Low-Cost Air Quality Sensor Evaluation and Calibration in Contrasting Aerosol Environments

Pawan Gupta^{1,2}, Prakash Doraiswamy³, Jashwanth Reddy^{4,1}, Palak Balyan^{5,6}, Sagnik Dey⁵, Ryan Chartier³, Adeel Khan⁷, Karmann Riter³, Brandon Feenstra⁸, Robert C. Levy⁹, Nhu Nguyen Minh Tran⁴, Olga Pikelnaya⁸, Kurinji Selvaraj⁸, Tanushree Ganguly⁷, Karthik Ganesan⁷

Correspondence to: Pawan Gupta (pawan.gupta@nasa.gov)

Supplementary Material

¹STI-Universities Space Research Associations, Huntsville, AL, USA.

² NASA Marshall Space Flight Center, Huntsville, AL, USA

³RTI International, Research Triangle Park, NC, USA.

⁴The University of Alabama in Huntsville, AL, USA.

⁵Indian Institute of Technology, New Delhi, India

⁶Health Effects Institute (HEI), Boston, U.S.A.

⁷Council on Energy, Environment, and Water (CEEW), New Delhi, India

⁸South Coast Air Quality Management District, CA, USA.

⁹NASA Goddard Space Flight Center, Huntsville, AL, USA.

Figure S1. The plots showing mean difference in A & B measurements from each sensor for the two regions.

Figure S2.1. Mean Absolute Difference (µg/m³) Between Any Two Sensors in Delhi

Figure S2.2. Mean Percent (%) Difference Between Any Two Sensors in Delhi

Figure S2.3. Mean Absolute Difference (µg/m³) Between Any Two Sensors in Raleigh

Figure S2.4. Mean Percent (%) Difference Between Any Two Sensors in Raleigh

Figure S3.1 – Inter-comparison between FEM and ML output for Raleigh during 10-fold training of MLA. Each density scatter plot represents 1-fold.

Figure S3.2 – same as Figure S3.1 but for 10-fold validation in Raleigh.

Figure S3.3 – same as Figure S3.1 but for 10-fold training for Delhi.

Figure S3.4 – same as Figure S3.1 but for 10-fold validation for Delhi.

Figure S4. ADD THIS FIGURE on Raleigh ML comparison for 84 vs. 5 sensors.

Figure S5. The input feature importance for RF model for Raleigh (top) and Delhi (bottom)

```
# sample code used to train RF model
# Import packages
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
# read already cleaned and quality controllled Input parameters
df = pd.read_csv('Extracted_Data_latest.csv')
X = df[['PAB_Pm25','Humidity','Temperature']]
Y = df['BAM_Pm25']
# call the function to randomly select training & testing data
# splits 75% data to train and 25% to test, test_size = 0.25
X_train, X_test, y_train, y_test = train_test_split(X, Y, random_state=0)
# call the function to train the model
regr = RandomForestRegressor(max_depth=20, random_state=2,n_estimators=50,bootstrap=True)
regr.fit(X_train, y_train)
# run trained model on training and testing data
pred trn = regr.predict(X train)
pred_tst = regr.predict(X_test)
# save the trained model in a file
filename = 'model for PAB.sav'
pickle.dump(regr, open(filename, 'wb'))
```

Figure S6. The sample python code to train and test a random forest model.

Table S1. The mean bias (MB), mean percentage bias (MB%), and mean percentage absolute bias (|MB%| for hourly and daily averages. The biases before and after corrections are provided.

Delhi	Hourly		MB	MB%	MB%
		Raw Data	35.1	23.8	28.9
		Corrected Data	0.22	2.0	9.1
	Daily	Raw Data	37.3	23.7	25.3
		Corrected Data	1.3	1.8	5.4
Raleigh	Hourly	Raw Data	-0.8	-4.9	604
		Corrected Data	0.02	4.1	10.9
	Daily	Raw Data	-0.8	-11.2	27.7
		Corrected Data	0.03	2.2	5.0