of the estimated MLH in (A.1) above is computed
as the STD over the sample population

1 & 2
5 O (MLHx (i, di) = s x (). (A2)
i=1
The mean of the MLH bias (17) between MLH estimates
from two different instruments/datasets denoted X and Y is
computed at each time #;, as

omLn,x (th) =

1L
i (1) = > bias™ (1, dy). (A3)
i=1

The variability of the MLH bias given by (A.3) above is
computed as the STD

N
1 .
oot (1) = \| 7 2 (bias™ (1. ) — iyl (1)
i=1

2
. (A

ACKNOWLEDGMENT
CommSensLab -UPC is a Maria-de-Maeztu Excellence Unit
(MDM-2016-0600) funded by the Agencia Estatal de Investi-

gacion, Spain. Data were provided by Jiilich Observatory for
Cloud Evolution (JOYCE-CF), a core facility (CF) funded

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

by Deutsche Forschungsgemeinschaft via Grant DFG LO
901/7-1. Dr. J. H. Schween and Prof. S. Crewell are thanked
for the stay of U. Saeed at the Institute for Geophysics
and Meteorology, University of Cologne, and data provision.
Three unknown reviewers are also thanked for their insightful
comments to this article.

REFERENCES
[1]1 R. B. Stull, An Introduction to Boundary Layer Meteorology. Amster-
dam, The Netherlands: Springer, 1988.
S. Emeis, Surface-based Remote Sensing of the Atmospheric Boundary
Layer. Dordrecht, The Netherlands: Springer, 2010.
P. Seibert, F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and
P. Tercier, “Review and intercomparison of operational methods for the
determination of the mixing height,” Atmos. Environ., vol. 34, no. 7,
pp. 1001-1027, 2000.
G. Xu et al., “Comparison of atmospheric profiles between microwave
radiometer retrievals and radiosonde soundings,” J. Geophys. Res.,
Atmos., vol. 120, no. 19, pp. 10313-10323, Oct. 2015.
U. Lohnert and O. Maier, “Operational profiling of temperature
using ground-based microwave radiometry at payerne: Prospects and
challenges,” Atmos. Meas. Techn., vol. 5, no. 5, pp. 1121-1134,
May 2012.
M. Collaud Coen, C. Praz, A. Haefele, D. Ruffieux, P. Kaufmann, and
B. Calpini, “Determination and climatology of the planetary boundary
layer height above the Swiss plateau by in situ and remote sensing
measurements as well as by the COSMO-2 model,” Atmos. Chem. Phys.,
vol. 14, no. 23, pp. 13205-13221, Dec. 2014.
G. C. Holzworth, “Estimates of mean maximum mixing depths in
the contiguous United States,” Monthly Weather Rev., vol. 92, no. 5,
pp. 235-242, 1964.
G. de Arruda Moreira et al., “Study of the planetary boundary layer
by microwave radiometer, elastic lidar and Doppler lidar estimations
in Southern Iberian Peninsula,” Afmos. Res., vol. 213, pp. 185-195,
Nov. 2018.
L. Belegante, D. Nicolae, A. Nemuc, C. Talianu, and C. Derognat,
“Retrieval of the boundary layer height from active and passive remote
sensors. Comparison with a NWP model,” Acta Geophys., vol. 62, no. 2,
pp. 276-289, Apr. 2014.
D. Cimini, F. D. Angelis, J.-C. Dupont, S. Pal, and M. Haeffelin,
“Mixing layer height retrievals by multichannel microwave radiometer
observations,” Atmos. Meas. Techn., vol. 6, no. 11, pp. 4971-4998, 2013.
D. Lange, J. Tiana-Alsina, U. Saeed, S. Tomds, and F. Rocadenbosch,
“Atmospheric boundary layer height monitoring using a Kalman filter
and backscatter lidar returns,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 8, pp. 4717-4728, Aug. 2014.
R. E. Kalman, “A new approach to linear filtering and prediction
problems,” J. Basic Eng., vol. 82, no.1, pp. 3545, May 1960, doi:
10.1115/1.3662552.
S. H. Melfi, J. D. Spinhirne, S.-H. Chou, and S. P. Palm, “Lidar observa-
tions of vertically organized convection in the planetary boundary layer
over the ocean,” J. Climate Appl. Meteorol., vol. 24, no. 8, pp. 806-821,
Aug. 1985.
R. M. Endlich, F. L. Ludwig, and E. E. Uthe, “An automatic method for
determining the mixing depth from lidar observations,” Atmos. Environ.,
vol. 13, no. 7, pp. 1051-1056, Jan. 1979.
C. Senff, J. Bosenberg, G. Peters, and T. S. Chaberl, “Remote sensing of
turbulent ozone fluxes and the ozone budget in the convective boundary
layer with DIAL and radar-RASS: A case study,” Contrib. Atmos. Phys.,
vol. 61, no. 9, pp. 161-176, 1996.
L. Menut, C. Flamant, J. Pelon, and P. H. Flamant, “Urban boundary-
layer height determination from lidar measurements over the Paris area,”
Appl. Opt., vol. 38, no. 6, pp. 945-954, 1999.
W. P. Hooper and E. W. Eloranta, “Lidar measurements of wind in
the planetary boundary layer: The method, accuracy and results from
joint measurements with radiosonde and Kytoon,” J. Appl. Meteorol.
Climatol., vol. 25, no. 7, pp. 100-990, 1986.
R. F. Banks, J. Tiana-Alsina, F. Rocadenbosch, and J. M. Baldasano,
“Performance evaluation of the boundary-layer height from lidar and
the weather research and forecasting model at an urban coastal site in
the north-east Iberian peninsula,” Boundary-Layer Meteorol., vol. 157,
no. 2, pp. 265-292, Nov. 2015.

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

Authorized licensed use limited to: Francesc Rocadenbosch. Downloaded on April 14,2022 at 07:56:21 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1115/1.3662552

ARAUJO DA SILVA ez al.: MOTIVATING SYNERGISTIC MIXING-LAYER HEIGHT RETRIEVAL METHOD

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

D. Lange, F. Rocadenbosch, J. Tiana-Alsina, and S. Frasier,
“Atmospheric boundary layer height estimation using a Kalman filter
and a frequency-modulated continuous-wave radar,” IEEE Trans. Geosci.
Remote Sens., vol. 53, no. 6, pp. 3338-3349, Jun. 2015.

R. L. Tanamachi, S. J. Frasier, J. Waldinger, A. LaFleur,
D. D. Turner, and F. Rocadenbosch, “Progress toward characterization
of the atmospheric boundary layer over northern Alabama using
observations by a vertically pointing, S-band profiling radar during

VORTEX-southeast,” J. Atmos. Ocean. Technol., vol. 36, no. 11,
pp. 2221-2246, Nov. 2019.
M. Barrera-Verdejo, S. Crewell, U. Lohnert, E. Orlandi, and

P. D. Girolamo, “Ground-based lidar and microwave radiometry synergy
for high vertical resolution absolute humidity profiling,” Atmos. Meas.
Techn., vol. 9, no. 8, pp. 4013-4028, 2016.

M. A. LeMone et al., “100 years of progress in boundary layer
meteorology,” Meteorol. Monographs, vol. 59, p. 9, Jan. 2018.

A. Macke er al, “The HD(CP)’> observational prototype experi-
ment (HOPE)-An overview,” Atmos. Chem. Phys., vol. 17, no. 7,
pp. 48874914, 2017.

R. M. Measures, Laser Remote Sensing: Fundamentals and Applications
(Laser-Remote Sensor Equations). Malabar, FL USA: Wiley, 1992, ch. 7,
pp. 237-280.

U. Lohnert et al., “JOYCE: Jiilich observatory for cloud evolution,” Bull.
Amer. Meteorol. Soc., vol. 96, no. 7, pp. 1157-1174, 2015.

T. Rose, S. Crewell, U. Lohnert, and C. Simmer, “A network suit-
able microwave radiometer for operational monitoring of the cloudy
atmosphere,” Atmos. Res., vol. 75, no. 3, pp. 183-200, May 2005.

J. H. Schween, A. Hirsikko, U. Lohnert, and S. Crewell, “Mixing-
layer height retrieval with ceilometer and Doppler lidar: From case
studies to long-term assessment,” Atmos. Meas. Techn., vol. 7, no. 11,
pp. 3685-3704, Nov. 2014.

N. Eresmaa, A. Karppinen, S. M. Joffre, J. Risiinen, and H. Talvitie,
“Mixing height determination by ceilometer,” Atmos. Chem. Phys.,
vol. 6, no. 6, pp. 1485-1493, May 2006.

C. Miinkel, N. Eresmaa, J. Résédnen, and A. Karppinen, “Retrieval of
mixing height and dust concentration with lidar ceilometer,” Boundary-
Layer Meteorol., vol. 124, no. 1, pp. 117-128, Jun. 2007.

E. J. O’Connor et al., “A method for estimating the turbulent kinetic
energy dissipation rate from a vertically pointing Doppler lidar, and inde-
pendent evaluation from balloon-borne in situ measurements,” J. Atmos.
Ocean. Technol., vol. 27, no. 10, pp. 1652-1664, Oct. 2010.

S. A. Cohn and W. M. Angevine, “Boundary layer height and entrain-
ment zone thickness measured by lidars and wind-profiling radars,”
J. Appl. Meteorol., vol. 39, no. 8, pp. 1233-1247, Aug. 2000.

AG Crewell IGMK. (2020). Instruments Operated by RG Integrated
Remote Sensing. Accessed: Dec. 2020. [Online]. Available: http://gop.
meteo.uni-koeln.de/ag_crewell/doku.php?id=instruments:instruments

J. Giildner and D. Spinkuch, “Remote sensing of the thermodynamic
state of the atmospheric boundary layer by ground-based microwave
radiometry,” J. Atmos. Ocean. Technol., vol. 18, no. 6, pp. 925-933,
Jun. 2001.

D. Cimini, T. J. Hewison, L. Martin, J. Giildner, C. Gaffard, and
F. S. Marzano, “Temperature and humidity profile retrievals from
ground-based microwave radiometers during TUC,” Meteorologische
Zeitschrift, vol. 15, no. 1, pp. 45-56, 2006.

S. Crewell and U. Lohnert, “Accuracy of boundary layer temperature
profiles retrieved with multifrequency multiangle microwave radiome-
try,” IEEE Trans. Geosci. Remote Sens., vol. 45, no. 7, pp. 2195-2201,
Jul. 2007.

U. Lohnert, S. Crewell, and C. Simmer, “An integrated approach

toward retrieving physically consistent profiles of tempera-
ture, humidity, and cloud liquid water,” J. Appl. Meteorol.,
vol. 43, no. 9, pp. 1295-1307, Sep. 2004. [Online]. Available:

https://journals.ametsoc.org/view/journals/apme/43/9/1520-0450_2004_
043_1295_aiatrp_2.0.co_2.xml

R. J. Hogan, A. L. M. Grant, A. J. Illingworth, G. N. Pearson, and
E. J. O’Connor, “Vertical velocity variance and skewness in clear and
cloud-topped boundary layers as revealed by Doppler lidar,” Quart.
J. Roy. Meteorol. Soc., vol. 135, no. 640, pp. 635-643, Apr. 2009.

G. Pearson, F. Davies, and C. Collier, “Remote sensing of the tropical
rain forest boundary layer using pulsed Doppler lidar,” Atmos. Chem.
Phys., vol. 10, no. 13, pp. 5891-5901, Jul. 2010.

G. N. Pearson and C. G. Collier, “A pulsed coherent CO;, lidar
for boundary-layer meteorology,” Quart. J. Roy. Meteorological Soc.,
vol. 125, no. 559, pp. 2703-2721, Oct. 1999.

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

4107418

C. Flamant, J. Pelon, P. H. Flamant, and P. Durand, “Lidar determi-
nation of the entrainment zone thickness at the top of the unstable
marine atmospheric boundary layer,” Boundary-Layer Meteorol., vol. 83,
pp. 247-284, May 1997.

R. Boers and E. W. Eloranta, “Lidar measurements of the atmospheric
entrainment zone and the potential temperature jump across the top of
the mixed layer,” Boundary-Layer Meteorol., vol. 34, no. 4, pp. 357-375,
Mar. 1986.

M. de Bruine, A. Apituley, D. P. Donovan, H. Klein Baltink, and
M. J. de Haij, “Pathfinder: Applying graph theory to consistent tracking
of daytime mixed layer height with backscatter lidar,” Atmos. Meas.
Techn., vol. 10, no. 5, pp. 1893—-1909, May 2017. [Online]. Available:
https://amt.copernicus.org/articles/10/1893/2017/

Y. Poltera et al., “PathfinderTURB: An automatic boundary layer
algorithm. Development, validation and application to study the impact
on in situ measurements at the jungfraujoch,” Atmos. Chem. Phys.,
vol. 17, no. 16, pp. 10051-10070, Aug. 2017. [Online]. Available:
https://acp.copernicus.org/articles/17/10051/2017/

F. Rocadenbosch, C. Soriano, A. Comerdn, and J. Baldasano, “Lidar
inversion of atmospheric backscatter and extinction-to-backscatter ratios
by use of a Kalman filter,” Appl. Opt., vol. 38, no. 15, pp. 3175-3189,
1999.

N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary
Time Series. Cambridge, MA, USA: MIT Press, 1964.

R. F Banks et al, “Sensitivity of boundary-layer variables to PBL
schemes in the WRF model based on surface meteorological observa-
tions, lidar, and radiosondes during the HygrA-CD campaign,” Atmos.
Res., vols. 176-177, pp. 185-201, Jul. 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0169809516300412
R. J. Barlow, Statistics: A Guide to the Use of Statistical Methods in The
Physical Sciences, R. E. F. Mandl and D. Sandiford, Eds. Chichester,
U.K.: Wiley, 1989, ch. 4, pp. 48-67.

K. Reif, S. Giinther, E. Yaz, and R. Unbehauen, “Stochastic stability of
the discrete-time extended Kalman filter,” IEEE Trans. Autom. Control,
vol. 44, no. 4, pp. 714-728, Apr. 1999.

S. M. Wingo and K. R. Knupp, “Multi-platform observations character-
izing the afternoon-to-evening transition of the planetary boundary layer
in northern Alabama, USA,” Boundary-Layer Meteorol., vol. 155, no. 1,
pp- 29-53, Apr. 2015.

M. Haeffelin et al., “Evaluation of mixing-height retrievals from auto-
matic profiling lidars and ceilometers in view of future integrated net-
works in Europe,” Boundary-Layer Meteorol., vol. 143, no. 1, pp. 49-75,
Apr. 2012.

D. H. Lenschow, J. C. Wyngaard, and W. T. Pennell, “Mean-field and
second-moment budgets in a baroclinic, convective boundary layer,”
J. Atmos. Sci., vol. 37, no. 6, pp. 1313-1326, Jun. 1980.

S. C. Tucker et al., “Doppler lidar estimation of mixing height using
turbulence, shear, and aerosol profiles,” J. Atmos. Ocean. Technol.,
vol. 26, no. 4, pp. 673-688, Apr. 2009.

K. Triaumner, C. Kottmeier, U. Corsmeier, and A. Wieser, “Con-
vective boundary-layer entrainment: Short review and progress using
Doppler lidar,” Boundary-Layer Meteorol., vol. 141, no. 3, pp. 369-391,
Dec. 2011.

J. Villalonga et al., “Convective boundary-layer height estimation from
combined radar and Doppler lidar observations in VORTEX-SE,” in
Remote Sensing of Clouds and the Atmosphere XXV, vol. 11531,
A. Comerén, E. I. Kassianov, K. Schifer, R. H. Picard, K. Weber, and
U. N. Singh, Eds. Bellingham, WA, USA: SPIE, 2020, pp. 192-201,
doi: 10.1117/12.2576046.

J. M. Wallace and P. V. Hobbs, Atmospheric Science: An Introductory
Survey. Amsterdam, The Netherlands: Elsevier, 2006.

D. J. Seidel, C. O. Ao, and K. Li, “Estimating climatological plan-
etary boundary layer heights from radiosonde observations: Compar-
ison of methods and uncertainty analysis,” J. Geophys. Res., Atmos.,
vol. 115, no. D16, pp. D16113-1-D16113-15, 2010. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2009JD013680
U. Lohnert and S. Crewell, “Accuracy of cloud liquid water path from
ground-based microwave radiometry 1. Dependency on cloud model
statistics,” Radio Sci., vol. 38, no. 3, pp. 1-11, 2003. [Online]. Available:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002RS002654
U. Lohnert, D. D. Turner, and S. Crewell, “Ground-based temperature
and humidity profiling using spectral infrared and microwave
observations. Part I: Simulated retrieval performance in clear-sky
conditions,” J. Appl. Meteorol. Climatol., vol. 48, no. 5, pp. 1017-1032,
May  2009. [Online].  Available:  https://journals.ametsoc.org/
view/journals/apme/48/5/2008jamc2060.1.xml

Authorized licensed use limited to: Francesc Rocadenbosch. Downloaded on April 14,2022 at 07:56:21 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1117/12.2576046

4107418

[59] F. Rocadenbosch, R. L. Tanamachi, M. P. Araujo da Silva,
J. Villalonga, S. J. Frasier, and D. D. Turner, “Atmospheric bound-
ary layer height disambiguation using synergistic remote sensing
observations: Case examples from VORTEX-SE,” in Remote Sens-
ing of Clouds and the Atmosphere XXV, vol. 11531, A. Comerén,
E. 1. Kassianov, K. Schifer, R. H. Picard, K. Weber, and
U. N. Singh, Eds. Bellingham, WA, USA: SPIE, 2020, pp. 109-120,
doi: 10.1117/12.2576093.

[60] F. Rocadenbosch er al., “Ceilometer-based rain-rate estimation: A case-
study comparison with S-band radar and disdrometer retrievals in the
context of VORTEX-SE,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 12, pp. 8268-8284, Dec. 2020.

Marcos P. Aratjo da Silva (Graduate Student
Member, IEEE) received the B.S. degree in envi-
ronmental engineering and the M.S. degree in
climate sciences from the Federal University of
Rio Grande do Norte, Natal, Brazil, in 2015 and
2018, respectively. He is pursuing the Ph.D. degree
in telecom engineering, remote sensing (advisor,
Prof. Francesc Rocadenbosch) with the Maria-
de-Maeztu Excellence Unit CommSensLab-UPC,
granted by the Ministerio de Ciencia e Innovacion,
Spain.

His research interests include atmospheric remote sensing and boundary
layer, related multisensor processing, and wind energy.

Francesc Rocadenbosch (Senior Member, IEEE)
received the B.S. and Ph.D. degrees in telecommuni-
cations engineering from the Universitat Politecnica
de Catalunya (UPC), Barcelona, Spain, in 1991 and
1996, respectively, and the M.B.A. degree from the
University of Barcelona, Barcelona, in 2001.

In 1993, he joined the Department of Signal
Theory and Communications, UPC, where he is a
Full Professor. Since 1996, he has been steering the
development of CommSensLab-UPC Excellence-
Unit activities on lidar, including the UPC unmanned
lidar station (European Strategic Forum on Research Infrastructure (ESFRI)
2016 roadmap), and he has been serving on over ten collaborative remote
sensing projects as principal investigator (PI). His research interests include
remote sensing (lidar-radar-radiometry) for atmospheric observation, related
signal processing, and off-shore wind-lidar.

Dr. Rocadenbosch was a recipient of the “Salva i Campillo” Best Research
Project Award in 1997, the National Telecom Award in 2003 (group), and the
EU Knowledge and Innovation Communities (KIC) recognition for EOLOS
spin-off in 2015. He is an Associate Editor of the IEEE TRANSACTIONS ON
GEOSCIENCE AND REMOTE SENSING.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 60, 2022

Robin L. Tanamachi received the B.S. degree in
atmospheric and oceanic sciences from the Uni-
versity of Wisconsin-Madison, Madison, WI, USA,
in 2001, and the M.S. and Ph.D. degrees in
meteorology from The University of Oklahoma,
Norman, Oklahoma, OK, USA, in 2004 and 2011,
respectively.

She is an Assistant Professor with the Department
of Earth, Atmospheric, and Planetary Sciences, Pur-
due University, West Lafayette, IN, USA. Her inter-
ests include radar meteorology, severe thunderstorm
dynamics and kinematics, and methods for assimilating radar observations
into numerical weather prediction models.

Dr. Tanamachi is a member of the American Meteorological Society (AMS)
and served on the AMS Radar Meteorology Committee from 2013 to 2019.

Umar Saeed received the B.E. degree in elec-
tronics engineering from the National University
of Sciences and Technology (NUST), Karachi,
Pakistan, in 2007, the M.Sc. degree in communi-
cations engineering, with specialization in digital
signal processing from Aalto University, Helsinki,
Finland, in 2012, and the Ph.D. degree in
atmospheric remote sensing from the Universitat
Politecnica de Catalunya, Barcelona, Spain, in 2016.

From 2013 to 2016, he was a Marie Curie
Early Stage Researcher in the Initial Training for
Atmospheric Remote Sensing network funded by the Seventh Framework
Program (FP7) of the European Union. His research interests include active
optical and passive microwave atmospheric remote sensing, atmospheric
boundary layer (BL), sensor synergy, and statistical and adaptive signal
processing.

Authorized licensed use limited to: Francesc Rocadenbosch. Downloaded on April 14,2022 at 07:56:21 UTC from IEEE Xplore. Restrictions apply.


http://dx.doi.org/10.1117/12.2576093

