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Abstract

We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR’T) for quantifying
and mitigating artifacts in atmospheric radiation science algorithms due to spatially inhomogeneous clouds
and surfaces, and show the benefits of automated, realistic radiance and irradiance generation along
extended satellite orbits, flight tracks from entire aircraft field missions, and synthetic data generation from
model data. EaR>T is a modularized Python package that provides high-level interfaces to automate the
process of 3D radiative transfer (RT) calculations. After introducing the package, we present initial findings
from four applications, which are intended as blueprints to future in-depth scientific studies. The first two

applications use EaR®T as a satellite radiance simulator for the NASA Orbiting Carbon Observatory 2

(OCO-2) and Moderate Resolution Imaging Spectroradiometer (MODIS) missions, which generate

synthetic satellite observations with 3D-RT on the basis of cloud field properties from imagery-based
retrievals and other input data. In the case of inhomogeneous cloud fields, we show that the synthetic
radiances are often inconsistent with the original radiance measurements. This lack of radiance consistency
points to biases in heritage imagery cloud retrievals due to sub-pixel resolution clouds and 3D-RT effects.
They come to light because the simulator’s 3D-RT engine replicates processes in nature that conventional
ID-RT retrievals do not capture. We argue that 3D radiance consistency (closure) can serve as a metric for
assessing the performance of a cloud retrieval in presence of spatial cloud inhomogeneity even with limited
independent validation data. The other two applications show how airborne measured irradiance data can
be used to independently validate imagery-derived cloud products via radiative closure in irradiance. This
is accomplished by simulating downwelling irradiance from geostationary cloud retrievals of Advanced
Himawari Imager (AHI) along all the below-cloud aircraft flight tracks of the Cloud, Aerosol and Monsoon
Processes Philippines Experiment (CAMP?Ex, NASA 2019), and comparing the irradiances with the
collocated airborne measurements. In contrast to isolated case studies in the past, EaR’T facilitates the use
of observations from entire field campaigns for the statistical validation of satellite-derived irradiance. From
the CAMP?Ex mission, we find a low bias of 10% in the satellite-derived cloud transmittance, which we
are able to attribute to a combination of the coarse resolution of the geostationary imager and 3D-RT biases.

Finally, we apply a recently developed context-aware Convolutional Neural Network (CNN) cloud retrieval

framework to high-resolution airborne imagery from CAMP?Ex and show that the retrieved cloud optical
thickness fields lead to better 3D radiance consistency than the heritage independent pixel algorithm,

opening the door to future mitigation of 3D-RT cloud retrieval biases.



50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

1. Introduction

Three-dimensional cloud effects in imagery-derived cloud properties have long been
considered an unavoidable error source when estimating the radiative effect of clouds and aerosols.
Consequently, research efforts involving satellite, aircraft, and surface observations in conjunction
with modeled clouds and radiative transfer calculations have focused on systematic bias
quantification under different atmospheric conditions. Barker and Liu (1995) studied the so-called
independent pixel approximation (IPA) bias in cloud optical thickness (COT) retrievals from
shortwave cloud reflectance. The bias arises when approximating the radiative transfer relating to
COT and measured reflectance at the pixel or cloud column level through one-dimensional (1D)
radiative transfer (RT) calculations, while ignoring its radiative context. However, net horizontal
photon transport and other effects such as shading engender column-to-column radiative
interactions that can only be captured in a three-dimensional (3D) framework, and can be regarded
as a 3D perturbation or bias relative to the 1D-RT (IPA) baseline. 3D biases affect not only cloud
remote sensing but they also propagate into the derived irradiance fields and cloud radiative effects
(CRE). Since the derivation of regional and global CRE relies heavily on satellite imagery, any
systematic 3D bias impacts the accuracy of the Earth’s radiative budget. Likewise, imagery-based
aerosol remote sensing in the vicinity of clouds can be biased by net horizontal photon transport
(Marshak et al., 2008). Additionally, satellite shortwave spectroscopy retrievals of CO, mixing
ratio are affected by nearby clouds (Massie et al., 2017), albeit through a different physical
mechanism than in aerosol and cloud remote sensing (Schmidt et al., 2022).

Given the importance of 3D perturbations for atmospheric remote sensing, ongoing
research seeks to mitigate the 3D effects. Cloud tomography, for example, inverts multi-angle
radiances to infer the 3D cloud extinction distribution (Levis et al., 2020). This is achieved through
iterative adjustments to the cloud field until the calculated radiances match the observations.
Convolutional neural networks (CNNs, Masuda et al., 2019; Nataraja et al., 2022) account for
3D-RT perturbations in COT retrievals through pattern-based machine learning that operates on
collections of imagery pixels, rather than treating them in isolation like IPA. Unlike tomography,
CNNis require training based on extensive cloud-type specific synthetic data with the ground truth
of cloud optical properties and their associated radiances from 3D-RT calculations. Once the
CNNs are trained, they do not require real-time 3D-RT calculations and can therefore be useful in

an operational setting. Whatever the future may hold for context-aware multi-pixel or multi-sensor
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cloud retrievals, there is a paradigm shift on the horizon that started when the radiation concept
for the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE, Illingworth et al., 2015) was
first proposed (Barker et al., 2012). It foresees a closure loop where broadband radiances, along
with irradiance, are calculated in a 3D-RT framework from multi-sensor input fields (Barker et al.,
2011), and subsequently compared to independent observations by radiometers pointing in three
directions (nadir, forward-, and backward-viewing along the orbit). This built-in radiance closure
can serve as an accuracy metric for any downstream radiation products such as heating rates and
CRE. Any inconsistencies can be used to nudge the input fields towards the truth in subsequent
loop iterations akin to optimal estimation, or propagated into uncertainties of the cloud and
radiation products.

This general approach to radiative closure is also being considered for the National
Aeronautics and Space Administration (NASA) Atmospheric Observation System (AOS,
developed under the A-CCP, Aerosol and Cloud, Convection and Precipitation study), a mission
that is currently in its early implementation stages. Owing to its focus on studying
aerosol-cloud-precipitation-radiation interactions at the process level, it requires radiation
observables at a finer spatial resolution than achieved with missions to date. At target scales close
to 1 km, 3D-RT effects are much more pronounced than at the traditional 20 km scale of NASA
radiation products (O’Hirok and Gautier, 2005; Ham et al., 2014; Song et al., 2016; Gristey et al.,
2020a). Since this leads to biases beyond the desired accuracy of the radiation products, mitigation
of 3D-RT cloud remote sensing biases needs to be actively pursued over the next few years.

Transitioning to an explicit treatment of 3D-RT in operational approaches entails a new
generation of code architectures that can be easily configured for various instrument constellations,
interlink remote sensing parameters with irradiances, heating rates, and other radiative effects, and

can be used for automated processing of large data quantities. A number of 3D solvers are available

for different purposes, for example, the I3RC (International Intercomparison of 3D Radiation

Codes: Cahalan et al., 2005) community Monte Carlo code', which now also includes an online

simulator? (Gatebe et al., 2021): MCARaTS (Monte Carlo Atmospheric Radiative Transfer

Simulator®: Iwabuchi, 2006); MYSTIC (Monte Carlo code for the physically correct tracing of

! https://earth.gsfc.nasa.gov/climate/model/i3rc, last accessed on 26 November, 2022.

2 http://i3rcsimulator.umbc.edu, last accessed on 26 November, 2022.

3 https://sites.google.com/site/mcarats/monte-carlo-atmospheric-radiative-transfer-simulator-mcarats, last accessed
on 26 November, 2022.
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photons in cloudy atmospheres: Mayer, 2009), which is embedded in libRadtran (library for
radiative transfer, Mayer and Kylling, 2005); McSCIA (Monte Carlo [RT] for SCIAmachy: Spada

et al., 2006), which is optimized for satellite radiance simulations (including limb-viewing) in a

spherical atmosphere; McARTIM (Deutschmann et al., 2011), with several hyperspectral

polarimetric_applications such as differential optical absorption spectroscopy; and SHDOM

(Spherical Harmonic Discrete Ordinate Method*: Evans, 1998), which, unlike the other methods,

is a deterministic solver with polarimetric capabilities (Doicu et al., 2013; Emde et al., 2015) that

is differentiable and can therefore be used for tomography (Loveridge et al., 2022).

For the future operational application of 3D-RT, it is, however, desirable to run various

different solvers in one common architecture that automates the processing of various formats of

3D atmospheric input fields (including satellite data), allows the user to choose from various

options for atmospheric absorption and scattering, and simulates radiance and irradiance data for

real-world scenes. Here, we introduce one such tool that could serve as the seed for this architecture:

'CDeleted: transition

the Education and Research 3D Radiative Transfer Toolbox (EaR3T). It has been developed over
the past few years at the University of Colorado to automate 3D-RT calculations based on imagery
or model cloud fields with minimal user input. EaR*T is maintained and extended by graduate
students as part of their education, and applied to various different research projects including
machine learning for atmospheric radiation and remote sensing (Gristey et al., 2020b; 2022;
Nataraja et al., 2022), as well as radiative closure and satellite simulators (this paper and Schmidt
et al., 2022). It is implemented as a modularized Python package with various application codes

that combine the functionality in different ways, which, once set up, autonomously process large

amounts of data required by airborne and satellite remote sensing and for machine learning

applications.

The goal of the paper is to introduce EaR>T as a versatile tool for systematically quantifying
and mitigating 3D cloud effects in radiation science as foreseen in future missions. To do so, we
will first showcase EaR>T as an automated radiance simulator for two satellite instruments, the

Orbiting Carbon Observatory-2 (OCO-2, this application is referred to as App. 1 in this manuscript)

{ Deleted: APP1

and the Moderate Resolution Imaging Spectroradiometer (MODIS, application code 2, App. 2)
from publicly available satellite retrieval products. In the spirit of radiance closure, the intended

use is the comparison of modeled radiances with the original measurements to assess the accuracy

4 https://coloradolinux.com/shdom, last accessed on 26 November, 2022.

_(Deleted: APP
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of the input data, as follows: operational IPA COT products are made using 1D-RT, and thus the
accompanying radiances are consistent with the original measurements under that 1D-RT
assumption only. That is, self-consistency is assured if 1D-RT is used in both the inversion and

radiance simulation. However, since nature creates 3D-RT radiation fields, we break this

traditional symmetry in this manuscript and introduce the concept of 3D radiance consistency
where closure is only achieved if the original measurements are consistent with the 3D-RT (rather
than the 1D-RT) simulations. The level of inconsistency is then used as a metric for the magnitude
of 3D-RT retrieval artifacts as envisioned by the architects of the EarthCARE radiation concept
(Barker et al., 2012).

Subsequently, we discuss applications where EaR3T performs radiative closure in the
traditional sense, i.e., between irradiances derived from satellite products and collocated airborne
or ground-based observations. The aircraft Cloud, Aerosol and Monsoon Processes Philippines
Experiment (CAMP?Ex, Reid et al., 2022), conducted by NASA in the Philippines in 2019, serves
as a testbed of this approach. Here, we use EaR3T’s automated processing capabilities to derive
irradiance from geostationary imagery cloud products and then compare these to cumulative

measurements made along all flight legs of the campaign (application code 3, App..3). In contrast

CDeleted: operates
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to previous studies that often rely on a number of cases (e.g., Schmidt et al., 2010; Kindel et al.,
2010), we perform closure systematically for the entire data set, enabling us to identify 3D-RT
biases in a statistically significant manner. Finally, we apply a regionally and cloud type specific
CNN, introduced by Nataraja et al. (2022) that is included with the EaR*T distribution, to high-
resolution camera imagery from CAMP?Ex. This last example demonstrates mitigation of 3D-RT
biases in cloud retrievals using the concept of radiance closure to quantify its performance against
the baseline IPA (application code 4).

The general concept of EaR3T with an overview of the applications, along with the data
used for both parts of the paper is presented in section 2, followed by a description of the
procedures of EaR>T in section 3. Results for the OCO-2 and MODIS satellite simulators (part 1)
are shown in section 4, followed by the quantification and mitigation of 3D-RT biases with
CAMP2Ex data in section 5 and section 6 (part 2). A summary and conclusion are provided in
section 7. The code, along with the applications presented in this paper, can be downloaded from

the GitHub, repository: https://github.com/hong-chen/er3t.

CDeleted: github
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2. Functionality and Data Flow within EaR3T

2.1 Overview

To introduce EaR3T as a satellite radiance simulator tool and to demonstrate its use for the

quantification and mitigation of 3D cloud remote sensing biases, five applications (Figure 1) are

included in the GitHub software release, four of which are discussed in this paper:

'CDeleted: github
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185  Figure 1. Flow charts of EaR*T applications for (a) OCO-2 radiance simulation at 768.52 nm (data described in section

186 2.2.1 and 2.2.2, results discussed in section 4), (b) MODIS radiance simulation at 650 nm (data described

187 in section 2.2.1, results discussed in section 4), (c¢) SPN-S irradiance simulation at 745 nm (data described

188 in section 2.2.3 and 2.2.4, results discussed in section 5), (d) all-sky camera radiance simulation at 600 nm

189 (data described in section 2.2.5, results discussed in section 6), and (e) radiance simulation at 600 nm based

|1 90 on LES data for CNN training (Appendix B). The data products and their abbreviations are described in C Deleted: not included in this paper

191 section 2.2.

192

193 1. App.],section4.1 (examples/01 oco2 rad-sim.py): Radiance simulations along C Deleted: APP

194 the track of OCO-2, based on data products from MODIS and others — to assess consistency ( Deleted:

195 (closure) between simulated and measured radiance;

196 2. App. 2, section 4.2 (examples/02 modis rad-sim.py): MODIS radiance ( Deleted: APP

197 simulations — to assess self-consistency of MODIS level-2 (L2) products with the

198 associated radiance fields (L1B product) under spatially inhomogeneous conditions;

199 3. App.3,section 5 (examples/03 spns flux-sim.py): Irradiance simulations along C Deleted: APP
00 aircraft flight tracks, utilizing the L2 cloud products of the AHI, and comparison with C Deleted:

201 aircraft measurements — to quantify retrieval biases due to 3D cloud structure based with

202 data from an entire aircraft field campaign;

|203 4. App. 4, section 6 (examples/04 cam nadir rad-sim.py): Mitigation of 3D C Deleted: APP

204 cloud biases in passive imagery COT retrievals from an airborne camera, application of a

205 convolutional neural network (CNN) and subsequent comparison of CNN-derived

206 radiances with the original measurements — to illustrate how the radiance self-consistency

P07 concept assesses the fidelity of cloud retrievals.

208 5. App.5,Appendix B (examples/05 cnn-les rad-sim.py): Generation of training

209 data for the CNN (App. 4) based on LES inputs. The training datasets contains 1) the

210 ground truth of COT from the LES data; 2) realistic radiance simulated by EaR>T based on

P11 the LES cloud fields.

212 Figure 1 shows the high-level workflow of the applications. The first four share the general

213 concept of evaluating simulations (the output from the EaR>T, indicated in red at the bottom of
214 each column) with observations (indicated in green at the bottom) from various satellite and
15  aircraft instruments. The results for the first four applications are interpreted in section 4.1, section

16 4.2, section 5, and section 6. The results for App. 5 are discussed in detail in a separate paper by
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Nataraja et al. (2022). In this paper, we will only provide a brief description for App. 5 in Appendix

B. The workflow of each application consists of three parts — 1) data acquisition, 2) pre-processing,
and 3) RTM setup and execution. EaR*T includes functions to ingest data from various different
sources, e.g., satellite data from publicly available data archives, which can be combined in
different ways to accommodate input data depending on the application specifics. For example, in

App. 1, EaR®T is used to automatically download and process MODIS and OCO-2 data files based

'CDeleted: APP

on the user-specified region, date and time. Building on the templates provided in the current code
distribution, the functionality can be extended to new spaceborne or airborne instruments. The fifth
column of Figure 1 shows an application that differs from the first four, and was developed for
earlier papers (Gristey et al., 2020a and 2020b; Nataraja et al., 2022; Gristey et al., 2022). In
contrast to the first four, which use imagery products as input, the fifth application ingests model
output from a Large Eddy Simulation (LES) and produces irradiance data for surface energy
budget applications, or synthetic radiance fields for training a CNN. Details and results are

described in the respective papers. Furthermore, Schmidt et al. (2022) builds upon App..1 to study

'CDeleted: APP

the mechanism of 3D cloud biases in OCO-2 passive spectroscopy retrievals.
After the required data files have been downloaded in the data acquisition step, EaR>T

pre-processes them and generates the optical properties of atmospheric gases, clouds, aerosols, and

(Deleted: -

the surface. In Figure 1, the mapping from input data to these properties is color-coded

component-wise (brown for associated cloud property processing if available, blue for associated

'CDeleted: -

surface property processing if available, green for associated ground truth property). The version

used in this paper (v0.1.0; Chen and Schmidt, 2022) only includes MCARaTS, as the 3D RT solver,

but others are planned for the future, MCARaTS is a radiative transfer solver uses Monte Carlo

photon-tracing method (Iwabuchi, 2006). It outputs radiation (radiance or irradiance) based on the

'(Deleted: Although the

(Deleted: current

Deleted: the Monte Carlo Atmospheric Radiative Transfer
Simulator (...

( Deleted: , Iwabuchi, 2006)

inputs of radiative properties of surface and atmospheric constituents (e.g., gases, aerosols. clouds)

such as single scattering albedo, scattering phase function, or asymmetry parameters, along with

solar and sensor viewing geometries. The setup of these input properties is implemented in

EaR3T’s pre-processing steps, which translates atmospheric properties into solver-specific input

with minimum user intervention. To achieve this, EaR®T is modular so that it can be extended as

new solvers are added. Although the five specific applications in this paper do not include aerosol

layers, the setup of aerosol fields is fully supported and has been used in other applications (e.g.

Gristey et al., 2022). After pre-processing, the optical properties are fed into the RT solver. Finally,

= CDeleted: )

AN A




265  the user obtains radiation output from EaR>T, either radiance or irradiance. The output is saved in
266  HDF5 format and can be easily distributed and accessed by various programming languages. The
267  data variables contained in the HDF5 output are provided in Table 1.

268

Metadata

Variable Name Description Data Type Dimension
Number of photons
per run
mean/N_run Number of runs Integer value N/A
TOA downwelling Float value N/A

flux

mean/N_photon Array Ng

mean/toa

Radiance

Variable Name Description Data Type Dimension
Radiance field at
user specified
altitude averaged
over different runs
Standard deviation
of the radiance
fields from different
runs

mean/rad Array (N_x,N_y)

mean/rad_std Array (N_x, N_y)

Irradiance

Variable Name Description Data Type Dimension
Downwelling
mean/f_down irradiance averaged Array (N x,N y,N z)
over different runs
Standard deviation
of the downwelling
irradiance from
different runs
Diffuse
downwelling
irradiance averaged
over different runs
Standard deviation
of the diffuse
mean/f down_diffuse std downwelling Array (N_x,N_y,N_2)
irradiance from
different runs

mean/f_down_std Array (N_x,N_y,N_2)

mean/f_down_diffuse Array (N_x,N y,N z)

10
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Direct downwelling
mean/f_down_direct irradiance averaged Array (N_x,N_y,N_z)
over different runs
Standard deviation
of the direct
mean/f_down_direct_std downwelling Array (N_x,N y,N z)
irradiance from
different runs
Upwelling
mean/f_up irradiance averaged Array (N x,N y,N 2)
over different runs
Standard deviation
of the upwelling
irradiance from
different runs

mean/f_up_std Array (N_x,N_y,N _2)

Table 1: Data variables contained in the output HDFS5 file from EaR’T for radiance and irradiance calculations. The
radiance is simulated with a user-specified sensor geometry at a given altitude using forward photon tracing.
The data variables listed under Metadata are included for both radiance and irradiance calculations. N_x,
N vy, and N _z are the number of pixels along x, y, and z direction, respectively. N g is the number of g,

explained in section 3 — Correlated-k.

The aforementioned three steps — data acquisition, pre-processing, and RTM setup and
execution are automated such that the 3D/1D-RT calculations can be performed for any region at
any date and time using satellite or aircraft data or other data resources such as LES. EaRT is

hosted on GitHub at https://www.github.com/hong-chen/er3t. Since it is developed as an

( Deleted: Github

educational and research 3D-RT tool collection by students, it is a living code base, intended to be

updated over time. The master code modules for the five applications as listed in Figure 1 are

included in the EaRT package under the examples directory. In the current release (v0.1.0)

only a limited documentation for the installation and usage, including example codes for EaR3T

are provided. More effort will be dedicated for documentation in the near-future.

2.2 Data

The radiance simulations in App. .1 and App. 2 use data from the OCO-2 and MODIS-Aqua,

instruments, both of which are in a sun-synchronous polar orbit with an early-afternoon equator
crossing time within NASA’s A-Train satellite constellation. Figure 2 visualizes radiance

measurements by OCO-2 in the context of MODIS Aqua imagery over a partially vegetated and

11
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partially cloud-covered land, illustrating that MODIS provides imagery and scene context for
OCO-2, which in turn observes radiances from a narrow swath. The region is located in southwest
Colorado in the United States of America. We selected this case because both the surface and
clouds are varied along with diverse surface types. The surface features green forest and brown
soil, whereas clouds include small cumulus and large cumulonimbus. In addition, this scene
contains relatively homogeneous cloud fields in the north and inhomogeneous cloud fields in the
south, which allows us to evaluate the simulations from various aspects of cloud morphology. To
simulate the radiances of both instruments we use data products from OCO-2 and MODIS, as well
as reanalysis products from NASA’s Global Modeling and Assimilation Office (GMAO) sampled
at OCO-2 footprints and distributed along with OCO-2 data (section 2.2.2).
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Figure 2. OCO-2 measured radiance (units: Wm?nm'sr"!) at 768.52 nm, overlaid on MODIS Aqua RGB imagery
over southwestern Colorado (USA) on 2 September, 2019. The inset shows an enlarged portion along the

track, illustrating that OCO-2 radiances co-vary with MODIS-Aqua radiance observations.

For App. 3 (irradiance simulations and 3D cloud bias quantification), we use geostationary

imagery from the Japanese Space Agency’s Advanced Himawari Imager to provide cloud
information in the area of the flight path of the NASA CAMP?Ex aircraft (Reid et al., 2022). The
AHI data are used in conjunction with aircraft measurements of shortwave spectral radiation

(section 2.2.4). Subsequently (App. 4: 3D cloud bias mitigation), we demonstrate the concept of

radiance closure under partially cloudy conditions with airborne camera imagery (section 2.2.5).

The underlying cloud retrieval is based on a convolutional neural network (CNN), which is

12
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described in a related paper (Nataraja et al., 2022) in this special issue and relies on EaR3T-

generated synthetic radiance data based on Large Eddy Simulations (LES).

2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS)

The MODIS instruments are multi-use multispectral radiometers onboard NASA’s Terra

and Aqua satellites, which were launched in 1999 and 2002 respectively. MODIS was conceived ;

as a central element, of the Earth Observing System (EOS, King and Platnick, 2018). For App.,1 CDeleted' The

and App. 2, EaR®T ingests MODIS level 1B radiance products at the quarter kilometer scale

(channels 1 and 2, bands centered at 650 and 860 nm), MxD02QKM, where ‘x’ stands for ‘O’ in

the case of MODIS on Terra, and ‘Y’ in the case of Aqua data), the geolocation product (MxDO03),
the level 2 cloud product (MxD06), and the surface reflectance product (MxD09A1). For this paper,
we use only Aqua data (MYD), from data collection 6.1. All the data are publicly available, and
are distributed at the LAADS (Level-1 and Atmosphere Archive & Distribution System)
Distributed Active Archive Center (DAAC) by NASA’s Goddard Space Flight Center.

For cloud properties in App. .2, we use the MODIS cloud product (MxD06L2, collection
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6.1). It provides cloud properties such as cloud optical thickness (COT), cloud effective radius
(CER), cloud thermodynamic phase, cloud top height (CTH), etc. (Nakajima and King, 1990;
Platnick et al., 2003). Since 3D cloud effects such as horizontal photon transport are most
significant at small spatial scales (e.g., Song et al., 2016), we use the high-resolution red (650 nm)
channel 1 (250 m), and derive COT directly from the reflectance in the Level-1B data
(MYDO02QKM) instead of using the coarser-scale operational product from MYDO06. CER and
CTH are sourced from MYDO06 and re-gridded to 250 m. The EaR>T strategy for MODIS data is
similar, in principle, to the more advanced method by Deneke et al. (2021), which uses a

high-resolution wide-band visible channel from geostationary imagery to up-sample narrow-band

(Deleted: -

coarse-resolution channels. However, we simplified cloud detection and derivation of COT from

reflectance data for the purpose of our paper by using a threshold method (Appendix C1) and the
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two-stream approximation (Appendix C2). In future versions of EaR>T this will be upgraded to
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more sophisticated algorithms. A simple algorithm (Appendix D1) is used to correct for the
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parallax shift based on the sensor geometries and cloud heights. The cloud top height data is
provided by the MODIS L2 cloud product and assuming cloud base is the same.
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For the surface albedo required by the RTM. we used MYDO09A1, which provides

cloud-cleared surface reflectance observations aggregated over an 8-day period (Vermote et al., -

2015). This product is available on a sinusoidal grid with a spatial resolution of 500 m for MODIS
band 2, and includes atmospheric correction for gas and aerosol scattering and absorption.

Assuming a Lambertian surface in this first release of EaR3T, we used surface reflectance as

surface albedo input to the RTM.

2.2.2 Orbiting Carbon Observatory 2 (OCO-2)

The OCO-2 satellite was inserted into NASA’s A-Train constellation in 2014 and flies
about 6 minutes ahead of Aqua. OCO-2 provides the column-averaged carbon dioxide (CO2)
dry-air mole fraction (XCO,) through passive spectroscopy based on hyperspectral radiance
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observations in three narrow wavelength regions, the Oxygen A-Band (~0.76 micron), the weak
CO2 band (~1.60 micron), and the strong CO; band (~2.06 micron). As shown in the inset of Figure
2, it takes measurements in eight footprints across a narrow swath. Each of the footprints has a
size around 1-2 km, and the spectra for the three bands are provided by separate, co-registered
spectrometers (Crisp et al., 2015).

The OCO-2 data products of 1) Level 1B calibrated and geolocated science radiance
spectra (L1bScND), 2) standard Level 2 geolocated XCO; retrievals results (L2StdND), 3)
meteorological parameters interpolated from GMAO (L2MetND) at OCO-2 footprint location are
downloaded from NASA GES DISC (Goddard Earth Science Data Archive and Information
Services Center) data archive (https://oco2.gesdisc.eosdis.nasa.gov/data/OCO2 _DATA). Since
MODIS on Aqua overflies a scene 6 minutes after OCO-2, the clouds move with the wind over
this time period. We therefore added a wind correction on top of the parallax-corrected cloud fields
obtained from MODIS (section 2.2.1). This was done with the 10 m wind speed data from
L2MetND (see Appendix D2). For the same scene as shown in Figure 2, Figure 3 shows (a) COT,
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(b) CER, and (c) CTH, all corrected for both parallax and wind effects (these corrections are shown

CDeleted: effect

in Figure A2 in Appendix D). The parallax and wind corrections are imperfect as certain
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assumptions are involved. For example, they rely on the cloud top height from the MODIS cloud

product. In addition, they process the whole scene with one single sensor viewing geometry. To

minimize artifacts introduced by the assumptions, one can apply the simulation to a smaller region.
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Figure 3. (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the two-stream approximation
(Eq. A2), (b) cloud effective radius (units: um), and (c) cloud top height (units: km) collocated from the
MODIS L2 cloud product. The locations of the cloudy pixels were shifted to account for parallax and wind
effects. The parallax correction ranged from near 0 for low clouds and 1 km for high clouds (10 km CTH).

The wind correction was around 0.8 km, given the average wind speed of 2 m/s to the east.

The OCO-2 data (L2StdND) themselves only provide sparse surface reflectance for the
footprints that are clear, while EaR>T requires surface albedo for the whole domain. Therefore, we
used MYDO09A1 as a starting point. However, since MODIS does not have a channel in the Oxygen
A-Band, MODIS band 2 (860 nm) was used as a proxy for the 760 nm OCO-2 channel as follows:
we collocated the OCO-2 retrieved 760 nm surface reflectance Roco within the corresponding 860

nm MODIS MYDO09A1 data Ryop as shown in Figure 4a (same domain as Figures 2 and 3) and
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calculated a scaling factor assuming a linear relationship between Roco and Ryop (Roco =a*Ruop).
Figure 4b shows Roco versus Ryop for all cloud-free OCO-2 footprints. The red line shows a linear

regression (derived scale factor a=0.93). Optionally, the OCO-2-scaled MODIS-derived surface

reflectance fields can be replaced by the OCO-2 surface reflectance products for pixels where they

are available. The scaled surface reflectance is then treated as surface albedo input to the RTM

assuming a Lambertian surface.
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Figure 4. (a) Surface reflectance from the OCO-2 L2 product in the Oxygen A-band (near 760 nm), overlaid on the
surface reflectance from the MODIS MYDO09 product at 860 nm. (b) OCO-2 surface reflectance at 760 nm
versus MODIS surface reflectance at 860 nm, along with linear regression (y=ax) as indicated by the red

line (slope a=0.9337).

2.2.3 Advanced Himawari Imager (AHI)

The Advanced Himawari Imager (AHI, used for App. 3) is a payload on Himawari-8, a

| Deleted: Scaling is also applied for the weak and strong CO»
channels, even though there are matching MODIS channels.

)

_( Deletea: APP

geostationary satellite operated by the Meteorological Satellite Center (MSC) of the Japanese
Meteorological Agency. The AHI provides 16 channels of spectral radiance measurements from
the shortwave (0.47um) to the infrared (13.3um). During CAMP?Ex, the NASA in-field
operational team closely collaborated with the team from MSC to provide AHI satellite imagery
at the highest resolution over the Philippine Sea. From the AHI imagery, the cloud product
generation system - Clouds from AVHRR Extended System (CLAVR-x), was used to generate
cloud products from the AHI imagery (Heidinger et al., 2014). The cloud products from CLAVR-

x include cloud optical thickness, cloud effective radius, and cloud top height at 2 (at nadir) to 5
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km spatial resolution. Since AHI provides continuous regional scans every 10 minutes the AHI

cloud product has a temporal resolution of 10 minutes.

2.2.4 Spectral Sunshine Pyranometer (SPN-S)

The SPN-S is a prototype spectral version of the commercially available global-diffuse
SPN1 pyranometer (Wood et al., 2017; Norgren et al., 2022). The radiometer uses a 7-detector
design in combination with a fixed shadow mask that enables the simultaneous measurement of
both diffuse and global irradiances, from which the direct component of the global irradiance is
calculated via subtraction. The detector measures spectral irradiance from 350 to 1000 nm, and the
spectrum is sampled at 1 nm resolution with 1 Hz timing.

During the CAMP?Ex mission, the SPN-S was mounted to the top of the NASA P-3 aircraft
where it sampled downwelling solar irradiance. To ensure accurate measurements, pre- and post-
mission laboratory-based calibrations were completed using tungsten “FEL” lamps that are
traceable to a National Institute of Standards and Technology standard. Additionally, the direct
and global irradiances were corrected for deviations of the SPN-S sensor plane from horizontal
that are the result of changes in the aircraft’s pitch or roll. This attitude correction applied to the
irradiance data is a modified version of the method outlined in Long et al. (2010). However,
whereas Long et al. (2010) employ a “box” flight pattern to characterize the sensor offset angles,
in this study an aggregation of flight data containing aircraft heading changes under clear-sky

conditions are used as a substitute. The estimated uncertainty of the SPN-S system is 6 to 8%, with

(Deleted: is

4 to 6% uncertainty stemming from the radiometric lamp calibration process, and up to another 2%
resulting from insufficient knowledge of the sensor cosine response. The stability of the system
under operating conditions is 0.5%. A thorough description of the SPN-S and its calibration and

correction procedures is provided in Norgren et al. (2022). In this paper (App.3) only the global
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downwelling irradiance sampled by the 745 nm channel is used.

2.2.5 Airborne All-Sky Camera (ASC)
The All-Sky Camera (used for App. 4) is a commercially available camera (ALCOR

(Deleted: APP

ALPHEA 6.0CW?) with fish-eye optics for hemispheric imaging. It has a Charge-Coupled Device

Shttps://www.alcor-system.com/common/allSky/docs/ALPHEA Camera%20ALL%20SKY%20CAMERA_Doc.pdf
last accessed on April 24, 2022.
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(CCD) detector that measures radiances in red, green, and blue channels. Radiometric and
geometric calibrations were performed at the Laboratory of Atmospheric and Space Physics at the
University of Colorado Boulder. The three-color channels are centered at 493, 555, and 626 nm
for blue, green, and red, respectively, with bandwidths of 50 — 100 nm. Only radiance data from

the red channel are used in this paper. The spatial resolution of the ASC depends on the altitude of
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the aircraft and the viewing zenith angle. Across the hemispheric field of view of the camera, the
resolution of the field angle is approximately constant, at about 0.09°. At a flight level of 5 km,
this translates to a spatial resolution of 8 m at nadir. However, due to accuracy limitations of the
geometric calibration and the navigational data from Inertial Navigation System (INS), the nadir
geolocation accuracy could only be verified to within £50 m. During the CAMP?Ex flights, the
camera exposure time was set manually to minimize saturation of the detector. The standard image
frame rate is 1 Hz. The precision of the camera radiances is on the order of 1%, and the radiometric

accuracy is 6 — 7%.

3. EaR’T Procedures

In the previous section, we described the general workflow of EaR3T applications, along
with relevant data. In this section, we will focus on the specific implementation of the workflow
through the EaR3T software package. It is a toolbox for 3D-RT with modules for automatic input
data download and processing, generation of radiative and optical properties of surface,
atmospheric gases, clouds and aerosols, wrappers for 3D-RT solvers and output post-processing,
with the end goal to simulate radiances and irradiances along entire satellite orbits or aircraft flight
tracks. Unlike established radiative transfer packages such as libRadtran (Mayer and Kylling, 2005;
Emde et al., 2016), which provide extensive libraries of optical properties along with a selection
of solvers, EaR?T focuses on automated radiative transfer for two- or three-dimensional cloud,
aerosol, and surface input data, and therefore only comes with minimal options for optical
properties, and solvers. The initial release (version 0.1.0) is available at https://github.com/hong-
chen/er3t.

We will now walk through the OCO-2 and MODIS simulator applications with the codes

examples/01_oco2_rad-sim.py (App. ) and examples/02 modis_rad-sim.py
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(App. 2). The data acquisition (first step in Figure 1) uses functions in er3t/util. App. 1 and
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App. 2 use the functions in er3t/util/modis.py and er3t/util/oco2.py for

downloading the MODIS and OCO-2 data files from the respective NASA data archives and for
processing the data (e.g., geo-mapping, gridding etc.). The user supplies minimum input (date and
time, as well as latitudes and longitudes of the region of interest), which need to be specified in
download modis_https and download oco2_https (from er3t/util). For

example, for App.,1 and App. 2, the only user inputs are the date and time and the region of interest

— in this case September 2, 2019, with the westernmost, easternmost, southernmost, and
northernmost longitudes and latitudes of 109°W, 107°W, 37°N, and 39°N. In order for EaR>T to
access any data archives such as NASA Earthdata, the user needs to create an account with them
and store the credentials locally (detailed instructions are provided separately along with the EaR>T
distribution).

After the data acquisition step, the satellite data are fed into the pre-processing step for 1)
atmospheric gases (er3t/pre/atm), 2) clouds (er3t/pre/cld), 3) surface
(er3t/pre/sfc) as shown in Figure 1. In the default configuration of the App. 1, the standard
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US atmosphere (Anderson et al., 1986; included in the EaR>T repository) is used within atm.
EaR>T supports the input of user-specified atmospheric profiles, e.g., atmospheric profiles from

reanalysis data for App. 2 as described in Schmidt et al. (2022), by making changes in
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atm_atmmod (from er3t/pre/atm). Subsequently, molecular scattering coefficients are
calculated by cal mol ext (from er3t/util), and absorption coefficients for atmospheric
gases are generated by (er3t/pre/abs). At the current development stage, two options are
available:

1. Line-by-line (used by App.,1): The repository includes a sample file of absorption coefficient

(" Deleted: APP

profiles for a subset of wavelengths within OCO-2’s Oxygen A-Band channel, corresponding
to a range of atmospheric transmittance values from low (opaque) to high (so-
called “continuum” wavelength). They were generated by an external code (Schmidt et al.,
2022) based on OCO-2’s line-by-line absorption coefficient database (ABSCO, Payne et al.,

2020). For each OCO-2 spectrometer wavelength_within a given channel, hundreds of

C Deleted: there are

individual absorption coefficient profiles, at the native resolution of ABSCO, need to be

considered across the instrument line shape (ILS, also known as the slit function) of the

spectrometer. The ILS, as well as the incident solar irradiance, are also included in the file.
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In subsequent steps, EaR3T performs RT calculations at the native spectral resolution of
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ABSCO, but then combines the output by convolving with the ILS and outputs OCO-2
radiances or reflectances at the subset of wavelengths. For probabilistic (Monte Carlo) RT
solvers such as MCARaTS, the number of photons can be kept relatively low (e.g., 10°
photons), and can be adjusted according to the values of the ILS at a particular ABSCO
wavelength. Any uncertainty at the ABSCO spectral resolution due to photon noise is greatly

reduced by convolving with the ILS for the final output.

. Correlated-k (used by App. 2): This approach (Mlawer et al., 1997) is appropriate for

( Deleted: APP

instruments such as MODIS with much coarser spectral resolution than OCO-2, as well as
for broadband calculations. In contrast to the line-by-line approach, RT calculations are not
performed at the native resolution of the absorption database, but at Gaussian quadrature
points (called “g’s”) that represent the full range of sorted absorption coefficients, and then
combined using Gaussian quadrature weights. The repository includes an absorption
database from Coddington et al. (2008), developed specifically for a radiometer with
moderate spectral resolution on the basis of HITRAN (high-resolution transmission
molecular absorption database) 2004 (Rothman et al., 2005). It was created for the ILS of
the airborne Solar Spectral Flux Radiometer (SSFR, Pilewskie et al., 2003), but is applied to
MODIS here, which has a moderate spectral resolution of 8-12 nm with 20-50 nm
bandwidths. It uses 16 absorption coefficient bins (g’s) per target wavelength (this could
either be an individual SSFR or a MODIS channel), which are calculated by EaR*T with the

Coddington et al. (2008) database using the mixing ratios of atmospheric gases in the
previously ingested profile. In future implementations, the code will be updated to enable
flexible ILS and broadband calculations.

The er3t/pre/cld module calculates extinction, thermodynamic phase, and effective

droplet radius of clouds from the input data. The er3t/pre/pha module creates the required
single scattering albedo and scattering phase function. The default is a Henyey-Greenstein phase

function with a fixed asymmetry parameter of 0.85. Along with the current distribution (v0.1.0) of

EaR]T, the Mie phase functions based on thermodynamic phase, effective droplet radius, and

wavelength are supported. In this study, App. 1 and App.2 use Mie phase functions calculated

from Legendre polynomial coefficients (originally distributed along with libRadtran) based on the
wavelength and cloud droplet effective radius. In the future, EaR*T will include stand-alone phase

functions, which can be chosen on the basis of droplet size distributions in addition to effective
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radius. It is also possible to include aerosols in a similar fashion as clouds. This is done with the
er3t/pre/aer module. In the case of aerosols, spectral single scattering albedo and asymmetry
parameter are required as inputs in addition to the extinction fields.

After the optical properties are calculated, they are passed into the 3D-RT step
(er3t/rtm/mca). In addition to MCARaTS, planned solvers for the future include MYSTIC
(Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres, Mayer,
2009) and SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and
Evans, 2009). This step performs the setup of RT solver-specified input parameters and data files,

distributing runs over multiple Central Processing Units (CPUs), and post-processing RT output

files into a single, user-friendly HDFS5 file. For example, when radiance is specified as output

(default in App..1 and App. 2), key information such as the radiance field and its standard deviation

are stored in the final HDFS5 file (details see Table 1).

While the EaR>T repository comes with various applications such as App. 1 and App. 2,

described above, the functions used by these master or ‘wrapper’ programs can be organized in
different ways, where the existing applications serve as templates for a quick start when developing
new applications. The functions used by the master code pass information through the various
steps as Python objects. For example, in examples/01_oco2_rad-sim.py, the downloaded
and processed satellite data are stored into the sat object. Later, the sat object is passed into an
EaR>T function to create the c1d object that contains cloud optical properties. Similarly, EaR>T
provides functions to create the atm, and sfc objects with optical properties for atmospheric
gases and the surface. These objects (atm, cld, sfc) are in turn passed on to solver-specific
modules for performing RT calculations. The user can choose to save the data of the intermediate
objects into Python pickle files after the first run. In this way, multiple calls with identical input
can re-use existing data, which accelerates the processing time of EaR>T. Unless the user specifies
the overwrite keyword argument in the object call to reject saving pickle files, these shortcuts
save significant time. Moreover, EaR3T is capable of distributing simulations over multiple CPUs
to accelerate the calculations, which is useful for potential future application of later EaR3T or
EaR>T-like codes in operational or large-scale data processing.

In the following sections, we discuss results obtained from EaR>T, starting with those from
examples/01 oco2 rad-sim.py and examples/02 modis rad-sim.py (section

4), examples/03 spns_flux-sim.py (section 5), and concluding with
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examples/04_cam nadir rad-sim.py (section 6). The detailed RT setup for the

applications is provided Table Al in Appendix A.

4. EaR>T as a 3D Satellite Radiance Simulator

This section demonstrates the automated 3D radiance simulation for satellite instruments
by EaR>T for OCO-2 and MODIS measured radiance based on publicly available MODIS retrieval
products. The OCO-2 application is an example of radiance consistency between two distinct
satellite instruments where the measurements of one (here, OCO-2) are compared with the
simulations based on data products from the other (here, MODIS). The MODIS application, on
the other hand, is an example of radiance self-consistency. We will show how inconsistencies can
be used for detecting cloud and surface property retrieval biases.

4.1 0CO-2 (App..])
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The OCO-2 radiance measurements at 768.52 nm for our sample scene in the context of
MODIS imagery were shown in Figure 2. For that track segment, Figure 5a shows the simulated
radiance along with the measurements as a function of latitude. The radiance was averaged over
every 0.01° latitude window from 37° N to 39° N (the standard deviation within the bin indicated
by the shaded color). In clear-sky regions (e.g., around 38.2° N), the simulations (red) are
systematically higher than the measurements (black), even though the footprint-level OCO-2
retrieval was used to scale the MYDO09 surface reflectance field as described in section 2.2.2
(Figure 4). This is because, unlike the MYDO09 algorithm which relies on multiple overpasses and
multiple-days for cloud-clearing, the OCO-2 retrieval is done for any clear footprint. Clouds in the
vicinity lead to enhanced diffuse illumination that is erroneously attributed to the surface
reflectance itself. The EaR3T IPA calculations of the clear-sky pixels (blue) essentially reverse the
3D effect and therefore match the observations better. The 3D calculations enhance the reflectance
through the very same 3D cloud effects that led to the enhanced surface illumination in the first
place. It is possible to correct this effect by down-scaling the surface reflectance according to the

ratio between clear-sky 3D and IPA calculations, but this process is currently not automated.
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Figure 5. (a) Latitudinally averaged (0.01° spacing) radiance calculations from EaR>T (red: 3D, blue: IPA) and OCO-

2 measured radiance at 768.52 nm (black) The green shaded area indicates the inset shown in (b). (b) The

same as Figure 2 except OCO-2 measured radiance overlaid on IPA radiance simulations at 768.52 nm. The

solar zenith angle (SZA) for the radiance simulation case is 33.57°.

In the cloudy locations, the IPA calculations match the OCO-2 observations on a footprint-
by-footprint level (see Figure 5b), demonstrating that wind and parallax corrections were
performed successfully. Of course, there is not always a perfect agreement because of
morphological changes in the cloud field over the course of six minutes. It is, however, apparent
that the 3D calculations agree to a much lesser extent with the observations than the IPA
calculations. Just like the mismatch for the clear-sky pixels indicates a bias in the input surface
reflectance, the bias here means that the input cloud properties (most importantly COT) are

inaccurate. For most of the reflectance peaks, the 3D simulations are too low, which means that
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the input COT is biased low. This is due to 3D cloud effects on the MODIS-based cloud retrieval.
Since they are done with IPA, any net horizontal photon transport is not considered, which leads
to an apparent surface brightening as noted above, at the expense of the cloud brightness. As a
result, the COT from darker clouds is significantly underestimated. This commonly known

problem_(Barker and Liu, 1995), with several aspects discussed in the subsequent EaR3T

applications, can be identified by radiance consistency checks such as the one shown in Figure 5,
and mitigated by novel types of cloud retrievals that do take horizontal photon transport into

account (section 6).

4.2 MODIS (App.2)

(Deleted: APP

To go beyond the OCO-2 track and understand the bias between simulated and observed
radiances from a domain perspective, we now consider the radiance simulations for the MODIS
650 nm channel. The setup is exactly the same as for the OCO-2 simulations, except that 1) the
viewing zenith angle is set to the average viewing zenith angle of MODIS within the shown domain
(instead of OCO-2), and 2) the surface reflectances from MYDO09 are used directly, this time from
the 650 nm channel without rescaling. Figure 6a shows the MODIS measured radiance field, while
Figure 6b shows the EaR3T 3D simulations. Visually, the clouds from the EaR*T simulation are
generally darker than the observed clouds, which is in line with our aforementioned explanation
of net horizontal photon transport. They are also blurrier because radiative smoothing (Marshak et
al., 1995) propagates into the retrieved COT fields, which are subsequently used as input to EaR3T.
To look at darkening and smoothing effects more quantitatively, Figure 7 shows a heatmap plot of
simulated radiance versus observed radiance. It shows that the radiance for cloud-covered pixels
(labeled “cloudy”) from EaR3T are mostly low-biased while good agreement between simulations
and observations was achieved for clear-sky radiance (labeled “clear-sky”). The good agreement
over clear-sky regions is expected. As mentioned above, we use MYDO09 as surface reflectance
input, which in contrast to the OCO-2 surface reflectance product is appropriately cloud-screened
and therefore does not have a reflectance high bias. There is, of course, a reflectance enhancement
in the vicinity of clouds, but that is captured by the EaR’T calculations. The fact that the
calculations agree with the observations even for clear-sky pixels in the vicinity of clouds, shows
that the concept of radiance consistency works to ensure correct satellite retrievals even in_the

presence of clouds. It also corroborates our observation from section 4.1 that COTipa is low biased.
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Since the MODIS reflectance is not self-consistent with respect to COTipa as shown for the cloudy
pixels in Figure 7, we can identify a bias in the cloud properties even without knowing the ground
truth of COT. On the other hand, successful closure in radiance (self-consistency) would provide
an indication that the input fields including COT are accurate, although it is certainly a weaker
metric than direct verification of the retrievals through aircraft satellite retrieval validation with

in-situ instruments.
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Figure 6. (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance at 650 nm from EaR>T.

The solar zenith angle for the radiance simulation case is 34.42°.
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Figure 7. Heatmap plot of EaR*T simulated 3D radiance vs. MODIS measured radiance at 650 nm.
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Summarizing the two satellite radiance simulator applications, one can say that EaR3T

enables a radiance consistency check for inhomogeneous cloud scenes. We demonstrated that a

lack of simulation-observation consistency (MODIS versus OCO-2) and self-consistency (MODIS
versus MODIS) can be traced back to biased surface reflectance or cloud fields in the simulator
input. This can become a diagnostic tool for the quality of retrieval products from future or current

missions, even when the ground truth is not known. It should be pointed out that the vertical extent

of the clouds affects the simulated radiance — the larger the vertical extent, the larger the 3D effects

(more horizontal photon transport). Since we make the assumption of a cloud geometric thickness

of 1 km if no thickness information is provided, the simulated radiance at the satellite sensor level

is valid for that proxy cloud only. For deeper clouds, the simulated radiance would be even lower.

Either way, the comparison with the actual radiance measurements will reveal a lack of closure.

Additionally, although the clouds introduce the lion’s share of the 3D bias that is identified by the

radiance consistency check, additional discrepancies can be introduced in different ways. For

example, the topography (mountainous region in Colorado) is not considered by MCARaTS (it is

considered by MYSTIC, but this solver has not been implemented yet).
For technical reference: The MODIS simulation (domain size of [Nx=1188. Ny=1188])
took about one hour on a Linux workstation with 12 CPUs for three 3D RT runs with 108 photons

each. With a slightly modified setup and parallelization, the automation can be easily applied for
entire satellite orbits, although more research is required to optimize the computation speed

depending on the desired output accuracy.

5. EaR’T as 3D Aircraft Irradiance Simulator (App. 3)

- Deleted: APP

In contrast to the previous applications that focused on satellite remote sensing, we will
now be applying EaR>T to quantify 3D cloud retrieval biases through direct, systematic validation
of imagery-derived irradiances against aircraft measurements, instead of using the indirect path
of radiance consistency in section 4. Previous studies (e.g., Schmidt et al., 2007; Kindel et al.,
2010) conducted radiative closure between remote sensing derived and measured irradiance using
isolated flight legs as case studies. Here, with the efficiency afforded by the automated nature of
EaR>T, we are able to conduct radiative closure of irradiance through a statistical approach that
employs campaign-scale amounts of measurement data. Specifically, we used EaR>T to perform

large-scale downwelling irradiance simulations at 745 nm based on geostationary cloud retrievals
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from AHI for the CAMP?Ex campaign, and directly compare these simulations to the SPN-S
measured irradiances onboard the P-3 aircraft. This is done for all below-cloud legs from the entire
campaign with the aim to assess the degree to which satellite-derived near-surface irradiances
reproduce the true conditions below clouds.

The irradiance simulation process is similar to the previously described radiance simulation
in section 4, with only a few modifications. First, we used cloud optical properties from the AHI
cloud product (COT, CER and CTH) as direct inputs into EaR*T. Secondly, we used a constant
ocean surface reflectance value of 0.03. Such simplification in surface albedo is made under the
assumption that 1) the ocean surface is calm with no whitecaps, and that 2) the Lambertian
bidirectional reflectance distribution function (BRDF) is sufficient (instead of directionally
dependent BRDF) to represent surface albedo for the irradiance calculation. Since the ocean
surface albedo can greatly differ from 0.03 when the Sun is extremely low (Li et al., 2006), we
excluded data under low-Sun conditions where the SZA is greater than 45°. Lastly, since EaR>T
can only perform 3D simulations for a domain at a single specified solar geometry, we divided
each CAMP?Ex research flight into small flight track segments where each segment contains 6
minutes of flight time. The size and shape of the flight track segments can vary significantly due
to the aircraft maneuvers, aircraft direction, aircraft speed, etc. For each flight track segment,
EaR>T performs irradiance simulations for a domain that extends half a degree at an averaged solar
zenith angle. In contrast to the radiance simulation output, which is two-dimensional at a specified
altitude and sensor geometry, the irradiance simulation output is three dimensional. In addition to
x (longitude) and y (latitude) vectors, it has a vertical dimension along z (altitude). From the
simulated three-dimensional irradiance field, the irradiance for the flight track segment is linearly
interpolated to the x-y-z location (longitude, latitude, and altitude) of the aircraft. EaR®T
automatically sub-divides the flight track into tiles encompassing track segments, and extracts the
necessary information from the aircraft navigational data. Based on the aircraft time and position,
EaR>*T downloads the AHI cloud product that is closest in time and space to the domain containing
the flight track segment.

Figure 8 shows_the simulated irradiance for a sample flight track below clouds on 20
September, 2019. Figure 8a shows the flight track overlaid on AHI imagery. Figure 8b shows 3D
(in red) and IPA (in blue) downwelling irradiance simulations for the highlighted flight track in

Figure 8a, as well as measurements by the SPN-S (in black). Since the 3D and IPA simulations
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are performed separately at discrete solar and sensor geometries for each flight track segment based
on potentially changing cloud fields from one geostationary satellite image to the next,
discontinuities in the calculations (indicated by gray dashed lines) are expected. The diffuse
irradiance (downwelling and upwelling) can also be simulated and compared with radiometer
measurements (not shown here). Since the irradiance was simulated/measured below clouds, high
values of downwelling irradiance indicate thin-cloud or cloud-free regions while low values of
downwelling irradiance indicate thick-cloud regions. The simulations successfully captured this
general behavior — clouds thickened from west to east until around 121.25° E, and thinned
eastwards. However, the fine-scale variabilities in irradiance were not captured by the simulations
due to the coarse resolution of COT in the AHI cloud product (3-5 km). Additionally, the
simulations also missed the clear-sky regions in the very east and west of the flight track as
indicated by high downwelling irradiance values measured by SPN-S. This is probably also due to
the coarse resolution of the AHI COT product where small cloud gaps are not represented. Large
discrepancies between simulations and observations occur in the mid-section of the flight track
where clouds are present (e.g., longitude range from 121.15° to 121.3°). Although the 3D
calculations differ somewhat from the IPA results, they are both biased high, likely because the
input COT (the IPA-retrieved AHI product) is biased low. This bias is caused by the same

mechanism that was discussed earlier in the MODIS examples (section 4.2). This begs the question

( Deleted: from MODIS

whether this is true for the entire field mission. To answer the question, we performed a systematic
comparison of the cloud transmittance for a// available below-cloud flight tracks from CAMP2Ex,

using EaR3T’s automated processing pipeline. The output of this pipeline is visualized in time-

synchronized flight videos (Chen et al., 2022), which show the simulations and observations along

all flight legs point by point. These videos give a glimpse of the general cloud environment during

the field campaign from the geostationary satellite perspective.
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Figure 8. (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea on 20 September, 2019.
The thin line shows the entire flight track within the domain. The thick line highlights the specific leg
analyzed in (b). (b) Measured downwelling irradiance from SPN-S at 745 nm and calculated 3D and IPA
irradiance from EaR>T for the highlighted flight track in (a).

For this comparison, we use transmittance instead of irradiance, The transmittance is

. 'CDeleted: because it has less diurnal dependence

calculated by dividing the downwelling irradiance below clouds_(FP2to™

) by the downwelling
irradiance at the top of the atmosphere extracted from the Kurucz solar spectra (F/"?*; Kurucz,

1992) at incident solar zenith angle (SZA) where Transmittance =

bottom
Fl

/(FTOA cos (SZA))" Thus the transmittance has less diurnal dependence than the
ToA.

irradiance. Figure 9 shows the histograms of the simulated and measured cloud transmittance from
all below-cloud legs. The average values are indicated by dashed lines. Although the averaged

values of IPA and 3D transmittance are close, their distributions are different. Only the 3D
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calculations and the measured transmittance reach values beyond 1. This occurs in clear-sky
regions in the vicinity of clouds that receive photons scattered by the clouds as previously

discussed for the OCO-2 application.
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Figure 9. Histogram of measured transmittance from SPN-S at 745 nm (black) and calculated 3D (red) and IPA (blue)
transmittance from EaR>T for all the below-cloud flight tracks during CAMP?Ex in 2019. The mean values
are indicated by dashed lines. The yellow (green) shaded area represents the relatively low_ (high)
transmittance region where the probability density of the observed transmittance (black) is greater than the

calculations. ,

Both the distribution and the mean value of the simulations are different from the

observations — the simulation histograms peak at around 0.9 while the observation histogram peaks

at around 1. The histograms indicate that the RT simulations miss most of the clear-sky conditions
because of the coarse resolution of the AHI cloud product. If clouds underfill a pixel, AHI
interprets the pixel as cloudy in most cases. This leads to an underestimation of clear-sky regions
since cumulus and high cirrus were ubiquitous during CAMP?Ex. The area on the left (highlighted
in yellow) has low cloud transmittance associated with thick clouds. In this range, the histograms
of the calculations are generally below the observations, and the PDF of the calculations is offset
to the right (indicated by the yellow arrow). This means that the transmittance is overestimated by
both IPA and 3D RT, and thus that the COT of thick clouds is underestimated, consistent with
what we found before (Figure 8b). The high-transmittance end (highlighted in green) is associated
with clear-sky and thin clouds. Here, the peak of the PDF is shifted to the left (green arrow), and
the calculations are biased low. This is caused by a combination of 1) the overestimation in COT
of thin clouds due a 3D bias in the AHI IPA retrieval, 2) the aforementioned resolution effect that

underestimates the occurrence of clear-sky regions (or overestimation in cloud fraction), and 3)

net horizontal photon transport from clouds into clear-sky pixels. Overall, the calculations

underestimate the true transmittance by 10%. This might seem to contradict Figure 7, where the -~
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calculated reflected radiance was biased low due to the underestimation of COT in the heritage

retrievals, which would correspond to an overestimation of the radiation transmitted by clouds.

This effect is indeed apparent in the yellow-shaded area of Figure 9 (high COTs), but the means

(dashed lines) show exactly the opposite. To understand that, one has to consider that the histogram

depicts all-sky conditions, which include both cloudy and clear pixels. In this case, the direction

of the overall (all-sky) bias follows the direction of the thin-cloud/clear bias, rather than the

direction of the thick cloud bias. For different study regions of the globe with different cloud

fractions, cloud size distributions, and possibly different imager resolutions. the direction and

magnitude of the bias might be very different.

Summarizing, this application demonstrates that the EaR*T’s automation feature allows
systematic simulation-to-observation comparisons. If aircraft observations are available, then
closure between satellite-derived irradiance and suborbital measurements is a more powerful
verification of satellite cloud retrieval products than the radiance consistency from the earlier
stand-alone satellite applications. Even more powerful is the new approach to process the data
from an entire field mission for assessing the quality of cloud products in a region of interest (in

this case, the CAMP2Ex area of operation).,

6. EaR>T for Mitigating 3D Cloud Retrieval Biases (App. 4)

In this section, we will use high-resolution imagery from a radiometrically calibrated

all-sky camera flown during the CAMP?EX to isolate the 3D bias (sometimes referred to as IPA

bias) and explore its mitigation with a newly developed CNN cloud retrieval framework (Nataraja
et al., 2022). The CNN, unlike IPA, takes pixel-to-pixel net horizontal photon transport into
account. It exploits the spatial context of pixels in cloud radiance imagery, and extracts a higher-
dimensional, multi-scale representation of the radiance to retrieve COT fields as the output. It does
s0 by learning on “training data”, which in this case was input radiance and COT pairs synthetically
generated by EaR3T using LES data from the Sulu Sea. The best CNN model, trained on different

coarsened resolutions of the data pairs, is included within the EaR3T repository. For App. 4, this

Deleted: We found that the bias between observed and
satellite-derived cloud transmittance is partially caused by
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Although important for future research, it is beyond the
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CNN is applied to real imagery data for the first time, which in our case are near-nadir observations
by the all-sky camera (section 2.2.5) that flew in CAMP?Ex.
The CNN model was trained at a single (fixed) sun-sensor geometry (solar zenith angle,«

SZA=29.2°; solar azimuth angle, SAA=323.8°, viewing zenith angle, VZA=0°), at a spatial
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resolution of 100 m. We therefore chose a camera scene with a matching SZA (28.9°), and rotated
the radiance imagery to match SAA=323.8°, and subsequently gridded the 8-12 m native
resolution camera data to 100 m. Figure 10a shows the RGB imagery captured by the all-sky
camera over the Philippine Sea at 02:10:06 UTC on 5 October 2019. The Sun is located at the

southeast (as indicated by the yellow arrow) and can be easily identified from the sun glint. Note

that this image has not yet been geolocated; it is depicted as acquired in the aircraft reference frame.
Figure 10b shows the rotated scene of the red channel radiance for the region encircled in yellow

in Figure 10a. The sun (as indicated by the yellow arrow) is now at SAA=323.8°. The selected

study region is indicated by the red rectangle in Figure 10b (6.4x6.4 km?), where the raw radiance
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Figure 10. (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP2Ex for a cloud scene centered

at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 UTC on 5 October, 2019. The arrows .

indicate the Jrue north (green), flight direction (plue), and illumination (where the sunlight comes from, .

yellow). (b) Red channel radiance measured by the camera for the circular area indicated by the red circle

in (a). Red squared region shows gridded radiance with a pixel size of 64x64 and spatial resolution of 100

m,

From the radiance field, we used both the traditional IPA (based on the two-stream

approximation) and the new CNN to retrieve COT fields. Figure 11 shows the COTipa and COTcenn
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fields, which are visually quite different. For relatively thin clouds (e.g., at around {2. 1.8}), the

CNN tends to retrieve larger COT values than COTipa. Also, it returns more spatial structure than
the IPA (e.g., around {2,-1}). To assess how either retrieval performs, we now apply the radiance
self-consistency approach introduced with MODIS data in section 4.2. Using both the IPA and the
CNN retrieval as input, we had EaR3T calculate the (synthetic) radiance that the camera should
have observed if the retrieval were accurate. The clouds are assumed to be located at 1-2 km. Such

an assumption is inferred from low-level aircraft observations of clouds on the same day. These

radiance fields are shown in Figure 12a and 12b, and can be compared to Figure 12¢c, Seven edge ‘

pixels have been removed from the original domain, because the CNN performs poorly at edge

pixels, and because the 3D calculations use periodic boundary conditions.
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Figure 11. Cloud optical thickness for the gridded radiance in Figure 10b (a) estimated by IPA and (b) predicted by
CNN.
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Figure 12. 3D radiance calculations from EaR>T at 600 nm based on cloud optical thickness field (a) estimated by

JPA, and (b) predicted by the CNN. The radiance measured by the all-sky camera (the same as Figure C Deleted: Two-Stream approximation
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Figure 13. Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based on cloud optical thickness

(a) estimated by JPA and (b) predicted by the CNN vs. measured red channel radiance from all-sky camera.

As evident from the brightest pixels in Figures 12b and | 2¢, the radiances simulated on the
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basis of the CNN COT input are markedly lower than actually observed by the camera. This is
because the CNN was trained on a LES dataset with limited COT range that excluded the largest
COT that occurred in practice. This means that the observational data went beyond the original
training envelope of the CNN, which highlights the importance of choosing the CNN training data
carefully for a given region. In Figure 13, the simulations are directly compared with the original
observations, confirming that indeed the CNN-generated data are below the observations on the
high radiance end. Otherwise, the CNN-generated radiances agree with the observations. Jn
contrast, the IPA-generated data are systematically lower than the observations, over the dynamic
range of the COT, which is indicative of the 3D retrieval bias that we discussed earlier. Here again,
the self-consistency approach proves useful despite the absence of ground truth data for the COT.
This is extremely helpful because in reality satellite remote sensing does not have the ground truth
of COT, whereas radiance measurements are always available. For the CNN, the self-consistency
of the radiance is remarkable for the thinner clouds (radiance smaller than 0.4), which encompass
83.5% of the total number of image pixels.

Finally, we use EaR3T to propagate the 3D cloud retrieval bias into the associated bias in
estimating the cloud radiative effect from passive imagery retrievals, which means that we are
returning from a remote sensing to an energy perspective (irradiance) at the end of the paper. The

calculated cloud radiative effects (CRE) of both below-clouds (at the surface) and above-clouds
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(at 3 km) are shown in Figure 14a and 14b. The most important histograms are those from 3D

irradiance calculations based on the CNN retrievals (gray solid line), as this combination would
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be used in a next-generation framework for deriving CRE from passive remote sensing, and the
other would be IPA irradiance calculations based on the IPA retrieval (red solid line), as done in
the traditional (heritage) approach. The dashed lines are the other combinations. The mean values

(red vs. gray) indicate that in our case the traditional approach would lead to a high bias of more
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than to 25% both at the surface and above clouds. Here again, 3D biases do not cancel each other
out in the domain average. If the CNN had better fidelity even for optically thick clouds, the real
bias in CRE would be even larger. A minor, but interesting finding is that regardless of which COT
retrieval is used, the mean CRE is very similar for IPA and 3D irradiance calculations_(e.g.,

CRE;pa(COTcyy) = URE3p (COTenn) blue dashed line overlay gray solid line), even though the

PDFs are very dissimilar. By far the largest impact on accuracy comes from the retrieval technique,
not from the subsequent CRE calculations. Here again, the self-consistency check turns out as a
powerful metric to assess retrieval accuracy. Of course, we only used a single case in this part of
the paper. For future evaluation of the CNN versus the IPA, one would need to process larger
quantities of data in an automated fashion as done in the first part of the paper. This is beyond the

scope of this introductory paper, and will be included in future releases of EaR>T and the CNN.
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Figure 14. Histograms of cloud radiative effects derived from 1) 3D irradiance calculations based on COTcnn (solid

gray), 2) IPA irradiance calculations based on COTipa (solid red), 3) IPA irradiance calculations based on

COTcnn (dashed blue), and 4) 3D irradiance calculations based on COTira (dashed green) both (a) at the

surface and (b) above the clouds. The mean values are indicated by vertical lines.

36

C Deleted: black




1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1p71
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1|084

1085

7. Summary and Conclusion

In this paper, we introduced EaR>T, a toolbox that provides high-level interfaces to
automate and facilitate 1D- and 3D-RT calculations. We presented applications that used EaR>T
to:
a) build a processing pipeline that can automatically simulate 3D radiance fields for satellite
instruments (currently OCO-2 and MODIS) from publicly available satellite surface and
cloud products at any given time over any specific region;
b) build a processing pipeline that can automatically simulate irradiance along all flight legs
of aircraft missions, based on geostationary cloud products;
¢) simulate radiance and irradiance for high-resolution COT fields retrieved from an airborne
camera, using both a traditional 1D-RT (IPA) approach, and a newly developed 3D-RT
(CNN) approach that considers the spatial context of a pixel.
Unlike other satellite simulators that employ 1D-RT, EaR>T is capable of performing the radiance
and irradiance calculations in 3D-RT mode. Optionally, it can be turned off to link back to
traditional 1D-RT codes, and to calculate 3D perturbations by considering the changes of 3D-RT
fields relative to the 1D-RT baseline.

With the processing pipeline under a) (App.,l and App. 2, section 4), we prototyped a

3D-RT powered radiance loop that is envisioned for upcoming satellite missions such as

EarthCARE and AOS. Retrieved cloud fields (in our case, from MODIS and from an airborne
camera) are fed back into a 3D-RT simulation engine to calculate at-sensor radiances, which are
then compared with the original measurements. Beyond currently included sensors, others can be
added easily, taking advantage of the modular design of EaR3T. This radiance closure loop
facilitates the evaluation of passive imagery products, especially under spatially inhomogeneous
cloud conditions. The automation of EaR3T permits calculations at any time and over any given
region, and statistics can be built by looping over entire orbits as necessary. The concept of
radiance consistency could be valuable even for existing imagery datasets because it allows the
automated quantification of 3D-RT biases even without ground truth such as airborne irradiance
from suborbital activities. In the future it should be possible to include a 3D-RT pipeline such as
EaR>T into operational processing of satellite derived data products.

Benefitting from the automation of EaR3T in b) (App. 3, section 5), we performed 3D-RT
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irradiance calculations for the entire CAMP?Ex field campaign, moving well beyond radiation
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closure case studies, and instead systematically evaluating satellite-derived radiation fields with
aircraft data for an entire region. From the comparison based on all below-cloud flight tracks
during the entire campaign, we found that the satellite-derived cloud transmittance was biased low
by 10% compared to the observations when relying on the heritage satellite cloud product.

From the statistical results of the CAMP?Ex irradiance closure in b), we concluded that the
bias between satellite-derived irradiances and the ground truth from aircraft measurements was

due to a combination of the coarse spatial resolution of the geostationary imagery products, and

3D-RT effects. .To minimize the coarse-resolution part of the bias and thus to isolate the 3D-RT

bias, we used high-resolution airborne camera imagery in ¢) (App. 4, section 6), and found that

even with increased imager resolution, biases persisted. The at-sensor radiance derived from IPA
COT retrievals was inconsistent with the original measurements. For cloudy pixels, the calculated
radiance was well below the observations, confirming an overall low bias in IPA COT. This low
bias could be largely mitigated with the context-aware CNN developed separately in Nataraja et
al. (2022) and included in EaR?T. Of course, this novel technique has limitations. For example,
the camera reflectance data went beyond the CNN training envelope, which would need to be
extended to larger COT in the future. In addition, the CNN only reproduces two-dimensional
clouds fields and does not provide access to the vertical dimension, which will be the next frontier
to tackle. Still, the greatly improved radiance consistency from COTipa to COTcenn indicates that
the EaR*T-LES-CNN approach shows great promise for the mitigation of 3D-RT biases associated
with heritage cloud retrievals. We also discovered that for this particular case, the CRE calculated

from traditional 1D cloud products can introduce a yvarm bias of at least 25% at the surface and
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above clouds.

EaR>T has proven to be capable of facilitating 3D-RT calculations for both remote sensing
and radiative energy studies. Beyond the applications described in this paper, EaRT has already
been extensively used by a series of on-going research projects such as producing massive 3D-RT
calculations as training data for a new generation of CNN models (Nataraja et al., 2022), evaluating
3D cloud radiative effects associated with aerosols (Gristey et al., 2022), creating flight track and

satellite track simulations for mission planning etc. More importantly, the strategies provided in

this paper put novel machine learning algorithms on a physical footing, opening the door for the

mitigation of complexity-induced biases in the near-future. More development effort will be

invested into EaR3T in the future, with the goals of minimizing the barriers to using 3D-RT
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calculations, and to promote 3D cloud studies. EaR*T will continue to be an educational tool driven

by graduate students. In the future, we plan to add support for additional publicly available 3D RT

solvers, e.g.. SHDOM., as well as built-in support for HITRAN and associated correlated-k

methods. From a research perspective, we anticipate that FaR*T will enable the systematic
quantification and mitigation of 3D-RT biases of imagery-derived cloud-aerosol radiative effects,

and may be the starting point for operational use of 3D-RT for future satellite missions.,
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Appendix A - Technical Input Parameters of EaR>T

EaR>T provides various functions that can be combined to tailored pipelines for automatic

3D radiative transfer (3D-RT) calculations as described App. 1 — 5 of this paper (App. 1 —5). as

well as for complex research projects beyond. Since EaR>T is written in Python, the modules and

functions can be integrated into existing functions developed by the users themselves.

Parallelization is enabled in EaRT by default through multi-processing to accelerate computations.

If multiple CPUs are available, EaR>T will distribute jobs for the 3D RT calculations. By default,

the maximum number of CPUs will be used. Since EaR>T is designed to make the process of
setting up and running 3D-RT calculations simple, some parameters that are unavailable from the

input data but are required by the RT solvers are populated via default values and assumptions.

However, this does not mean that by using EaR>T, one must use these assumptions: they can be

easily superseded by user-provided settings. To facilitate this process, Table A1 provides a detailed

list of parameters (subject to change in future updates) that can be controlled and modified by the

user. In examples/02 modis rad-sim.py, we defined these user-controllable parameters

as global variables for providing easy access to user. In the future, most of the parameters will be

controllable through a dedicated configuration file for optimal transparency. These parameters can

be changed within the code. For instance, by changing the parameters of date (Line 67 in

examples/02 modis rad-sim.py) and region (Line 68 in

examples/02 modis rad-sim.py) into the following:

date = datetime.datetime (2022, 2, 10)
region = [-6.8, -2.8, 17.0, 21.0]

one can perform similar RT calculations (as demonstrated in App. 2) for another date and region

of interest (here, west Sahara Desert on 10 February, 2022). Note that the cloud detection

algorithms we included in the code are imperfect (they only work satisfactorily for the App. 2 case

we presented in this paper); for other regions on the globe, they may need to be adjusted.

Automation of this feature is planned for the future. In addition, intuitive and simple examples are

provided in examples/00 er3t mca.py and examples/00 er3t lrt.py for users

who are interested in learning the basics of setting up EaR*T for calculations. At the current stage,
only limited documentation is provided. However, community support is available from the author
of this paper through Discord®. In the near-future, more effort will be invested into documentation

© https://discord.gg/ntqsguwaWv
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to give the user more autonomy in creating new applications that cannot be derived from those

provided in our paper.

Specified at Line

785: wavelength

Atmospheric
Gas Profile

US standard
atmosphere

Specified at Line
549: atm0

Specified at Line 70:

US standard
atmosphere

Specified at Line
424: atm0

wavelength

Specified at Line

US standard
atmosphere

Specified at Line
186: atm0

App. 1 App. 2 App. 3 App. 4 App. 5
Parameters
~— | examples/01 oc | examples/02 mo | examples/03 sp mp]!.es/l)él ca | examples/05 cn
T - n n m nadir rad- n-les rad-
02 rad-sim.py dis rad-sim.py | ns flux-sim.py n n
sim.py sim.py
September 2, 2019 September 2, 2019 September 20, 2019 October 5, 2019 August 29. 2016
Date Specified at Line Specified at Line 67: | Specified at Line Specified at Line . .
067: date date 442: date 390: date gzg?;ﬁsi:l Line
And Line 626: date | And Line 500: date | And Line 241: date | And Line 233: date | =—————
Geographical | Specified at Line Specified at Line 68: | Variable (depends N/A N/A
Region 008: extent region on aircraft location - -
Z Grid 40/05km 40/05 km 20/1km 40/05km 20/ 1km
(Number of
Grids/Resolut | Specified at Line Specified at Line Specified at Line Specified at Line Specified at Line
; 547: levels 422: levels 184: levels 192: levels 197: 1levels
on)
770 nm 650 nm 745 nm 600 nm 600 nm
Wavelength

Specified at Line 57:

443: wavelength wavelength

Specified at Line 62:
wvl0

US standard
atmosphere

Specified at Line
194: atm0

US standard
atmosphere

Specified at Line
200: atm0

Atmospheric
Gas

Case specific

Specified at Line

Default Absorption
Database
(Coddington et al.,
2008

Default Absorption

Default Absorption

Default Absorption

Database
Coddington et al.
2008

Database
Coddington et al.
2008

Database
Coddington et al.
2008

Cloud Optical
Thickness

Reflectance at 250 m
resolution

Reflectance at 250 m
resolution

Specified at Line

Absorption : . . . . . . . .
337:abs0 Specified at Line Specified at Line Specified at Line Specified at Line
431: abs0 192: abs0 201: abs0 202: abs0
FronMODISL2 | FromMopistz | HromAHIL2cloud 5\
cloud product cloud product procuct From LES
Clqud Top _ ) ) ) Specified at Line Specified at Line ) )
Height Specified at Line Specified at Line _p—Zl I cth 2d 217: cth Specified at Line
306: cth 2d 12 280:cth 2d 12 ms And Lines 217: 205: c1d0
And Line 592: ¢1d0 | And Line 466: c1d0 | £ Tost== c1do
Cloud 1 km 1 km 1 km 1 km From LES
m Specified at Line And Line 466: cqt Specified at Line Specified at Line Specified at Line
:cg
Thickness 592: cqt 215:cqt 217:cqt 205: c1d0
Two-Stream
Approximation and
Two-Stream Two-Stream CNN for camera red
Approximation for Approximation for From AHI L2 cloud channel
MODIS L1B MODIS L1B product radiance/reflectance From LES

at 100 m resolution

Specified at Line

313:cer 24 12

287:cer 2d 12

202: cer 2d

201: cot 24 Specified at Lines 205: ¢1d0
Specified at Line Specified at Line And Lines 215: 285 and 324: —
402: cot 2d 11b 337:cot 2d 11b cldo cot ipa and
And Line 592: ¢1d0 | And Line 466: ¢1d0 cot wei
And Lines 217:
cldo
From MODIS L2 From MODIS L2 From AHI L2 cloud 12 micron From LES
Cloud Cloud Product Cloud Product product Ao meron -
Effective . . . .
Radius Specified at Line Specified at Line Specified at Line Specified at Lines Specified at Ling

285 and 380:

205: ¢1d0
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And Line 592: ¢1d0 | And Line 466: ¢1d0 | And Lines 215: cer ipa and
cldo cer 2d
And Lines 217:
cldo
Henyey-Greenstein
¢=0.85
Implicitly specified
by default at Line Henyey-Greenstein
. Mie Mie Mie 232: (2=0.85)
wg mcarats ng
Phase Specified at Line Specified at Line Specified at Line Implicitly specified
Function 598: phao 472: pha0 222: pha0 Notes: Lines 207 by default at Line
And Line 630: sca And Line 504: sca And Line 240: sca 208, and 237 can be 221:
uncommented mcarats ng
meanwhile
commenting out
Line 209) to turn on
Mie
Lron MODIS From MODIS
Surface Reflectance e —
Surface Reflectance
roduct and scaled roduct 0.03 0.03 0
. by 0CO-2 pbroduct =2 =
I . . plicitly speci ) . . .
Surface . . Specified at Line Lmy llclnl 5 ec.lﬁEd Specified at Line Specified at Line
Albedo Specified at Line 395 by default at Line 236: 227
320: mod sfc alb 2d 2T surface albedo | surface albedo
oco sfc alb 2d And Line 503- mcarats ng
And Line 629: sfc 24
sfc 2d e
From OCO-2 From MODIS 28.90
geolocation file geolocation file Specified at Line 29.16°
Specified at Line
: . . . . aria pends : . .
Solar Zenith Specified at Line Specified at Line Van_dble de e".db 352 Specified at Line
] 615: sz 189: sz on aircraft location geometry|[‘sza’ 208:
Angle 5. 528 . ceesza . and date and time 1 e :
And Line 633: And Line 507: . . solar zenith a
: : And Line 240: — .
solar zenith a | solar zenith a 1 ith ngle
nagle ngle solar zenith a
ngie ngle
o
From 0C0-2 From MODIS 20483
ol geolocation file geolocation file Specified at Line 296.83°
olar aria ; o
. Specified at Line Specified at Line Varigble (depends | 353: | Specified at Line
Azimuth 616: saa 490: san on aircraft location | geometry[‘saa’ | 5,5
Angle le And Line 634: And Line 508: and date and time 1 . . solar azimuth
: n And Line 241: .
solar azimuth solar azimuth T a—— angle
angle | angle solar azimuth
angle angle angle
5.48 km (flight
705 km (satellite 705 km (satellite altitude) 705 km (satellite
. altitude altitude N/A. three- Specified at Line altitude
ensor .. . .. . dimensional 354: . .
. e — ,
Altitude Implicitly specified Implicitly specified irradiance outputs at cometr alt’ Implicitly specified

by default at Line

by default at Line

by default at Line

Sensor Zenith
Angle

625- 499: user-defined Z grid 1 ) 01-
— — And Line 242: =
mcarats ng mcarats ng : mcarats ng
sensor altitud
e
From OCO-2 From MODIS
geolocation file geolocation file 0° (nadir) 0° (nadir) 0° (nadir)

Specified at Line

Specified at Line

Sensor
Azimuth
Angle

617: vza 491: vza by default at Line by default at Line 230:

And Line 635: And Line 509: 237: 232: sensor zenith
sensor zenith sensor zenith mcarats ng mcarats ng angle

angle angle

From OCO-2 From MODIS 0° (insignificant for

geolocation file

Specified at Line

Implicitly specified

Implicitly specified

Specified at Line
30:

geolocation file

Specified at Line

618: vaa

492: vaa

0° (insignificant for
nadir)

0° (insignificant for
nadir)

nadir)

Specified at Line
231:
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168
169
170
171
172
173

174
175

176

177

178

179

180

181

182

And Line 636: And Line 510: Implicitly specified Implicitly specified sensor azimuth
sensor azimuth | sensor azimuth | by default at Line by default at Line angle
angle angle 237: 232:
mcarats ng mcarats ng
1x10® per run 1310 per run 110" per run 1310 per run 1310 per run
Number of Specified at Line 72: | Specified at Line 71: | Specified at Line 56: | Specified at Line 56: | Specified at Line 66:
Photons photon sim photon sim photon sim photon sim photon sim
And Line 640: And Line 514: And Line 246: And Line 246: And Line 234:
photons photons photons photons photons
3 3 3 3 3
Number of
Runs Specified at Line Specified at Line Specified at Line Specified at Line Specified at Line
638: Nrun 512: Nrun 245: Nrun 244: Nrun 233: Nrun
3D and IPA 3D 3D and IPA 3D 3D
Mode 3D or | Specified at Line Specified at Line Specified at Lines Specified at Lines Specified at Line
N n 380 and 381: 391 and 392: N
IPA) 786: solver 620: solver 1 1 210: solver
And Line 641: And Line 515: so.yer so.yer And Line 236:
- - And Line 247: And Line 247: S Ts—
solver solver solver
— — solver solver —
Python multi- Python multi- Python multi- Python multi- Python multi-
Parallelizatio processing processing processing processing processing
n Mode Specified at Line Specified at Line Specified at Line Specified at Line Specified at Line
643: mp _mode 517: mp mode 250: mp _mode 249: mp mode 238: mp mode
8 8 16 12 24 on clusters
Number of . .
. . . . Specified at Line . . . .
CPUs Specified at Line Specified at Line 314 Specified at Line Specified at Line
— 642: Nepu 516: Nepu 314 Nepu 248: Nepu 237: Nepu
- - And Line 249: Ncpu - -

Table Al: List of parameters used in the five applications. The line numbers used in the table are referring to the code

script of each application. If two line numbers are provided, the first one indicates where the parameter is

defined and the second one indicates where the parameter is passed into the radiative transfer setup. Users

can change either one for customization purposes.

Appendix B — App. 5 Radiance calculations based on the Large Eddy Simulation

The CNN COT retrieval framework was developed by Nataraja et al. (2022). It adapts a

U-Net (Ronneberger et al., 2015) architecture and treats the retrieval of COT from radiance as a

segmentation problem — probabilities of 36 COT classes (ranging from COT of 0 to 100) are

returned as the final COT retrieved for a given cloud radiance field. It accounts for horizontal

photon transport, which is neglected in traditional cloud retrieval algorithms; in other words, for

the spatial context of cloudy pixels. It was trained on synthetic cloud fields generated by a Large

Eddy Simulation (LES) model, which provides the ground truth of COT. Subequently, EaR>T was

used to calculate 3D-RT radiances at 600 nm for LES cloud fields to establish a mapping between
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195

radiance to COT. Only six LES cases were used to represent the variability of the cloud

morphology. Each of these fields are 480x480 pixels across (spatial resolution of 100 m). These

large fields were mapped onto thousands of 64x64 mini tiles with spatial resolution of 100 m as

described in Nataraja et al., 2022. To keep the training data set small, mini tiles selectively sampled

according to their mean COT and standard deviation. This ensured an even representation of the

dynamic range of COT and its variability, which was termed homogenization of the training data

set. Figure A1l shows a collection of samples from the training data as an illustration. All the

aforementioned simulation setup and techniques in data process are included in the App. 5 example

code, which can be applied to the LES data (a different scene from the 6 scenes) distributed along

with EaR3T.

@

AlSASREEEEEY

[ [ L Felel L e 1 1.1 I
ks o

30 2
f=1
EEREREGEEEERE -
» 250
RN
- 20 8
—
HANEEEEREENEN .-
uHEERFESEEN 0§
EEEECEEEET Y
5
HERANEERERNE .
®) - 0.200
AN IREEEEEY
0.175

P - ey
ENE2ENRINENE -
0.150 &
1 5
EEEEN-NEEERR @&
MEEFMEENEEEN -
0.100 3
ANERRNSAENE™ |
. =" | (0.075 5
] " e

MEEPERFAENEM

ExEETEEYE ™
. 0.025
HAENERERERNGEE. .

M

-

b

44



1196
1197

1{198
1199
1200
1201
1202
1203
1204

1205

1206
1207
1208
1209
1F10
1211
1212

1213

1214
1215
1216
1217
1218
1219
1220

1p21
122

Figure Al. Illustrations of 64x64 tiles of (a) cloud optical thickness from LES data and (b) calculated 3D radiance

from EaR3T for CNN training.
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C1. Cloud Detection/Identification

CDeleted: Al

Cloudy pixels are identified through a simple thresholding method based on the red, green,
and blue channels of MODIS. When the radiance values of the red, green, and blue channels of a
pixel are all greater than the corresponding median value, the pixel is considered as cloudy, as
illustrated by the following equation

Red > Median(Red) &
If Blue > Median(Blue) & {
Green > Median(Green)

Yes, cloudy

No, clear sky (A1)

Note that this only works for partially cloud-covered scenes, and may lead to false positives if
there is brightness contrast from objects other than clouds. This method was specifically applied

for the cases in this paper and should be changed as appropriate for future applications.

C2. Two-Stream Approximation

The two-stream approximation of the reflectance R is calculated using Eq. D2 from Chen

et al. (2021), as follows:

T+“'(<1—g)2fl(1—a))

*(a- 9)2-# i-a)

where 1 is the cloud optical thickness, « is the surface albedo, u is the cosine of the solar zenith

R =

(A2)

angle, and g is the asymmetry parameter. A value of 0.85 is assumed for g. The domain average
of the solar zenith angle and surface albedo are calculated and used for estimating u and @. Then,
for a range of 7, we calculated the R and obtained the relationship of R(7). For those cloudy pixels
identified through A1, the inverse relationship of T(R) is then used for estimating 7 at any given

R. Note that this approach does not take into account any cloud reflectance anisotropies.

Appendix D

D1. Parallax Correction
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From the satellite's view, the clouds (especially high clouds) will be placed at inaccurate
locations on the surface, which have shifted from their actual locations due to the parallax effect.
We followed simply trigonometry to correct for it, as follows:

Longitude correction (positive from west to east):
_ (Zeta — 2Zsfc) - tan(6) - sin (¢)

Slon
T Rparen

X 180° (B1)

Latitude correction (positive from south to north):

Slat = (e = Zsre) " tan(8) cos (@) o, (B2)
T Rparen

where (longg, latg,, Zsqe) is the satellite location and 6 and ¢ (0° at north, positive clockwise)

are the sensor viewing zenith and azimuth angles. z.,q and zf are the cloud top height and the

surface height. Rgg¢n 18 the radius of the Earth. Figure A2 shows an illustration of parallax CDeleted:Al
correction for the cloud field in the jnset in Figure 2. (Deleted: black-boxed cloud field
D2. Wind Correction ( Deleted: B2

The wind correction aims at correcting the movement of clouds when advected by the wind
between two different satellites’ overpasses.
Longitude correction (positive from west to east):

u- ot
Slon = ———— % 180° (B3)

T * REarth

Latitude correction (positive from south to north):

slat =% 1g0° (B4)
T REarth

where u and v are the domain-averaged 10 m zonal and meridional wind speeds, and &t is the time

—/

difference between two different satellites that fly on the same orbit. Figure A2 shows the cloud CDeleted: Al
location after applying the parallax (Appendix D1) and wind correction for the cloud field in the CDeleted: Bl
inset from Figure 2. CDeleted: black box
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Figure A2. An illustration of correcting cloud location (red) for parallax effect (blue) and wind effect (green) for the

cloud field of the inset in Figure 2.
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47

( Deleted: Al

( Deleted: black-boxed

NS N




R85
286
R87
P88
289
290
P91
292
293
294
P95
296
297
298

with EaR3T. EaR3T is publicly available and can be accessed and downloaded at
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