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Abstract. A suite of generally applicable statistical methods based on empirical bootstrapping is presented for calculating
uncertainty and testing the significance of quantitative differences in temperature and/or ice active site densities between ice
nucleation temperature spectra derived from droplet freezing experiments. Such experiments are widely used to determine the
heterogeneous ice nucleation properties and ice nucleation particle concentration spectra of different particle samples, as well
as in studies of homogeneous freezing. Our methods avoid most of the assumptions and approximations inherent to existing
approaches and when sufficiently large sample sizes are used (approximately >150 droplets and >= 1000 bootstrap samples in
our system) can capture the full range of random variability and error in ice nucleation spectra. Applications include calculation
of accurate confidence intervals and confidence bands, quantitative statistical testing of differences between observed freezing
spectra, accurate subtraction of the background filtered water freezing signal, and calculation of a range of statistical parameters
using data from a single droplet array freezing experiment if necessary. By providing additional statistical tools to the
community, this work will improve the quality and accuracy of statistical tests and representations of uncertainty in future ice

nucleation research and will allow quantitative comparisons of the ice nucleation ability of different particles and surfaces.

1 Introduction

Ice nucleation (IN) is a complex process with significant implications for cloud properties in atmospheric science
(Gettelman et al., 2012; Miilmenstadt et al., 2015; Froyd et al., 2022). Heterogeneous ice nucleation, where a separate phase
or substance assists the nucleation of ice above the homogeneous freezing limit, is particularly difficult to study as the length
and time scales at play in nucleation are difficult to directly observe (Fletcher, 1969; Wang et al., 2016; Kiselev et al., 2017
Holden et al., 2019). Most researchers resort to macroscopic measurements of this nanoscale process by creating droplets
containing suspensions of the ice active material and observing freezing events as time passes or temperature changes (Vali,
2014). The most common technique is a variation on the droplet-on-substrate apparatus, where droplets of known sizes are

created by manual pipetting, condensation, or microfluidic means (Stan et al., 2009; Budke and Koop, 2015; Whale et al.,
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2015; Chen et al., 2018; Polen et al., 2018; Reicher et al., 2018; Brubaker et al., 2020; Gute and Abbatt, 2020; Roy et al.,
2021). These droplets are usually exposed to a negative temperature ramp and the freezing temperatures of each droplet are
recorded to produce an ice nucleation rate or active site density spectrum as a function of temperature (here we use the term
‘IN activity’ as a general term to refer to any measured or derived variable which quantifies ice nucleation rate with respect to
temperature). Other procedures can be used to test the effects of time and other variables on IN activity (Wright and Petters,
2013).

Because these experiments only indirectly measure IN activity, results can have high natural variability, even when
measuring the same sample on the same instrument. This variability is inherent to ice nucleation. Using the combined singular-
stochastic VS66 model most recently discussed in Vali (2014) and terminology proposed in Vali et al. (2015), ice nucleation
activity (or rate) is an accumulation of many ice nucleation sites with variable critical temperatures dispersed randomly
throughout a material. In turn, the material is distributed randomly throughout droplets which can have varying sizes, shapes,
and environments. Therefore, a measured IN activity can be affected by heterogeneity in the distribution of ice active sites
across a material, heterogeneity in the mass or surface area of material suspended in each droplet, differences between droplet
sizes and environments, and variations in temperature between droplets (Polen et al., 2018). Even in a perfect experimental
setup, the stochastic nature of nucleation causes variation in the measured temperature dependence of a material’s IN activity
using a singular model (Vali, 2014, 2019). Combined with the large variations in IN activity observed between different ice
nucleating substances and particles, this inherent uncertainty creates difficulties in reliably assessing whether differences in
observed IN spectra indicate a statistically significant difference in IN activity.

Experimental error is always present and must be accounted for and reported, usually in the form of a standard error
or a confidence interval of the mean measurement recorded. In our experience, there is no widely implemented approach to
reporting uncertainty in IN temperature spectra derived from freezing experiments. Instead, methods vary between groups,
relying on different assumptions about the nature of ice nucleation experiments, the forms of distributions that the random
variables involved take, and the quantification of the derived uncertainties. In the simplest case, standard deviations, errors,
and/or confidence intervals have been calculated from repeated experiments either by assuming that variability follows a
normal distribution (Losey et al., 2018; Polen et al., 2018; Jahn et al., 2019; Chong et al., 2021; Roy et al., 2021; Worthy et
al., 2021), a Poisson distribution, (Koop et al., 1997; Alpert and Knopf, 2016; Kaufmann et al., 2017; Knopf et al., 2020; Yun
et al., 2021), or that droplet freezing follows a binomial distribution (McCluskey et al., 2018; Suski et al., 2018; Gong et al.,
2019, 2020; Wex et al., 2019). In other cases, authors have used a model of ice nucleation to simulate their experiments and
use that simulated distribution to estimate the uncertainty present in their experiment. In the simplest case, droplet freezing is
modelled as a Poisson point process (Vali, 2019; Jahl et al., 2021; Fahy et al., 2022b). In more sophisticated models, random
variables such as the number of sites, mass of material, and temperature variations are parameterized to run completely new
simulated experiments (Wright and Petters, 2013; Harrison et al., 2016). Even in these models, either additional measurements
are required, or assumptions must be made about the distribution of each variable. Until the inherent variability behind ice

nucleation can be measured to prove or disprove the assumptions being made, all the above methods are only as reliable as the
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assumptions themselves. In Section 4, each method, their required assumptions, and the validity of those assumptions are
discussed in further detail.

Empirical bootstrapping is an alternative approach to estimating statistics for a dataset that to our knowledge has not
been applied in the context of ice nucleation. In this technique, a series of random samples of the measured dataset is taken to
generate estimated statistics that converge on the actual values as the number of samples increases (Efron, 1979; Shalizi,
forthcoming). No assumptions are required about the distributions of random variables underlying ice nucleation and it can be
applied to any system where the freezing temperatures or times of droplets are measured. Here we present a set of generalized
and statistically rigorous methods based on empirical bootstrapping for quantifying uncertainty in IN spectra. When
accompanied by interpolation methods presented in Section 3, this approach can be used to calculate continuous confidence
bands and statistically test differences between IN spectra as shown in Section 5. We also address the effects of interpolation
techniques, droplet sample size, and bootstrap sample size to direct the field towards more rigorous and repeatable methods of
experimentation and data analysis. An implementation of all presented statistical methods along with documentation and
instructions for its use is provided freely for use or reference to assist in future research and improve the statistical treatment

of ice nucleation data in the field.

2. Sample data and preprocessing

To demonstrate the statistical methods described here, we selected an example IN dataset shown in Fig. 1. The Fuego
ground PM37 sample (FUE) from Jahn et al. (2019) was tested for ice nucleation activity before and after being exposed to
water in a 1 wt% suspension and allowed to dry under a constant 1 Lpm flow of pre-dried lab air similarly to Fahy et al.
(2022b). In both cases, a 0.1 wt% suspension of unaged or aged ash was created in water (HPLC grade, Sigma) filtered through
a 0.02 micron pore size Anatop syringe filter. These suspensions were then tested for IN activity on the CMU-CS droplet-on-
substrate system described in detail by Polen et al. (2018) and are compared to a background freezing spectrum obtained from
the filtered water used to create the suspensions. Approximately 50 100 nL droplets (1.5 mm diameter) were tested per array
with a cooling rate of 1 °C per minute. Two separate suspensions were tested for the unaged ash sample, and three suspensions
were tested from ash exposed to water in two separate experiments for the aged ash sample. The previously-determined
Braunner-Emmett-Teller (BET) specific surface area of 1.6394 m? g'! was assumed for all samples.

Since multiple freezing experiments were performed on nominally identical samples (e.g., the replicate suspensions
of the same ash or aging experiment), these spectra were combined by merging the lists of freezing events that occurred in
each experiment. The frozen fractions and ice nucleation active site density spectra were then recalculated as if the combined
freezing events occurred in a single experiment. This is only valid when the IN spectrum of a given suspension is insignificantly
different from the combined spectra of all other suspensions and the physical and chemical properties (e.g., suspension

concentration, sample type, water purity, background freezing) are identical between suspensions. The second condition can
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Figure 1. Raw (not interpolated or binned) and combined raw a) frozen fraction and b) surface area normalized ice nucleation
active site density spectra for sample droplet freezing data used in this study. Water aged spectra are from two separate aging
experiments with three freezing experiments each for a total of six individual water aged runs denoted by ‘experiment#|freezing
run#’

easily be tested in the laboratory, while the first condition can be evaluated using statistical tests described in this paper (see
Section 5.2).

The ice active site density spectra were calculated directly based on Egs. 1-3 (Vali et al., 2015; Vali, 1971, 2019),
where £ is the differential spectrum, K is the cumulative spectrum, f(7) is the raw fraction of droplets frozen at temperature 7,
No is the total number of droplets in the array, N is the number of droplets that have frozen up to a given point, AN is the
number of droplets that have frozen in each measurement interval. The variable A7 is the size of the measurement interval, the
choice of which is discussed below. The normalization factor X can be average droplet volume (V), mass of sample suspended
per droplet (ma), or as is used here, specific surface area of sample suspended per droplet (Usually BET specific surface area;
BETss4), giving the number of ice nucleation sites that are active at temperature 7 per unit of suspension volume (usually
denoted K), sample mass (denoted nn), or sample surface area (denoted ns) respectively. The derivation of these equations
requires that X be identical for every droplet being analyzed — an important assumption and source of error. However, as will
be discussed later, the empirical bootstrapping approach quantifies this source of error, meaning these parameters can be used

and interpreted even when the assumption does not strictly apply if the uncertainty is also incorporated into the interpretation.
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Differential IN spectra have only recently come into common use because most interpretations of the formulation of
k require high-quality data (e.g., hundreds of uniformly sized droplets with low background freezing activity in our estimation)
for the coarse binning process used to ensure the data are not too sparse. See Vali (2019) for an in-depth discussion of this
approach based on improvements in ice nucleation data quality obtained using droplet microfluidics by Polen et al. (2018) and
Brubaker et al. (2020) that make the application of differential IN spectra feasible. However, differential spectra are extremely
useful both for visual interpretation of data and for quantitative comparison of IN spectra. Specifically, they can provide
information on how many IN sites become active at a given temperature, which is not immediately obvious from examining a
cumulative spectrum. For a more generally useful method of directly calculating raw differential spectra, AT was chosen such
that the endpoints of the temperature interval for a datapoint were the midpoints of the distance between the nearest neighbors
on either side of the datapoint, and 4N is the number of droplets that froze at that datapoint. Vali (2019) stated that this approach
loses the quantitative significance of & because the value of £ will vary based on the size of 4T, however, we contend that it is
this variation in the size of A7 that maintains the quantitative aspect of &, as the magnitude will be inversely proportional to
the number density of freezing events with respect to temperature as expected. This results in noisy data, but when coupled
with the interpolation techniques presented in Section 3, this problem can be resolved using a smoothing algorithm. This
approach has the advantage of ensuring that every ‘bin’ has at least one freezing event in it while maintaining the advantages
of differential IN spectra compared to cumulative spectra, even for relatively low-quality data. However, as will be shown in
Sections 4 and 5, high-resolution data (e.g., from hundreds of droplets and/or several freezing experiments) are still required

for statistical comparisons of differential IN spectra.

3. Interpolating freezing curves and calculation of continuous spectra

The most common style of reporting ice nucleation activity is using the cumulative ice nucleation active site density
curves calculated directly from raw data as shown in the previous section, but there is an important limitation to this type of
data treatment. While it represents the data exactly as measured, there is no way to quantitatively compare one raw freezing
spectrum with another without some type of interpolation. This is because even if a droplet freezes at a particular temperature
in one experiment, there is no guarantee that a droplet will freeze at or near that temperature in another experiment. Often the
approximate difference between spectra is just compared by eye for lack of a better method. This presents issues when trying
to subtract a background spectrum or when quantifying uncertainty and testing statistical difference between spectra and leads

to a need for effective interpolation methods for comparing IN spectra.
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3.1 Binning and its shortcomings

One common method for interpolating IN spectra is through temperature binning, where a temperature interval is
represented by a single value of IN activity that is treated as constant throughout the interval. This approach is appealing, as it
aligns with the discrete nature of IN experiments and allows straightforward calculation of differential IN spectra by using the
bin width as A7 (Vali, 2019). However, binning is widely accepted as an inefficient interpolation method for measurements of
continuous variables such as ice nucleation activity and has been shown to reduce statistical power and bias statistical results
in data from a variety of disciplines (Gehlke and Biehl, 1934; Selvin, 1987; MacCallum et al., 2002; Altman and Royston,
2006; Manley, 2014; Virkar and Clauset, 2014; van Leeuwen et al., 2019). While ice nucleation activity is measured discretely,
it is a continuous property — any given ice nucleation site has a theoretical ice nucleation rate over the entire continuous
temperature range and combining many ice nucleation sites together results in a continuous curve, sometimes with multiple
critical or inflection points (Beydoun et al., 2016). It is therefore desirable to transform the discrete measurements into

continuous space to accurately represent IN activity rather than further discretizing them as in binning.

3.2 Previous methods of continuous functional interpretation

To make a discrete variable continuous, some type of functional interpolation is required. Many studies approximate
IN spectra as exponential polynomials or similar simple functions (Atkinson et al., 2013; Kanji et al., 2013; Niedermeier et al.,
2015; Harrison et al., 2016, 2019; Peckhaus et al., 2016; Vergara-Temprado et al., 2017; Price et al., 2018). Exponential
polynomials can capture the overall exponential shape of cumulative IN spectra in most cases, however, they impose explicit
assumptions about the shape of the IN spectra through their closed-form expressions. Particularly in samples that contain
mixtures of different types of ice nucleation sites (e.g., Beydoun et al., 2017), simple polynomials are likely to be insufficient
for accurate interpolation of IN spectra.

Instead, the ideal interpolation method would take a series of measured datapoints from a droplet freezing experiment
and would output a continuous IN parameterization that could predict the IN activity of the sample at any temperature. A
parameterization such as a contact angle scheme (Chen et al., 2008; Beydoun et al., 2016; Ickes et al., 2017) or the singular-
stochastic formulation of ice nucleation (Vali, 2014; Barahona, 2012; Niedermeier et al., 2011) would be preferred, however,
these parameterizations require preexisting knowledge or assumptions about of the nature of the sample being tested. For data
analysis in laboratory or field studies, this information is often not available, and we must look for an interpolation method

that can capture an ice nucleation spectrum with any shape.

3.3 Piecewise interpolation for ice nucleation spectra

For a generally applicable interpolation scheme, piecewise fitting algorithms such as spline fit all requirements. Spline
fits provide interpolations of arbitrarily complex data by fitting a series of polynomials to small portions of the available data.

The resulting piecewise functions are continuous and differentiable, meaning that only one or the other of the cumulative or
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differential IN spectrum must be directly fit from the data — the other spectrum can be calculated by either computing the
negative derivative of the cumulative freezing curve or the negative antiderivative of the differential spectrum. To find the
fitting method that performs well, a variety of algorithms available in the Python Scipy library (Virtanen et al., 2020) were
modified and tested for their ability to interpolate the combined water aged volcanic ash ice nucleation spectrum. ‘Splinederiv’
uses a cubic spline fit of the cumulative spectrum, ‘splineint’ uses a cubic spline fit of the differential spectrum, ‘PCHIP’ uses
the piecewise cubic Hermite interpolated polynomial algorithm of the cumulative spectrum, and ‘smoothedPCHIP’ is the
PCHIP curve followed by a cubic spline fit with a smoothing factor.

Figure 2a (cumulative #s) and 2b (differential #s) compare these methods to a binning approach and the raw data from
Fig. 1 using the water aged FUE ash spectrum. Note that the interpolated spectra do not start until there is a sufficient density
of freezing events (more than one per degree Celsius) to avoid overfitting and because the error on these initial points is much
larger than that of the rest of the spectrum as will be seen later. On initial inspection, basic spline fits perform well at higher
ice active site densities. However, the splinederiv algorithm does not always maintain the monotonicity requirement intrinsic
to the cumulative spectrum (and correspondingly are not strictly positive in the differential spectrum). The splineint algorithm
corrects for this, but performs relatively poorly in capturing the behavior of early freezers, overestimating the IN activity
between —10 and —14 °C. The solution to these two problems is to interpolate the cumulative spectrum with the monotonicity
constraint offered by the PCHIP fitting algorithm and to take the derivative of this interpolation for the differential spectrum.
This method reproduces the shape of the cumulative IN spectrum because it calculates an exact interpolation, but as a result is
extremely noisy in the differential spectrum. By adding an additional smoothing step after the PCHIP interpolation (using a
simple smoothed cubic spline fit after the PCHIP algorithm), a smooth and interpretable interpolated ice nucleation spectrum
can be derived from the raw data without losing the detail present at the high/warm temperature end of the spectrum visible in
the differential plot as shown in the smoothedPCHIP spectrum. The smoothedPCHIP curve is monotonic and accurate to the
observed data in the cumulative spectrum and is smooth and readable in the differential spectrum and will be used for the
remainder of this work. In Fig. S1 of the Supplemental Information (SI), the smoothedPCHIP algorithm is applied to each
individual volcanic ash IN spectrum, and in Fig. S2, it is applied to the combined unaged and water aged spectra to compare

the interpolations with their corresponding raw datapoints.

4 Calculating confidence intervals and bands
4.1 Elementary statistical methods

The question of how to calculate confidence intervals for IN spectra derived from droplet freezing experiments has
been addressed several times in the IN literature. In some cases, a normal distribution about the frozen fraction curves is
assumed. Where multiple freezing experiments are available and are interpolated such that means and standard deviations can
be calculated for a collection of freezing spectra, a Z-interval (based on the normal distribution) or t-interval (based on

Student’s t-distribution) can be constructed (Polen et al., 2018; Jahn et al., 2019; Worthy et al., 2021) or standard deviations

7



05

10

15

20

25

30

and standard errors are sometimes reported as-is (Losey et al., 2018; Chong et al., 2021; Roy et al., 2021). While it is unclear
how many droplets and replicate freezing assays are required for these approximations to be valid under the Central Limit
Theorem, it is unlikely that most existing freezing assay datasets achieve this sample size requirement, since confidence
intervals calculated using these techniques often disagree with those calculated using other methods described below and those
presented in this study. It is also unclear what exactly a required sample size would mean in this context: the number of droplets
is not sufficient, because each droplet does not contribute to every point on the observed ice nucleation spectrum equally.
However, the number of separate ice nucleation assays is also not sufficient, as techniques that measure hundreds of droplets
in a single assay should require fewer overall assays to calculate accurate statistics because there are more droplets contributing
to the accuracy of each point on the measured ice nucleation spectrum. Some combination of the two is required, but there is
no existing method by which the accuracy of confidence intervals for an ice nucleation spectrum can be evaluated based on
the relevant sample sizes.”

Other studies (e.g., McCluskey et al., 2018; Suski et al., 2018; Wex et al., 2019; Gong et al., 2019, 2020) have
calculated approximate confidence intervals for frozen fraction values by treating them as binomial ratios and using the
adjusted Wald interval suggested by Agresti and Coull (1998). In the latter case, calculating uncertainty for derived ice active
site density spectra requires propagation of error through Equations 1 and 2, followed by an assumption of normality when the
confidence intervals are calculated. There is, however, no reason to believe that the spread of freezing events in droplets should
even approach a normal distribution, making this assumption unreliable,

A better approximation for the variability in droplet freezing experiments is the Poisson distribution, in part because
the widely used ice active site density spectra are based in Poisson statistics (Vali, 1971), but also because droplet freezing
resembles a Poisson point process where freezing events occur approximately continuously and independently at a given rate.
Koop et al., (1997) suggested the use of Poisson fiducial limits to calculate uncertainty in a variety of types of freezing
experiments, and this approach has been used by several studies since (Alpert and Knopf, 2016; Kaufmann et al., 2017; Knopf
et al., 2020; Yun et al., 2021). However, the distributions of IN sites across particles, distributions of these particles among
droplets, distributions of freezing abilities of individual IN sites, distributions of freezing events that occur based on the
aggregate freezing ability in a droplet, and temperature distribution between the droplets could all serve to skew or otherwise
change the distribution of droplet freezing events measured. Using a Poisson distribution corrects for only some of these
random factors, and because ice active site spectra are based on the Poisson process, these are the variables that most need to
be considered when calculating experimental uncertainty. Thus, while these closed-form confidence limits are convenient,

they are not likely to be accurate.

4.2 Parametric bootstrapping and its shortcomings

Another class of methods of calculating confidence intervals for freezing spectra relies on a technique known as
bootstrapping, where artificial freezing experiments are generated from a measurement using Monte Carlo simulations

(Davison and Hinkley, 1997). When the simulations are based on an existing ice nucleation theory (e.g., when simulated
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experiments are produced using a parameterization of ice nucleation), this technique is known as parametric bootstrapping,
and given enough simulations, the artificial experiments represent the full range of possible variability around the measured
result that could be observed in the theoretical framework used.

For example, based on Wright and Petters (2013), Harrison et al. (2016) and subsequent publications simulate a
number distribution of ice active sites in a collection of theoretical droplets based on the ice active site densities calculated
from the original experiment. This model can be used to simulate freezing spectra by sampling these theoretical droplets and
assuming that freezing events occur when the number of ice active sites in each droplet is greater than or equal to one. When
repeated enough times, this distribution of freezing spectra can be used to calculate confidence intervals for the measured data
either by assuming that the quantiles of the distribution of simulated freezing spectra approximate the confidence intervals or
by calculating simple Z-intervals from the distribution of simulated freezing spectra (although the latter invokes an assumption
of normality).

An alternative method of parametric bootstrapping for confidence intervals of IN spectra models individual droplets
freezing as a Poisson point process (again the same assumption used in deriving ice active site density spectra) as shown in
Vali (2019) and applied in Jahl et al. (2021) and Fahy et al. (2022b). In this approach, the number of droplets that freeze in
each temperature interval (or equivalently, the rate of droplet freezing) is used as the mean value of a discrete Poisson
distribution. Then, for each temperature interval, a new number of droplets freezing in the interval is selected from the
distribution. When this is done for all temperature intervals, the simulated values are combined into a simulated experiment.
Once ice active site density spectra are calculated from these simulations, and this process is repeated 100s to 1000s of times,
the quantiles of the distribution of simulated ice active site densities for each temperature bin can be used as an approximation
of confidence intervals.

Both parametric bootstrapping approaches described here rely on the parameterization to produce accurate results,
meaning that if the parameterizations are approximate or inaccurate, they may produce misleading or incorrect statistics. An
in-depth analysis of the accuracy of the assumptions of each of these parameterizations is beyond the scope of this paper, but
there are major concerns for each model. The calculations based on particle distributions in droplets (Wright and Petters, 2013;
Harrison et al., 2016) assume that ice active sites are distributed evenly across the surface of a material, that the material is
suspended evenly throughout the droplet, and possibly (depending on the specific approach) that the material is composed of
uniform spheres and that ice nucleation is time-independent or the characteristic temperatures for each given ice nucleation
site are normally distributed. The first assumption is known to be false for some materials; minerals often have higher
concentrations of and/or more ice active IN sites near or in specific nanoscale defects, cracks, pores, or other specific regions
such as the perthitic textures in some feldspar minerals (Whale et al., 2017; Kiselev et al., 2017; Holden et al., 2019; Friddle
and Thiirmer, 2020). The second assumption may or may not be true, especially at higher suspension concentrations (Beydoun
et al., 2016). The third assumption depends on the material in question. The fourth assumption ignores time, one of the most
important factors introducing uncertainty and randomness into droplet freezing experiments (Wright and Petters, 2013; Herbert

et al., 2014; Vali, 2014; Knopf et al., 2020), and the fifth assumption does not have a theoretical basis and requires additional
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experimentation to determine the parameters of the normal distribution (Wright and Petters, 2013). Regardless of the specific
approach used, these techniques either require extensive experimentation to determine the nature of the ice nucleation material
being studied or rely on assumptions that produce an incomplete and potentially inaccurate parameterization.

The calculations based on the Poisson distribution (Vali, 2019; Fahy et al., 2022b; Jahl et al., 2021) have very
different assumptions. Stochasticity and IN site variability are accounted for in the process of simulation from the measured
IN spectrum, however, this method requires coarse binning, as ideally multiple freezing events will occur within each bin. As
discussed before, binning continuous data is inefficient. It also assumes that in these bins, the nucleation rate does not change
with temperature. For coarse temperature bins especially, this assumption will break down, as ice nucleation spectra are strong
exponential functions of temperature (Fletcher, 1969). While the Poisson parametric bootstrapping method makes fewer
assumptions and captures more variability than other parametric methods, it relies on risky and/or false assumptions,
contributing systematic error to the confidence intervals. Note it is not the purpose of this study to quantitatively compare
methods previously used to calculate uncertainty in IN spectra, and the above discussion is only as a qualitative overview of

the assumptions and approximations previous methods use.

4.3 Empirical bootstrapping and its benefits

The other class of bootstrapping method, non-parametric bootstrapping (known as empirical bootstrapping), does not
rely on any parameterizations. Instead, the original experimental data and sampled from with replacement (i.e., the same
datapoint can be sampled more than once) to produce artificial datasets (Efron, 1979; Efron and Tibshirani, 1994; Davison and
Hinkley, 1997; Shalizi, forthcoming). This method is remarkably well-suited to the problem of ice nucleation statistics, as
droplet freezing experiments result in a list of freezing temperatures that can be easily sampled from to create new simulated
droplet freezing experiments. The large droplet numbers coupled with a limited freezing temperature range ensure that the
empirical data covers most of the possible variability within each experiment. If multiple freezing experiments are performed
on identically prepared samples, this method will even capture the variability in sample preparation and other aspects of the
experiments being performed. Since variations in droplet size, sample mass suspended, or distributions of surface area among
droplets (the parameters behind the normalization constant X) also contribute to the variability observed in experiments, the
error caused by assuming X is constant between droplets is also included into the model. Empirical bootstrapping requires no
physical model of ice nucleation and so captures the stochastic nature of ice nucleation, inhomogeneities in ice active site
distributions within the sample, and even any potential unknown sources of variability within IN active materials. Thus,
empirical bootstrapping is universally applicable, can capture all sources of variability in an experiment, and is unambiguous
in its implementation, making it an ideal candidate for a standard statistical method for analyzing ice nucleation experiments.
The only assumption required (which has already been made when deriving ice nucleation spectra) is that all datapoints must
be statistically independent, meaning that no droplet can affect any other droplet’s freezing temperature (Shalizi, forthcoming).
This condition is already required for accurate ice nucleation measurements and is already implemented in most laboratories

by physically isolating droplets using an inert oil or gas or by separation of droplets in wells or microwells. Empirical
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bootstrapping is only otherwise limited by the computational time available to draw many statistical simulations of an ice
nucleation spectrum and the quality of the observed data itself (Hesterberg, 2015), both of which are addressed further in
Section 4.6.

Figure 3a and 3b show the application of empirical bootstrapping to simulate cumulative and differential spectra for
the combined and interpolated volcanic ash ice nucleation data previously introduced in Figs. 1 and 2. Each spectrum is
statistically simulated by randomly sampling with replacement » times from the list of freezing temperatures using a discrete
uniform distribution function in the original experiment using the choices function in the built-in random library in Python,
where 7 is the number of droplets in the original experiment. Where multiple droplets froze at a given temperature, that
temperature is added multiple times to the ‘observed’ list. This process is repeated to create new ‘sampled’ freezing temperature
lists until the desired number of simulated experiments is achieved. Each sampled list is then sorted and analyzed as distinct
freezing assays, each with its own IN spectra that can be interpolated as usual. The simulated spectra are distributed around
the true data due to variations in which droplets are randomly sampled for each simulation, and the width of this distribution
provides an estimate of how uncertain the experimental value is at that temperature. Summary statistics of this distribution
such as mean, standard deviation, and quantiles can be calculated by dividing the temperature range of each interpolated
spectrum into a dense grid of evenly spaced points (e.g., ~10 points per degree Celsius) and calculating each statistic as usual
using the distribution at each point. The resulting statistics as a function of temperature can then be interpolated exactly using
a simple spline fit due to the high density of data available, providing interpolated continuous functions for each summary

statistic. This process is detailed further in the SI.
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Figure 3. Interpolated combined data (bold line), interpolated 2.5 and 97.5" quantiles (dashed lines), and interpolated individual
simulations (faint lines; N=100) of the a) cumulative n; and b) differential n, spectrum for each set of combined ash data from Fig.
1. The simulated data (lines) using empirical bootstrapping provide a realistic estimate of the distribution of how the spectra could
vary based on stochasticity, variations in the individual droplet freezing experiments comprising the combined experimental
spectrum, and other factors contributing to experimental uncertainty.

While the mathematical theory behind empirical bootstrapping is complex (see Efron and Tibshirani, (1994) or
Davison and Hinkley, (1997) for a thorough treatment of the mathematics behind bootstrapping and Canty et al., (2006) for a
thorough discussion of inconsistencies and errors that can be encountered when using bootstrapping), Fig. 3 provides some
evidence that this approach has successfully captured the possible variability in the ice nucleation spectra. Using the
interpolated quantiles as a measurement of the spread of the simulated spectra, the magnitude of the variability in each spectrum
largely follows the trends that would be expected. For example, the simulated cumulative spectra have much less relative
variability than the simulated differential spectra and both types are less variable at intermediate temperatures where more
droplets froze in the actual experiments. This reflects the fact that increased sample sizes tend to reduce uncertainty as
cumulative spectra represent a sum of all previous datapoints, and most droplets tend to freeze at intermediate temperatures in
a droplet freezing assay. The noisiness of the differential spectra indicates large uncertainty, meaning the differential spectrum
for the unaged volcanic ash is largely uninterpretable, while the differential spectrum for the aged volcanic ash and both
cumulative spectra are much more descriptive — for example, it can clearly be seen that the two cumulative spectra do not
overlap significantly below —13 °C, a fact that will be further quantified in Section 5. The large variability (even to & values
of zero in some cases) observed at the extrema of both differential spectra represent relatively rare freezing events for the
samples, such that a given simulation may or may not observe freezing events at that temperature. These areas are more

common in the unaged volcanic ash IN spectrum because that spectrum consists of fewer droplets than the aged volcanic ash
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IN spectrum, highlighting the importance of high-resolution data for meaningful interpretations of differential spectra. Also
note that in the last degree of each differential spectrum, the measured results lie outside of the quantiles calculated because
100 simulations are not sufficient to fully estimate the variability in the measured spectrum; this problem would be remedied

with additional simulations that fully sample that region of the IN spectrum.

4.4 Basic bootstrapped confidence bands and their limitations

Using this new method to simulate data that capture the variability inherent to freezing experiments, bootstrapped
summary statistics describing the experimental measurement can be calculated. Values such as the bootstrapped standard error
of the mean approximate the true standard error of the mean remarkably accurately when large numbers (n > 200) of bootstrap
simulations are employed, a fact known as the ‘plug-in-principle’ (Efron and Tibshirani, 1994). Bootstrapped confidence
intervals, however, are a more difficult subject. The previous studies that used parametric bootstrapping methods assumed that
the o/2th and 1-0/2th quantiles of the simulations correspond to the lower and upper limits of the 1—« level confidence interval
respectively, where o is the threshold value chosen for statistical significance (Harrison et al., 2016; Vali, 2019). This
assumption is common, and while it can work well for many applications, this ‘quantile interval” has little basis in statistical
theory. It is also strongly affected by bias, only partially corrects for skewed distributions (ice nucleation spectra are likely to
be skewed upward based on the Poisson statistics they are derived from) and can be too narrow when applied to some
distributions (Hesterberg, 2015; Efron, 1987). The strong bias that quantile intervals exhibit is particularly concerning when
using potentially inaccurate parametric bootstrapping or when a small sample results in poor sample coverage in empirical
bootstrapping.

Fortunately, other bootstrap confidence intervals exist. For a simple interval rooted in statistical theory, we can
construct the reverse percentile interval, also known as the pivotal interval, where the upper and lower quantiles are subtracted
from twice the sample mean for the lower and upper confidence intervals respectively. However, in skewed distributions such
as uncertainty in ice nucleation spectra, the pivotal interval tends to be inaccurate. For a more traditional interval, we can
construct a Z-interval around the measured spectrum with a bootstrapped estimation of standard error, but this assumes a
normal variance — obviously a poor approximation of the complexity inherent to ice nucleation. A bootstrapped t-interval
(tboot) using the number of droplets in the original experiment as the number of degrees of freedom is a slightly better estimate,

but still suffers from error from bias (including narrowness bias) and skewness (Hesterberg, 2015; Efron, 1987).
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4.5 Better bootstrapped confidence bands

Significant work has gone into correcting these problems with basic bootstrapped confidence intervals. The tboot
interval can be corrected for skewness to the ‘tskew’ interval by including a second-order skewness term in the tboot calculation
as shown by Johnson (1978). The quantile interval can be expanded by changing the quantile bounds by a factor related to the
t-statistic to remove narrowness bias, called the ‘expanded quantile interval’ or the BCa confidence interval (Efron, 1987;
Hesterberg, 2015). However, by far the most accurate method is the studentized confidence interval, referred to as the
‘bootstrap T’ or ‘confidence intervals based on bootstrap tables’ elsewhere (Efron and Tibshirani, 1994; Hesterberg, 2015;
Diciccio and Efron, 1996; Efron, 1979). This method corrects the errors of the t-interval by estimating the actual distribution
of the t statistic for through bootstrapping. Specifically, the standard error of each simulated spectrum is calculated and is used
to normalize the difference of each simulated spectrum from the mean of all simulated spectra. These normalized values are
compiled into another distribution and the desired quantiles of this distribution are multiplied by the standard error of the
collective of simulated spectra to produce the final confidence intervals. To obtain the standard error of each individual
simulated spectrum a second round of bootstrapping is needed using the simulated spectrum as the ‘true’ measurement resulting
in ‘resimulated’ spectra. Further descriptions and equations for calculating this and all previously mentioned confidence

intervals are provided in the SI. The process is computationally intensive, but it results in confidence intervals that are
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Figure 4. Comparison of methods to calculate confidence bands (shown as different-colored dashed lines) for a) cumulative and
b) differential unaged volcanic ash n, spectra representing 91 droplets. Experimental spectra are shown in black. Most calculation
techniques are in good agreement across the range of the cumulative spectrum, but all techniques except the studentized intervals
(green dashed line) overestimate the variability in the differential spectra, resulting in confidence bands that are too wide across
most of the spectrum.
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unaffected by bias or skewness, even for small sample sizes. Statistical theory calls such intervals second-order accurate, and
this property sets the bootstrap T apart as a standard to compare other confidence intervals against.

The above methods were used to calculate confidence bands (continuous confidence intervals) for the cumulative and
differential IN spectra of the unaged and water aged combined volcanic ash sample. Like the summary statistics, to create
confidence bands confidence intervals were calculated at every 0.1 °C within each spectrum and were interpolated using a
smoothed cubic spline fit. The different methods of calculating confidence bands for the combined unaged spectra representing
91 droplets (the number of droplets present in the two unaged FUE freezing experiments) are compared in Fig. 4. In general,
the best-performing confidence bands (determined by being the closest to the studentized bands) are calculated using the
quantile or expanded quantile methods and the skew-corrected t-interval method — the other approaches tend to be less accurate.
In contrast, in the combined water aged spectra representing 286 droplets, the different methods of calculating confidence
bands are in good agreement over most of the IN spectra (Fig. S3), although the studentized confidence bands show slightly
different behavior at high temperatures where very few droplets are observed to freeze. As in Fig. 3, the variability in the
differential spectrum for this relatively low-resolution data is significant as shown by the wide confidence bands in Fig. 4b,

although most confidence bands overestimate this variability compared to the studentized bands.

4.6 Recommendations for use of empirical bootstrapping methods and required sample sizes

If accurate confidence bands on both the cumulative and differential spectra are required from low-resolution data,
studentized intervals should always be used. Ideally, the studentized confidence bands should be used in all cases, but the
computational time required for calculation of these confidence bands can be excessive. For most use cases then, the tskew
bands are somewhat conservative confidence bands rooted in theory, and we will use them in the remaining examples below.
Expanded quantile or quantile bands are also an appropriate choice when empirical bootstrapping is used but should be tested
against the studentized bands for each system to check for potential biases in the data collection process. Quantile bands should
be avoided when using small numbers of droplets (>5 per degree Celsius measured seems to be acceptable) or when using a
parametric bootstrap, as the biases inherent to the parameterization will be amplified by the quantile bands. The pivot and tboot
bands seem to be poor choices in the context of ice nucleation.

Although we cannot theoretically determine the sample sizes required for accurate confidence bands using empirical
bootstrapping due to the same limitations discussed previously, the sample sizes required for accurate confidence bands can
be empirically evaluated by testing how many assays, droplets, and simulated spectra are required for confidence bands to
converge (therefore reducing the uncertainty of the confidence bands due to sample size). Fig. 5a displays interpolations and
resulting confidence bands for the differential IN spectrum of aged volcanic ash when 50, 100, 150, 200, and 286 (where all
droplets are included) droplets are randomly sampled from the six performed experiments. The width and shape of the
confidence bands changes significantly but seem to be converging to a smooth curve exemplified when N=286. When N=50,
the confidence bands span three or more orders of magnitude, indicating that 50 droplets may be too few to draw any

conclusions from freezing spectra in our system. In this case, the minimum sample size is approximately 150 for useful
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conclusions at the 95% confidence level, and at least 200 is preferred (at least in our system) for more accurate confidence
bands to ensure the entire probability space of droplet freezing is covered. More droplets or freezing assays improve the
accuracy and reduce the width of the confidence bands, especially in differential IN spectra, further motivating the many
recently developed microfluidic techniques (Stan et al., 2009; Weng et al., 2016; Reicher et al., 2018; Tarn et al., 2018;
Brubaker et al., 2020; Roy et al., 2021). Additionally, the number of simulations (and resimulations if using studentized

confidence bands) should be chosen carefully to ensure the full variability present in IN spectra is represented.
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Figure S. Differential freezing spectra of the water aged FUE ash with tskew confidence bands a) calculated with varying numbers
of datapoints randomly sampled without replacement from all six experiments with 1000 bootstrapping simulations, and b)
calculated using different numbers of bootstrapping simulations, with the experimental combined spectrum shown in black. Figure
S4 shows the cumulative spectra, but the effects of sample size are not as pronounced.

In Fig. 5b, the tskew confidence bands of the combined water aged volcanic ash IN spectra (all 286 droplets) are
compared when the number of simulations (nSim) ranges from 50 to 10000. S4 shows the same bootstrap simulation number
analysis when using 50 and 150 droplets randomly sampled from the initial 286 to test the effects of droplet number on the
required bootstrap simulation sample size. Based on these plots, the number of bootstrapped spectra does not appear to impact
the confidence intervals nearly as much as the number of droplets used. This is a contrast from requirements in other types of
bootstrapping techniques, which can be easily calculated to require more than 10000 samples to be accurate within an
acceptable margin of error of 10% (Hesterberg, 2015). While this insensitivity could be coincidence (errors in opposite
directions cancelling out to result in confidence bands that are approximately correct), we speculate it is instead related to the
fact that each bootstrap sample includes many droplets (286 in this case) which are also sampled, covering the probability
space more completely than when single datapoints are sampled and therefore reducing the Monte Carlo error observed. Based
on this, we recommend ensuring that the number of simulations multiplied by the number of droplets (the ‘resample size’) in

each simulation exceeds 10000 — in the above spectrum this resample size ranges from around 14000 to 2.86 million. This is
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partially corroborated by Fig. S5, where the resample size reaches as low as 2500 and the confidence bands with low resample
sizes often do not match those with high resample sizes. It is also important to consider the statistic being calculated — in the
above case the standard deviation and skewness are being used to calculate confidence bands, but if quantiles were being used,
the number of bootstrapped spectra would have to be large enough to calculate accurate 2.5" and 97.5" quantiles (likely about
200 spectra). Regardless, the effects of bootstrap sample size should be tested whenever empirical bootstrapping is applied to
ensure that the accuracy of the calculated confidence bands (or any other statistic) is never dependent on the number of
simulations used. Similarly, each investigator must determine their own droplet sample size requirement to collect datasets
that can answer their research questions.

Finally, Figs. 3-5 provide evidence that the interpolation technique used is not overfitting the data, as the quantiles
and other confidence bands follow the general shape of the experimental spectra. Since these statistics are calculated from an
aggregate of 1000 samples in most cases, they would be expected to smooth out random variation present in a single measured
spectrum that could be causing the complex interpolated curve observed. Because the aggregated data maintains the same
shape, it can be assumed that it is at least somewhat meaningful, and that the interpolation technique is using an appropriate
smoothing factor, however, this should be tested regularly to minimize potential overfitting. Note that when droplet numbers
are below 200 (as in some of the Fig. S4a spectra and in Fig. S5) the interpolated differential spectra have shapes that look
unrealistic (e.g. many inflection points within one or two degrees Celsius), but they also have error bars that span many orders
of magnitude in those regions, meaning that neither the measured value nor the interpolation of the differential IN spectrum at
that point is as useful because the uncertainty is so high. Regardless, the interpolation of the cumulative spectrum remains
smooth and interpretable, and the portions of the interpolated differential spectrum with lower uncertainties are still

meaningful.

5 Comparing IN spectra, testing statistical significance, and background subtraction

Confidence bands provide useful information about the variability of a single dataset — in the case of droplet freezing
assays, 95% confidence intervals contain the true population mean ice nucleation activity of the suspension being sampled
from in 19 out of 20 analyses (that is, either the true spectrum is within the confidence interval, or an event of probability at
most 5% happened during data collection). All ice nucleation data should be reported with some form of confidence interval
or quantification of the distribution of the measurements (e.g., standard error bars). These statistics must be calculated using a
method, such as empirical bootstrapping, rooted in statistical theory to minimize assumptions about the ice nucleation
experiment and accurately represent the uncertainty inherent to the experiment.

Another key application of statistics that quantify the variability within a dataset is in comparing measurements of
different samples to assess the degree of similarity of their INA. In general terms, confidence bands can be used to compare
two IN spectra by determining whether they could reasonably have been drawn from the same population. Often confidence

intervals or bands are interpreted based on whether they overlap: If confidence intervals of two spectra do not overlap, they
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are statistically significantly different. However, it is not necessarily true that if the confidence bands overlap the two
measurements are statistically the same at a given confidence level. This common misconception is based on the difference
between error bars calculated using the standard error of the mean and confidence intervals (Barde and Barde, 2012; Belia et
al., 2005).

For a more quantitative (and interpretable) method to compare IN spectra can simply be divided or subtracted. We
will use the term ‘difference spectrum’ to refer to this ratio or difference as a function of temperature, as both are calculated
using the same procedures and provide similar information. When interpolated IN activity spectra are used, a continuous
difference spectrum can easily be generated by calculating the ratio (or difference) between two interpolations at each point in
a dense grid of temperatures, then interpolating between those points. A difference spectrum can be plotted as a function of
temperature with its own confidence bands and can be used to test whether two IN spectra are statistically significantly different
at any temperature where the two spectra overlap at any confidence level. Stated precisely, the hypothesis that the two IN
spectra are different can be tested against the null hypothesis that the two IN spectra are not quantitatively different. in the case
of a ratio-based difference plot with confidence bands, if the confidence bands do not contain one at a given temperature, then
the null hypothesis is rejected. If they do contain one, then that claim cannot be made. If a difference between IN spectra is
used instead of a ratio, then zero is used for this hypothesis test instead of one. Therefore, if confidence bands can be accurately
calculated for a difference spectrum, then continuous statistically rigorous claims about differences between IN spectra can be

tested.

5.1 Calculating confidence bands for difference spectra

Calculating confidence bands for differences or ratios of continuous variables is not trivial, but for these metrics to
be useful, confidence bands are necessary. Subtracting or dividing the confidence bands of the compared spectra is not accurate.
Elementary propagation of error formulas assumes that the variability within both spectra (and of the comparison spectra) is
normally distributed, which is a poor assumption as discussed previously. Again, bootstrapping offers a solution. To simulate
the variability in the difference spectra, individual simulations of each measurement can be subtracted or divided from each
other pairwise, until a collection of simulated difference spectra combining the variability inherent to each measurement is
produced. From these bootstrapped simulations, confidence bands can be produced using any of the methods in Section 4.

Figure 6a and 6b show the ratio and difference between the IN spectra of water aged volcanic ash and unaged volcanic
ash with confidence intervals. Suspension of minerals and volcanic ash in water can cause alteration of the ice-active surface
sites due to a variety of geochemical processes as shown in recent literature (Harrison et al., 2019; Jahn et al., 2019; Kumar et
al., 2019; Maters et al., 2020; Perkins et al., 2020; Fahy et al., 2022b). Based on the confidence bands of either metric, it can
easily be seen that below approximately —12 °C, there is a statistically significant difference between the IN activity of the
aged ash and unaged ash with p<0.05, confirming that in this experiment there is an alteration of the IN activity of volcanic
ash due to suspension in water. The magnitude of this difference has also been determined in both relative and absolute terms,

providing a quantitative measurement of the change in IN activity due to chemical processing of this sample. In this case, the
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Figure 6. Comparison of the water aged ns spectrum to the unaged ns spectrum a) by dividing, and b) by subtracting. The dotted
line appears at Any =1 in a)and at An, = 0 in b), signifying no difference between the two spectra. Confidence bands are calculated
using interpolated tskew bootstrapped ratio/difference simulations as discussed above. Based on the confidence bands, there is a
statistically significant difference between the water aged and unaged ash spectra for temperatures <—12 °C for both plots, and the
magnitude of this difference is available as a function of temperature.

IN activity of water aged ash is reduced by a factor of 2-3 below —12 °C and is reduced by between 0 and 1500 ice active sites
per square centimeter of ash surface area as a function of temperature. For this analysis only about 200 bootstrap simulations

per shared degree Celsius seems to be necessary for consistent confidence bands for each difference spectrum.

5.2 Applications of difference spectra

Difference spectra have a variety of useful applications within the context of ice nucleation. The first has already been
shown, as two spectra can be easily tested to determine whether there is a statistically significant difference between them.
This is particularly useful in studies of chemical aging, where the change in IN activity after a given chemical treatment can
be quantitatively measured using the difference or ratio before and after aging. Another application is in background freezing
subtraction for IN spectra. All droplet-on-substrate methods used to measure heterogeneous IN activity have some level of
background freezing activity either from background heterogeneous nucleation or from homogeneous ice nucleation that can
change day-to-day depending on the system (Polen et al., 2018; Vali, 2019). For accurate measurements and to compare
between instruments, the instrumental background (or homogeneous ice nucleation activity) must be subtracted from any
measured heterogeneous IN spectrum. This can be readily accomplished by calculating the difference between the IN spectrum
of interest and the background freezing spectrum. Where there is no background, the difference is equal to the sample spectrum.

By saving the subtracted simulations used to calculate the variability in this difference spectrum, the background-subtracted
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experiment shown in goldenrod (1|1) is statistically significantly
different from the other five experiments and is therefore deemed an
outlier.

data can be compared further via another difference spectrum
if desired. This can also be useful in determining whether a
sample’s IN activity is distinguishable from the instrumental
background in weak IN materials. For all use cases, accurate
confidence bands based on the bootstrapping procedures
presented here are integral to ensuring rigorous and correct
analysis and interpretation of the data, as simply subtracting
K(T) or k(T) without accurate confidence intervals or other
statistics does not fully represent the background-subtracted
spectrum.

A third application of difference spectra in IN
activity is in locating outliers. Droplet-on-substrate IN
measurements are extremely sensitive to contamination and
human error, even when great care is taken during the sample
preparation process. When two measurements of the same
sample disagree, additional replicate measurements are taken
to determine if a measurement is an outlier, usually visually.
Ideally, a more quantitative measurement of outlier status
would be used, such as the Grubbs Test (Grubbs, 1969),
Tukey’s Fences (Tukey, 1977), or the Modified Thomson Tau

Test (Thompson, 1985). However, the usefulness of these

common techniques and the assumptions they require for IN spectra is questionable. Instead, we propose that for a quantitative

measurement of whether a sample is an outlier, the difference spectrum comparing the sample in question with the combined

spectrum of the remaining measurements of the same sample can be used. An example of this analysis is shown in Figure 7,

where the various water aged ash freezing experiments are compared using a difference plot to combinations of the remaining

measurements. It can be clearly seen that only the spectrum shown in purple is statistically significantly different (in this case

lower) at the 99% confidence level based on the bootstrapped tskew confidence bands. Therefore, this experiment could be

treated as an outlier at that confidence level and excluded from future analysis. Even still, great care should be taken when

dealing with potential outliers, and the confidence level required to exclude outliers should be carefully considered so as not

to remove valid data. Whenever possible, decisions about whether to exclude a potential outlier should combine this statistical

method with observations or lack thereof of specific experimental errors in the laboratory.
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6 Summary and Conclusions

We have presented a rigorous and generalized set of methods for interpolating raw data, calculating confidence bands
and other statistics, and quantitatively comparing IN spectra derived from droplet freezing assays. The interpolation methods
discussed use ice nucleation data far more efficiently than previous binning methods and allow continuous quantitative
comparison of IN spectra without compromising statistical power and detail present in the original data. Empirical
bootstrapping is introduced as an improvement on the elementary statistical methods and parametric bootstrapping previously
used by capturing the full variability present in each IN spectrum or collection of IN spectra with no assumptions about the
nature of ice nucleation for the material being tested. Enhanced continuous confidence bands are calculated using rigorous and
modern algorithms to replace the quantile intervals or z-intervals previously used. Finally, the ability to interpolate and simulate
IN spectra is used to develop difference spectra with accurate confidence bands for quantitative comparison and statistical
testing of ice nucleation activities between materials and background subtraction.

These approaches can be used to help answer many important research questions in the field related to statistically
assessing observed changes or differences in IN activities and can be applied to any experimental setup using arrays of droplets
freezing over time or at varying temperatures. They are supported by statistical theory and use widely accepted methodologies
from the statistics literature. The universality, simplicity, and accuracy of this approach makes it an ideal candidate to be a
standard statistical method by which to compare datasets from different instruments and groups. The bootstrapping approach
could be particularly useful for incorporating uncertainty in IN activity into advanced atmospheric models, as a full distribution
of IN activity at each temperature can be easily estimated from simulations. To facilitate adoption of these statistics, all code
developed for this project along with documentation and data to recreate the figures in this paper is available in archived form
as was used at the time of writing at KiltHub (Fahy et al., 2022a) or in a living GitHub repository where updates or additional
information may be added in the future (https://github.com/wdfahy/CMU-INstats).

Further refinement of these methods by optimizing code runtime, improving confidence interval coverage, adding
simulation methods, and implementing different statistics may be accomplished in the future as necessary. Extension of the
procedures described here may be possible to describe uncertainty in instruments that measure ice nucleation in the aerosol
phase such as CFDC-type instruments and expansion chambers and are not limited to ice nucleation. This may lead to
applications describing uncertainty in experiments analyzing a variety of nucleation processes under varying conditions. If
widely adopted, the quality and consistency of statistical treatment of nucleation data will improve, leading to enhanced

representation and communication of results and interpretations within those fields.

Code availability

All code used in this project can be accessed in its archived form at: doi:10.1184/R1/19494188, with any updates or further
work posted to https://github.com/wdfahy/CMU-INstats.
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