
1 
 

A universally applicable method of calculating confidence bands for 
ice nucleation spectra derived from droplet freezing experiments 
William D. Fahy1,†, Cosma Rohilla Shalizi2,3, Ryan C. Sullivan1,* 
1Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA 15213, USA 
2Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA 5 
3Santa Fe Institute, Santa Fe, NM 87501, USA 
†Now at: Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada 
 

*Correspondence to: Ryan C. Sullivan, (rsullivan@cmu.edu)  

Abstract. A suite of generally applicable statistical methods based on empirical bootstrapping is presented for calculating 10 

uncertainty and testing the significance of quantitative differences in temperature and/or ice active site densities between ice 

nucleation temperature spectra derived from droplet freezing experiments. Such experiments are widely used to determine the 

heterogeneous ice nucleation properties and ice nucleation particle concentration spectra of different particle samples, as well 

as in studies of homogeneous freezing. Our methods avoid most of the assumptions and approximations inherent to existing 

approaches and when large sample sizes (approximately >150 droplets and >= 1000 bootstrap samples in our system) are used 15 

if used properly can capture the full range of random variability and error in ice nucleation spectra. Applications include 

calculation of accurate confidence intervals and confidence bands, quantitative statistical testing of differences between 

observed freezing spectra, accurate subtraction of the background filtered water freezing signal, and calculation of a range of 

statistical parameters using data from a single droplet array freezing experiment if necessary. By providing additional  

improving the statistical tools to the community available, this work will improve the quality and accuracy of statistical tests 20 

and uncertainties in future ice nucleation research and will allow quantitative comparisons of the ice nucleation ability of 

different particles and surfaces.  

1 Introduction 

 Ice nucleation (IN) is a complex process with significant implications for cloud properties in atmospheric science 

(Gettelman et al., 2012; Mülmenstädt et al., 2015; Froyd et al., 2022). Heterogeneous ice nucleation, where a separate phase 25 

or substance assists the nucleation of ice above the homogeneous freezing limit, is particularly difficult to study as the length 

and time scales at play in nucleation cannot be directly observed (Fletcher, 1969; Kiselev et al., 2017; Holden et al., 2019). 

Most researchers resort to macroscopic measurements of this nanoscale process by creating droplets containing suspensions 

of the ice active material and observing freezing events as time passes or temperature changes (Vali, 2014). The most common 

technique is a variation on the droplet-on-substrate apparatus, where droplets of known sizes are created by manual pipetting, 30 
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condensation, or microfluidic means (Brubaker et al., 2020; Budke and Koop, 2015; Stan et al., 2009; Whale et al., 2015; 

Reicher et al., 2018; Gute and Abbatt, 2020; Chen et al., 2018; Roy et al., 2021; Polen et al., 2018). These droplets are usually 

exposed to a negative temperature ramp and the freezing temperatures of each droplet are recorded to produce an ice nucleation 

rate or active site density spectrum as a function of temperature (here we use the term ‘IN activity’ as a general term to refer 

to any measured or derived variable which quantifies ice nucleation rate with respect to temperature). Other procedures can be 35 

used to test the effects of time and other variables on IN activity (Wright and Petters, 2013).  

 Because these experiments only indirectly measure IN activity, results can have high natural variability, even when 

measuring the same sample on the same instrument. This variability is inherent to ice nucleation. Using the singular-stochastic 

model most recently discussed in  (Vali, 2014) and terminology proposed in  (Vali et al.,2015), ice nucleation activity (or rate) 

is an accumulation of many ice nucleation sites with variable critical temperatures dispersed randomly throughout a material. 40 

In turn, the material is distributed randomly throughout droplets which can have varying sizes, shapes, and environments. 

Therefore, a measured IN activity can be affected by heterogeneity in the distribution of ice active sites across a material, 

heterogeneity in the mass or surface area of material suspended in each droplet, differences between droplet sizes and 

environments, and variations in temperature between dropletsThis is no fault of the experimentalist; it is simply a fact of the 

ice nucleation process that it can be affected by small variations in droplet sizes, suspension inhomogeneities, droplet 45 

environments, ice active site heterogeneity within the suspended sample, and temperature variations (Polen et al., 2018). Even 

in a perfect experimental setup, the stochastic nature of nucleation causes variation in the measured temperature dependence 

of a material’s IN activity using a singular model (Vali, 2014, 2019). Combined with the large variations in IN activity observed 

between different ice nucleating substances and particles, this inherent uncertainty creates difficulties in reliably assessing 

whether differences in observed IN spectra indicate a statistically significant difference in IN activity.  50 

If we cannot eliminate experimental error, it must insteadExperimental error is always present and must be accounted 

for and reported, usually in the form of a standard error or a confidence interval of the mean measurement recorded. In our 

experience,To date there is no widely accepted or implemented approach to reporting uncertainty in IN temperature spectra 

derived from freezing experiments. Instead, methods vary between groups, relying on different assumptions about the nature 

of ice nucleation experiments, the forms of distributions that the random variables involved take, and the quantification of the 55 

derived uncertainties.  In the simplest case, standard deviations, errors, and/or confidence intervals have been calculated from 

repeated experiments either by assuming that variability follows a normal distribution  (Polen et al., 2018; Jahn et al., 2019; 

Worthy et al., 2021; Chong et al., 2021; Roy et al., 2021; Losey et al., 2018), a Poisson distribution, (Yun et al., 2021; Alpert 

and Knopf, 2016; Knopf et al., 2020; Kaufmann et al., 2017; Koop et al., 1997), or that droplet freezing follows a binomial 

distribution (Gong et al., 2020, 2019; McCluskey et al., 2018; Suski et al., 2018; Wex et al., 2019). In other cases, authors have 60 

used a model of ice nucleation to simulate their experiments and use that simulated distribution to estimate the uncertainty 

present in their experiment. In the simplest case, droplet freezing is modelled as a Poisson point process (Vali, 2019; Fahy et 

al., 2022b; Jahl et al., 2021). In more sophisticated models, random variables such as the number of sites, mass of material, 

and temperature variations are parameterized to run completely new simulated experiments  (Wright and Petters, 2013; 
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Harrison et al., 2016). Even in these models, either additional measurements are required, or assumptions must be made about 65 

the distribution of each variable. Until the inherent variability behind ice nucleation can be measured to prove or disprove the 

assumptions being made, all the above methods are only as reliable as the assumptions themselves. In Section 4, each method, 

their required assumptions, and the validity of those assumptions are discussed in further detail. This is due in part to the 

complexity of ice nucleation – elementary statistical tests, methods, and approximations are markedly inaccurate, and 

practitioners of advanced statistical methods in this field are few.  70 

Empirical bootstrapping is an alternative approach to estimating statistics for a dataset that to our knowledge has not 

been applied in the context of ice nucleation. In this technique, a series of random samples of the measured dataset is taken to 

generate estimated statistics that converge on the actual values as the number of samples increases (Efron, 1979; Shalizi, 

forthcoming). No assumptions are required about the distributions of random variables underlying ice nucleation and it can be 

applied to any system where the freezing temperatures or times of droplets are measured. Here we present Yet, without reliable 75 

expressions of experimental uncertainty and variability, single IN spectra are less meaningful, and comparisons between IN 

spectra are imprecise at best and misleading at worst. To remedy these shortcomings, this study presents a set of generalized 

and statistically rigorous methods based on empirical bootstrapping for quantifying uncertainty in IN spectra. When 

accompanied by interpolation methods presented in Section 3, this approach can be used to calculate continuous confidence 

bands and statistically test differences between IN spectra (Section 5). We also address the effects of interpolation techniques, 80 

droplet sample size, and bootstrap sample size  representing experimentally determined IN spectra, calculating confidence 

bands and statistics across the range of the spectra, and testing differences between spectra at any confidence level. We also 

address some remaining questions on droplet freezing experimental parameters to direct the field towards more rigorous and 

repeatable methods of experimentation and data analysis. An implementation of these approaches all presented statistical 

methods along with documentation and instructions for its use is provided freely for use or reference to assist in future research 85 

and improve the statistical treatment of ice nucleation data in the field.  

2. Sample data and preprocessing 

To demonstrate the statistical methods described here, we selected an examplea realistic and complex toy IN dataset 

shown in Fig. 1. The Fuego ground PM37 sample from Volcanic ash from the 2015 eruption of Volcan de Fuego in Guatemala 

Jahn et al., (2019) was tested for ice nucleation activity before and after being exposed to water in a 1 wt% suspension and 90 

allowed to dry under a constant 1 Lpm flow of pre-dried lab air similarly to Fahy et al. (2022). In both cases, a 0.1 wt% 

suspension of unaged or aged ash was created in HPLC water (HPLC grade, Sigma) filtered through a 0.02 micron pore size 

Anatop syringe filter. These suspensions were then tested for IN activity on the CMU-CS droplet-on-substrate system 

described in detail by Polen et al. (2018) and are compared to a background freezing spectrum obtained from the filtered water 

used to create the suspensions. Approximately 50 100 nL droplets (1.5 mm diameter) were tested per array with a cooling rate 95 

of 1 °C per minute. Two separate suspensions were tested for the unaged ash sample, and three suspensions were tested from 
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ash exposed to water in two separate experiments for the aged ash sample. The previously-determined Braunner-Emmett-

Teller (BET) specific surface area of 1.6394 m2 g-1 was assumed for all samples.  

 

Since multiple freezing experiments were performed on nominally identical samples (e.g. the replicate suspensions 100 

of the same ash or aging experiment), these spectra were combined by merging the lists of freezing events that occurred in 

each experiment. The frozen fractions and ice nucleation active site density spectra were then recalculated as if the combined 

freezing events occurred in a single experiment. The validity of this approach depends on the assumption that the suspensions 

being combined have the same IN activity, and thus that drawing droplets from each of the suspensions individually is identical 

(or at least insignificantly different) from drawing droplets from the rest of the suspensions. This is only valid when the true 105 

when the IN spectrum of a given suspension is insignificantly different from the combined spectra of all other suspensions and 

the physical and chemical properties (e.g., suspension concentration, sample type, water purity, background freezing) are 

identical between suspensions. The second condition can easily be tested in the laboratory, while the first condition can be 

evaluated using statistical tests described in this paper (see Section 5.2). 

The ice active site density spectra (k and K) were calculated directly based on Eqs. 1-3 and 2 (Vali et al., 2015; Vali, 110 

1971, 2019), where k is the differential spectrum, K is the cumulative spectrum, f(T) is the raw fraction of droplets frozen at 

a) b) 

Figure 1. Raw (not interpolated or binned) and combined raw a) frozen fraction and b) surface area normalized ice nucleation 
active site density spectra for sample droplet freezing data used in this study. Water aged spectra are from two separate aging 
experiments with three freezing experiments each for a total of six individual water aged runs denoted by ‘experiment#|freezing 
run#’. 

Commented [WF1]: Minor tick marks were added to all plots 
and the color scheme of Figs. 1 and 7 were changed. 
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temperature T, N0 is the total number of droplets in the array, N is the number of droplets that have frozen up to a given point, 

and ΔN is the number of droplets that have frozen in a given measurement interval. The variable ΔT is the size of the 

measurement interval, the choice of which is discussed below. The normalization factor X can be average droplet volume (Vd), 

mass of sample suspended per droplet (md), or as is used here, specific surface area of sample suspended per droplet (uUsually 115 

BET specific surface area; BETSSA), giving the number of ice nucleation sites that are active sites at temperature T per unit of 

suspension volume (usually denoted K), sample mass (denoted nm), or sample surface area (denoted ns) respectively.  The 

derivation of these equations requires that X be identical for every droplet being analyzed – an important assumption and 

source of error. However, as will be discussed later, the empirical bootstrapping approach quantifies this source of error, 

meaning these parameters can be used and interpreted even when the assumption does not strictly apply as long as the 120 

uncertainty is also incorporated into the interpretation. For simplicity and generality, in this work K and k will be used to 

describe any cumulative or differential IN spectrum. 
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Differential IN spectra have only recently come into common use because most interpretations of the formulation of 

k require high-quality data (e.g., many hundreds of uniformly sized droplets with low background freezing activity in our 

estimation) for the coarse binning process used to ensure the data are not too sparse. See Vali (2019) for an in-depth discussion 

of this approach based on improvements in ice nucleation data quality obtained using droplet microfluidics by Polen et al. 

(2018) and Brubaker et al. (2020) that make the application of differential IN spectra feasible. However, differential spectra 130 

are extremely useful both for visual interpretation of data and for quantitative comparison of IN spectra. Specifically, they can 

provide information on how many IN sites become active at a given temperature, which is not immediately obvious from 

examining a cumulative spectrum. For a more generally useful method of directly calculating raw differential spectra, ΔT was 

chosen such that the endpoints of the temperature interval for a datapoint were the midpoints of the distance between the 

nearest neighbors on either side of the datapoint, and ΔN is the number of droplets that froze at that datapoint. Vali (2019) 135 

stated that this approach loses the quantitative significance of k because the value of k will vary based on the size of ΔT, 

however, we contend that it is this variation in the size of ΔT that maintains the quantitative aspect of k, as the magnitude will 

be inversely proportional to the temperature density of freezing events asnumber density of freezing events with respect to 

temperature as expected. This results in noisy data, but when coupled with the interpolation techniques presented in Section 3, 

this problem can be resolved using a smoothing algorithm. This approach has the advantage of ensuring that every ‘bin’ has 140 

at least one freezing event in it while maintaining the advantages of differential IN spectra compared to cumulative spectra, 
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even for relatively low-quality data. However, as will be shown in Sections 4 and 5, high-resolution data (e.g., from many 

hundreds of droplets or several freezing experiments) are still required for statistical comparisons of differential IN spectra. 

3. Interpolating freezing curves and calculation of continuous spectra 

The most common style of reporting ice nucleation activity is using the cumulative ice nucleation active site density 145 

curves (K) calculated directly from raw data as shown in the previous section, but there is an important limitation to this type 

of data treatment. While it represents the data exactly as measured, there is no way to quantitatively compare one raw freezing 

spectrum with another without some type of interpolation. This is because even if a droplet freezes at a particular temperature 

in one experiment, there is no guarantee that a droplet will freeze at or near that temperature in another experiment. Often the 

approximate difference between spectra is just compared by eye for lack of a better method. This presents issues when trying 150 

to subtract a background spectrum or when quantifying uncertainty and testing statistical difference between spectra and leads 

to a need for effective interpolation methods for comparing IN spectra. 

3.1 Binning and its shortcomings 

One common method for interpolating IN spectra is through temperature binning, where a temperature interval is 

represented by a single value of IN activity that is treated as constant throughout the interval. This approach is appealing, as it 155 

aligns with the discrete nature of IN experiments and allows straightforward calculation of differential IN spectra by using the 

bin width as ΔT (Vali, 2019). However, binning is widely accepted as an inefficient interpolation method for measurements of 

continuous variables such as ice nucleation activity and has been shown to reduce statistical power and bias statistical results 

in data from a variety of disciplines (Selvin, 1987; Gehlke and Biehl, 1934; Manley, 2014; Altman and Royston, 2006; 

MacCallum et al., 2002; van Leeuwen et al., 2019; Virkar and Clauset, 2014). While ice nucleation activity is measured 160 

discretely, it is a continuous property – any given ice nucleation site has a theoretical ice nucleation rate over the entire 

continuous temperature range and combining many ice nucleation sites together results in a complex continuous curve, 

sometimes with multiple critical or inflection points (Beydoun et al., 2016). It is therefore desirable to transform the discrete 

measurements into continuous space to accurately represent IN activity rather than further discretizing them as in binning. 

3.2 Previous methods of continuous functional interpretation 165 

To make a discrete variable continuous, some type of functional interpolation is required. Many studies approximate 

IN spectra as exponential polynomials or similar simple functions (Atkinson et al., 2013; Harrison et al., 2019, 2016; Vergara-

Temprado et al., 2017; Kanji et al., 2013; Price et al., 2018; Niedermeier et al., 2015; Peckhaus et al., 2016). Exponential 

polynomials can capture the overall exponential shape of cumulative IN spectra in most cases, however, they impose explicit 

assumptions about the shape (and therefore physical basis) of the IN spectra through their closed-form expressions. Particularly 170 
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in complex samples that contain mixtures of different types of ice nucleation sites (e.g. Beydoun et al., 2017), simple 

polynomials are likely to be insufficient for accurate interpolation of IN spectra.  

Instead, the ideal interpolation method would take a series of measured datapoints from a droplet freezing experiment 

and would output a continuous IN parameterization that could predict the IN activity of the sample at any temperature. A 

physically-based parameterization such as a contact angle scheme (Beydoun et al., 2016; Ickes et al., 2017; Chen et al., 2008) 175 

or the singular-stochastic formulation of ice nucleation (Vali, 2014; Barahona, 2012; Niedermeier et al., 2011) would be 

preferred, however, these parameterizations require preexisting knowledge or assumptions about of the nature of the sample 

being tested. For data analysis in laboratory or field studies, this information is often not available, and we must look elsewhere 

for an interpolation method.for an interpolation method that can capture an ice nucleation spectrum with any shape. 

3.3 Piecewise interpolation for ice nucleation spectra 180 

For a generally applicable interpolation scheme, piecewise fitting algorithms such as spline fit all requirementss are 

the best option. Spline fits provide accurate interpolations of arbitrarily complex data by fitting a series of polynomials to small 

portions of the available data. The resulting piecewise functions are continuous and differentiable, meaning that only one or 

the other of the cumulative or differential IN spectrum must be directly fit from the data – the other spectrum can be calculated 

by either computing the negative derivative of the cumulative freezing curve or the negative antiderivative of the differential 185 

spectrum. To find the best fitting method that performs well, a variety of algorithms available in the Python Scipy library 

(Virtanen et al., 2020) were modified and tested for their ability to faithfully interpolate the combined water aged volcanic ash 

ice nucleation spectrum. Splinederiv uses a cubic spline fit of the cumulative spectrum, splineint uses a cubic spline fit of the 

differential spectrum, PCHIP uses the piecewise cubic Hermite interpolated polynomial algorithm of the cumulative spectrum, 

and smoothedPCHIP is the PCHIP curve followed by a cubic spline fit with a smoothing factor.  190 

Figure 2a (cumulative ns) and 2b (differential ns) compare these methods to a binning approach and the raw data from 

Fig. 1 using the water aged FUE ash spectrum. Note that the interpolated spectra do not start until there is a sufficient density 

of freezing events (more than one per degree Celsius) to avoid overfitting and because the error on these initial points is much 

larger than that of the rest of the spectrum as will be seen later. On initial inspection, basic spline fits perform well at higher 

ice active site densities. However, the splinederiv algorithm does not always maintain the monotonicity requirement intrinsic 195 

to the cumulative spectrum (and correspondingly are not strictly positive in the differential spectrum). The splineint algorithm 

corrects for this, but performs relatively poorly in capturing the behavior of early freezers, overestimating the IN activity 

between –10 and –14 °C. The solution to these two problems is to interpolate the cumulative spectrum with the monotonicity 

constraint offered by the PCHIP fitting algorithm and to take the derivative of this interpolation for the differential spectrum. 

This method faithfully reproduces the shape of the cumulative IN spectrum because it calculates an exact interpolation, but as 200 

a result is extremely noisy in the differential spectrum. By adding an additional smoothing step after the PCHIP interpolation 

(using a simple smoothed cubic spline fit after the PCHIP algorithm), a smooth and, interpretable, and realistic interpolated 

ice nucleation spectrum can be derived from the raw data without losing the detailcomplexity present at the low high/warm 
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temperature end of the spectrum visible in the differential plot as shown in the smoothedPCHIP spectrum. The smoothedPCHIP 

curve is monotonic and accurate to the observed data in the cumulative spectrum and is smooth and readable in the differential 205 

spectrum, and will be used for the remainder of this work. In Fig. S1 of the Supplemental Information (SI), the smoothedPCHIP 

algorithm is applied to each individual volcanic ash IN spectrum, and in Fig. S2, it is applied ot the combined unaged and 

water aged spectra to compare the interpolations with their corresponding raw datapoints. 

. This algorithm is used in Fig. 2c and 2d to compare the interpolations of the unaged and water aged volcanic ash IN 

spectra with their corresponding raw datapoints. Interpolations of individual spectra are shown in Fig. S1 in the Supplemental 210 

Information (SI). The smoothedPCHIP interpolation can be seen to be monotonic and accurate to the observed data in the 

cumulative spectrum as well as smooth and readable in the differential spectrum and will be used for the remainder of this 

work.  

4 Calculating confidence intervals and bands 

4.1 Elementary statistical methods 215 

The question of how to calculate confidence intervals for IN spectra derived from droplet freezing experiments has 

been addressed several times in the IN literature. In some cases, a normal distribution about the frozen fraction curves is 

a) b) 

Figure 2. Comparison of interpolation methods on the water aged ash sample above in a) cumulative and b) differential spectra. Binning 
is accomplished by separating the temperature axis into ‘bins’, summing the number of freezing events in each bin, and then treating 
each bin as a single data point in Eqs. 1 and 2.  Our preferredThe best available interpolation method is the smoothedPCHIP algorithm., 
smoothedPCHIP, is used to interpolate the combined aged and unaged volcanic ash IN spectra and are compared to the raw data in 
cumulative and differential form in c) and d) respectively.   

Commented [WF2]: Figure 2c,d were moved to the SI in 
response to Reviewer 2’s recommendation 
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assumed. Where multiple freezing experiments are available and are interpolated such that means and standard deviations can 

be calculated for a collection of freezing spectra, a Z-interval (based on the normal distribution) or student’s or t-interval (based 

on Student’s t-distribution) can be constructed (Polen et al., 2018; Jahn et al., 2019; Worthy et al., 2021) or standard deviations 220 

and standard errors are sometimes reported as-is (Chong et al., 2021; Roy et al., 2021; Losey et al., 2018). While it is unclear 

how many droplets and replicate freezing assays are required for these approximations to be valid under the Central Limit 

Theorem, it is unlikely that most existing freezing assay datasets achieve this sample size requirement, since confidence 

intervals calculated using these techniques often disagree with those calculated using other methods described below and those 

presented in this study. It is also unclear what exactly a required sample size would mean in this context: the number of droplets 225 

is not sufficient, because each droplet does not contribute to every point on the observed ice nucleation spectrum equally. 

However, the number of separate ice nucleation assays is also not sufficient, as techniques that measure hundreds of droplets 

in a single assay should require fewer overall assays to calculate accurate statistics because there are more droplets contributing 

to the accuracy of each point on the measured ice nucleation spectrum. Some combination of the two is required, but there is 

no existing method by which the accuracy of confidence intervals for an ice nucleation spectrum can be evaluated based on 230 

the relevant sample sizes. Other studies (e.g. Gong et al., 2020, 2019; McCluskey et al., 2018; Suski et al., 2018; Wex et al., 

2019) have calculated approximate confidence intervals for frozen fraction values by treating them as binomial ratios and using 

the adjusted Wald interval suggested by Agresti and Coull (1998). In the latter case, calculating uncertainty for derived ice 

active site density spectra requires propagation of error through Equations 1 and 2, followed by an assumption of normality 

when the confidence intervals are calculated. There is, however, no reason to believe that the spread of freezing events in 235 

droplets should even approach a normal distribution, making this assumption unreliable, , so techniques that use this 

assumption are unreliable.  

A better approximation for the variability in droplet freezing experiments is the Poisson distribution, in part because 

the widely used ice active site density spectra are based in Poisson statistics (Vali, 1971), but also because droplet freezing 

resembles a Poisson point process where freezing events occur approximately continuously and independently at a given rate. 240 

Koop et al., (1997) suggested the use of Poisson fiducial limits to calculate uncertainty in a variety of types of freezing 

experiments, and this approach has been used by several studies since (Yun et al., 2021; Alpert and Knopf, 2016; Knopf et al., 

2020; Kaufmann et al., 2017). However, the distributions of IN sites across particles, distributions of these particles among 

droplets, distributions of freezing abilities of individual IN sites, distributions of freezing events that occur based on the 

aggregate freezing ability in a droplet, and temperature distribution between the droplets could all serve to skew or otherwise 245 

change the distribution of droplet freezing events measured. Using a Poisson distribution corrects for only some of these 

random factors, and because ice active site spectra are based on the Poisson process, these are the variables that most need to 

be considered when calculating experimental uncertainty. Thus, while these closed-form confidence limits are convenient, 

they are not likely to be accurate.  
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4.2 Parametric bootstrapping and its shortcomings 250 

Another class of methods of calculating confidence intervals for freezing spectra relies on a technique known as 

bootstrapping, where artificial freezing experiments are generated from a measurement using Monte Carlo simulations 

(Davison and Hinkley, 1997). When the simulations are based on an existing ice nucleation theory (e.g., when simulated 

experiments are produced using a parameterization of ice nucleation), this technique is known as parametric bootstrapping, 

and given enough simulations, the artificial experiments represent the full range of possible variability around the measured 255 

result that could be observed in the theoretical framework used.  

For example, based on Wright and Petters (2013), Harrison et al. (2016) and subsequent publications simulate a 

number distribution of ice active sites in a collection of theoretical droplets based on the ice active site densities calculated 

from the original experiment. This model can be used to simulate freezing spectra by sampling these theoretical droplets and 

assuming that freezing events occur when the number of ice active sites in each droplet is greater than or equal to one. When 260 

repeated enough times, this distribution of freezing spectra can be used to calculate confidence intervals for the measured data 

either by assuming that the quantiles of the distribution of simulated freezing spectra approximate the confidence intervals or 

by calculating simple Z-intervals from the distribution of simulated freezing spectra (although the latter invokes an assumption 

of normality).  

An alternative method of parametric bootstrapping for confidence intervals of IN spectra models individual droplets 265 

freezing as a Poisson point process (again the same assumption used in deriving ice active site density spectra as k(T) or K(T)) 

as shown in Vali (2019) and applied in Jahl et al. (2021) and Fahy et al. (2022). In this approach, the number of droplets that 

freeze in each temperature interval (or equivalently, the rate of droplet freezing) is used as the mean value of a discrete Poisson 

distribution. Then, for each temperature interval, a new number of droplets freezing in the interval is selected from the 

distribution. When this is done for all temperature intervals, the simulated values are combined into a simulated experiment. 270 

Once ice active site density spectra are calculated from these simulations, and this process is repeated 100s to 1000s of times, 

the quantiles of the distribution of simulated ice active site densities for each temperature bin can be used as an approximation 

of confidence intervals.  

Both parametric bootstrapping approaches described here rely on the parameterization to produce accurate results, 

meaning that if the parameterizations are approximate or inaccurate, they may produce misleading or incorrect statistics. An 275 

in-depth analysis of the accuracy of the assumptions of each of these parameterizations is beyond the scope of this paper, but 

there are major concerns for each model. The calculations based on particle distributions in droplets (Wright and Petters, 2013; 

Harrison et al., 2016) assume that ice active sites are distributed evenly across the surface of a material, that the material is 

suspended evenly throughout the droplet, and possibly (depending on the specific approach) that the material is composed of 

uniform spheres and that ice nucleation is time-independent or the characteristic temperatures for each given ice nucleation 280 

site are normally distributed. The first assumption is known to be false for some materials; minerals often have higher 

concentrations of and/or more ice active IN sites near or in specific nanoscale defects, cracks, pores, or other specific regions 
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such as the perthitic textures in some feldspar minerals (Kiselev et al., 2017; Holden et al., 2019; Friddle and Thürmer, 2020; 

Whale et al., 2017). The second assumption may or may not be true, especially at higher suspension concentrations (Beydoun 

et al., 2016). The third assumption depends on the material in question. The fourth assumption ignores time, one of the most 285 

important factors introducing uncertainty and randomness into droplet freezing experiments (Herbert et al., 2014; Wright and 

Petters, 2013; Knopf et al., 2020; Vali, 2014), and the fifth assumption does not have a theoretical basis and requires additional 

experimentation to determine the parameters of the normal distribution (Wright and Petters, 2013). Regardless of the specific 

approach used, these techniques either require extensive experimentation to determine the nature of the ice nucleation material 

being studied or rely on assumptions that produce an incomplete and potentially inaccurate parameterization. 290 

The calculations based on the Poisson distribution (Vali, 2019; Fahy et al., 2022b; Jahl et al., 2021)  have very 

different assumptions. Stochasticity and IN site variability are accounted for in the process of simulation from the measured 

IN spectrum, however, this method requires coarse binning, as ideally multiple freezing events will occur within each bin. As 

discussed before, binning continuous data is inefficient. It also assumes that in these bins, the nucleation rate does not change 

with temperature. For coarse temperature bins especially, this assumption will break down, as ice nucleation spectra are strong 295 

exponential functions of temperature (Fletcher, 1969). While the Poisson parametric bootstrapping method makes fewer 

assumptions and captures more variability than other parametric methods, it relies on risky and/or false assumptions, 

contributing systematic error to the confidence intervals.  

4.3 Empirical bootstrapping as a superior approachand its benefits 

The other class of bootstrapping method, non-parametric bootstrapping (known as empirical bootstrapping), does not 300 

rely on any parameterizations. Instead, the original experimental data and sampled from with replacement (i.e. the same 

datapoint can be sampled more than once) to produce artificial datasets (Efron, 1979; Davison and Hinkley, 1997; Efron and 

Tibshirani, 1994; Shalizi, forthcoming). The most powerful (and originally proposed) bootstrapping method does not rely on 

any parameterizations. Instead, this non-parametric bootstrapping (known as empirical bootstrapping) takes the original 

experimental data and samples with replacement (a form of Monte Carlo simulation) to produce artificial datasets (Efron, 305 

1979; Davison and Hinkley, 1997; Efron and Tibshirani, 1994; Shalizi, forthcoming). This method is remarkably well-suited 

to the problem of ice nucleation statistics, as droplet freezing experiments result in a list of freezing temperatures that can be 

easily sampled from to create new simulated droplet freezing experiments. The large droplet numbers coupled with a limited 

freezing temperature range ensure that the empirical data covers most of the possible variability within each experiment. If 

multiple freezing experiments are performed on identically prepared samples, this method will even capture the variability in 310 

sample preparation and other aspects of the experiments being performed. Since variations in droplet size, sample mass 

suspended, or distributions of surface area among droplets (the parameters behind the normalization constant X) also contribute 

to the variablility observed in experiments, the error caused by assuming X is constant between droplets is also included into 

the model.  Empirical bootstrapping requires no physical model of ice nucleation and so captures the stochastic nature of ice 

nucleation, inhomogeneities in ice active site distributions within the sample, and even any potential unknown sources of 315 
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variability within IN active materials. Thus, empirical bootstrapping is both universally applicable, can capture all sources of 

variability in an experiment, and is unambiguous in its implementation, making it an ideal candidate for a standard statistical 

method for analyzing ice nucleation experiments. The only assumption required (which has already been made when deriving 

ice nucleation spectra) is that all datapoints must be statistically independent, meaning that no droplet can affect any other 

droplet’s freezing temperature. This condition is already required for accurate ice nucleation measurements and is already 320 

implemented in most laboratories by physically isolating droplets using an inert oil or gas or by separation of droplets in wells 

or microwells. Empirical bootstrapping is only otherwise limited bye the computational time available to draw many statistical 

simulations of an ice nucleation spectrum and the quality of the observed data itself, both of which are addressed further in 

later sections as they become relevant.Section 4.6.   We suspect it has not yet been employed for this purpose simply because 

it is not commonly taught outside of advanced statistics (Hesterberg, 2015), although a lack of information accessible to those 325 

unfamiliar with computational statistics on how to generalize statistics generated from a bootstrapping technique is likely to 

also have played a role.  

Figure 3a and 3b show the application of empirical bootstrapping to simulate cumulative and differential spectra for 

the combined and interpolated volcanic ash ice nucleation data previously introduced in Figs. 1 and 2. Each spectrum is 

statistically simulated by randomly sampling with replacement n times from the list of freezing temperatures in the original 330 

experiment using the choices function in the built-in ‘random’ library in Python, where n is the number of droplets in the 

original experiment. Where multiple droplets froze at a given temperature, that temperature is added multiple times to the 

‘observed’ list. This process is repeated to create new ‘sampled’ freezing temperature lists until the desired number of simulated 

experiments is achieved. Each ‘sampled’ list is then sorted and analyzed as distinct freezing assays, each with its own IN 

spectra that can be interpolated as usual. The simulated spectra are distributed around the true data due to variations in which 335 

droplets are randomly sampled for each simulation, and the width of this distribution provides an estimate of how uncertain 

the experimental value is at that temperature. Summary statistics of this distribution such as mean, standard deviation, and 

quantiles can be calculated by dividing the temperature range of each interpolated spectrum into a dense grid of evenly spaced 

points (e.g. ~10 points per degree Celsius) and calculating each statistic as usual using the distribution at each point. The 

resulting statistics as a function of temperature can then be re-interpolated exactly using a simple spline fit extremely accurately 340 

due to the high density of data available, providing interpolated continuous functions for each summary statistic. This process 

is detailed further in the SI. 
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While the mathematical theory behind empirical bootstrapping is complex (see Efron and Tibshirani, (1994) or 

Davison and Hinkley, (1997) for a thorough treatment of the mathematics behind bootstrapping and Canty et al., (2006) for a 

thorough discussion of inconsistencies and errors that can be encountered when using bootstrapping), Fig. 3 provides some 345 

evidence that this approach has successfully captured the possible variability in the ice nucleation spectra. Using the 

interpolated quantiles as a measurement of the spread of the simulated spectra, the magnitude of the variability in each spectrum 

largely follows the trends that would be expected. For example, the simulated cumulative spectra have much less relative 

variability than the simulated differential spectra and both types are less variable at intermediate temperatures where more 

droplets froze in the actual experiments. This reflects the fact that increased sample sizes tend to reduce uncertainty as 350 

cumulative spectra represent a sum of all previous datapoints and most droplets tend to freeze at intermediate temperatures in 

a droplet freezing assay. The noisiness of the differential spectra indicates large uncertainty, meaning the differential spectrum 

for the unaged volcanic ash is largely uninterpretable, while the differential spectrum for the aged volcanic ash and both 

cumulative spectra are much more descriptive – for example, it can clearly be seen that the two cumulative spectra do not 

overlap significantly below –13 °C, a fact that will be further quantified in Section 5.  The large variability (even to k values 355 

of zero) observed at the extrema of both differential spectra represent relatively rare freezing events for the samples, such that 

a given simulation may or may not observe freezing events at that temperature. These areas are more common in the unaged 

volcanic ash IN spectrum because that spectrum consists of fewer droplets than the aged volcanic ash IN spectrum, highlighting 

a) b) 

Figure 3. Interpolated combined data (bold line), interpolated 2.5th and 97.5th quantiles (dashed lines), and interpolated individual 
simulations (faint lines; N=100) of the a) cumulative ns and b) differential ns spectrum for each set of combined ash data from 
Figure 1. The simulated data (lines) using empirical bootstrapping provide a realistic estimate of the distribution of how the spectra 
could vary based on stochasticity, variations in the individual droplet freezing experiments comprising the combined experimental 
spectrum, and other factors contributing to experimental uncertainty.  
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the importance of high-resolution data for meaningful interpretations of differential spectra.  Also note that in the last degree 

of each differential spectrum, the measured results lie outside of the quantiles calculated because 100 simulations are not 360 

sufficient to fully estimate the variability in the measured spectrum; this problem would be remedied with additional 

simulations that fully sample that region of the IN spectrum. 

4.4 Basic bootstrapped confidence bands and their limitations 

Using this new method to simulate data that capture the variability inherent to freezing experiments, bootstrapped 

summary statistics describing the experimental measurement can be calculated. Values such as the bootstrapped standard error 365 

of the mean approximate the true standard error of the mean remarkably accurately when large numbers (n ≥ 200) of bootstrap 

simulations are employed, a fact known as the ‘plug-in-principle’ (Efron and Tibshirani, 1994). Bootstrapped confidence 

intervals, however, are a more difficultcomplex subject. The previous studies that used parametric bootstrapping methods 

assumed that the α/2th and 1–α/2th quantiles of the simulations correspond to the lower and upper limits of the 1–α level 

confidence interval respectively, where α is the threshold value chosen for statistical significance (Harrison et al., 2016; Vali, 370 

2019). This assumption is common, and while it can work well for many applications, this ‘quantile interval’ has little basis in 

statistical theory. It is also strongly affected by bias, only partially corrects for skewed distributions (ice nucleation spectra are 

likely to be skewed upward based on the Poisson statistics they are derived from) and can be too narrow when applied to some 

distributions (Hesterberg, 2015; Efron, 1987). The strong bias that quantile intervals exhibit is particularly concerning when 

using potentially inaccurate parametric bootstrapping or when a small sample results in poor sample coverage in empirical 375 

bootstrapping. 

Fortunately, other bootstrap confidence intervals exist. For a simple interval rooted in statistical theory, we can 

construct the reverse percentile interval, also known as the pivotal interval, where the upper and lower quantiles are subtracted 

from twice the sample mean for the lower and upper confidence intervals respectively. However, in skewed distributions such 

as uncertainty in ice nucleation spectra, the pivotal interval tends to be inaccurate. For a more traditional interval, we can 380 

construct a Z-interval around the measured spectrum with a bootstrapped estimation of standard error, but this assumes a 

normal variance – obviously a poor approximation of the complexity inherent to ice nucleation. A bootstrapped T-interval 

(tboot) using the number of droplets in the original experiment as the number of degrees of freedom is a slightly better estimate, 

but still suffers from error from bias (including narrowness bias) and skewness (Hesterberg, 2015; Efron, 1987).  

4.5 Better bootstrapped confidence bands 385 

Significant work has gone into correcting these problems with basic bootstrapped confidence intervals. The tboot 

interval can be corrected for skewness to the ‘tskew’ interval by including a second-order skewness term in the tboot calculation 

as shown by Johnson (1978). The quantile interval can be expanded by changing the quantile bounds by a factor related to the 

t-statistic to remove narrowness bias, called the expanded quantile interval or the BCa confidence interval (Efron, 1987; 

Hesterberg, 2015). However, by far the most accurate method is the studentized confidence interval, referred to as the 390 
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‘bootstrap T’ or ‘confidence intervals based on bootstrap tables’ elsewhere (Efron and Tibshirani, 1994; Hesterberg, 2015; 

Diciccio and Efron, 1996; Efron, 1979). This method corrects the errors of the t-interval by estimating the actual distribution 

of the t statistic for through bootstrapping. Specifically, the standard error of each simulated spectrum is calculated and is used 

to normalize the difference of each simulated spectrum from the mean of all simulated spectra. These normalized values are 

compiled into another distribution and the desired quantiles of this distribution are multiplied by the standard error of the 395 

collective of simulated spectra to produce the final confidence intervals. To obtain the standard error of each individual 

simulated spectrum a second round of bootstrapping is needed using the simulated spectrum as the ‘true’ measurement resulting 

in ‘resimulated’ spectra. Further descriptions and equations for calculating this and all previously mentioned confidence 

intervals are provided in the SI. The process is computationally intensive, but it results in confidence intervals that are 

unaffected by bias or skewness, even for small sample sizes. Statistical theory calls such intervals second-order accurate, and 400 

this property sets the bootstrap T apart as a standard to compare other confidence intervals against.  

The above methods were used to calculate confidence bands (continuous confidence intervals) for the cumulative and 

differential IN spectra of the unaged and water aged combined volcanic ash sample. Like the summary statistics, to create 

confidence bands confidence intervals were calculated at every 0.1 °C within each spectrum and were interpolated using a 

smoothed cubic spline fit. The different methods of calculating confidence bands for the combined unaged spectra representing 405 

91 droplets (the number of droplets present in the two unaged FUE freezing experiments) are compared in Fig. 4. In general, 

the best-performing confidence bands (determined by being the closest to the studentized bands) are calculated using the 

quantile or expanded quantile methods and the skew-corrected t-interval method – the other approaches tend to be less accurate. 

In contrast, in the combined water aged spectra representing 286 droplets, the different methods of calculating confidence 

bands are in good agreement over most of the IN spectra (Fig. S32), although the studentized confidence bands show slightly 410 

different behavior at high temperatures where very few droplets are observed to freeze. As in Fig. 3, the variability in the 

differential spectrum for this relatively low-resolution data is significant as shown by the wide confidence bands in Fig. 4b, 

although most confidence bands overestimate this variability compared to the studentized bands.  
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4.6 Recommendations for use of empirical bootstrapping methods 415 

If accurate confidence bands on both the cumulative and differential spectra are required from low-resolution data, 

studentized intervals should always be used. Ideally, the studentized confidence bands should be used in all cases, but the 

computation time required for calculation of these confidence bands can be excessive. For most use cases then, the tskew bands 

are a good choice for somewhat conservative confidence bands rooted in theory, and we will use them in the remaining 

examples below. Expanded quantile or quantile bands are also an appropriate choice when empirical bootstrapping is used but 420 

should be tested against the studentized bands for each system to check for potential biases in the data collection process. 

Quantile bands should be avoided when using small numbers of droplets (>5 per degree Celsius measured seems to be 

acceptable) or when using a parametric bootstrap, as the biases inherent to the parameterization will be amplified by the 

quantile bands. The pivot and tboot bands seem to be poor choices in the context of ice nucleation.  

Although we cannot theoretically determine the sample sizes required for accurate confidence bands using empirical 425 

bootstrapping due to the same limitations discussed previously, the sample sizes required for accurate confidence bands can 

be empirically evaluated by testing how many assays, droplets, and simulated spectra are required for confidence bands to 

 

a) b) 

Figure 4. Comparison of methods to calculate confidence bands (shown as different-colored dashed lines) for a) cumulative and 
b) differential unaged volcanic ash ns spectra representing 91 droplets. Experimental spectra are shown in black. Most calculation 
techniques are in good agreement across the range of the cumulative spectrum, but all techniques except the studentized intervals 
(green dashed line) overestimate the variability in the differential spectra, resulting in confidence bands that are too wide across 
most of the spectrum.  
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converge (therefore reducing the uncertainty of the confidence bands due to sample size). More droplets or more freezing 

arrays of the same sample will improve the accuracy and reduce the width of the confidence bands, especially in differential 

IN spectra, further motivating the many recently developed microfluidic techniques (Brubaker et al., 2020; Reicher et al., 2018; 430 

Stan et al., 2009; Tarn et al., 2018; Weng et al., 2016; Roy et al., 2021). Fig. S53a displays interpolations and resulting 

confidence bands for the differential IN spectrum of aged volcanic ash when one, two, four, and all six experiments are 

combined, resulting in different numbers of dropletswhen 50, 100, 150, 200, and 286 (where all droplets are included) droplets 

are randomly sampled from the six performed experiments. The width and shape of the confidence bands changes significantly 

but seem to be converging to a smooth curve exemplified when N=286. When N=50, the confidence bands span three or more 435 

orders of magnitude, indicating that 50 droplets may be too few to draw any conclusions from freezing spectra in our system. 

In this case, the minimum sample size is approximately 150 for useful conclusions at the 95% confidence level, and at least 

200 is preferred (at least in our system) for more accurate confidence bands to ensure the entire probability space of droplet 

freezing is covered. , and there are striking changes in the width and shape of the confidence bands. More droplets or  more 

freezing assrrays of the same sample will improve the accuracy and reduce the width of the confidence bands, especially in 440 

differential IN spectra, further motivating the many recently developed microfluidic techniques (Brubaker et al., 2020; Reicher 

et al., 2018; Stan et al., 2009; Tarn et al., 2018; Weng et al., 2016; Roy et al., 2021). Additionally, the number of simulations 

(and resimulations if using studentized confidence bands) should be chosen carefully to ensure the full variability present in 

IN spectra is represented.  
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In Fig. S53b, the tskew confidence bands of the combined water aged volcanic ash IN spectra (all 286 droplets) are 445 

compared when the number of simulations (nSim) ranges from 50 tois 100, 1000, and 10000. S4 shows the same bootstrap 

simulation number analysis when using 50 and 150 droplets randomly sampled from the initial 286 to test the effects of droplet 

number on the required bootstrap simulation sample size. Based on these plotsese simulations, the number of bootstrapped 

spectra does not appear to impact the confidence intervals nearly as much as the number of droplets used. This is a contrast 

from requirements in other types of bootstrapping techniques, which can be easily calculated to require more than 10000 450 

samples to be accurate within an acceptable margin of error (Hesterberg, 2015). While this insensitivity could be coincidence 

(errors in opposite directions cancelling out to result in confidence bands that are approximately correct), we speculate it is 

instead related to the fact that each bootstrap sample includes many droplets (286 in this case) which are also sampled, covering 

the probability space more completely than when single datapoints are sampled. Based on this, we recommend ensuring that 

the number of simulations multiplied by the number of droplets (the ‘resample size’) in each simulation exceeds 10000 – in 455 

the above spectrum this resample size ranges from around 14000 to 2.86 million. This is partially corroborated by Fig. S5, 

where the resample size reaches as low as 2500 and the confidence bands with low resample sizes often do not match those 

with high resample sizes. It is also important to consider the statistic being calculated – in the above case the standard deviation 

and skewness are being used to calculate confidence bands, but if quantiles were being used, the number of bootstrapped 

spectra would have to be large enough to calculate accurate 2.5th and 97.5th quantiles (likely about 200 spectra). Regardless, 460 

a) b) 

Figure 5S3. Differential fFreezing spectra of the water aged FUE ash with tskew cConfidence bandsis a) calculated with varying 
numbers of a) datapoints randomly sampled without replacement from all six experiments with 1000 bootstrapping simulations, 
and b)  calculated using different numbers of bootstrapping simulations bootstrapping simulations, with the experimental combined 
spectruma shown in black. Figure S3 shows the cumulative spectra, but the effects of sample size are not as pronounced. 

 

Commented [WF3]: Figure 5 was added as a response to 
Reviewer 2.  
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the effects of bootstrap sample size should be tested whenever empirical bootstrapping is applied to ensure that the accuracy 

of the calculated confidence bands (or any other statistic) is never dependent on the number of simulations used. Similarly, 

each investigator must determine their own droplet sample size requirement to collect datasets that can answer their research 

questions.  

 we recommend at least 200 simulations per degree Celsius covered by the IN spectrum, although this might vary 465 

depending on the number of measurements in the dataset being used.  

Finally, it is notable that Figs. 3-5 provide evidence that the interpolation technique used is not overfitting the 

differential data, as the quantiles and other confidence bands follow the general shape of the experimental spectraum. Since 

these statistics are calculated from an aggregate of 100 or 1000 samples in most cases, they would be expected to smooth out 

random variation present in a single measured spectrum that could be causing the complex interpolated curve observed. 470 

Because the aggregated data maintains the same complex shape, it can be assumed that it is at least somewhat meaningful, and 

that the interpolation technique is using an appropriate smoothing factor, however, this should be tested regularly to minimize 

potential overfitting. Note that when droplet numbers are below 200 (as in some of the Fig, S4a spectra and in Fig. S5) the 

interpolated differential spectra have shapes that look unrealistic (e.g. many critical points within one or two degrees Celsius), 

but they also have error bars that span many orders of magnitude in those regions, meaning that neither the measured value 475 

nor the interpolation of the differential IN spectrum at that point is as useful because the uncertainty is so high. Regardless, the 

cumulative spectrum remains smooth and interpretable, and the portions of the differential spectrum with lower uncertainties 

are still meaningful. It  

5 Comparing IN spectra, testing statistical significance, and background subtraction 

Confidence bands provide useful information about the variability of a single dataset – in the case of droplet freezing 480 

assays, 95% confidence intervals contain the true population mean ice nucleation activity of the suspension being sampled 

from in 19 out of 20 analyses (that is, either the true spectrum is within the confidence interval, or an event of probability at 

most 5% happened during data collection). All ice nucleation data should be reported with some form of confidence interval 

or quantification of the distribution of the measurements (e.g., standard error bars). These statistics must be calculated using a 

method, such as empirical bootstrapping, rooted in statistical theory to minimize assumptions about the ice nucleation 485 

experiment and accurately represent the uncertainty inherent to the experiment.  

Another key application of statistics that quantify the variability within a dataset is in comparing measurements of 

different samples to assess the degree of similarity of their INA. In general terms, confidence bands can be used to compare 

two IN spectra by determining whether they could reasonably have been drawn from the same population. Often confidence 

intervals or bands are interpreted based on whether they overlap: If confidence intervals of two spectra do not overlap, they 490 

are statistically significantly different. However, it is not necessarily true that if the confidence bands overlap the two 

measurements are statistically the same at a given confidence level. This common misconception is based on the difference 



20 
 

between error bars calculated using the standard error of the mean and confidence intervals (Barde and Barde, 2012; Belia et 

al., 2005).  

For a more quantitative (and interpretable) method to compare two spectra, IN spectra can simply be divided or 495 

subtracted. We will use the term ‘difference spectrum’ to refer to this ratio or difference as a function of temperature, as both 

are calculated using the same procedures and provide similar information. When interpolated IN activity spectra are used, a 

continuous difference spectrum can easily be generated by calculating the ratio (or difference) between two interpolations at 

each point in a dense grid of temperatures, then interpolating between those points. A difference spectrum the ratio or difference 

between the two can be plotted as a function of temperature with its own confidence bands, and can be used to test whether 500 

two IN spectra are statistically significantly different at any temperature where the two spectra overlap at any confidence level. 

Stated precisely, the hypothesis that the two IN spectra are different can be tested against the null hypothesis that the two IN 

spectra are not quantitatively different. in the case of a ratio-based difference plot with confidence bands, If the confidence 

bands do not contain one at a given temperature, then the null hypothesis is rejected. If they do contain one, then that claim 

cannot be made. If a difference between IN spectra is used instead of a ratio, then zero is used for this hypothesis test instead 505 

of one. Therefore, if confidence bands can be accurately calculated for a difference spectrum, then continuous statistically 

rigorous claims about differences between IN spectra can be tested..  

If the confidence bands of these metrics contain zero or one (as appropriate), then those two spectra are not statistically 

significantly different at the temperature examined and confidence level used. More precisely, confidence intervals on 

difference and ratio plots can be used to test the null hypothesis that the difference or ratio of two ice active site density spectra 510 

is zero or one, respectively, a much more rigorous approach to comparing IN spectra. 

5.1 Calculating confidence bands for difference spectraand ratio plots 

Calculating confidence bands for differences or ratios of continuous variables is not ntrivial, but for these metrics to 

be usefulhave any meaning, confidence bands are necessary. Subtracting or dividing the confidence bands of the compared 

spectra is not accurate. Elementary propagation of error formulas assume that the variability within both spectra (and of the 515 

difference or ratiocomparison spectra) is normally distributed, which is a poor assumption as discussed previously. Again, 

bootstrapping offers a superior solution. To simulate the variability in the difference spectra, individual simulations of each 

measurement can be subtracted or divided from each other pairwise, until a collection of simulated difference spectra 

combining the variability inherent to each measurement is produced. From these bootstrapped simulations of the difference or 

ratio spectra, confidence bands can be produced using any of the methods in Section 4.  520 
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Figure 65a and 65b show the difference ratio and differenceand ratio between the IN spectra of water aged volcanic 

ash and unaged volcanic ash with confidence intervals. IN spectra comparing the water aged volcanic ash to the unaged 

volcanic ash. Suspension of minerals and volcanic ash in water can cause alteration of the ice-active surface sites due to a 

variety of complex  geochemical processes as shown in recent literature (Maters et al., 2020; Kumar et al., 2019; Harrison et 

al., 2019; Perkins et al., 2020; Fahy et al., 2022b; Jahn et al., 2019). Based on the confidence bands of either metric, it can 525 

easily be seen that below approximately –12 °C, there is a statistically significant difference between the IN activity of the 

aged ash and unaged ash with p<0.05, confirming that in this experiment there is an alteration of the IN activity of volcanic 

ash due to suspension in water. The magnitude of this difference hascan also been easily  determined in botheither in relative 

andor absolute terms, providing a quantitative measurement of the change in IN activity due to chemical processing of this 

sample. In this case, the IN activity of water aged ash is reduced by a factor of 2-3 below –12 °C and is reduced by between 0 530 

and 1500 ice active sites per square centimeter of ash surface area as a function of temperature. For this analysis, only aboutAs 

before, only ~200 simulations per shared degree Celsius seems to be necessary for consistent confidence bands for each 

difference plotspectrum. 

a) b) 

Figure 65. Comparison of the water aged ns spectrum to the unaged ns spectrum a) by dividing, and b) by subtracting. The dotted 
line appears at Δns = 1 in the a)ratio plot and at Δns = 0 in b)the difference plot, signifying no difference between the two spectra. 
Confidence bands are calculated using interpolated tskew bootstrapped ratio/difference simulations as discussed above. Based on 
the confidence bands, there is a statistically significant difference between the water aged and unaged ash spectra for temperatures 
< –12 ºC for both plots, and the magnitude of this difference is available as a function of temperature. 
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5.2 Applications of difference and ratio spectraplots 

Difference and ratio spectra have a variety of useful applications within the context of ice nucleation. The first has 535 

already been shown, as two spectra can be easily tested to determine whether there is a statistically significant difference 

between them. This is particularly useful in studies of chemical aging, where the change in IN activity after a given chemical 

treatment can be quantitatively measured using the difference or ratio before and after aging metrics. Another application is in 

background freezing subtraction for IN spectra. MostAll droplet-on-substrate methods have some level of background freezing 

activity measured as the ice active site density normalized to the volume of water in each droplet that can change day-to-day 540 

depending on the system (Polen et al., 2018; Vali, 2019). For accurate measurements and to compare between instruments, the 

instrumental background must be subtracted from any measured IN spectrum. This can be readily accomplished by calculating 

the difference between the IN spectrum of interest and the background freezing spectrum. Where there is no background, the 

difference is equal to the sample spectrum. By saving the subtracted simulations used to calculate the variability in this 

difference spectrum, the background-subtracted data can be compared further via another ratio or difference spectrum if 545 

desired. This can also be useful in determining whether a sample’s IN activity is distinguishable from the instrumental 

background in weak IN materials. For all use cases, accurate confidence bands based on the bootstrapping procedures presented 

here are integral to ensuring rigorous and correct analysis and interpretation of the data, as simply subtracting K(T) or k(T) 

without accurate confidence intervals or other statistics does not fully represent the background-subtracted spectrum. 
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A third application of ratio and difference spectra in 550 

IN activity is in locating outliers. Droplet-on-substrate IN 

measurements are extremely sensitive to contamination and 

human error, even when great care is taken during the sample 

preparation process. When two measurements of the same 

sample disagree, additional replicate measurements are taken 555 

to determine if a measurement is an outlier, usually visually. 

Ideally, a more quantitative measurement of outlier status 

would be used, such as the Grubbs Test (Grubbs, 1969), 

Tukey’s Fences (Tukey, 1977), or the Modified Thomson Tau 

Test (Thompson, 1985). However, the usefulness of these 560 

common techniques and the assumptions they require for IN 

spectra is questionable. Instead, we propose that for a 

quantitative measurement of whether a sample is an outlier, 

the ratio difference spectrum comparing the sample in 

question with the combined spectrum of the remaining 565 

measurements of the same sample can be used. An example of 

this analysis is shown in Figure 76, where the various water 

aged ash freezing experiments are compared using a ratio 

difference plot to combinations of the remaining 

measurements. It can be clearly seen that only the spectrum 570 

shown in purple is statistically significantly different (in this case lower) at the 959% confidence level based on the 

bootstrapped tskew confidence bands. Therefore, this experiment could be treated as an outlier at that confidence level and 

excluded from future analysis. Even still, great care should be taken when dealing with potential outliers, and the confidence 

level required to exclude outliers should be carefully considered so as not to remove valid data. Whenever possible, decisions 

about whether to exclude a potential outlier should combine this statistical method with observations or lack thereof of specific 575 

experimental errors in the laboratory. 

6 Summary and Conclusions  

We have presented a rigorous and generalized set of methods for interpolating raw data, calculating confidence bands 

and other statistics, and quantitatively comparing IN spectra derived from droplet freezing assays. The interpolation methods 

discussed use ice nucleation data far more efficiently than previous binning methods and allow continuous quantitative 580 

comparison of IN spectra without compromising statistical power and detail present in the original datalosing the complexity 

Figure 76. Comparison of individual water aged cumulative ns 
spectra to the remaining combined water aged cumulative ns spectra. 
Each curve is a ratio difference spectrum of one of the six 
experiments divided by the remaining five experiments combined 
(solid lines) with bootstrapped tskew 99% confidence intervals 
(dotted lines). The experiment shown in purple (1|1) is statistically 
significantly different from the other five experiments and is 
therefore deemed an outlier. 
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of the original data. Empirical bootstrapping is introduced as an improvement on the elementary statistical methods and 

parametric bootstrapping previously used by capturing the full variability present in each IN spectrum or collection of IN 

spectra with no assumptions about the nature of ice nucleation for the material being tested. Enhanced continuous confidence 

bands are calculated using rigorous and modern algorithms to replace the quantile intervals or z-intervals previously used. 585 

Finally, the ability to interpolate and simulate IN spectra is used to develop difference and quotient spectra with accurate 

confidence bands for quantitative comparison and statistical testing of ice nucleation activities between materials and 

background subtraction.  

These approaches can be used to help answer many important research questions in the field related to statistically 

assessing observed changes or differences in IN activities and can be applied to any experimental setup using arrays of droplets 590 

freezing over time or at varying temperatures. They are supported by statistical theory and use widely accepted methodologies 

from the statistics literature. The universality, simplicity, and accuracy of this approach makes it an ideal candidate to be a 

standard statistical method by which to compare datasets from different instruments and groups. The bootstrapping approach 

could be particularly useful for incorporating uncertainty in IN activity into advanced atmospheric models, as a full distribution 

of IN activity at each temperature can be easily estimated from simulations. To facilitate adoption of these statistics, all code 595 

developed for this project along with documentation and data to recreate the figures in this paper is available in archived form 

as was used at the time of writing at KiltHub (doi: 10.1184/R1/19494188; Fahy et al., 2022a) or in a living GitHub repository 

where updates or additional information may be added in the future (https://github.com/wdfahy/CMU-INstats). 

Further refinement of these methods by optimizing code runtime, improving confidence interval coverage, adding 

simulation methods, and implementing different statistics may be accomplished in the future as necessary. Extension of the 600 

procedures described here may be possible to describe uncertainty in instruments that measure ice nucleation in the aerosol 

phase such as CFDC-type instruments and expansion chambers and are not limited to heterogeneous ice nucleation. This may 

lead to applications describing uncertainty in experiments analyzing a variety of nucleation processes under varying conditions. 

If widely adopted, the quality and consistency of statistical treatment of nucleation data will improve, leading to enhanced 

representation and communication of results and interpretations within those fields.  605 

Code availability 
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