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Supplementary Information 

S1 Supplementary figures 

Figure S1 shows the individual unaged and water aged Fuego (FUE) ash ice nucleation (IN) spectra. Figure S2 shows 

the result of applying the same type of analysis of the different methods of calculating empirically generated confidence bands 

for the water aged FUE spectrum, as opposed to the unaged FUE spectrum shown in the main text. Figure S3a and S3b show 5 

the effects of changing the number of droplets in the original experiment and the number of simulations used the generate 

confidence bands for the water aged FUE spectrum respectively.  

 

 

 10 

 

 

 

 

 15 

 

 

Figure S1. Individually interpolated cumulative ice 

nucleation surface active density spectra of unaged 
and water aged volcanic ash using the 

smoothedPCHIP algorithm 
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a) b) 

Figure S2. Comparison of methods to calculate CIs on the a) cumulative and b) differential combined water aged ice active site 

density spectra representing 286 droplets. The interpolated experimental spectra are shown in black.  

a) b) 

Figure S3. Freezing spectra with tskew CIs calculated with varying numbers of a) datapoints with 1000 bootstrapping simulations, 

and b) bootstrapping simulations, with 50 datapoints with the experimental spectra shown in black. 
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S2 Bootstrapping algorithms and confidence interval calculations 35 

In this section, the algorithms and equations used to generate simulated experiments, boostrapped statistics, and 

confidence intervals/bands are described in plain text. When discussing ice active site density spectra, any cumulative or 

differential spectrum can be used (and in fact, are all used in the provided implementation of these methods), however, for 

generality and simplicity, ‘ice active site density spectrum’ or ‘IN spectrum’ will be used here.  

 40 

To generate empirically simulated ice nucleation experiments, the following steps were taken: 

1. The observed freezing experiment (whether combined or not) was reduced into a list of freezing temperatures Tobs
 =  

[T0, T1, … Ti] where i is the number of droplets that froze in that experiment. Temperatures are repeated if multiple 

droplets froze at a single temperature.  

2. A new list of temperatures, Tsim, is generated by randomly choosing an element of Tobs i times with replacement and 45 

adding each one to the new list.  

3. Step 2 is repeated j times, where j is the number of desired simulated experiments, usually with j >= 1000.  

4. Each new list of temperatures, Tsim,j is separately sorted, converted into a frozen fraction, inverted to calculate ice 

active site density spectra, and interpolated using the desired approach to produce fsim,j., a function which takes a 

temperature and outputs the corresponding ice active site density at that temperature.  50 

To calculate statistics using these new simulated spectra: 

1. The temperature range of the observed freezing experiment is divided into a grid of x temperatures. In this paper x 

was chosen to be 10 times the difference between the highest and lowest freezing temperatures observed.  

2. For temperature x, a list Ĝx consisting of fsim,j(x) for all j is generated – the list of possible simulated ice active site 

densities at that temperature.  55 

3. Step 2 is repeated for all x 

4. For all x, the desired statistic is calculated on the list Ĝx using elementary statistical equations (common statistics 

include mean, standard error or standard deviation of the mean, and quantiles).  

5. The statistic is then interpolated over all x to provide a continuous bootstrapped estimation of the statistic.  

 60 

A variety of methods for calculating confidence intervals of the mean are provided in the main text of this paper. 

Equations S1-S8 provide mathematical formulations for these confidence interval calculations based on bootstrapped statistics 

calculated as above. Confidence intervals are calculated like statistics on the simulated spectra and are similarly interpolated 

to provide full confidence bands. Notation and formulations are taken from Hesterberg (2015). In some cases, due to the nature 

of ice nucleation experiments, an experimental standard error or mean is not available (see Section 4.1 in the main text). When 65 

these statistics would normally be used in calculating bootstrapped confidence intervals, we have substituted the bootstrapped 

versions as the bootstrapped version of any given statistic can be interpreted as an estimation of the sampled version of that 
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statistic. When a confidence interval is symmetric, it is represented using the ± symbol, and where it is not the form (a, b) is 

used, where a is the lower confidence limit and b is the upper confidence limit.  

A simple bootstrap Z interval is  70 

 𝐶𝐼𝑍 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  𝜇 ±  𝑠̂𝑍𝛼 2⁄  (S1) 

where µ is the experimental value for the IN spectrum at x, ŝ is the standard error of the mean of the bootstrap distribution Ĝx, 

Zα/2 is the z-score at alpha level α/2, and α is the confidence level desired. 

A quantile confidence interval is  

 𝐶𝐼𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 = (𝑞𝛼 2⁄ , 𝑞1− 𝛼 2⁄ ) (S2) 75 

where qα is the α quantile of Ĝx.  

The pivot (or reverse quantile) confidence interval is  

 𝐶𝐼𝑝𝑖𝑣𝑜𝑡 = (2𝜇 − 𝑞1− 𝛼 2⁄ , 2𝜇 −  𝑞𝛼 2⁄ ). (S3) 

The bootstrapped t interval is  

 𝐶𝐼𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  𝜇 ±  𝑠̂𝑡𝛼 2⁄ ,𝑛−1 (S4) 80 

where tα/2, n-1 is the t-score for alpha level alpha level α/2 and n is the number of droplets in the original freezing array. 

The skew-corrected bootstrap t interval based on Johnson (1978) is 

 𝐶𝐼𝑠𝑘𝑒𝑤−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 =  𝜇 +  𝜅(1 + 2𝑡𝛼 2⁄ ,𝑛−1
2 )  ±  𝑠̂𝑡𝛼 2⁄ ,𝑛−1 with 𝜅 =  

𝑆𝑘𝑒𝑤

6√𝑛

̂
 (S5) 

 

where 𝑆𝑘𝑒𝑤̂ is the skewness of Ĝx. 85 

The expanded quantile confidence interval based on Efron (1987) 

 𝐶𝐼𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒 = (𝑞𝛼′ 2⁄ , 𝑞1− 𝛼′ 2⁄ ) with 𝛼′ 2⁄ =  Φ (−√
𝑛

𝑛−1
𝑡𝛼 2⁄ ,𝑛−1) (S6) 

where Φ is the normal cumulative distribution function. 

Finally, the studentized confidence interval (or bootstrap t interval; (Diciccio and Efron, 1996 and references therein; Efron, 

1979) is  90 

 𝐶𝐼𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑖𝑧𝑒𝑑 =  (𝜇 − 𝑠̂𝑞̂1− 𝛼 2⁄ , 𝜇 −  𝑠̂𝑞̂𝛼 2⁄ ) (S7) 

where q̂α is the α quantile of a distribution 𝐺̂𝑥
∗, which is the distribution of the t-statistic for each bootstrapped spectrum, 

calculated as 
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 𝐺̂𝑥
∗ =

(𝜇𝑗̂− 𝜇)

𝑠̂𝑗
∗   (S8) 

where 𝜇̂𝑗 is the jth bootstrapped value for the IN spectrum at x, and 𝑠̂𝑗
∗is an estimation of the standard error for 𝜇̂𝑗. To estimate 95 

𝑠̂𝑗
∗, another iteration of bootstrapping is required, which is performed the same way as the first iteration of bootstrapping, only 

using the jth bootstrapped simulation from the first iteration to generate the list of temperatures being sampled from for the 

second iteration. The sorting, analysing, and interpolating processes are the same from there, and calculating the statistics from 

the resulting resimulations is identical to calculating statistics for the first round of simulations.  
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