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Abstract. The use of low-cost sensors (LCS) in air quality monitoring has been gaining interest across all walks of society, 

including community and citizen scientists, academic research groups, environmental agencies, and the private sector. 

Traditional air monitoring, performed by regulatory agencies, involves expensive regulatory-grade equipment and requires 

ongoing maintenance and quality control checks. The low-price tag, minimal operating cost, ease of use, and open data access 

are the primary driving factors behind the popularity of LCS. This study discusses the role and associated challenges of PM2.5 25 
sensors in monitoring air quality. We present the results of evaluations of the PurpleAir (PA.) PA-II LCS against regulatory-

grade PM2.5 federal equivalent methods (FEM) and the development of sensor calibration algorithms. The LCS calibration 

was performed for 2 to 4 weeks during December 2019-January 2020 in Raleigh, NC, and Delhi, India, to evaluate the data 

quality under different aerosols loadings and environmental conditions. This exercise aims to develop a robust calibration 

model that uses PA measured parameters (i.e., PM2.5, temperature, relative humidity) as input and provides bias-corrected 30 
PM2.5 output at an hourly scale. Thus, the calibration model relies on simultaneous measurements of PM2.5 by FEM as target 

output during the calibration model development process. We applied various statistical and machine learning methods to 

achieve a regional calibration model. The results from our study indicate that, with proper calibration, we can achieve bias-

corrected PM2.5 data using PA sensors within 12% percentage mean absolute bias at hourly and within 6% for a daily average. 

Our study also suggests that pre-deployment calibrations developed at local or regional scales should be performed for the PA 35 
sensors to correct data from the field for scientific data analysis.  

 

1. Introduction  

 

Air quality monitoring is critical for managing and mitigating air pollution at varying spatiotemporal scales. However, air 40 
quality monitoring is limited in many parts of the world (Martin et al., 2019) in part due to the high cost and technical 

experience requirements of operating regulatory-grade monitors (R.G.M.). Regulatory-grade continuous air quality monitors 

have high measurement accuracy under varying operating conditions. The high cost of RGM and their associated infrastructure 

needs and regular maintenance also limit the extensive deployment of such monitors in a region and the spatial density of the 

network. This is particularly true in developing countries. The lack of data affects critical decision-making by the public about 45 
their day-to-day activities and regulatory agencies for controlling and mitigating air pollution in many regions.  
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In recent years, low-cost sensors (LCS) are increasingly being used for monitoring pollution at the local scale and have been 

suggested as one component of a hybrid monitoring system (Martin et al., 2019). LCS that report fine particulate matter (PM2.5, 

i.e., particles with aerodynamic diameter less than or equal to 2.5 micrometers) in particular have shown increasing the 

potential for air quality monitoring along with RGM measurements and satellite observations (Feenstra et al., 2019; Gupta et 5 
al., 2018; Wallace et al., 2021). LCS technologies have significantly lower costs (~100 times cheaper equipment cost), minimal 

infrastructure requirements (low power requirements and wireless internet/S.D. card), and smaller footprints. They are easy to 

install, and in some cases, data are uploaded to cloud services in real-time. The relatively lower cost also allows the deployment 

of LCS at multiple locations to fill gaps in ground monitoring and better assess the spatial variability of air pollutants at higher 

time resolutions. In addition to LCS, the hybrid approach includes satellite observations. The Satellite-based measurements 10 
offer global spatial coverage that may help fill in spatial gaps in an air monitoring network (van Donkelaar et al., 2015; van 

Donkelaar et al., 2016). However, most satellite data are limited in temporal coverage (e.g., once a day except for geostationary 

satellites), impacted by cloud cover, and potentially prone to larger uncertainties in regions with limited or no ground-based 

monitors.   

 15 
While several LCS are commercially available for indoor and outdoor air pollution measurements, their performance varies 

compared to RGM. The South Coast Air Quality Management District (South Coast AQMD) Air Quality Sensor Evaluation 

Center (AQ-SPEC) evaluates the performance of air quality sensors in a laboratory under controlled conditions and in ambient 

environments and provides the evaluation reports on its website (South Coast AQMD, 2022). In addition to LCS intrinsic 

limitations, the particle sources, types, concentration, seasonality, and weather conditions impact the measurement uncertainty 20 
(Wang et al., 2015). Over the past few years, many published studies have evaluated and developed correction factors for 

various LCS with encouraging results (Badura et al., 2019; Bi et al., 2020a; Bi et al., 2020b; Di Antonio et al., 2018; Si et al., 

2020; Wallace et al., 2021; Wang et al., 2020; Zusman et al., 2020). Most studies concluded that after calibration, data from 

LCS showed better agreement with reference methods and reduced measurement error, making them suitable for various 

applications. For example, Bi et. al., (2020b) found that integrating data from LCM and RGM as part of a geographically 25 
weighted regression model improved the spatial representation of PM2.5 predictions and identifying hotspots such as wildfires. 

Wang et al. (2020) applied the correction algorithm to the sensors in their monitoring network for use in citizen science, public 

education, environmental research, and support policy. Because of their potential, funding agencies around the world are 

funding various efforts to utilize LCS along with citizen science. 

 30 
In our NASA-funded citizen science study, we evaluated and deployed LCS as part of a community volunteer-based ambient 

sensor network to generate spatially and temporally resolved air quality data to refine satellite-based surface PM2.5 estimates. 

The secondary purpose of LCS data in this project is to evaluate spatiotemporal gradients near-surface and in the atmospheric 

column. Citizen scientists deployed and hosted the sensors. To ensure appropriate data quality and assess spatial gradients, it 

was important to calibrate all sensors on a uniform basis prior to deployment by citizen scientists. In this article, we present 35 
our sensor evaluation effort. For our study, we selected the PurpleAir (PA.) PA-II sensor due to its documented performance 

(Feenstra et al., 2019; South Coast AQMD, 2022). Additionally, PA-II was selected based on its low cost, ease of use by 

citizen scientists, and open data framework, which provides a real-time map and opens data access through Application 

Programming Interfaces (APIs). As of March 2022, the PA network (www.purpleair.com) has more than 21,000 units deployed 

around the world by individuals, community groups, organizations, and public and private institutions to monitor air quality 40 
at their homes, office, and public locations to achieve more spatial and temporal coverage of air quality.  
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Various research groups have also evaluated the PA units and developed calibration coefficients. Wallace et al., (2021) (and 

references therein) thoroughly reviewed the literature on testing and calibration methods and proposed their own method. They 

compared 33 PA units located within 500 meters of US E.PA Air Quality System (AQS) stations over a period of 18 months 

and proposed a method of converting particle number output from the PA-II to mass concentration, thus avoiding the use of 

PA data streams “CF=1” and “CF=ATM” provided by the manufacturer. The US E.PA developed a regression-based 5 
correction equation for the continental US (CONUS) region by evaluating 53 PA sensors collocated against regulatory-grade 

continuous PM2.5 monitors, referred to as Federal Equivalent Methods (FEM), at 39 locations across 16 states (Barkjohn et al., 

2021). Their final correction equation reduced the overall error in daily average concentrations by about 62.5% across the US 

at an average concentration of 9 µg/m3. In India, few studies (Prakash et al., 2021; Zheng et al., 2018) have attempted to 

evaluate the quality of LCS measurements and developed specific correction equations. Zheng et. al. (2018) used a Plantower 10 
sensor (PMS 3003) as part of a custom-made sensor package and evaluated its performance against a FEM in Research Triangle 

Park, NC (mean PM2.5 of 10 ± 3 µg/m3) and in Kanpur, India (mean PM2.5 36 ±17 and 116 ± 57 µg/m3 during monsoon and 

post-monsoon seasons respectively). They noted a non-linear response beyond ~125 µg/m3 and found that following 

calibration (quadratic model) and correction for RH, the sensor measurements were within 10% of the reference values. 

Prakash et. al. (2021) evaluated a different low-cost sensor (APT-MAXIMA) at three sites (urban, industrial, and background) 15 
over an 8-month period from May 2019 to February 2020 in Delhi. They found the corrected hourly data to correlate well (R2 

> 0.84) with the reference measurements, with slopes ranging from 0.81 (industrial) to 0.99 (urban).  

 

In this study, we developed a machine learning algorithm (MLA) to calibrate PA-II PM2.5 measurements by comparing them 

against RGM. The MLA uses PM2.5 from the CF=ATM stream, along with temperature (T) and relative humidity (RH) 20 
measurements from the PA-II sensor as inputs and generates hourly averaged calibrated PM2.5 mass concentration. MLA 

models are developed, tested, and validated independently for two geographic regions with distinct aerosol loadings. Our study 

provides a novel approach in two ways: 1) multiple (50+) PA-II units were collocated (within a few meters) along with FEM 

instruments at each location, allowing intercomparison, both among the PA-II units and with the FEM instrument; and 2) 

collocation was performed in two regions with different environmental conditions (Raleigh area, North Carolina, U.S.A.; and 25 
Delhi, India – henceforth, referred to as Raleigh and Delhi, respectively) spread over two continents.  

 

2. PM2.5 Measurement Instrumentation  

 

2.1. PA-II Low-cost Sensors 30 
 

The PA-II (Purple Air L.L.C., Draper, UT, U.S.A.) sensor is an optical particle sensor (OPS) that houses two raw OPS (PMS 

5003) manufactured by Plantower (Beijing, China). These two PMS 5003 sensors are referred to as Channel A and Channel 

B. The PMS 5003 OPS is a nephelometer that measures particle loading through light scattering (wavelength~650 nm) (Hagan 

and Kroll, 2020a). Sampled air intercepts a beam of light. The light scattered by the ensemble of particles in the sampled air 35 
is detected by a photodiode at a roughly 90° angle (Kelly et al., 2017), although Hagan and Kroll (2020b) note that there is no 

focused collection. The amplitude of the scattered light is measured and correlated to particulate matter (PM) concentration 

(Hagan and Kroll, 2020a). OPS technology has limitations for measuring PM mass concentrations as changes in aerosol size 

distributions, aerosol optical properties, and particle density can impact the performance of OPS and lead to measurement 

errors (Hagan and Kroll, 2020a). The PA-II sensor requires Wi-Fi and power (5V) to be operational. The PA-II, once Wi-Fi is 40 
configured and registered with PurpleAir, streams live data to a public map (PurpleAir, 2022). PurpleAir supports open data 

and provides access to collected data. The primary sensor-reported data include PM1, PM2.5, and PM10 concentrations with a 

factory-specified correction factor for ambient measurements (CF=ATM), concentrations with CF=1 factor recommended by 
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the manufacturer for use in indoor measurements, T, and RH. We use PM2.5 concentrations from the “CF=ATM” data stream 

along with T & RH. 

 

2.2. Regulatory-Grade Monitors 

 5 
Regulatory-grade continuous PM2.5 FEMs are those that are certified to be equivalent to a Federal Reference Method. Each 

collocation site used a different FEM. The measurement site at Delhi employed the Met One BAM-1022 (Met One Instruments, 

Inc., Grants Pass, OR), while the site in Raleigh ran the Teledyne T640x (Teledyne API, San Diego, CA) sampler. A brief 

description of the FEMs is provided below. 

 10 
Met One BAM-1022: The Met One BAM (beta-attenuation monitor) measures the attenuation of beta radiation due to PM. 

Ambient air is sampled through a US E.PA approved PM2.5 inlet at 16.7 L/min. The sampled particles are deposited on a filter 

tape located between a beta radiation source and a detector. The detector measures the change in intensity of beta radiation 

due to particles deposited on the filter. The BAM-1022 takes a differential measurement between the beginning and end of a 

sampled time period. The BAM reported data at a 1-hr resolution. The BAM is inspected every week and cleaned if required. 15 
Calibration is performed on an annual basis. 

 

Teledyne T640x: The T640x sampler is an optical aerosol spectrometer. A polychromatic light source shines a light on the 

preconditioned ambient sample. The scattered light intensity is detected at a 90° angle at the single particle level. The T640x 

determines the particle size from the amplitude of the scattered light, which is then converted to a mass concentration basis. 20 
The setup at the measurement site used a US EPA approved PM10 inlet. The sampling setup pulled in 16.67 L/min for the PM10 

size cut, of which 5 L/min is the main flow to the instrument controlled by an internal pump, with the remaining 11.67 L/min 

being bypass flow maintained by an external pump. The T640x reported PM10 and PM2.5 data at 1-min resolution. 

 

3. Measurement Setup 25 

95 and 89 PA-II sensor units were collocated with PM2.5 FEM instruments for a 2 to 4-week period between December 2019 

and January 2020 at Raleigh and Delhi. The FEM instruments stored the data on the instrument locally. The PA-II sensors 

transmitted data in real-time to the PA cloud server, from which the data were downloaded using an API. The PA data were 

available at 2-minute intervals. Figure 1a shows the schematic of the sample collection. The experimental setup at each location 

differed slightly and is described below.  30 
 

3.1. New Delhi, India 

A total of 95 PA-II sensors were collocated next to the Met One BAM-1022 PM2.5 FEM on a building rooftop at the Indian 

Institute of Technology, Delhi (IIT Delhi) (28.54464 °N, 77.19161 °E), New Delhi, India (Figure 1b) from December 19, 

2019, to January 18, 2020. The PA-II sensors were mounted on a custom-built slotted metal stand about 2.74 m (~9 ft) tall. 35 
About 20 to 27 sensors were mounted using zip ties on each stand about 1.83 to 2.74 m (~6-9 ft) from the ground. The mounted 

sensors were roughly within 0.90 m (~3 ft) of the PM2.5 inlet to the Met One BAM in the vertical direction and about 1 to 6 m 

(~3 to 20 ft) horizontally apart from the BAM. Ten battery-powered wireless hotspot routers were set up to generate wireless 

internet connections for real-time data transmission. Around 8 to 10 sensors were configured to use the Wi-Fi signal from any 

single hotspot as per specifications recommended by the manufacturer. The hotspot router battery was rated to have 7-8 hours 40 
of continuous operation time. All the PA sensors and the wireless routers were plugged into electrical outlets using extension 

cords with on/off control. The routers were connected to separate extension cords with dedicated on/off control. This allowed 
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the power to the sensors and the routers to be controlled separately. The routers were fully charged prior to use. To avoid 

potential battery damage and fire risk, the power to the routers was turned off once fully charged and manually turned back on 

after about 8 hours. Setting up a collocation of 95 sensors along with Wi-Fi hotspot units was a challenge. Due to issues with 

the router and/or the extension cords, data were either unavailable or largely missing for 40 sensors. Thus, data from the 

remaining 55 sensors were used in this study. 5 
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Figure 1: Generic data collection and calibration setup with actual pictures from the two locations. 1a) the schematic, 1b) the setup 
in Delhi, India, and 1c) the setup in Raleigh area, NC, USA. 

3.2. Raleigh Area, NC 

In the Raleigh area, the collocation was performed in two steps due to limitations in access to power at the collocation site. 

The first step involved the colocation of several PA-II sensors with each other in batches, sampling ambient air. A total of 89 5 
sensors were collocated next to each other with some overlapping time periods at a residential location in Apex, NC, between 

December 16, 2019, and January 15, 2020. The sensors were inside a screened porch exposed to the ambient air. Five PA-II 

units were set as baseline units that were part of all the batches.  

The second step involved collocating these five baseline units in the field next to the Teledyne T640x PM2.5 FEM instrument 

at the ambient monitoring station at US E.PA (35.88952 °N, 78.874609 °W) in Research Triangle Park, NC, between January 10 
16 to 27, 2020. At the field site, the FEM instrument was located inside a climate-controlled shelter with the sampling inlet 

extending through the roof (Figure 1c). The sensors were roughly 10-13 m away from the sensor inlet in the horizontal direction 

and within about 4.5 m of the FEM inlet in the vertical direction. All the sensors were connected to electrical outlets and 

configured to transmit data through Wi-Fi at the site. Data from the FEM were stored in an on-site data logger. Since the 

different steps were performed in different towns in the Raleigh region, we collectively refer to it as the Raleigh area or just 15 
Raleigh. 

 

4. Data and Method  

4.1. Data Integration and Evaluation Metrics  

 20 
The PA-II PM2.5 measurements from channels A and B were averaged at an hourly time interval to match the frequency of 

FEM measurements. Consistent data from the two channels were used as an indicator of sensor health, and data were 

preprocessed as discussed in Section 5.1. The preprocessed hourly average concentrations from the two channels were 

averaged together to obtain a single hourly average value for the PA-II sensor. 

 25 
Hourly averaged PM2.5 data from the FEMs, along with the average PA measurements of PM2.5, T, and RH, were integrated 

into a single dataset separately for each location. This integrated and quality-controlled dataset, containing 18067 data records 

for Delhi and 1652 data records for Raleigh, was used to train and validate the calibration models. 

To analyze the model calibration results and uncertainties, we considered the following statistical parameters:  

𝑅𝑜𝑜𝑡	𝑀𝑒𝑎𝑛	𝑆𝑞𝑢𝑎𝑟𝑒	𝐸𝑟𝑟𝑜𝑟	(𝑅𝑀𝑆𝐸), 𝜇𝑔	𝑚!" = 5!
"
∑(𝑃𝑀2.5#$% − 𝑃𝑀2.5&')(																									    (1)                                                30 

Mean	Bias	(MB), 𝜇𝑔	𝑚!" =	 )
*
∑(PM2.5+, − PM2.5-./)     (2) 

The mean percentage bias (MB %) and the mean absolute percentage bias (|MB|%) of calibrated PA data are defined as: 

𝑀𝐵(%) = )
*
∑100 ∗ (+/(.2#$!+/(.2%&')

+/(.2%&'
       (3) 

|𝑀𝐵|(%) = )
*
∑100 ∗ (|+/(.2#$!+/(.2%&'|)

+/(.2%&'
       (4) 

Where the PM2.5FEM is PM2.5 from FEM monitors, PM2.5PA is the PM2.5 measured by the PA-II sensor, and N is the number 35 
of paired data points. In addition, we have computed linear regression statistics, including Pearson correlation coefficient (R), 

slope (m), and intercept (I).     

 

https://doi.org/10.5194/amt-2022-140
Preprint. Discussion started: 16 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 7 

4.2. Machine Learning Algorithms for Calibration 

 

Several models, including linear regression and selected MLAs, namely Support Vector Regression (SVR), XGboost, and 

Random Forest (RF), were tested. We looked at the RMSE, R, and MB metrics for these different models and chose the model 

with the lowest RMSE and a similar or better R than the other models. Based on the performance (Table 1), we selected RF 5 
as a candidate MLA for the detailed analysis in this study.  

 

We used Scikit-learn (sklearn) machine learning library in Python (https://scikit-learn.org). The selected RF algorithm is a 

supervised MLA and one of the most used in modeling air quality using satellite remote sensing data sets (Masih, 2019) due 

to its simplicity and diversity. It randomly samples a small subset from the dataset and uses this to train multiple decision trees 10 
using the bagging method. The bagging method allows the combination of various learning methods, which improves overall 

accuracy. The ensemble of decision trees (i.e., forest) is then used to produce the final output. For the details on MLA parameter 

settings, we have provided a sample code for the training and testing of RF in the supplementary material.  

 

In order to develop the final sensor calibration algorithm, we used the following steps: 1) quality control the PA data; 2) 15 
randomly divide the data into training (75%) and validation (25%) datasets; 3) train the algorithm using the training dataset 

and validate using the validation dataset; and 4) repeat steps 2 and 3 ten times (i.e., 10-fold cross-validation) using random 

data selection. 

 

5. Results 20 
 

The overarching goal of this paper is to report various aspects of low-cost sensor (i.e., PA-II) measurements and their 

calibration against FEM instruments. The results are presented side-by-side for the two regions and at different time averages 

to compare performance across regions. We present below an analysis of the difference in measurements between the two 

channels of a PA-II unit, differences among the multiple PA-II units, and a comparison of PA-II and FEM. Next, we present 25 
data preparation for calibration model development and testing of various MLA, including 10-fold validation. The last section 

presents the results of MLA and prognostic and diagnostic errors.  

 

5.1. PA Sensor Data Quality Control 

 30 
The quality of the data from each sensor must be checked prior to use in data analysis. In our earlier work (Gupta et al., 2018), 

we found differences in PM2.5 values between these two channels for a few sensors. Figure 2 presents the scatter plots between 

PA-II channel A (PAA.) and channel B (PAB.) data for Delhi (top) and Raleigh (bottom) for hourly average concentrations. 

The different colors represent the different sensor units. Clearly, the two channels are highly correlated (R>0.95), and 

measurement values are close to each other, but there is also a spread in the scatter showing differences in values between the 35 
two channels. Overall, the mean (±one standard deviation) difference is 7±23% and 13±19% between the two channels in 

Delhi and Raleigh, respectively. 

 

An initial examination of the sensor data indicated significantly different concentration regimes for the two regions of 

collocation (Figure 2). Delhi experienced hourly PM2.5 ranging from about 50 to nearly 800 µg m-3, whereas Raleigh showed 40 
concentrations reaching a maximum of around 120 µg m-3 but most often ranging between near zero and 25 µg m-3 as measured 

by the PA-II. Due to the large difference in the range of PM2.5 values, a single cleaning criterion will not work. As proposed 

in earlier studies (Barkjohn et al., 2021), criteria based on both percent difference as well as the absolute difference between 
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channels A and B are used based on the concentration regime to ensure high data quality for calibration model development. 

Consequently, we adopted separate data cleaning criteria for the two regions:   

 

a) For Raleigh, where concentrations were typically less than 25 µg m-3, data were excluded if the difference in hourly 

average PM2.5 measurements between channel A (PAA.) and channel B (PAB.) was larger than 5 µg m-3 5 
b) For Delhi with higher concentration regimes, the data were excluded if the difference in hourly PM2.5 between PAA. 

and PAB. was larger than 5% 

 

 
Figure 2: The scatter plots showing PA channel A & B raw measurements for the two regions (Top – Delhi, Bottom – Raleigh). The 10 
different color shows different sensor units.  
 

In addition, for Raleigh, we also removed a specific instance of high PA-II PM2.5 values (> 50 µg m-3) compared to FEM (6-8 

µg m-3) on January 12 and 13, 2019, between 11 pm and midnight (total of 18 data points). Although the discrepancy with 

FEM itself should not be a reason to discard the data, the fact that there were no known explainable reasons and that this was 15 
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an isolated instance during the nearly 2-week collocation period, we decided to remove these data as well. The main goal is to 

retain only the highest quality data that would help identify and capture the underlying mechanism influencing LCS response 

compared to a FEM. We, therefore, deliberately chose stringent criteria to remove any potentially erroneous data or 

discrepancies that might mask the sensor-FEM relationship. It is important to note that the data cleaning criteria can vary 

depending on the purpose of data usage and the level of tolerance for the errors.  5 
 

PA-II data were cleaned and filtered out as per the criteria discussed above. Figure 3 shows the PA-II data after the application 

of quality checks, showing an excellent correlation (>0.95) between PAA. and PAB. with minimal spread around the 1:1 line 

and no outliers. We use the cleaned PA-II data for further analyses and model development.  

 10 
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Figure 3: Same as Figure 2, except data quality is controlled and cleaned up using criteria discussed in section 5.1  
 

Figure S1 (supplemental material) shows the mean (and standard deviation) of the difference between PAA. and PAB. for 

each sensor after data cleaning. The mean difference varied between -8.80 ± 4.55 µg m-3 and 9.97 ± 5.90 µg m-3 for Delhi and 

between -0.64 ± 0.42 µg m-3 and 0.31 ± 0.50 µg m-3 for Raleigh. When examining data between any two sensors, the mean 5 
difference among the PA-II sensors ranged from -33.3 ± 18.7 µg m-3 to 70.3 ± 24.5 µg m-3 for Delhi (Figure S2.1) and from -

0.29 ± 0.35 µg m-3 to 0.59 ± 0.23 µg m-3 for Raleigh (Figure S2.3). When expressed as a percent of the mean of the two sensors, 

the sensors were within a maximum difference of ± 20% of each other in Delhi (Figure S2.2). Out of a total of 1262 valid 

sensor pair combinations, about 77% of the pairs showed differences within 5% of each other and 96% of the pairs within 10% 

of each other. For Raleigh, on a percent basis, the sensors differed between -9.2% and 23% (Figure S2.4). Out of a total of 10 10 
valid sensor pair combinations, about 20% of the pairs were within 5% of each other and 50% of the pairs within 10% of each 

other. The higher percent difference between sensors in Raleigh is due to division by a low concentration range because the 

absolute difference was within 0.54 µg m-3 for 90% of the sensor pairs.    

 

5.2. PA and FEM Intercomparison 15 
 

After we cleaned and quality-controlled the PA data, we compared the average of channel A (PAA.) and channel B (PAB.) 

with coincident hourly FEM PM2.5 values. Figure 4 shows these comparisons at hourly (left) and daily (right) averages for 

Delhi (top) and Raleigh (bottom). From the figure, it is clear that the PA-II sensors have very different performances against 

FEM in the two regions, mainly due to differences in PM2.5 loading, particle type, and operating conditions. The typical PM2.5 20 
values in Raleigh were less than 20 µg m-3 which were rarely observed in Delhi. The PA vs. FEM comparison in Raleigh 

showed a big scatter in hourly averages with a R value of 0.34 and RMSE of 4.4 µg m-3. After averaging data over a 24-hour 

period (i.e., daily average), the correlation almost doubled (R = 0.66), and RMSE was reduced by half (2.2 µg m-3). The mean 

bias for Raleigh remained negative and about the same (~ -0.8 µg m-3 or about 5% to 11%) on both hourly and daily average 

basis, suggesting an overall underestimation by PA in clean conditions (PM2.5 < 10 µg m-3). In contrast, the PA sensors in 25 
Delhi often overestimated PM2.5 concentrations at both hourly and daily averages with a positive mean bias (~35 to 37 µg m-

3, or 23.8% to 23.7%). PA measurements in Delhi showed a very high degree of correlation (R ≥0.88) with FEM but with a 

high RMSE of 60.75 µg m-3 and 48.13 µg m-3 on an hourly and daily basis, respectively. Thus, the comparison of PA with 

FEM demonstrated completely different sensor behavior for Delhi (overestimation but highly correlated) and Raleigh 

(underestimation and low correlation). This suggests the need for different calibration coefficients or models for correcting 30 
PA data under different PM2.5 loadings. It is also important to note that the chemical composition of particles in Delhi and 

Raleigh is expected to be different. The Delhi particles are dominated by carbonaceous aerosols with a mixture of dust during 

the winter period (Shiva Nagendra and Khare, 2019), whereas PM in Raleigh is dominated by typical urban sulfate and nitrate 

aerosols (Cheng and Wang-Li, 2019).   
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Figure 4: The density scatters plot of FEM and PA measurements of PM2.5 for the two locations after data cleaning for hourly (left) 

and daily (right) mean values. The color scale represents the density of data points. 

 

5.3 PA Calibration Algorithm Performance 5 
 

Our goal is to develop a robust calibration model which uses PA measured parameters (i.e., PM2.5, T, RH) as inputs and 

generates bias-corrected PM2.5 equivalent to that measured by a FEM as an output. As discussed in section 4.2, several MLAs 

have been trained and tested using integrated PA-II and FEM datasets (section 4.1). Table 1 presents the results of model 

performance (RMSE, R, and MB) during training and validation (testing) using linear regression, S.V.R., XGBoost, and RF 10 
algorithms for both Delhi and Raleigh regions. Almost all the performance metrics indicated superior performance by the RF 

algorithm compared to other methods. The RF model showed the lowest RMSE, highest R, and lowest bias for both regions 

during the training phase. Similar performance was observed for the validation phase for Delhi. For Raleigh, even though 

mean bias was not the lowest during the training phase, the RF approach still yielded the lowest RMSE and the highest R with 

an overall best performance when considering all metrics in tandem. The performance of the RF model was slightly degraded 15 
during the validation phase compared to the training phase for the Raleigh region, likely indicative of the higher uncertainty 

associated with model calibration at very low concentration regimes. This could be due to low variability in input and output 

parameters across the data distribution in Raleigh. Thus, based on the initial testing and performance of multiple MLAs, as 

presented in table 1, we selected the RF method for further analysis and calibration algorithm (or model) development. 

 20 
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Table 1: The summary statistics of ML algorithms performance for training and testing datasets. 

 

 
 

Figure 5 presents the performance of the final RF model (average (i.e., Ensembled) of the 10-fold cross-validation) for both 5 
Delhi and Raleigh. The top panels show performance during training and validation for Delhi, while the bottom panels show 

the performance for Raleigh. The comparisons for both regions clearly show that the training data performed slightly better 

than validation data across the different statistical parameters. The Delhi model demonstrated high correlation (R ≥ 0.95), low 

mean bias (< 1 µg m-3), slope close to 1 (> 0.95), and RMSE of about 20 to 30 µg m-3, respectively, for training and validation 

datasets. The Raleigh model performance showed low bias (< 0.1 µg m-3) and RMSE of 0.69  to 1.7 µg m-3 and a high 10 
correlation of 0.97 to 0.85 but slopes less than unity (0.89 to 0.69) for training and validation datasets respectively. The large 

difference in PM2.5 loadings over the two regions makes it a complex problem to model together, requiring two different 

calibration models and likely the reason for the slightly lower performance for Raleigh. Figures S3.1 to S3.4 in the 

supplemental material show the 10-fold training and validation performance metrics during the ML model development 

process for the two regions. The density scatter plots in Figure S3 show consistent results across the 10-fold simulations for 15 
training and validation steps confirming the optimized nature of the selected calibration model.    

 

As noted in section 3.2, for the Raleigh area, only 5 PA sensors were directly collocated with FEM, and the remaining 84 

sensors were tested against those 5 sensors. In figure S4, we present the comparison of ML corrected 5 sensors mean with the 
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remaining 84 sensors after ML corrections. The high correlation (R=0.96) and slope value close to one (0.91) between sensors 

after ML corrections demonstrate consistent model behavior.  

  

 
Figure 5: The density scatter plots showing a comparison between FEM and output from MLA. The top panels are for Delhi training 5 
and testing of MLA, respectively, while the bottom panels are for Raleigh. The colors represent the density of data points. 

 

We also evaluated the importance of each input parameter and presented the results in Figure S5. Here, the importance of each 

input parameter in estimating FEM equivalent PM2.5 is reported as a percentage. It is interesting to note that the relative 

importance of the parameter differed by region, likely due to the different concentration regimes and particle composition. For 10 
Delhi, with high concentration ranges, the PA PM2.5 data was the major input parameter (~85% of the total score), with T and 

RH each contributing roughly about 7.5%. On the other hand, for Raleigh, PA, PM2.5 ranked at ~48% score, with T contributing 

about ~29% to the importance score, followed by RH at 23%. Therefore, under low concentration settings such as those 

observed in Raleigh, the importance of meteorological variables combined was similar to or greater than that of PM2.5 data.  
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Although PA sensors provide 2-minute resolution data, our analysis is focused on hourly and daily averages, which are 

typically reported by the FEM instruments. The hourly data are often used to estimate current or real-time air quality conditions 

(i.e., “NowCast” of the air quality index (AQI)), whereas US national ambient air quality standards for PM2.5 are based on a 

24-hour average. Thus, we evaluated the performance of MLA for both hourly and daily averages. Figure 6 shows the 5 
performance of calibrated PA measurements against the FEM on hourly (left plot) and daily (right plot) averages for the two 

regions. It is important to note that this figure contains all the points in the integrated datasets, unlike Figure 5, where training 

and validation data were presented separately. On a 24-hour average basis, the calibrated PA values showed excellent 

correlation (R > 0.98), low mean bias (1.3 and 0.03 µg m-3 for Delhi and Raleigh, respectively), and slopes within 5 (Delhi) to 

11% (Raleigh) of unity, demonstrating excellent performance for 24-hour average values. The mean absolute percentage bias 10 
(Eq. 4) for hourly and daily mean values are respectively, 9.1±9.8 and 5.4±6.3 for Delhi and 10.9±16.0 and 5.0±5.3 for Raleigh. 

The mean PM2.5 concentration of Delhi and Raleigh was 193 and 6 µg m-3. 

 
 

Figure 6: The density scatter plots showing a comparison between FEM and output from MLA for hourly (left panels) and daily 15 
mean (right panels). Here data for both training and testing are combined. The top panels are for Delhi, and the bottom panels are 

for Raleigh. 

 

To further understand the biases, figure 7 shows the frequency distribution of hourly and daily average biases for all the data 

for the two regions. An analysis of the bias distribution shows that about 67% and 94% of hourly data fall within ±10% and 20 
±25% biases for Delhi, while for Raleigh, about 68% and 90% of the data were within ±10% and ±25% biases. The bias 

distribution for 24-hour average values shows significant improvement with a similar percentage of data (62% and 94% for 

https://doi.org/10.5194/amt-2022-140
Preprint. Discussion started: 16 May 2022
c© Author(s) 2022. CC BY 4.0 License.



 15 

Delhi and 64% and 96% for Raleigh) falling within smaller bounds of ±5% and ±15% bias. In other words, on an hourly basis, 

about 90 to 94% of the data fell within ±25% bias, while on a daily average basis, a similar proportion of the data (94 to 96%) 

fell within a lower bias of ±15% demonstrating improved model performance for daily averages. 

 

 5 
Figure 7: Frequency distribution of MB (%) for each region (hourly and daily data).  

 

 

Figures 8 (Delhi) and 9 (Raleigh) demonstrate the capability of PA to track diurnal and day-to-day changes in PM2.5 

concentration as compared to FEM measurements. The top panels show the raw PA data for hourly (left) and daily (right) 10 
averages, whereas the bottom panels display the MLA calibrated data. The red line represents the mean PA data, with the 

shaded area representing one standard deviation among multiple PA sensors tested at each location. In Delhi, the raw PA data 

followed the FEM in both hourly and daily trends with an overall positive bias, whereas raw PA data in Raleigh demonstrated 

more random variability for hourly data compared to FEM. The daily PA data followed FEM but with an overall random 

negative bias for Raleigh. After MLA calibration, PA data in both regions followed FEM very nicely with minimal deviation. 15 
This analysis demonstrates the temporal consistency of calibrated PA data and its application for monitoring both diurnal and 

day-to-day variability. 

 

 

 20 
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Figure 8. The hourly (left) and daily (right) variation in PM2.5 using PA (raw, top panels) and ML-corrected PA (bottom panel) 
compared to FEM for Delhi. 5 
 

 

 

 
Figure 9. Same as Figure 8 except for Raleigh. 10 
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5.4 Error Characterizations 

 

We next explore the relationship between the PA vs. FEM PM2.5 bias and the various input parameters to MLA. At each 5 
coincident hourly pair of PA and FEM, the FEM PM2.5 was subtracted from the PA PM2.5 so that a positive difference indicates 

a positive PA bias (i.e., overestimation) and a negative bias represents underestimation by PA. The data was then sorted 

according to a parameter of interest in the database and repeated for both raw and calibrated PA datasets. Collocations were 

grouped into 17 bins for Raleigh and 37 bins for Delhi, each bin containing 100 and 500 pairs, respectively. Thus, there were 

equal numbers of PA-FEM pairs in each bin, but the bins were not equally spaced along the x-axis. The mean, median, and 10 
standard deviations of the PA-FEM differences were calculated for each bin. 

 

Figure 10 (a-d) shows the results of this analysis for Raleigh for bias in raw PA data as a function of FEM PM2.5, raw PA 

PM2.5, T (TEMP, °F), and RH (%), while figure 10(e-h) shows similar comparisons but for MLA-calibrated PA data. The red 

and green colors show bin mean and median values, while the shaded color represents one standard deviation. PA raw data 15 
showed (Fig. 10a) positive biases for very low FEM PM2.5 (< 5 µg m-3), while biases were negative for the rest of the PM2.5 

concentration ranges. As expected, the biases as a function of raw PA PM2.5 (Fig 10b) were reversed (i.e., negative for low 

PM2.5 values and positive for high PM2.5 values). We plot these differences against the PA-measured PM2.5 to create a metric 

of accuracy that can be used to evaluate individual PA measurements. The biases remained negative as a function of 

temperature (Fig 10c) and did not demonstrate any specific pattern but appeared to be more random. Similarly, biases with 20 
respect to change in RH (Fig 10d) also oscillated between negative and positive values. After MLA calibration was applied to 

the PA datasets, biases remained flat near zero with a narrower standard deviation for all the dependent parameters (Fig 10e-

h).  

 

Figure 11 shows the same analysis for Delhi and demonstrates similar results with some differences, as noted here. The biases 25 
in raw PA PM2.5 as a function of FEM PM2.5 (Fig 11a) remained consistently positive with some random variability. The biases 

also remained positive with raw PA PM2.5 and increased with an increase in PM2.5 values (Fig 11b). It is important to note that 

the range of temperature and RH over Delhi was larger compared to that in Raleigh during the measurement period. The biases 

appeared to be decreasing as a function of temperature (Fig 11c) and increasing as a function of RH (Fig 11d). The lower 

temperature was typically also associated with higher PM2.5 values in Delhi, which can explain the dependence of biases on 30 
temperature. The FEM instrument measured PM2.5 at controlled RH (< 50%), whereas PA sensors measured at ambient 

conditions (30 to > 85%). The impact of RH on particle scattering property is well known (Adam et al., 2012) and can create 

biases in PA at high RH values. The bias in MLA calibrated PA PM2.5 values (Fig 11e-h) as a function of the different 

parameters was flat near zero except for FEM PM2.5, where it demonstrated some negative bias when FEM PM2.5 exceeded 

300 µg m-3. This analysis is important to understand the PA performance under different pollution levels and environmental 35 
conditions.  

 

 

 

 40 
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 5 
Figure 10: Diagnosis and prognosis errors in hourly data for Raleigh before and after ML calibrations.  
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Figure 11: Diagnosis and prognosis errors in hourly data for India before and after ML calibrations.  5 
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6 Discussion 

 

Our study presents an evaluation of low-cost sensors in two different regions with contrasting aerosol characteristics, loadings, 

and environmental conditions. To our knowledge, this is the first study that performed a simultaneous evaluation of multiple 5 
sensor units on a large scale (>50 sensors) by collocating it next to a FEM over two different continents. The large database 

of sensor-FEM measurements allowed us to develop a robust correction model capturing the inter-sensor variability. The 

simultaneous collocation of multiple sensors also allowed us to estimate the uncertainty in the bias-corrected estimations by 

the model. Our results show that the final model improved the correlation, reduced the RMSE by more than 50%, and 

significantly reduced the error (Eq. 4) (from 29% to 9% in India and from 60% to 11% in Raleigh, NC) in MLA estimated 10 
hourly PM2.5. Table S1 provides various bias estimations for raw and calibrated data for both hourly and daily averages for the 

two locations. 

 

In an earlier study, Zheng et al. (2018) reported calibration of custom-made LCS unit using the Plantower PMS3003 sensors 

at the same location in Raleigh, NC, during summer (July 2017) and at another city in North India (Kanpur), about 400 km 15 
southeast of Delhi, India, along the Indo-Gangetic Plain during Oct-Nov 2017. The study used a linear or quadratic model to 

correct sensor data (RH-adjusted for periods with high RH influence) using the entire dataset (i.e., no holdout data for 

evaluation). They presented models with no RH adjustment for both hourly and daily averages and with RH adjustment and 

RH+T adjustment for the hourly data. For the Raleigh region, their model resulted in an R2 of 0.66 (no RH adjustment) to 0.95 

(RH adjustment and T correction) for hourly average values and 0.94 (no RH or T correction) for daily average concentrations. 20 
The ratio of calibrated sensor value to reference data ranged from 0.99±0.27 to 1±0.08 for 1-hour average to 1±0.09 for daily 

average concentration. For India, mean R2 ranged from 0.61 to 0.78 with calibrated sensor to reference ratios of 0.96 to1.01 

for hourly average and R2 of 0.78 to 0.93 with ratios of 0.99 to 1 for daily average concentrations. Using metrics for the training 

period as an equivalent point of comparison, our study utilizing an MLA that incorporates RH and T effects yielded R2 of 0.94 

(Raleigh) to 0.96 (India) with a mean percentage bias of 4.2±18.9% (Raleigh, or a ratio (corrected/F.E.M.) 1.04±0.19) and 25 
2.0±13.2% (India, or a ratio of 1.02±0.13) for the training portion of hourly data, demonstrating similar or better performance 

than the Zheng et al., (2018) findings.  

 

In another study, Barkjohn et al., (2021) developed a US wide correction approach for PA sensors using a multiple linear 

regression model that included RH correction. They used PA sensors deployed in the field that were within 50 m of a FEM 30 
site. In that study, for the state of North Carolina, the model predictions resulted in a RMSE of 2.1 µg m-3 with a mean bias of 

1 µg m-3 for a 24-hr average PM2.5 at a site about 120 km away from the site used in our study. Magi et al. (2019) performed 

a similar evaluation of PA sensors against the FEM (BAM) at Charlotte, NC, about 200 km southwest of Raleigh, NC. They 

developed a multiple linear regression model that resulted in a RMSE of 4.1 µg m-3 with a correlation (R2=0.6) for hourly 

PM2.5. Our MLA for Raleigh (NC) yielded an improved RMSE of 1.7 µg m-3 and a mean bias of nearly zero (R2=0.72) on the 35 
holdout sample for hourly PM2.5. For the daily averages, the RMSE dropped to 0.37 µg m-3 with mean bias remaining near 

zero. The improved performance seen in our study might be due to the type of model used, coincident spatial collocation of 

PA units, and difference in observed PM2.5 ranges. Our model is specific to this site, while the Barkjohn et al. (2021) model 

was optimized for U.S.-wide correction and applied to NC data. Further, our data was limited to winter, while the Barkjohn 

(2021) and Magi et al. (2019) studies covered nearly 16 to 18 months of data, which may be the reason for the larger variability 40 
seen in those studies. 
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Our comprehensive collocation dataset allowed us to develop a robust model based on machine learning techniques for both 

regions that demonstrated similar or better performance than prior studies. However, our collocation was limited to one month 

at both locations due to the limited availability of resources involved in the collocation of multiple sensors at one location. 

Additional logistical challenges arose due to restrictions in place as a result of pandemic-related lockdowns ongoing at that 

time. The model is therefore likely optimized for the winter season (and the associated weather conditions) when the 5 
collocation was performed. The performance of the model for other seasons (and thus for other weather conditions) will need 

to be evaluated as part of future work. We have a couple of sensors deployed next to a FEM as part of a long-term collocation 

effort to study the seasonal differences in model parameters and other sensor performance metrics such as sensor drift. From 

our assessments and that published in the literature, it is known that the sensor performance will vary by aerosol composition 

and loading. Therefore, the applicability of the model is probably limited to regions with similar aerosol composition and 10 
source influence. The applicability of the model to other geographic regions has not been tested. Other minor shortcomings of 

our study include the lack of ideal sensor mounting, potential differences in the direction of airflow among sensors, and the 

distance and height of sensor mounting with respect to FEM instruments. Nevertheless, the ability of the models to generate 

bias-corrected data that are within about 5 to 10% of reference data on hourly and daily timescales, respectively. For context, 

the acceptable measurement uncertainty in FEMs is typically about 10% (US E.PA, 2016). Thus, the LCS offers great potential 15 
in generating high-quality data when corrected appropriately for biases. Such data offer promise for applications in air quality 

management, including understanding air pollution burden, the temporal and spatial characteristics, air quality forecasts, 

exposure assessments, and filling in gaps in regulatory monitoring data to support integrated datasets that may ultimately 

support policy. This is partly dependent on the validity of the calibration in a real-world deployment. Our future work will 

assess how well these models hold and perform for sensors deployed in the field away from the collocation site and for how 20 
long and examine the utility of sensor data for such applications that will provide insights into their practical utility and 

limitations.   

 

7 Summary and Conclusion 

 25 
In this study, we collected simultaneous measurements of PM2.5 mass concentration using the PA-II LCS and FEM monitors 

in Raleigh, NC, and Delhi, India. In Delhi, we had data from 51 PA sensors, whereas, in Raleigh, 5 PA sensors were deployed 

next to a FEM, and additional 85 sensors were collocated with these five sensors in batches. The coincident measurements 

from PA sensors and FEM monitors from both locations were quality controlled and used to assess the performance of PA 

sensors against those of FEMs. The coincident datasets were then used to test and develop MLA to calibrate PA data. We 30 
tested several algorithms, and based on their performance, random forest (RF) was selected as a candidate algorithm for further 

analysis. The MLA model used PA channels A and B average PM2.5, T, and RH as inputs and generated calibrated PM2.5 as 

an output at an hourly time interval. 

 

The statistical parameters examined include mean bias, slope, correlation coefficient, and percentage falling within certain 35 
error bounds. We analyzed the performance of raw and MLA calibrated PM2.5 from PA sensors against those obtained from 

FEM as a function of various inputs to the MLA model. We also analyzed the PA channel A and B differences, sensor to 

sensor variability, and the PA’s capability to capture diurnal cycle and day-to-day changes. Error characterizations are 

performed for both hourly and daily time averaging. The following are the main conclusions from our study: 

 40 
- PA channel A and B measurements should be used to quality control the data before using it for any scientific analysis. 

We flagged all the hourly data as lower quality if the difference between the two channels is larger than 5 µg m-3 in 

Raleigh, whereas this threshold is set to 5% for India. 
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- The comparison between raw PA PM2.5 and FEM under different pollution loading and environmental conditions 

showed few similarities. The Delhi data shows a correlation of 0.88 under high PM2.5 concentration (PM2.5 > 50 µg 

m-3) whereas it is only 0.34 under clean conditions (Raleigh, PM2.5 < 20 µg m-3). This analysis suggests the need for 

regional and aerosol loading dependent calibration models (or correction equations) for PA data. 

- The ML calibration models were developed and validated using a 10-fold cross-validation approach separately for 5 
the two regions. The calibrated PA PM2.5 shows an excellent correlation (R > 0.9) with mean bias < 1 µg m-3 and 

RMSE of about 25.0 and 1.0 µg m-3 for Delhi and Raleigh, respectively. 

- The biases in raw PA PM2.5 show strong dependency on temperature and RH in Delhi, whereas it is weak and random 

in Raleigh. The calibrated PA data does not show any dependency on any of the input parameters to MLA. 

- The calibrated data follows both diurnal and day-to-day cycles with almost no bias with respect to FEM PM2.5. The 10 
raw PA-II also follows along with these cycles but with biases. 

- More than 90% of calibrated PM2.5 data sets fall within 25% and 15% of FEM PM2.5 for hourly and 24-hourly 

averaging periods, respectively. This suggests a high accuracy of PA data after careful calibrations are applied. 

- The mean absolute percent bias in calibrated data was within 10% and 5% for hourly and daily estimates of PM2.5, 

respectively (Table S1). Given that the typical uncertainties between monitor variabilities can range around ±10% or 15 
larger for reference methods (Chow et al., 2008), we consider 5-10% error as being quite low for the category of low-

cost sensors and indicates exceptional promise.  

- Our sensor collocation was, however, limited to the winter period in both regions. Therefore, the application of our 

models to other seasons and larger field deployment needs to be evaluated and refined. Sensor degradation with time 

is another aspect that is not addressed in this study.  20 
- The calibration method developed in this study is specifically designed to address the data quality need of our citizen 

science project. This is in line with the conclusion drawn in the review article (Giordano et al., 2022) that correction 

or calibration method or level of error tolerance depends on LCS data applications.      

 

Low-cost sensors, especially as part of citizen science initiatives, can help in bringing communities into the air pollution 25 
discourse and drive behavioral change among citizens. Moreover, bias-corrected data generated from these sensors can 

complement the limited regulatory monitors and can improve the knowledge of the spatial distribution of PM2.5 concentrations 

and population exposure.   

 

8 Data Availability 30 
 

The processed data used in this study will shortly be made available through the project website 

(https://aqcitizenscience.rti.org/#/home) after agencies internal approvals. The raw PurpleAir data used in the study are 

publicly available from purpleair.com. 

  35 
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