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Abstract 20 
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T) for quantifying 21 

and mitigating artifacts in atmospheric radiation science algorithms due to spatially inhomogeneous clouds 22 
and surfaces, and show the benefits of automated, realistic radiance and irradiance generation along 23 
extended satellite orbits, flight tracks from entire aircraft field missions, and synthetic data generation from 24 
model data. EaR3T is a modularized Python package that provides high-level interfaces to automate the 25 
process of 3D radiative transfer (RT) calculations. After introducing the package, we present initial findings 26 
from four applications, which are intended as blueprints to future in-depth scientific studies. The first two 27 
applications use EaR3T as a satellite radiance simulator for the NASA Orbiting Carbon Observatory 2 28 
(OCO-2) and Moderate Resolution Imaging Spectroradiometer (MODIS) missions, which generate 29 
synthetic satellite observations with 3D-RT on the basis of cloud field properties from imagery-based 30 
retrievals and other input data. In the case of inhomogeneous cloud fields, we show that the synthetic 31 
radiances are often inconsistent with the original radiance measurements. This lack of radiance consistency 32 
points to biases in heritage imagery cloud retrievals due to sub-pixel resolution clouds and 3D-RT effects. 33 
They come to light because the simulator’s 3D-RT engine replicates processes in nature that conventional 34 
1D-RT retrievals do not capture. We argue that 3D radiance consistency (closure) can serve as a metric for 35 
assessing the performance of a cloud retrieval in presence of spatial cloud inhomogeneity even with limited 36 
independent validation data. The other two applications show how airborne measured irradiance data can 37 
be used to independently validate imagery-derived cloud products via radiative closure in irradiance. This 38 
is accomplished by simulating downwelling irradiance from geostationary cloud retrievals of Advanced 39 
Himawari Imager (AHI) along all the below-cloud aircraft flight tracks of the Cloud, Aerosol and Monsoon 40 
Processes Philippines Experiment (CAMP2Ex, NASA 2019), and comparing the irradiances with the 41 
collocated airborne measurements. In contrast to isolated case studies in the past, EaR3T facilitates the use 42 
of observations from entire field campaigns for the statistical validation of satellite-derived irradiance. From 43 
the CAMP2Ex mission, we find a low bias of 10% in the satellite-derived cloud transmittance, which we 44 
are able to attribute to a combination of the coarse resolution of the geostationary imager and 3D-RT biases. 45 
Finally, we apply a recently developed context-aware Convolutional Neural Network (CNN) cloud retrieval 46 
framework to high-resolution airborne imagery from CAMP2Ex and show that the retrieved cloud optical 47 
thickness fields lead to better 3D radiance consistency than the heritage independent pixel algorithm, 48 
opening the door to future mitigation of 3D-RT cloud retrieval biases.  49 
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1. Introduction 50 

Three-dimensional cloud effects in imagery-derived cloud properties have long been 51 

considered an unavoidable error source when estimating the radiative effect of clouds and aerosols. 52 

Consequently, research efforts involving satellite, aircraft, and surface observations in conjunction 53 

with modeled clouds and radiative transfer calculations have focused on systematic bias 54 

quantification under different atmospheric conditions. Barker and Liu (1995) studied the so-called 55 

independent pixel approximation (IPA) bias in cloud optical thickness (COT) retrievals from 56 

shortwave cloud reflectance. The bias arises when approximating the radiative transfer relating to 57 

COT and measured reflectance at the pixel or cloud column level through one-dimensional (1D) 58 

radiative transfer (RT) calculations, while ignoring its radiative context. However, net horizontal 59 

photon transport and other effects such as shading engender column-to-column radiative 60 

interactions that can only be captured in a three-dimensional (3D) framework, and can be regarded 61 

as a 3D perturbation or bias relative to the 1D-RT (IPA) baseline. 3D biases affect not only cloud 62 

remote sensing but they also propagate into the derived irradiance fields and cloud radiative effects 63 

(CRE). Since the derivation of regional and global CRE relies heavily on satellite imagery, any 64 

systematic 3D bias impacts the accuracy of the Earth’s radiative budget. Likewise, imagery-based 65 

aerosol remote sensing in the vicinity of clouds can be biased by net horizontal photon transport 66 

(Marshak et al., 2008). Additionally, satellite shortwave spectroscopy retrievals of CO2 mixing 67 

ratio are affected by nearby clouds (Massie et al., 2017), albeit through a different physical 68 

mechanism than in aerosol and cloud remote sensing (Schmidt et al., 2022). 69 

Given the importance of 3D perturbations for atmospheric remote sensing, ongoing 70 

research seeks to mitigate the 3D effects. Cloud tomography, for example, inverts multi-angle 71 

radiances to infer the 3D cloud extinction distribution (Levis et al., 2020). This is achieved through 72 

iterative adjustments to the cloud field until the calculated radiances match the observations. 73 

Convolutional neural networks (CNNs, Masuda et al., 2019; Nataraja et al., 2022) account for 74 

3D-RT perturbations in COT retrievals through pattern-based machine learning that operates on 75 

collections of imagery pixels, rather than treating them in isolation like IPA. Unlike tomography, 76 

CNNs require training based on extensive cloud-type specific synthetic data with the ground truth 77 

of cloud optical properties and their associated radiances from 3D-RT calculations. Once the 78 

CNNs are trained, they do not require real-time 3D-RT calculations and can therefore be useful in 79 

an operational setting. Whatever the future may hold for context-aware multi-pixel or multi-sensor 80 
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cloud retrievals, there is a paradigm shift on the horizon that started when the radiation concept 81 

for the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE, Illingworth et al., 2015) was 82 

first proposed (Barker et al., 2012). It foresees a closure loop where broadband radiances, along 83 

with irradiance, are calculated in a 3D-RT framework from multi-sensor input fields (Barker et al., 84 

2011), and subsequently compared to independent observations by radiometers pointing in three 85 

directions (nadir, forward-, and backward-viewing along the orbit). This built-in radiance closure 86 

can serve as an accuracy metric for any downstream radiation products such as heating rates and 87 

CRE. Any inconsistencies can be used to nudge the input fields towards the truth in subsequent 88 

loop iterations akin to optimal estimation, or propagated into uncertainties of the cloud and 89 

radiation products. 90 

This general approach to radiative closure is also being considered for the National 91 

Aeronautics and Space Administration (NASA) Atmospheric Observation System (AOS, 92 

developed under the A-CCP, Aerosol and Cloud, Convection and Precipitation study), a mission 93 

that is currently in its early implementation stages. Owing to its focus on studying 94 

aerosol-cloud-precipitation-radiation interactions at the process level, it requires radiation 95 

observables at a finer spatial resolution than achieved with missions to date. At target scales close 96 

to 1 km, 3D-RT effects are much more pronounced than at the traditional 20 km scale of NASA 97 

radiation products (O’Hirok and Gautier, 2005; Ham et al., 2014; Song et al., 2016; Gristey et al., 98 

2020a). Since this leads to biases beyond the desired accuracy of the radiation products, mitigation 99 

of 3D-RT cloud remote sensing biases needs to be actively pursued over the next few years. 100 

Transitioning to an explicit treatment of 3D-RT in operational approaches entails a new 101 

generation of code architectures that can be easily configured for various instrument constellations, 102 

interlink remote sensing parameters with irradiances, heating rates, and other radiative effects, and 103 

can be used for automated processing of large data quantities. A number of 3D solvers are available 104 

for different purposes, for example, the I3RC (International Intercomparison of 3D Radiation 105 

Codes: Cahalan et al., 2005) community Monte Carlo code1, which now also includes an online 106 

simulator 2  (Gatebe et al., 2021); MCARaTS (Monte Carlo Atmospheric Radiative Transfer 107 

Simulator3: Iwabuchi, 2006); MYSTIC (Monte Carlo code for the physically correct tracing of 108 

 
1 https://earth.gsfc.nasa.gov/climate/model/i3rc, last accessed on 26 November, 2022. 
2 http://i3rcsimulator.umbc.edu, last accessed on 26 November, 2022. 
3 https://sites.google.com/site/mcarats/monte-carlo-atmospheric-radiative-transfer-simulator-mcarats, last accessed 
on 26 November, 2022. 
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photons in cloudy atmospheres: Mayer, 2009), which is embedded in libRadtran (library for 109 

radiative transfer, Mayer and Kylling, 2005); McSCIA (Monte Carlo [RT] for SCIAmachy: Spada 110 

et al., 2006), which is optimized for satellite radiance simulations (including limb-viewing) in a 111 

spherical atmosphere; McARTIM (Deutschmann et al., 2011), with several hyperspectral 112 

polarimetric applications such as differential optical absorption spectroscopy; and SHDOM 113 

(Spherical Harmonic Discrete Ordinate Method4: Evans, 1998), which, unlike the other methods, 114 

is a deterministic solver with polarimetric capabilities (Doicu et al., 2013; Emde et al., 2015) that 115 

is differentiable and can therefore be used for tomography (Loveridge et al., 2022).  116 

For the future operational application of 3D-RT, it is, however, desirable to run various 117 

different solvers in one common architecture that automates the processing of various formats of 118 

3D atmospheric input fields (including satellite data), allows the user to choose from various 119 

options for atmospheric absorption and scattering, and simulates radiance and irradiance data for 120 

real-world scenes. Here, we introduce one such tool that could serve as the seed for this architecture: 121 

the Education and Research 3D Radiative Transfer Toolbox (EaR3T). It has been developed over 122 

the past few years at the University of Colorado to automate 3D-RT calculations based on imagery 123 

or model cloud fields with minimal user input. EaR3T is maintained and extended by graduate 124 

students as part of their education, and applied to various different research projects including 125 

machine learning for atmospheric radiation and remote sensing (Gristey et al., 2020b; 2022; 126 

Nataraja et al., 2022), as well as radiative closure and satellite simulators (this paper and Schmidt 127 

et al., 2022). It is implemented as a modularized Python package with various application codes 128 

that combine the functionality in different ways, which, once set up, autonomously process large 129 

amounts of data required by airborne and satellite remote sensing and for machine learning 130 

applications. 131 

The goal of the paper is to introduce EaR3T as a versatile tool for systematically quantifying 132 

and mitigating 3D cloud effects in radiation science as foreseen in future missions. To do so, we 133 

will first showcase EaR3T as an automated radiance simulator for two satellite instruments, the 134 

Orbiting Carbon Observatory-2 (OCO-2, this application is referred to as App. 1 in this manuscript) 135 

and the Moderate Resolution Imaging Spectroradiometer (MODIS, application code 2, App. 2) 136 

from publicly available satellite retrieval products. In the spirit of radiance closure, the intended 137 

use is the comparison of modeled radiances with the original measurements to assess the accuracy 138 

 
4 https://coloradolinux.com/shdom, last accessed on 26 November, 2022. 
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of the input data, as follows: operational IPA COT products are made using 1D-RT, and thus the 142 

accompanying radiances are consistent with the original measurements under that 1D-RT 143 

assumption only. That is, self-consistency is assured if 1D-RT is used in both the inversion and 144 

radiance simulation. However, since nature creates 3D-RT radiation fields, we break this 145 

traditional symmetry in this manuscript and introduce the concept of 3D radiance consistency 146 

where closure is only achieved if the original measurements are consistent with the 3D-RT (rather 147 

than the 1D-RT) simulations. The level of inconsistency is then used as a metric for the magnitude 148 

of 3D-RT retrieval artifacts as envisioned by the architects of the EarthCARE radiation concept 149 

(Barker et al., 2012). 150 

Subsequently, we discuss applications where EaR3T performs radiative closure in the 151 

traditional sense, i.e., between irradiances derived from satellite products and collocated airborne 152 

or ground-based observations. The aircraft Cloud, Aerosol and Monsoon Processes Philippines 153 

Experiment (CAMP2Ex, Reid et al., 2022), conducted by NASA in the Philippines in 2019, serves 154 

as a testbed of this approach. Here, we use EaR3T’s automated processing capabilities to derive 155 

irradiance from geostationary imagery cloud products and then compare these to cumulative 156 

measurements made along all flight legs of the campaign (application code 3, App. 3). In contrast 157 

to previous studies that often rely on a number of cases (e.g., Schmidt et al., 2010; Kindel et al., 158 

2010), we perform closure systematically for the entire data set, enabling us to identify 3D-RT 159 

biases in a statistically significant manner. Finally, we apply a regionally and cloud type specific 160 

CNN, introduced by Nataraja et al. (2022) that is included with the EaR3T distribution, to high-161 

resolution camera imagery from CAMP2Ex. This last example demonstrates mitigation of 3D-RT 162 

biases in cloud retrievals using the concept of radiance closure to quantify its performance against 163 

the baseline IPA (application code 4). 164 

The general concept of EaR3T with an overview of the applications, along with the data 165 

used for both parts of the paper is presented in section 2, followed by a description of the 166 

procedures of EaR3T in section 3. Results for the OCO-2 and MODIS satellite simulators (part 1) 167 

are shown in section 4, followed by the quantification and mitigation of 3D-RT biases with 168 

CAMP2Ex data in section 5 and section 6 (part 2). A summary and conclusion are provided in 169 

section 7. The code, along with the applications presented in this paper, can be downloaded from 170 

the GitHub repository: https://github.com/hong-chen/er3t. 171 

 172 

Deleted: operates 173 
Deleted: on 174 

Deleted: APP175 

Deleted: github176 



 7 

2. Functionality and Data Flow within EaR3T 177 

2.1 Overview 178 

 To introduce EaR3T as a satellite radiance simulator tool and to demonstrate its use for the 179 

quantification and mitigation of 3D cloud remote sensing biases, five applications (Figure 1) are 180 

included in the GitHub software release, four of which are discussed in this paper: 181 

 182 

          183 

(a) (b) (c) 

(d) (e) 

Deleted: github 184 
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Figure 1. Flow charts of EaR3T applications for (a) OCO-2 radiance simulation at 768.52 nm (data described in section 185 
2.2.1 and 2.2.2, results discussed in section 4), (b) MODIS radiance simulation at 650 nm (data described 186 
in section 2.2.1, results discussed in section 4), (c) SPN-S irradiance simulation at 745 nm (data described 187 
in section 2.2.3 and 2.2.4, results discussed in section 5), (d) all-sky camera radiance simulation at 600 nm 188 
(data described in section 2.2.5, results discussed in section 6), and (e) radiance simulation at 600 nm based 189 
on LES data for CNN training (Appendix B). The data products and their abbreviations are described in 190 
section 2.2. 191 

 192 

1. App. 1, section 4.1 (examples/01_oco2_rad-sim.py): Radiance simulations along 193 

the track of OCO-2, based on data products from MODIS and others – to assess consistency 194 

(closure) between simulated and measured radiance; 195 

2. App. 2, section 4.2 (examples/02_modis_rad-sim.py): MODIS radiance 196 

simulations – to assess self-consistency of MODIS level-2 (L2) products with the 197 

associated radiance fields (L1B product) under spatially inhomogeneous conditions; 198 

3. App. 3, section 5 (examples/03_spns_flux-sim.py): Irradiance simulations along 199 

aircraft flight tracks, utilizing the L2 cloud products of the AHI, and comparison with 200 

aircraft measurements – to quantify retrieval biases due to 3D cloud structure based with 201 

data from an entire aircraft field campaign; 202 

4. App. 4, section 6 (examples/04_cam_nadir_rad-sim.py): Mitigation of 3D 203 

cloud biases in passive imagery COT retrievals from an airborne camera, application of a 204 

convolutional neural network (CNN) and subsequent comparison of CNN-derived 205 

radiances with the original measurements – to illustrate how the radiance self-consistency 206 

concept assesses the fidelity of cloud retrievals. 207 

5. App. 5, Appendix B (examples/05_cnn-les_rad-sim.py): Generation of training 208 

data for the CNN (App. 4) based on LES inputs. The training datasets contains 1) the 209 

ground truth of COT from the LES data; 2) realistic radiance simulated by EaR3T based on 210 

the LES cloud fields. 211 

Figure 1 shows the high-level workflow of the applications. The first four share the general 212 

concept of evaluating simulations (the output from the EaR3T, indicated in red at the bottom of 213 

each column) with observations (indicated in green at the bottom) from various satellite and 214 

aircraft instruments. The results for the first four applications are interpreted in section 4.1, section 215 

4.2, section 5, and section 6. The results for App. 5 are discussed in detail in a separate paper by 216 
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Nataraja et al. (2022). In this paper, we will only provide a brief description for App. 5 in Appendix 224 

B. The workflow of each application consists of three parts – 1) data acquisition, 2) pre-processing, 225 

and 3) RTM setup and execution. EaR3T includes functions to ingest data from various different 226 

sources, e.g., satellite data from publicly available data archives, which can be combined in 227 

different ways to accommodate input data depending on the application specifics. For example, in 228 

App. 1, EaR3T is used to automatically download and process MODIS and OCO-2 data files based 229 

on the user-specified region, date and time. Building on the templates provided in the current code 230 

distribution, the functionality can be extended to new spaceborne or airborne instruments. The fifth 231 

column of Figure 1 shows an application that differs from the first four, and was developed for 232 

earlier papers (Gristey et al., 2020a and 2020b; Nataraja et al., 2022; Gristey et al., 2022). In 233 

contrast to the first four, which use imagery products as input, the fifth application ingests model 234 

output from a Large Eddy Simulation (LES) and produces irradiance data for surface energy 235 

budget applications, or synthetic radiance fields for training a CNN. Details and results are 236 

described in the respective papers. Furthermore, Schmidt et al. (2022) builds upon App. 1 to study 237 

the mechanism of 3D cloud biases in OCO-2 passive spectroscopy retrievals.  238 

 After the required data files have been downloaded in the data acquisition step, EaR3T 239 

pre-processes them and generates the optical properties of atmospheric gases, clouds, aerosols, and 240 

the surface. In Figure 1, the mapping from input data to these properties is color-coded 241 

component-wise (brown for associated cloud property processing if available, blue for associated 242 

surface property processing if available, green for associated ground truth property). The version 243 

used in this paper (v0.1.0; Chen and Schmidt, 2022) only includes MCARaTS as the 3D RT solver, 244 

but others are planned for the future. MCARaTS is a radiative transfer solver uses Monte Carlo 245 

photon-tracing method (Iwabuchi, 2006). It outputs radiation (radiance or irradiance) based on the 246 

inputs of radiative properties of surface and atmospheric constituents (e.g., gases, aerosols, clouds) 247 

such as single scattering albedo, scattering phase function, or asymmetry parameters, along with 248 

solar and sensor viewing geometries. The setup of these input properties is implemented in 249 

EaR3T’s pre-processing steps, which translates atmospheric properties into solver-specific input 250 

with minimum user intervention. To achieve this, EaR3T is modular so that it can be extended as 251 

new solvers are added. Although the five specific applications in this paper do not include aerosol 252 

layers, the setup of aerosol fields is fully supported and has been used in other applications (e.g., 253 

Gristey et al., 2022). After pre-processing, the optical properties are fed into the RT solver. Finally, 254 
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the user obtains radiation output from EaR3T, either radiance or irradiance. The output is saved in 265 

HDF5 format and can be easily distributed and accessed by various programming languages. The 266 

data variables contained in the HDF5 output are provided in Table 1. 267 

 268 

Metadata 

Variable Name Description Data Type Dimension 

mean/N_photon Number of photons 
per run Array N_g 

mean/N_run Number of runs Integer value N/A 

mean/toa TOA downwelling 
flux Float value N/A 

Radiance 

Variable Name Description Data Type Dimension 

mean/rad 

Radiance field at 
user specified 

altitude averaged 
over different runs 

Array (N_x, N_y) 

mean/rad_std 

Standard deviation 
of the radiance 

fields from different 
runs 

Array (N_x, N_y) 

Irradiance 

Variable Name Description Data Type Dimension 

mean/f_down 
Downwelling 

irradiance averaged 
over different runs 

Array (N_x, N_y, N_z) 

mean/f_down_std 

Standard deviation 
of the downwelling 

irradiance from 
different runs 

Array (N_x, N_y, N_z) 

mean/f_down_diffuse 

Diffuse 
downwelling 

irradiance averaged 
over different runs 

Array (N_x, N_y, N_z) 

mean/f_down_diffuse_std 

Standard deviation 
of the diffuse 
downwelling 

irradiance from 
different runs 

Array (N_x, N_y, N_z) 
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mean/f_down_direct 
Direct downwelling 
irradiance averaged 
over different runs 

Array (N_x, N_y, N_z) 

mean/f_down_direct_std 

Standard deviation 
of the direct 
downwelling 

irradiance from 
different runs 

Array (N_x, N_y, N_z) 

mean/f_up 
Upwelling 

irradiance averaged 
over different runs 

Array (N_x, N_y, N_z) 

mean/f_up_std 

Standard deviation 
of the upwelling 
irradiance from 
different runs 

Array (N_x, N_y, N_z) 

 269 
Table 1: Data variables contained in the output HDF5 file from EaR3T for radiance and irradiance calculations. The 270 

radiance is simulated with a user-specified sensor geometry at a given altitude using forward photon tracing. 271 
The data variables listed under Metadata are included for both radiance and irradiance calculations. N_x, 272 
N_y, and N_z are the number of pixels along x, y, and z direction, respectively. N_g is the number of g, 273 
explained in section 3 – Correlated-k. 274 

 275 

The aforementioned three steps – data acquisition, pre-processing, and RTM setup and 276 

execution are automated such that the 3D/1D-RT calculations can be performed for any region at 277 

any date and time using satellite or aircraft data or other data resources such as LES. EaR3T is 278 

hosted on GitHub at https://www.github.com/hong-chen/er3t. Since it is developed as an 279 

educational and research 3D-RT tool collection by students, it is a living code base, intended to be 280 

updated over time. The master code modules for the five applications as listed in Figure 1 are 281 

included in the EaR3T package under the examples directory. In the current release (v0.1.0), 282 

only a limited documentation for the installation and usage, including example codes for EaR3T, 283 

are provided. More effort will be dedicated for documentation in the near-future. 284 

 285 

2.2 Data 286 

The radiance simulations in App. 1 and App. 2 use data from the OCO-2 and MODIS-Aqua 287 

instruments, both of which are in a sun-synchronous polar orbit with an early-afternoon equator 288 

crossing time within NASA’s A-Train satellite constellation. Figure 2 visualizes radiance 289 

measurements by OCO-2 in the context of MODIS Aqua imagery over a partially vegetated and 290 
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partially cloud-covered land, illustrating that MODIS provides imagery and scene context for 297 

OCO-2, which in turn observes radiances from a narrow swath. The region is located in southwest 298 

Colorado in the United States of America. We selected this case because both the surface and 299 

clouds are varied along with diverse surface types. The surface features green forest and brown 300 

soil, whereas clouds include small cumulus and large cumulonimbus. In addition, this scene 301 

contains relatively homogeneous cloud fields in the north and inhomogeneous cloud fields in the 302 

south, which allows us to evaluate the simulations from various aspects of cloud morphology. To 303 

simulate the radiances of both instruments we use data products from OCO-2 and MODIS, as well 304 

as reanalysis products from NASA’s Global Modeling and Assimilation Office (GMAO) sampled 305 

at OCO-2 footprints and distributed along with OCO-2 data (section 2.2.2). 306 

 307 

                                        308 
Figure 2. OCO-2 measured radiance (units: Wm-2nm-1sr-1) at 768.52 nm, overlaid on MODIS Aqua RGB imagery 309 

over southwestern Colorado (USA) on 2 September, 2019. The inset shows an enlarged portion along the 310 
track, illustrating that OCO-2 radiances co-vary with MODIS-Aqua radiance observations. 311 

 312 

For App. 3 (irradiance simulations and 3D cloud bias quantification), we use geostationary 313 

imagery from the Japanese Space Agency’s Advanced Himawari Imager to provide cloud 314 

information in the area of the flight path of the NASA CAMP2Ex aircraft (Reid et al., 2022). The 315 

AHI data are used in conjunction with aircraft measurements of shortwave spectral radiation 316 

(section 2.2.4). Subsequently (App. 4: 3D cloud bias mitigation), we demonstrate the concept of 317 

radiance closure under partially cloudy conditions with airborne camera imagery (section 2.2.5). 318 

The underlying cloud retrieval is based on a convolutional neural network (CNN), which is 319 
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described in a related paper (Nataraja et al., 2022) in this special issue and relies on EaR3T-322 

generated synthetic radiance data based on Large Eddy Simulations (LES). 323 

 324 

2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS) 325 

The MODIS instruments are multi-use multispectral radiometers onboard NASA’s Terra 326 

and Aqua satellites, which were launched in 1999 and 2002 respectively. MODIS was conceived 327 

as a central element of the Earth Observing System (EOS, King and Platnick, 2018). For App. 1 328 

and App. 2, EaR3T ingests MODIS level 1B radiance products at the quarter kilometer scale 329 

(channels 1 and 2, bands centered at 650 and 860 nm), MxD02QKM, where ‘x’ stands for ‘O’ in 330 

the case of MODIS on Terra, and ‘Y’ in the case of Aqua data), the geolocation product (MxD03), 331 

the level 2 cloud product (MxD06), and the surface reflectance product (MxD09A1). For this paper, 332 

we use only Aqua data (MYD), from data collection 6.1. All the data are publicly available, and 333 

are distributed at the LAADS (Level-1 and Atmosphere Archive & Distribution System) 334 

Distributed Active Archive Center (DAAC) by NASA’s Goddard Space Flight Center. 335 

 For cloud properties in App. 2, we use the MODIS cloud product (MxD06L2, collection 336 

6.1). It provides cloud properties such as cloud optical thickness (COT), cloud effective radius 337 

(CER), cloud thermodynamic phase, cloud top height (CTH), etc. (Nakajima and King, 1990; 338 

Platnick et al., 2003). Since 3D cloud effects such as horizontal photon transport are most 339 

significant at small spatial scales (e.g., Song et al., 2016), we use the high-resolution red (650 nm) 340 

channel 1 (250 m), and derive COT directly from the reflectance in the Level-1B data 341 

(MYD02QKM) instead of using the coarser-scale operational product from MYD06. CER and 342 

CTH are sourced from MYD06 and re-gridded to 250 m. The EaR3T strategy for MODIS data is 343 

similar, in principle, to the more advanced method by Deneke et al. (2021), which uses a 344 

high-resolution wide-band visible channel from geostationary imagery to up-sample narrow-band 345 

coarse-resolution channels. However, we simplified cloud detection and derivation of COT from 346 

reflectance data for the purpose of our paper by using a threshold method (Appendix C1) and the 347 

two-stream approximation (Appendix C2). In future versions of EaR3T this will be upgraded to 348 

more sophisticated algorithms. A simple algorithm (Appendix D1) is used to correct for the 349 

parallax shift based on the sensor geometries and cloud heights. The cloud top height data is 350 

provided by the MODIS L2 cloud product and assuming cloud base is the same. 351 
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For the surface albedo required by the RTM, we used MYD09A1, which provides 368 

cloud-cleared surface reflectance observations aggregated over an 8-day period (Vermote et al., 369 

2015). This product is available on a sinusoidal grid with a spatial resolution of 500 m for MODIS 370 

band 2, and includes atmospheric correction for gas and aerosol scattering and absorption. 371 

Assuming a Lambertian surface in this first release of EaR3T, we used surface reflectance as 372 

surface albedo input to the RTM. 373 

 374 

2.2.2 Orbiting Carbon Observatory 2 (OCO-2) 375 

The OCO-2 satellite was inserted into NASA’s A-Train constellation in 2014 and flies 376 

about 6 minutes ahead of Aqua. OCO-2 provides the column-averaged carbon dioxide (CO2) 377 

dry-air mole fraction (XCO2) through passive spectroscopy based on hyperspectral radiance 378 

observations in three narrow wavelength regions, the Oxygen A-Band (~0.76 micron), the weak 379 

CO2 band (~1.60 micron), and the strong CO2 band (~2.06 micron). As shown in the inset of Figure 380 

2, it takes measurements in eight footprints across a narrow swath. Each of the footprints has a 381 

size around 1-2 km, and the spectra for the three bands are provided by separate, co-registered 382 

spectrometers (Crisp et al., 2015). 383 

The OCO-2 data products of 1) Level 1B calibrated and geolocated science radiance 384 

spectra (L1bScND), 2) standard Level 2 geolocated XCO2 retrievals results (L2StdND), 3) 385 

meteorological parameters interpolated from GMAO (L2MetND) at OCO-2 footprint location are 386 

downloaded from NASA GES DISC (Goddard Earth Science Data Archive and Information 387 

Services Center) data archive (https://oco2.gesdisc.eosdis.nasa.gov/data/OCO2_DATA). Since 388 

MODIS on Aqua overflies a scene 6 minutes after OCO-2, the clouds move with the wind over 389 

this time period. We therefore added a wind correction on top of the parallax-corrected cloud fields 390 

obtained from MODIS (section 2.2.1). This was done with the 10 m wind speed data from 391 

L2MetND (see Appendix D2). For the same scene as shown in Figure 2, Figure 3 shows (a) COT, 392 

(b) CER, and (c) CTH, all corrected for both parallax and wind effects (these corrections are shown 393 

in Figure A2 in Appendix D). The parallax and wind corrections are imperfect as certain 394 

assumptions are involved. For example, they rely on the cloud top height from the MODIS cloud 395 

product. In addition, they process the whole scene with one single sensor viewing geometry. To 396 

minimize artifacts introduced by the assumptions, one can apply the simulation to a smaller region. 397 

 398 
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 408 

     409 

 410 
Figure 3. (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the two-stream approximation 411 

(Eq. A2), (b) cloud effective radius (units: 𝜇m), and (c) cloud top height (units: km) collocated from the 412 
MODIS L2 cloud product. The locations of the cloudy pixels were shifted to account for parallax and wind 413 
effects. The parallax correction ranged from near 0 for low clouds and 1 km for high clouds (10 km CTH). 414 
The wind correction was around 0.8 km, given the average wind speed of 2 m/s to the east. 415 

 416 

 The OCO-2 data (L2StdND) themselves only provide sparse surface reflectance for the 417 

footprints that are clear, while EaR3T requires surface albedo for the whole domain. Therefore, we 418 

used MYD09A1 as a starting point. However, since MODIS does not have a channel in the Oxygen 419 

A-Band, MODIS band 2 (860 nm) was used as a proxy for the 760 nm OCO-2 channel as follows: 420 

we collocated the OCO-2 retrieved 760 nm surface reflectance ROCO within the corresponding 860 421 

nm MODIS MYD09A1 data RMOD as shown in Figure 4a (same domain as Figures 2 and 3) and 422 

(a) (b) 

(c) 
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calculated a scaling factor assuming a linear relationship between ROCO and RMOD (ROCO =a·RMOD). 423 

Figure 4b shows ROCO versus RMOD for all cloud-free OCO-2 footprints. The red line shows a linear 424 

regression (derived scale factor a=0.93). Optionally, the OCO-2-scaled MODIS-derived surface 425 

reflectance fields can be replaced by the OCO-2 surface reflectance products for pixels where they 426 

are available. The scaled surface reflectance is then treated as surface albedo input to the RTM 427 

assuming a Lambertian surface. 428 

 429 

      430 
Figure 4. (a) Surface reflectance from the OCO-2 L2 product in the Oxygen A-band (near 760 nm), overlaid on the 431 

surface reflectance from the MODIS MYD09 product at 860 nm. (b) OCO-2 surface reflectance at 760 nm 432 
versus MODIS surface reflectance at 860 nm, along with linear regression (y=ax) as indicated by the red 433 
line (slope a=0.9337). 434 

 435 

2.2.3 Advanced Himawari Imager (AHI) 436 

The Advanced Himawari Imager (AHI, used for App. 3) is a payload on Himawari-8, a 437 

geostationary satellite operated by the Meteorological Satellite Center (MSC) of the Japanese 438 

Meteorological Agency. The AHI provides 16 channels of spectral radiance measurements from 439 

the shortwave (0.47µm) to the infrared (13.3µm). During CAMP2Ex, the NASA in-field 440 

operational team closely collaborated with the team from MSC to provide AHI satellite imagery 441 

at the highest resolution over the Philippine Sea. From the AHI imagery, the cloud product 442 

generation system - Clouds from AVHRR Extended System (CLAVR-x), was used to generate 443 

cloud products from the AHI imagery (Heidinger et al., 2014). The cloud products from CLAVR-444 

x include cloud optical thickness, cloud effective radius, and cloud top height at 2 (at nadir) to 5 445 
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km spatial resolution. Since AHI provides continuous regional scans every 10 minutes the AHI 449 

cloud product has a temporal resolution of 10 minutes. 450 

 451 

2.2.4 Spectral Sunshine Pyranometer (SPN-S) 452 

The SPN-S is a prototype spectral version of the commercially available global-diffuse 453 

SPN1 pyranometer (Wood et al., 2017; Norgren et al., 2022). The radiometer uses a 7-detector 454 

design in combination with a fixed shadow mask that enables the simultaneous measurement of 455 

both diffuse and global irradiances, from which the direct component of the global irradiance is 456 

calculated via subtraction. The detector measures spectral irradiance from 350 to 1000 nm, and the 457 

spectrum is sampled at 1 nm resolution with 1 Hz timing. 458 

During the CAMP2Ex mission, the SPN-S was mounted to the top of the NASA P-3 aircraft 459 

where it sampled downwelling solar irradiance. To ensure accurate measurements, pre- and post-460 

mission laboratory-based calibrations were completed using tungsten “FEL” lamps that are 461 

traceable to a National Institute of Standards and Technology standard. Additionally, the direct 462 

and global irradiances were corrected for deviations of the SPN-S sensor plane from horizontal 463 

that are the result of changes in the aircraft’s pitch or roll. This attitude correction applied to the 464 

irradiance data is a modified version of the method outlined in Long et al. (2010). However, 465 

whereas Long et al. (2010) employ a “box” flight pattern to characterize the sensor offset angles, 466 

in this study an aggregation of flight data containing aircraft heading changes under clear-sky 467 

conditions are used as a substitute. The estimated uncertainty of the SPN-S system is 6 to 8%, with 468 

4 to 6% uncertainty stemming from the radiometric lamp calibration process, and up to another 2% 469 

resulting from insufficient knowledge of the sensor cosine response. The stability of the system 470 

under operating conditions is 0.5%. A thorough description of the SPN-S and its calibration and 471 

correction procedures is provided in Norgren et al. (2022). In this paper (App. 3) only the global 472 

downwelling irradiance sampled by the 745 nm channel is used.  473 

 474 

2.2.5 Airborne All-Sky Camera (ASC) 475 

The All-Sky Camera (used for App. 4) is a commercially available camera (ALCOR 476 

ALPHEA 6.0CW5) with fish-eye optics for hemispheric imaging. It has a Charge-Coupled Device 477 

 
5https://www.alcor-system.com/common/allSky/docs/ALPHEA_Camera%20ALL%20SKY%20CAMERA_Doc.pdf 
last accessed on April 24, 2022. 
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(CCD) detector that measures radiances in red, green, and blue channels. Radiometric and 481 

geometric calibrations were performed at the Laboratory of Atmospheric and Space Physics at the 482 

University of Colorado Boulder. The three-color channels are centered at 493, 555, and 626 nm 483 

for blue, green, and red, respectively, with bandwidths of 50 – 100 nm. Only radiance data from 484 

the red channel are used in this paper. The spatial resolution of the ASC depends on the altitude of 485 

the aircraft and the viewing zenith angle. Across the hemispheric field of view of the camera, the 486 

resolution of the field angle is approximately constant, at about 0.09º. At a flight level of 5 km, 487 

this translates to a spatial resolution of 8 m at nadir. However, due to accuracy limitations of the 488 

geometric calibration and the navigational data from Inertial Navigation System (INS), the nadir 489 

geolocation accuracy could only be verified to within ±50 m. During the CAMP2Ex flights, the 490 

camera exposure time was set manually to minimize saturation of the detector. The standard image 491 

frame rate is 1 Hz. The precision of the camera radiances is on the order of 1%, and the radiometric 492 

accuracy is 6 – 7%. 493 

 494 

3. EaR3T Procedures 495 

 In the previous section, we described the general workflow of EaR3T applications, along 496 

with relevant data. In this section, we will focus on the specific implementation of the workflow 497 

through the EaR3T software package. It is a toolbox for 3D-RT with modules for automatic input 498 

data download and processing, generation of radiative and optical properties of surface, 499 

atmospheric gases, clouds and aerosols, wrappers for 3D-RT solvers and output post-processing, 500 

with the end goal to simulate radiances and irradiances along entire satellite orbits or aircraft flight 501 

tracks. Unlike established radiative transfer packages such as libRadtran (Mayer and Kylling, 2005; 502 

Emde et al., 2016), which provide extensive libraries of optical properties along with a selection 503 

of solvers, EaR3T focuses on automated radiative transfer for two- or three-dimensional cloud, 504 

aerosol, and surface input data, and therefore only comes with minimal options for optical 505 

properties, and solvers. The initial release (version 0.1.0) is available at https://github.com/hong-506 

chen/er3t. 507 

We will now walk through the OCO-2 and MODIS simulator applications with the codes 508 

examples/01_oco2_rad-sim.py (App. 1) and examples/02_modis_rad-sim.py 509 

(App. 2). The data acquisition (first step in Figure 1) uses functions in er3t/util. App. 1 and 510 
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App. 2 use the functions in er3t/util/modis.py and er3t/util/oco2.py for 515 

downloading the MODIS and OCO-2 data files from the respective NASA data archives and for 516 

processing the data (e.g., geo-mapping, gridding etc.). The user supplies minimum input (date and 517 

time, as well as latitudes and longitudes of the region of interest), which need to be specified in 518 

download_modis_https and download_oco2_https (from er3t/util). For 519 

example, for App. 1 and App. 2, the only user inputs are the date and time and the region of interest 520 

– in this case September 2, 2019, with the westernmost, easternmost, southernmost, and 521 

northernmost longitudes and latitudes of 109°W, 107°W, 37°N, and 39°N. In order for EaR3T to 522 

access any data archives such as NASA Earthdata, the user needs to create an account with them 523 

and store the credentials locally (detailed instructions are provided separately along with the EaR3T 524 

distribution). 525 

After the data acquisition step, the satellite data are fed into the pre-processing step for 1) 526 

atmospheric gases (er3t/pre/atm), 2) clouds (er3t/pre/cld), 3) surface 527 

(er3t/pre/sfc) as shown in Figure 1. In the default configuration of the App. 1, the standard 528 

US atmosphere (Anderson et al., 1986; included in the EaR3T repository) is used within atm. 529 

EaR3T supports the input of user-specified atmospheric profiles, e.g., atmospheric profiles from 530 

reanalysis data for App. 2 as described in Schmidt et al. (2022), by making changes in 531 

atm_atmmod (from er3t/pre/atm). Subsequently, molecular scattering coefficients are 532 

calculated by cal_mol_ext (from er3t/util), and absorption coefficients for atmospheric 533 

gases are generated by (er3t/pre/abs). At the current development stage, two options are 534 

available: 535 

1. Line-by-line (used by App. 1): The repository includes a sample file of absorption coefficient 536 

profiles for a subset of wavelengths within OCO-2’s Oxygen A-Band channel, corresponding 537 

to a range of atmospheric transmittance values from low (opaque) to high (so-538 

called “continuum” wavelength). They were generated by an external code (Schmidt et al., 539 

2022) based on OCO-2’s line-by-line absorption coefficient database (ABSCO, Payne et al., 540 

2020). For each OCO-2 spectrometer wavelength within a given channel, hundreds of 541 

individual absorption coefficient profiles at the native resolution of ABSCO need to be 542 

considered across the instrument line shape (ILS, also known as the slit function) of the 543 

spectrometer. The ILS, as well as the incident solar irradiance, are also included in the file. 544 

In subsequent steps, EaR3T performs RT calculations at the native spectral resolution of 545 
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ABSCO, but then combines the output by convolving with the ILS and outputs OCO-2 557 

radiances or reflectances at the subset of wavelengths. For probabilistic (Monte Carlo) RT 558 

solvers such as MCARaTS, the number of photons can be kept relatively low (e.g., 106 559 

photons), and can be adjusted according to the values of the ILS at a particular ABSCO 560 

wavelength. Any uncertainty at the ABSCO spectral resolution due to photon noise is greatly 561 

reduced by convolving with the ILS for the final output. 562 

2. Correlated-k (used by App. 2): This approach (Mlawer et al., 1997) is appropriate for 563 

instruments such as MODIS with much coarser spectral resolution than OCO-2, as well as 564 

for broadband calculations. In contrast to the line-by-line approach, RT calculations are not 565 

performed at the native resolution of the absorption database, but at Gaussian quadrature 566 

points (called “g’s”) that represent the full range of sorted absorption coefficients, and then 567 

combined using Gaussian quadrature weights. The repository includes an absorption 568 

database from Coddington et al. (2008), developed specifically for a radiometer with 569 

moderate spectral resolution on the basis of HITRAN (high-resolution transmission 570 

molecular absorption database) 2004 (Rothman et al., 2005). It was created for the ILS of 571 

the airborne Solar Spectral Flux Radiometer (SSFR, Pilewskie et al., 2003), but is applied to 572 

MODIS here, which has a moderate spectral resolution of 8-12 nm with 20-50 nm 573 

bandwidths. It uses 16 absorption coefficient bins (g’s) per target wavelength (this could 574 

either be an individual SSFR or a MODIS channel), which are calculated by EaR3T with the 575 

Coddington et al. (2008) database using the mixing ratios of atmospheric gases in the 576 

previously ingested profile. In future implementations, the code will be updated to enable 577 

flexible ILS and broadband calculations. 578 

The er3t/pre/cld module calculates extinction, thermodynamic phase, and effective 579 

droplet radius of clouds from the input data. The er3t/pre/pha module creates the required 580 

single scattering albedo and scattering phase function. The default is a Henyey-Greenstein phase 581 

function with a fixed asymmetry parameter of 0.85. Along with the current distribution (v0.1.0) of 582 

EaR3T, the Mie phase functions based on thermodynamic phase, effective droplet radius, and 583 

wavelength are supported. In this study, App. 1 and App. 2 use Mie phase functions calculated 584 

from Legendre polynomial coefficients (originally distributed along with libRadtran) based on the 585 

wavelength and cloud droplet effective radius. In the future, EaR3T will include stand-alone phase 586 

functions, which can be chosen on the basis of droplet size distributions in addition to effective 587 
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radius. It is also possible to include aerosols in a similar fashion as clouds. This is done with the 594 

er3t/pre/aer module. In the case of aerosols, spectral single scattering albedo and asymmetry 595 

parameter are required as inputs in addition to the extinction fields. 596 

After the optical properties are calculated, they are passed into the 3D-RT step 597 

(er3t/rtm/mca). In addition to MCARaTS, planned solvers for the future include MYSTIC 598 

(Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres, Mayer, 599 

2009) and SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and 600 

Evans, 2009). This step performs the setup of RT solver-specified input parameters and data files, 601 

distributing runs over multiple Central Processing Units (CPUs), and post-processing RT output 602 

files into a single, user-friendly HDF5 file. For example, when radiance is specified as output 603 

(default in App. 1 and App. 2), key information such as the radiance field and its standard deviation 604 

are stored in the final HDF5 file (details see Table 1).  605 

While the EaR3T repository comes with various applications such as App. 1 and App. 2, 606 

described above, the functions used by these master or ‘wrapper’ programs can be organized in 607 

different ways, where the existing applications serve as templates for a quick start when developing 608 

new applications. The functions used by the master code pass information through the various 609 

steps as Python objects. For example, in examples/01_oco2_rad-sim.py, the downloaded 610 

and processed satellite data are stored into the sat object. Later, the sat object is passed into an 611 

EaR3T function to create the cld object that contains cloud optical properties. Similarly, EaR3T 612 

provides functions to create the atm, and sfc objects with optical properties for atmospheric 613 

gases and the surface. These objects (atm, cld, sfc) are in turn passed on to solver-specific 614 

modules for performing RT calculations. The user can choose to save the data of the intermediate 615 

objects into Python pickle files after the first run. In this way, multiple calls with identical input 616 

can re-use existing data, which accelerates the processing time of EaR3T. Unless the user specifies 617 

the overwrite keyword argument in the object call to reject saving pickle files, these shortcuts 618 

save significant time. Moreover, EaR3T is capable of distributing simulations over multiple CPUs 619 

to accelerate the calculations, which is useful for potential future application of later EaR3T or 620 

EaR3T-like codes in operational or large-scale data processing. 621 

In the following sections, we discuss results obtained from EaR3T, starting with those from 622 

examples/01_oco2_rad-sim.py and examples/02_modis_rad-sim.py (section 623 

4), examples/03_spns_flux-sim.py (section 5), and concluding with 624 
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examples/04_cam_nadir_rad-sim.py (section 6). The detailed RT setup for the 632 

applications is provided Table A1 in Appendix A. 633 

 635 

4. EaR3T as a 3D Satellite Radiance Simulator 636 

This section demonstrates the automated 3D radiance simulation for satellite instruments 637 

by EaR3T for OCO-2 and MODIS measured radiance based on publicly available MODIS retrieval 638 

products. The OCO-2 application is an example of radiance consistency between two distinct 639 

satellite instruments where the measurements of one (here, OCO-2) are compared with the 640 

simulations based on data products from the other (here, MODIS). The MODIS application, on 641 

the other hand, is an example of radiance self-consistency. We will show how inconsistencies can 642 

be used for detecting cloud and surface property retrieval biases. 643 

4.1 OCO-2 (App. 1) 644 

The OCO-2 radiance measurements at 768.52 nm for our sample scene in the context of 645 

MODIS imagery were shown in Figure 2. For that track segment, Figure 5a shows the simulated 646 

radiance along with the measurements as a function of latitude. The radiance was averaged over 647 

every 0.01° latitude window from 37° N to 39° N (the standard deviation within the bin indicated 648 

by the shaded color). In clear-sky regions (e.g., around 38.2º N), the simulations (red) are 649 

systematically higher than the measurements (black), even though the footprint-level OCO-2 650 

retrieval was used to scale the MYD09 surface reflectance field as described in section 2.2.2 651 

(Figure 4). This is because, unlike the MYD09 algorithm which relies on multiple overpasses and 652 

multiple-days for cloud-clearing, the OCO-2 retrieval is done for any clear footprint. Clouds in the 653 

vicinity lead to enhanced diffuse illumination that is erroneously attributed to the surface 654 

reflectance itself. The EaR3T IPA calculations of the clear-sky pixels (blue) essentially reverse the 655 

3D effect and therefore match the observations better. The 3D calculations enhance the reflectance 656 

through the very same 3D cloud effects that led to the enhanced surface illumination in the first 657 

place. It is possible to correct this effect by down-scaling the surface reflectance according to the 658 

ratio between clear-sky 3D and IPA calculations, but this process is currently not automated. 659 

 660 
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                                                      666 

                                            667 
Figure 5. (a) Latitudinally averaged (0.01° spacing) radiance calculations from EaR3T (red: 3D, blue: IPA) and OCO-668 

2 measured radiance at 768.52 nm (black) The green shaded area indicates the inset shown in (b). (b) The 669 
same as Figure 2 except OCO-2 measured radiance overlaid on IPA radiance simulations at 768.52 nm. The 670 
solar zenith angle (SZA) for the radiance simulation case is 33.57°. 671 

 672 

In the cloudy locations, the IPA calculations match the OCO-2 observations on a footprint-673 

by-footprint level (see Figure 5b), demonstrating that wind and parallax corrections were 674 

performed successfully. Of course, there is not always a perfect agreement because of 675 

morphological changes in the cloud field over the course of six minutes. It is, however, apparent 676 

that the 3D calculations agree to a much lesser extent with the observations than the IPA 677 

calculations. Just like the mismatch for the clear-sky pixels indicates a bias in the input surface 678 

reflectance, the bias here means that the input cloud properties (most importantly COT) are 679 

inaccurate. For most of the reflectance peaks, the 3D simulations are too low, which means that 680 
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the input COT is biased low. This is due to 3D cloud effects on the MODIS-based cloud retrieval. 682 

Since they are done with IPA, any net horizontal photon transport is not considered, which leads 683 

to an apparent surface brightening as noted above, at the expense of the cloud brightness. As a 684 

result, the COT from darker clouds is significantly underestimated. This commonly known 685 

problem (Barker and Liu, 1995), with several aspects discussed in the subsequent EaR3T 686 

applications, can be identified by radiance consistency checks such as the one shown in Figure 5, 687 

and mitigated by novel types of cloud retrievals that do take horizontal photon transport into 688 

account (section 6). 689 

 690 

4.2 MODIS (App. 2) 691 

 To go beyond the OCO-2 track and understand the bias between simulated and observed 692 

radiances from a domain perspective, we now consider the radiance simulations for the MODIS 693 

650 nm channel. The setup is exactly the same as for the OCO-2 simulations, except that 1) the 694 

viewing zenith angle is set to the average viewing zenith angle of MODIS within the shown domain 695 

(instead of OCO-2), and 2) the surface reflectances from MYD09 are used directly, this time from 696 

the 650 nm channel without rescaling. Figure 6a shows the MODIS measured radiance field, while 697 

Figure 6b shows the EaR3T 3D simulations. Visually, the clouds from the EaR3T simulation are 698 

generally darker than the observed clouds, which is in line with our aforementioned explanation 699 

of net horizontal photon transport. They are also blurrier because radiative smoothing (Marshak et 700 

al., 1995) propagates into the retrieved COT fields, which are subsequently used as input to EaR3T. 701 

To look at darkening and smoothing effects more quantitatively, Figure 7 shows a heatmap plot of 702 

simulated radiance versus observed radiance. It shows that the radiance for cloud-covered pixels 703 

(labeled “cloudy”) from EaR3T are mostly low-biased while good agreement between simulations 704 

and observations was achieved for clear-sky radiance (labeled “clear-sky”). The good agreement 705 

over clear-sky regions is expected. As mentioned above, we use MYD09 as surface reflectance 706 

input, which in contrast to the OCO-2 surface reflectance product is appropriately cloud-screened 707 

and therefore does not have a reflectance high bias. There is, of course, a reflectance enhancement 708 

in the vicinity of clouds, but that is captured by the EaR3T calculations. The fact that the 709 

calculations agree with the observations even for clear-sky pixels in the vicinity of clouds, shows 710 

that the concept of radiance consistency works to ensure correct satellite retrievals even in the 711 

presence of clouds. It also corroborates our observation from section 4.1 that COTIPA is low biased. 712 
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Since the MODIS reflectance is not self-consistent with respect to COTIPA as shown for the cloudy 714 

pixels in Figure 7, we can identify a bias in the cloud properties even without knowing the ground 715 

truth of COT. On the other hand, successful closure in radiance (self-consistency) would provide 716 

an indication that the input fields including COT are accurate, although it is certainly a weaker 717 

metric than direct verification of the retrievals through aircraft satellite retrieval validation with 718 

in-situ instruments. 719 

 720 

     721 
Figure 6. (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance at 650 nm from EaR3T. 722 

The solar zenith angle for the radiance simulation case is 34.42°. 723 
 724 
 725 

                                             726 
Figure 7. Heatmap plot of EaR3T simulated 3D radiance vs. MODIS measured radiance at 650 nm. 727 
 728 
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Summarizing the two satellite radiance simulator applications, one can say that EaR3T 729 

enables a radiance consistency check for inhomogeneous cloud scenes. We demonstrated that a 730 

lack of simulation-observation consistency (MODIS versus OCO-2) and self-consistency (MODIS 731 

versus MODIS) can be traced back to biased surface reflectance or cloud fields in the simulator 732 

input. This can become a diagnostic tool for the quality of retrieval products from future or current 733 

missions, even when the ground truth is not known. It should be pointed out that the vertical extent 734 

of the clouds affects the simulated radiance – the larger the vertical extent, the larger the 3D effects 735 

(more horizontal photon transport). Since we make the assumption of a cloud geometric thickness 736 

of 1 km if no thickness information is provided, the simulated radiance at the satellite sensor level 737 

is valid for that proxy cloud only. For deeper clouds, the simulated radiance would be even lower. 738 

Either way, the comparison with the actual radiance measurements will reveal a lack of closure. 739 

Additionally, although the clouds introduce the lion’s share of the 3D bias that is identified by the 740 

radiance consistency check, additional discrepancies can be introduced in different ways. For 741 

example, the topography (mountainous region in Colorado) is not considered by MCARaTS (it is 742 

considered by MYSTIC, but this solver has not been implemented yet).  743 

For technical reference: The MODIS simulation (domain size of [Nx=1188, Ny=1188]) 744 

took about one hour on a Linux workstation with 12 CPUs for three 3D RT runs with 108 photons 745 

each. With a slightly modified setup and parallelization, the automation can be easily applied for 746 

entire satellite orbits, although more research is required to optimize the computation speed 747 

depending on the desired output accuracy. 748 

 749 

5. EaR3T as 3D Aircraft Irradiance Simulator (App. 3) 750 

In contrast to the previous applications that focused on satellite remote sensing, we will 751 

now be applying EaR3T to quantify 3D cloud retrieval biases through direct, systematic validation 752 

of imagery-derived irradiances against aircraft measurements, instead of using the indirect path 753 

of radiance consistency in section 4. Previous studies (e.g., Schmidt et al., 2007; Kindel et al., 754 

2010) conducted radiative closure between remote sensing derived and measured irradiance using 755 

isolated flight legs as case studies. Here, with the efficiency afforded by the automated nature of 756 

EaR3T, we are able to conduct radiative closure of irradiance through a statistical approach that 757 

employs campaign-scale amounts of measurement data. Specifically, we used EaR3T to perform 758 

large-scale downwelling irradiance simulations at 745 nm based on geostationary cloud retrievals 759 
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from AHI for the CAMP2Ex campaign, and directly compare these simulations to the SPN-S 761 

measured irradiances onboard the P-3 aircraft. This is done for all below-cloud legs from the entire 762 

campaign with the aim to assess the degree to which satellite-derived near-surface irradiances 763 

reproduce the true conditions below clouds. 764 

The irradiance simulation process is similar to the previously described radiance simulation 765 

in section 4, with only a few modifications. First, we used cloud optical properties from the AHI 766 

cloud product (COT, CER and CTH) as direct inputs into EaR3T. Secondly, we used a constant 767 

ocean surface reflectance value of 0.03. Such simplification in surface albedo is made under the 768 

assumption that 1) the ocean surface is calm with no whitecaps, and that 2) the Lambertian 769 

bidirectional reflectance distribution function (BRDF) is sufficient (instead of directionally 770 

dependent BRDF) to represent surface albedo for the irradiance calculation. Since the ocean 771 

surface albedo can greatly differ from 0.03 when the Sun is extremely low (Li et al., 2006), we 772 

excluded data under low-Sun conditions where the SZA is greater than 45°. Lastly, since EaR3T 773 

can only perform 3D simulations for a domain at a single specified solar geometry, we divided 774 

each CAMP2Ex research flight into small flight track segments where each segment contains 6 775 

minutes of flight time. The size and shape of the flight track segments can vary significantly due 776 

to the aircraft maneuvers, aircraft direction, aircraft speed, etc. For each flight track segment, 777 

EaR3T performs irradiance simulations for a domain that extends half a degree at an averaged solar 778 

zenith angle. In contrast to the radiance simulation output, which is two-dimensional at a specified 779 

altitude and sensor geometry, the irradiance simulation output is three dimensional. In addition to 780 

x (longitude) and y (latitude) vectors, it has a vertical dimension along z (altitude). From the 781 

simulated three-dimensional irradiance field, the irradiance for the flight track segment is linearly 782 

interpolated to the x-y-z location (longitude, latitude, and altitude) of the aircraft. EaR3T 783 

automatically sub-divides the flight track into tiles encompassing track segments, and extracts the 784 

necessary information from the aircraft navigational data. Based on the aircraft time and position, 785 

EaR3T downloads the AHI cloud product that is closest in time and space to the domain containing 786 

the flight track segment. 787 

Figure 8 shows the simulated irradiance for a sample flight track below clouds on 20 788 

September, 2019. Figure 8a shows the flight track overlaid on AHI imagery. Figure 8b shows 3D 789 

(in red) and IPA (in blue) downwelling irradiance simulations for the highlighted flight track in 790 

Figure 8a, as well as measurements by the SPN-S (in black). Since the 3D and IPA simulations 791 
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are performed separately at discrete solar and sensor geometries for each flight track segment based 792 

on potentially changing cloud fields from one geostationary satellite image to the next, 793 

discontinuities in the calculations (indicated by gray dashed lines) are expected. The diffuse 794 

irradiance (downwelling and upwelling) can also be simulated and compared with radiometer 795 

measurements (not shown here). Since the irradiance was simulated/measured below clouds, high 796 

values of downwelling irradiance indicate thin-cloud or cloud-free regions while low values of 797 

downwelling irradiance indicate thick-cloud regions. The simulations successfully captured this 798 

general behavior – clouds thickened from west to east until around 121.25° E, and thinned 799 

eastwards. However, the fine-scale variabilities in irradiance were not captured by the simulations 800 

due to the coarse resolution of COT in the AHI cloud product (3-5 km). Additionally, the 801 

simulations also missed the clear-sky regions in the very east and west of the flight track as 802 

indicated by high downwelling irradiance values measured by SPN-S. This is probably also due to 803 

the coarse resolution of the AHI COT product where small cloud gaps are not represented. Large 804 

discrepancies between simulations and observations occur in the mid-section of the flight track 805 

where clouds are present (e.g., longitude range from 121.15° to 121.3°). Although the 3D 806 

calculations differ somewhat from the IPA results, they are both biased high, likely because the 807 

input COT (the IPA-retrieved AHI product) is biased low. This bias is caused by the same 808 

mechanism that was discussed earlier in the MODIS examples (section 4.2). This begs the question 809 

whether this is true for the entire field mission. To answer the question, we performed a systematic 810 

comparison of the cloud transmittance for all available below-cloud flight tracks from CAMP2Ex, 811 

using EaR3T’s automated processing pipeline. The output of this pipeline is visualized in time-812 

synchronized flight videos (Chen et al., 2022), which show the simulations and observations along 813 

all flight legs point by point. These videos give a glimpse of the general cloud environment during 814 

the field campaign from the geostationary satellite perspective. 815 
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 824 

       825 
Figure 8. (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea on 20 September, 2019. 826 

The thin line shows the entire flight track within the domain. The thick line highlights the specific leg 827 
analyzed in (b). (b) Measured downwelling irradiance from SPN-S at 745 nm and calculated 3D and IPA 828 
irradiance from EaR3T for the highlighted flight track in (a). 829 

 830 

For this comparison, we use transmittance instead of irradiance. The transmittance is 831 

calculated by dividing the downwelling irradiance below clouds (𝐹↓
"#$$#%) by the downwelling 832 

irradiance at the top of the atmosphere extracted from the Kurucz solar spectra (𝐹↓
&'(; Kurucz, 833 

1992) at incident solar zenith angle (SZA), where 𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 =834 

𝐹↓"#$$#%
(𝐹↓&'( ⋅ cos	(𝑆𝑍𝐴))7 . Thus the transmittance has less diurnal dependence than the 835 

irradiance. Figure 9 shows the histograms of the simulated and measured cloud transmittance from 836 

all below-cloud legs. The average values are indicated by dashed lines. Although the averaged 837 

values of IPA and 3D transmittance are close, their distributions are different. Only the 3D 838 

calculations and the measured transmittance reach values beyond 1. This occurs in clear-sky 839 

regions in the vicinity of clouds that receive photons scattered by the clouds as previously 840 

discussed for the OCO-2 application. 841 
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                                 845 
Figure 9. Histogram of measured transmittance from SPN-S at 745 nm (black) and calculated 3D (red) and IPA (blue) 846 

transmittance from EaR3T for all the below-cloud flight tracks during CAMP2Ex in 2019. The mean values 847 
are indicated by dashed lines. The yellow (green) shaded area represents the relatively low (high) 848 
transmittance region where the probability density of the observed transmittance (black) is greater than the 849 
calculations.  850 

 851 

Both the distribution and the mean value of the simulations are different from the 852 

observations – the simulation histograms peak at around 0.9 while the observation histogram peaks 853 

at around 1. The histograms indicate that the RT simulations miss most of the clear-sky conditions 854 

because of the coarse resolution of the AHI cloud product. If clouds underfill a pixel, AHI 855 

interprets the pixel as cloudy in most cases. This leads to an underestimation of clear-sky regions 856 

since cumulus and high cirrus were ubiquitous during CAMP2Ex. The area on the left (highlighted 857 

in yellow) has low cloud transmittance associated with thick clouds. In this range, the histograms 858 

of the calculations are generally below the observations, and the PDF of the calculations is offset 859 

to the right (indicated by the yellow arrow). This means that the transmittance is overestimated by 860 

both IPA and 3D RT, and thus that the COT of thick clouds is underestimated, consistent with 861 

what we found before (Figure 8b). The high-transmittance end (highlighted in green) is associated 862 

with clear-sky and thin clouds. Here, the peak of the PDF is shifted to the left (green arrow), and 863 

the calculations are biased low. This is caused by a combination of 1) the overestimation in COT 864 

of thin clouds due a 3D bias in the AHI IPA retrieval, 2) the aforementioned resolution effect that 865 

underestimates the occurrence of clear-sky regions (or overestimation in cloud fraction), and 3) 866 

net horizontal photon transport from clouds into clear-sky pixels. Overall, the calculations 867 

underestimate the true transmittance by 10%. This might seem to contradict Figure 7, where the 868 
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calculated reflected radiance was biased low due to the underestimation of COT in the heritage 876 

retrievals, which would correspond to an overestimation of the radiation transmitted by clouds. 877 

This effect is indeed apparent in the yellow-shaded area of Figure 9 (high COTs), but the means 878 

(dashed lines) show exactly the opposite. To understand that, one has to consider that the histogram 879 

depicts all-sky conditions, which include both cloudy and clear pixels. In this case, the direction 880 

of the overall (all-sky) bias follows the direction of the thin-cloud/clear bias, rather than the 881 

direction of the thick cloud bias. For different study regions of the globe with different cloud 882 

fractions, cloud size distributions, and possibly different imager resolutions, the direction and 883 

magnitude of the bias might be very different. 884 

Summarizing, this application demonstrates that the EaR3T’s automation feature allows 885 

systematic simulation-to-observation comparisons. If aircraft observations are available, then 886 

closure between satellite-derived irradiance and suborbital measurements is a more powerful 887 

verification of satellite cloud retrieval products than the radiance consistency from the earlier 888 

stand-alone satellite applications. Even more powerful is the new approach to process the data 889 

from an entire field mission for assessing the quality of cloud products in a region of interest (in 890 

this case, the CAMP2Ex area of operation). 891 

 892 

6. EaR3T for Mitigating 3D Cloud Retrieval Biases (App. 4) 893 

In this section, we will use high-resolution imagery from a radiometrically calibrated 894 

all-sky camera flown during the CAMP2Ex to isolate the 3D bias (sometimes referred to as IPA 895 

bias) and explore its mitigation with a newly developed CNN cloud retrieval framework (Nataraja 896 

et al., 2022). The CNN, unlike IPA, takes pixel-to-pixel net horizontal photon transport into 897 

account. It exploits the spatial context of pixels in cloud radiance imagery, and extracts a higher-898 

dimensional, multi-scale representation of the radiance to retrieve COT fields as the output. It does 899 

so by learning on “training data”, which in this case was input radiance and COT pairs synthetically 900 

generated by EaR3T using LES data from the Sulu Sea. The best CNN model, trained on different 901 

coarsened resolutions of the data pairs, is included within the EaR3T repository. For App. 4, this 902 

CNN is applied to real imagery data for the first time, which in our case are near-nadir observations 903 

by the all-sky camera (section 2.2.5) that flew in CAMP2Ex. 904 

The CNN model was trained at a single (fixed) sun-sensor geometry (solar zenith angle, 905 

SZA=29.2°; solar azimuth angle, SAA=323.8°, viewing zenith angle, VZA=0º), at a spatial 906 
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resolution of 100 m. We therefore chose a camera scene with a matching SZA (28.9°), and rotated 917 

the radiance imagery to match SAA=323.8°, and subsequently gridded the 8-12 m native 918 

resolution camera data to 100 m. Figure 10a shows the RGB imagery captured by the all-sky 919 

camera over the Philippine Sea at 02:10:06 UTC on 5 October 2019. The Sun is located at the 920 

southeast (as indicated by the yellow arrow) and can be easily identified from the sun glint. Note 921 

that this image has not yet been geolocated; it is depicted as acquired in the aircraft reference frame. 922 

Figure 10b shows the rotated scene of the red channel radiance for the region encircled in yellow 923 

in Figure 10a. The sun (as indicated by the yellow arrow) is now at SAA=323.8°. The selected 924 

study region is indicated by the red rectangle in Figure 10b (6.4x6.4 km2), where the raw radiance 925 

of the camera is gridded at 100 m resolution to match the spatial resolution of the training dataset 926 

of the CNN. 927 

        928 
 929 

           930 
Figure 10. (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP2Ex for a cloud scene centered 931 

at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 UTC on 5 October, 2019. The arrows 932 
indicate the true north (green), flight direction (blue), and illumination (where the sunlight comes from, 933 
yellow). (b) Red channel radiance measured by the camera for the circular area indicated by the red circle 934 
in (a). Red squared region shows gridded radiance with a pixel size of 64x64 and spatial resolution of 100 935 
m. 936 

 937 

From the radiance field, we used both the traditional IPA (based on the two-stream 938 

approximation) and the new CNN to retrieve COT fields. Figure 11 shows the COTIPA and COTCNN 939 
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fields, which are visually quite different. For relatively thin clouds (e.g., at around {2, 1.8}), the 957 

CNN tends to retrieve larger COT values than COTIPA. Also, it returns more spatial structure than 958 

the IPA (e.g., around {2,-1}). To assess how either retrieval performs, we now apply the radiance 959 

self-consistency approach introduced with MODIS data in section 4.2. Using both the IPA and the 960 

CNN retrieval as input, we had EaR3T calculate the (synthetic) radiance that the camera should 961 

have observed if the retrieval were accurate. The clouds are assumed to be located at 1-2 km. Such 962 

an assumption is inferred from low-level aircraft observations of clouds on the same day. These 963 

radiance fields are shown in Figure 12a and 12b, and can be compared to Figure 12c. Seven edge 964 

pixels have been removed from the original domain because the CNN performs poorly at edge 965 

pixels, and because the 3D calculations use periodic boundary conditions. 966 

 967 

           968 
Figure 11. Cloud optical thickness for the gridded radiance in Figure 10b (a) estimated by IPA and (b) predicted by 969 

CNN. 970 
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 989 

           990 

 991 
Figure 12. 3D radiance calculations from EaR3T at 600 nm based on cloud optical thickness field (a) estimated by 992 

IPA, and (b) predicted by the CNN. The radiance measured by the all-sky camera (the same as Figure 993 
10b) is provided in the same format at (c) for comparison. The calculations were originally performed 994 
for the 64x64 domain. Then 7 pixels along each side of the domain (contoured in gray) were excluded, 995 
which resulted in a 50x50 domain. 996 
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           1002 
Figure 13. Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based on cloud optical thickness 1003 

(a) estimated by IPA and (b) predicted by the CNN vs. measured red channel radiance from all-sky camera. 1004 
 1005 

As evident from the brightest pixels in Figures 12b and 12c, the radiances simulated on the 1006 

basis of the CNN COT input are markedly lower than actually observed by the camera. This is 1007 

because the CNN was trained on a LES dataset with limited COT range that excluded the largest 1008 

COT that occurred in practice. This means that the observational data went beyond the original 1009 

training envelope of the CNN, which highlights the importance of choosing the CNN training data 1010 

carefully for a given region. In Figure 13, the simulations are directly compared with the original 1011 

observations, confirming that indeed the CNN-generated data are below the observations on the 1012 

high radiance end. Otherwise, the CNN-generated radiances agree with the observations. In 1013 

contrast, the IPA-generated data are systematically lower than the observations, over the dynamic 1014 

range of the COT, which is indicative of the 3D retrieval bias that we discussed earlier. Here again, 1015 

the self-consistency approach proves useful despite the absence of ground truth data for the COT. 1016 

This is extremely helpful because in reality satellite remote sensing does not have the ground truth 1017 

of COT, whereas radiance measurements are always available. For the CNN, the self-consistency 1018 

of the radiance is remarkable for the thinner clouds (radiance smaller than 0.4), which encompass 1019 

83.5% of the total number of image pixels. 1020 

Finally, we use EaR3T to propagate the 3D cloud retrieval bias into the associated bias in 1021 

estimating the cloud radiative effect from passive imagery retrievals, which means that we are 1022 

returning from a remote sensing to an energy perspective (irradiance) at the end of the paper. The 1023 

calculated cloud radiative effects (CRE) of both below-clouds (at the surface) and above-clouds 1024 
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(at 3 km) are shown in Figure 14a and 14b. The most important histograms are those from 3D 1028 

irradiance calculations based on the CNN retrievals (gray solid line), as this combination would 1029 

be used in a next-generation framework for deriving CRE from passive remote sensing, and the 1030 

other would be IPA irradiance calculations based on the IPA retrieval (red solid line), as done in 1031 

the traditional (heritage) approach. The dashed lines are the other combinations. The mean values 1032 

(red vs. gray) indicate that in our case the traditional approach would lead to a high bias of more 1033 

than to 25% both at the surface and above clouds. Here again, 3D biases do not cancel each other 1034 

out in the domain average. If the CNN had better fidelity even for optically thick clouds, the real 1035 

bias in CRE would be even larger. A minor, but interesting finding is that regardless of which COT 1036 

retrieval is used, the mean CRE is very similar for IPA and 3D irradiance calculations (e.g., 1037 

𝐶𝑅𝐸)*((𝐶𝑂𝑇+,,)<<<<<<<<<<<<<<<<<<<<<< ≈ 𝐶𝑅𝐸-.(𝐶𝑂𝑇+,,)<<<<<<<<<<<<<<<<<<<<<, blue dashed line overlay gray solid line), even though the 1038 

PDFs are very dissimilar. By far the largest impact on accuracy comes from the retrieval technique, 1039 

not from the subsequent CRE calculations. Here again, the self-consistency check turns out as a 1040 

powerful metric to assess retrieval accuracy. Of course, we only used a single case in this part of 1041 

the paper. For future evaluation of the CNN versus the IPA, one would need to process larger 1042 

quantities of data in an automated fashion as done in the first part of the paper. This is beyond the 1043 

scope of this introductory paper, and will be included in future releases of EaR3T and the CNN. 1044 

 1045 

    1046 
Figure 14. Histograms of cloud radiative effects derived from 1) 3D irradiance calculations based on COTCNN (solid 1047 

gray), 2) IPA irradiance calculations based on COTIPA (solid red), 3) IPA irradiance calculations based on 1048 
COTCNN (dashed blue), and 4) 3D irradiance calculations based on COTIPA (dashed green) both (a) at the 1049 
surface and (b) above the clouds. The mean values are indicated by vertical lines. 1050 
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7. Summary and Conclusion 1055 

In this paper, we introduced EaR3T, a toolbox that provides high-level interfaces to 1056 

automate and facilitate 1D- and 3D-RT calculations. We presented applications that used EaR3T 1057 

to: 1058 

a) build a processing pipeline that can automatically simulate 3D radiance fields for satellite 1059 

instruments (currently OCO-2 and MODIS) from publicly available satellite surface and 1060 

cloud products at any given time over any specific region; 1061 

b) build a processing pipeline that can automatically simulate irradiance along all flight legs 1062 

of aircraft missions, based on geostationary cloud products; 1063 

c) simulate radiance and irradiance for high-resolution COT fields retrieved from an airborne 1064 

camera, using both a traditional 1D-RT (IPA) approach, and a newly developed 3D-RT 1065 

(CNN) approach that considers the spatial context of a pixel. 1066 

Unlike other satellite simulators that employ 1D-RT, EaR3T is capable of performing the radiance 1067 

and irradiance calculations in 3D-RT mode. Optionally, it can be turned off to link back to 1068 

traditional 1D-RT codes, and to calculate 3D perturbations by considering the changes of 3D-RT 1069 

fields relative to the 1D-RT baseline. 1070 

With the processing pipeline under a) (App. 1 and App. 2, section 4), we prototyped a 1071 

3D-RT powered radiance loop that is envisioned for upcoming satellite missions such as 1072 

EarthCARE and AOS. Retrieved cloud fields (in our case, from MODIS and from an airborne 1073 

camera) are fed back into a 3D-RT simulation engine to calculate at-sensor radiances, which are 1074 

then compared with the original measurements. Beyond currently included sensors, others can be 1075 

added easily, taking advantage of the modular design of EaR3T. This radiance closure loop 1076 

facilitates the evaluation of passive imagery products, especially under spatially inhomogeneous 1077 

cloud conditions. The automation of EaR3T permits calculations at any time and over any given 1078 

region, and statistics can be built by looping over entire orbits as necessary. The concept of 1079 

radiance consistency could be valuable even for existing imagery datasets because it allows the 1080 

automated quantification of 3D-RT biases even without ground truth such as airborne irradiance 1081 

from suborbital activities. In the future it should be possible to include a 3D-RT pipeline such as 1082 

EaR3T into operational processing of satellite derived data products. 1083 

 Benefitting from the automation of EaR3T in b) (App. 3, section 5), we performed 3D-RT 1084 

irradiance calculations for the entire CAMP2Ex field campaign, moving well beyond radiation 1085 
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closure case studies, and instead systematically evaluating satellite-derived radiation fields with 1090 

aircraft data for an entire region. From the comparison based on all below-cloud flight tracks 1091 

during the entire campaign, we found that the satellite-derived cloud transmittance was biased low 1092 

by 10% compared to the observations when relying on the heritage satellite cloud product. 1093 

From the statistical results of the CAMP2Ex irradiance closure in b), we concluded that the 1094 

bias between satellite-derived irradiances and the ground truth from aircraft measurements was 1095 

due to a combination of the coarse spatial resolution of the geostationary imagery products and 1096 

3D-RT effects. To minimize the coarse-resolution part of the bias and thus to isolate the 3D-RT 1097 

bias, we used high-resolution airborne camera imagery in c) (App. 4, section 6), and found that 1098 

even with increased imager resolution, biases persisted. The at-sensor radiance derived from IPA 1099 

COT retrievals was inconsistent with the original measurements. For cloudy pixels, the calculated 1100 

radiance was well below the observations, confirming an overall low bias in IPA COT. This low 1101 

bias could be largely mitigated with the context-aware CNN developed separately in Nataraja et 1102 

al. (2022) and included in EaR3T. Of course, this novel technique has limitations. For example, 1103 

the camera reflectance data went beyond the CNN training envelope, which would need to be 1104 

extended to larger COT in the future. In addition, the CNN only reproduces two-dimensional 1105 

clouds fields and does not provide access to the vertical dimension, which will be the next frontier 1106 

to tackle. Still, the greatly improved radiance consistency from COTIPA to COTCNN indicates that 1107 

the EaR3T-LES-CNN approach shows great promise for the mitigation of 3D-RT biases associated 1108 

with heritage cloud retrievals. We also discovered that for this particular case, the CRE calculated 1109 

from traditional 1D cloud products can introduce a warm bias of at least 25% at the surface and 1110 

above clouds. 1111 

EaR3T has proven to be capable of facilitating 3D-RT calculations for both remote sensing 1112 

and radiative energy studies. Beyond the applications described in this paper, EaR3T has already 1113 

been extensively used by a series of on-going research projects such as producing massive 3D-RT 1114 

calculations as training data for a new generation of CNN models (Nataraja et al., 2022), evaluating 1115 

3D cloud radiative effects associated with aerosols (Gristey et al., 2022), creating flight track and 1116 

satellite track simulations for mission planning etc. More importantly, the strategies provided in 1117 

this paper put novel machine learning algorithms on a physical footing, opening the door for the 1118 

mitigation of complexity-induced biases in the near-future. More development effort will be 1119 

invested into EaR3T in the future, with the goals of minimizing the barriers to using 3D-RT 1120 
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calculations, and to promote 3D cloud studies. EaR3T will continue to be an educational tool driven 1126 

by graduate students. In the future, we plan to add support for additional publicly available 3D RT 1127 

solvers, e.g., SHDOM, as well as built-in support for HITRAN and associated correlated-k 1128 

methods. From a research perspective, we anticipate that EaR3T will enable the systematic 1129 

quantification and mitigation of 3D-RT biases of imagery-derived cloud-aerosol radiative effects, 1130 

and may be the starting point for operational use of 3D-RT for future satellite missions.  1131 
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Appendix A - Technical Input Parameters of EaR3T 1135 

EaR3T provides various functions that can be combined to tailored pipelines for automatic 1136 

3D radiative transfer (3D-RT) calculations as described App. 1 – 5 of this paper (App. 1 – 5), as 1137 

well as for complex research projects beyond. Since EaR3T is written in Python, the modules and 1138 

functions can be integrated into existing functions developed by the users themselves. 1139 

Parallelization is enabled in EaR3T by default through multi-processing to accelerate computations. 1140 

If multiple CPUs are available, EaR3T will distribute jobs for the 3D RT calculations. By default, 1141 

the maximum number of CPUs will be used. Since EaR3T is designed to make the process of 1142 

setting up and running 3D-RT calculations simple, some parameters that are unavailable from the 1143 

input data but are required by the RT solvers are populated via default values and assumptions. 1144 

However, this does not mean that by using EaR3T, one must use these assumptions; they can be 1145 

easily superseded by user-provided settings. To facilitate this process, Table A1 provides a detailed 1146 

list of parameters (subject to change in future updates) that can be controlled and modified by the 1147 

user. In examples/02_modis_rad-sim.py, we defined these user-controllable parameters 1148 

as global variables for providing easy access to user. In the future, most of the parameters will be 1149 

controllable through a dedicated configuration file for optimal transparency. These parameters can 1150 

be changed within the code. For instance, by changing the parameters of _date (Line 67 in 1151 

examples/02_modis_rad-sim.py) and _region (Line 68 in 1152 

examples/02_modis_rad-sim.py) into the following: 1153 

_date   = datetime.datetime(2022, 2, 10) 1154 
_region = [-6.8, -2.8, 17.0, 21.0] 1155 

one can perform similar RT calculations (as demonstrated in App. 2) for another date and region 1156 

of interest (here, west Sahara Desert on 10 February, 2022). Note that the cloud detection 1157 

algorithms we included in the code are imperfect (they only work satisfactorily for the App. 2 case 1158 

we presented in this paper); for other regions on the globe, they may need to be adjusted. 1159 

Automation of this feature is planned for the future. In addition, intuitive and simple examples are 1160 

provided in examples/00_er3t_mca.py and examples/00_er3t_lrt.py for users 1161 

who are interested in learning the basics of setting up EaR3T for calculations. At the current stage, 1162 

only limited documentation is provided. However, community support is available from the author 1163 

of this paper through Discord6. In the near-future, more effort will be invested into documentation 1164 

 
6 https://discord.gg/ntqsguwaWv 
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to give the user more autonomy in creating new applications that cannot be derived from those 1165 

provided in our paper. 1166 
 1167 

Parameters 
App. 1 
 
examples/01_oc
o2_rad-sim.py 

App. 2 
 
examples/02_mo
dis_rad-sim.py 

App. 3 
 
examples/03_sp
ns_flux-sim.py 

App. 4 
 
examples/04_ca
m_nadir_rad-
sim.py 

App. 5 
 
examples/05_cn
n-les_rad-
sim.py 

Date 

September 2, 2019 
 
Specified at Line 
667: date 
And Line 626: date 

September 2, 2019 
 
Specified at Line 67: 
_date 
And Line 500: date 

September 20, 2019 
 
Specified at Line 
442: date 
And Line 241: date 

October 5, 2019 
 
Specified at Line 
390: date 
And Line 233: date 

August 29, 2016 
 
Specified at Line 
222: date 

Geographical 
Region 

Specified at Line 
668: extent 

Specified at Line 68: 
_region 

Variable (depends 
on aircraft location) N/A N/A 

Z Grid 
(Number of 
Grids/Resolut
ion) 

40 / 0.5 km 
 
Specified at Line 
547: levels 

40 / 0.5 km 
 
Specified at Line 
422: levels 

20 / 1 km 
 
Specified at Line 
184: levels 

40 / 0.5 km 
 
Specified at Line 
192: levels 

20 / 1km 
 
Specified at Line 
197: levels 

Wavelength 
770 nm 
 
Specified at Line 
785: wavelength 

650 nm 
 
Specified at Line 70: 
_wavelength 

745 nm 
 
Specified at Line 
443: wavelength 

600 nm 
 
Specified at Line 57: 
_wavelength 

600 nm 
 
Specified at Line 62: 
wvl0 

Atmospheric 
Gas Profile 

US standard 
atmosphere 
 
Specified at Line 
549: atm0 

US standard 
atmosphere 
 
Specified at Line 
424: atm0 

US standard 
atmosphere 
 
Specified at Line 
186: atm0 

US standard 
atmosphere 
 
Specified at Line 
194: atm0 

US standard 
atmosphere 
 
Specified at Line 
200: atm0  

Atmospheric 
Gas 
Absorption 

Case specific  
 
Specified at Line 
557: abs0 

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
431: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
192: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
201: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
202: abs0  

Cloud Top 
Height  

From MODIS L2 
cloud product 
 
Specified at Line 
306: cth_2d_l2 
And Line 592: cld0  

From MODIS L2 
cloud product 
 
Specified at Line 
280: cth_2d_l2 
And Line 466: cld0  

From AHI L2 cloud 
product 
 
Specified at Line 
211: cth_2d 
And Lines 215: 
cld0  

2 km 
 
Specified at Line 
217: cth 
And Lines 217: 
cld0 

From LES 
 
Specified at Line 
205: cld0 

Cloud 
Geometrical 
Thickness 

1 km 
 
Specified at Line 
592: cgt  

1 km 
 
And Line 466: cgt 

1 km 
 
Specified at Line 
215: cgt 

1 km 
 
Specified at Line 
217: cgt 

From LES 
 
Specified at Line 
205: cld0 

Cloud Optical 
Thickness 

Two-Stream 
Approximation for 
MODIS L1B 
Reflectance at 250 m 
resolution 
 
Specified at Line 
402: cot_2d_l1b 
And Line 592: cld0  

Two-Stream 
Approximation for 
MODIS L1B 
Reflectance at 250 m 
resolution 
 
Specified at Line 
337: cot_2d_l1b 
And Line 466: cld0 

From AHI L2 cloud 
product 
 
Specified at Line 
201: cot_2d 
And Lines 215: 
cld0 

Two-Stream 
Approximation and 
CNN for camera red 
channel 
radiance/reflectance 
at 100 m resolution 
 
Specified at Lines 
285 and 324: 
cot_ipa and 
cot_wei 
And Lines 217: 
cld0  

From LES 
 
Specified at Line 
205: cld0 

Cloud 
Effective 
Radius 

From MODIS L2 
Cloud Product 
 
Specified at Line 
313: cer_2d_l2 

From MODIS L2 
Cloud Product 
 
Specified at Line 
287: cer_2d_l2 

From AHI L2 cloud 
product 
 
Specified at Line 
202: cer_2d 

12 micron 
 
Specified at Lines 
285 and 380: 

From LES 
 
Specified at Line 
205: cld0 
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And Line 592: cld0 And Line 466: cld0 And Lines 215: 
cld0 

cer_ipa and 
cer_2d 
And Lines 217: 
cld0 

Scattering 
Phase 
Function 

Mie 
 
Specified at Line 
598: pha0 
And Line 630: sca 

Mie 
 
Specified at Line 
472: pha0 
And Line 504: sca 

Mie 
 
Specified at Line 
222: pha0 
And Line 240: sca  

Henyey-Greenstein 
(g=0.85) 
 
Implicitly specified 
by default at Line 
232: 
mcarats_ng 
 
Notes: Lines 207, 
208, and 237 can be 
uncommented 
(meanwhile 
commenting out 
Line 209) to turn on 
Mie 

Henyey-Greenstein 
(g=0.85) 
 
Implicitly specified 
by default at Line 
221: 
mcarats_ng 

Surface 
Albedo 

From MODIS 
Surface Reflectance 
product and scaled 
by OCO-2 
 
Specified at Line 
520: 
oco_sfc_alb_2d 
And Line 629: 
sfc_2d 

From MODIS 
Surface Reflectance 
product 
 
Specified at Line 
395: 
mod_sfc_alb_2d 
And Line 503: 
sfc_2d 

0.03 
 
Implicitly specified 
by default at Line 
237: 
mcarats_ng 

0.03 
 
Specified at Line 
236: 
surface_albedo 

0 
 
Specified at Line 
227: 
surface_albedo  

Solar Zenith 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
615: sza 
And Line 633: 
solar_zenith_a
ngle 

From MODIS 
geolocation file 
 
Specified at Line 
489: sza 
And Line 507: 
solar_zenith_a
ngle 

Variable (depends 
on aircraft location 
and date and time) 

28.90° 
 
Specified at Line 
352: 
geometry[‘sza’
] 
And Line 240: 
solar_zenith_a
ngle 

29.16° 
 
Specified at Line 
228: 
solar_zenith_a
ngle 

Solar 
Azimuth 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
616: saa 
And Line 634: 
solar_azimuth_
angle 

From MODIS 
geolocation file 
 
Specified at Line 
490: saa 
And Line 508: 
solar_azimuth_
angle 

Variable (depends 
on aircraft location 
and date and time) 

296.83° 
 
Specified at Line 
353: 
geometry[‘saa’
] 
And Line 241: 
solar_azimuth_
angle 

296.83° 
 
Specified at Line 
229: 
solar_azimuth_
angle 

Sensor 
Altitude 

705 km (satellite 
altitude) 
 
Implicitly specified 
by default at Line 
625: 
mcarats_ng  

705 km (satellite 
altitude) 
 
Implicitly specified 
by default at Line 
499: 
mcarats_ng 

N/A, three-
dimensional 
irradiance outputs at 
user-defined Z grid 

5.48 km (flight 
altitude) 
 
Specified at Line 
354: 
geometry[‘alt’
] 
And Line 242: 
sensor_altitud
e 

705 km (satellite 
altitude) 
 
Implicitly specified 
by default at Line 
221: 
mcarats_ng 

Sensor Zenith 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
617: vza 
And Line 635: 
sensor_zenith_
angle 

From MODIS 
geolocation file 
 
Specified at Line 
491: vza 
And Line 509: 
sensor_zenith_
angle  

0° (nadir) 
 
Implicitly specified 
by default at Line 
237: 
mcarats_ng  

0° (nadir) 
 
Implicitly specified 
by default at Line 
232: 
mcarats_ng 

0° (nadir) 
 
Specified at Line 
230: 
sensor_zenith_
angle 

Sensor 
Azimuth 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
618: vaa 

From MODIS 
geolocation file 
 
Specified at Line 
492: vaa 

0° (insignificant for 
nadir) 
 

0° (insignificant for 
nadir) 
 

0° (insignificant for 
nadir) 
 
Specified at Line 
231: 
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And Line 636: 
sensor_azimuth
_angle 

And Line 510: 
sensor_azimuth
_angle 

Implicitly specified 
by default at Line 
237: 
mcarats_ng 

Implicitly specified 
by default at Line 
232: 
mcarats_ng 

sensor_azimuth
_angle 

Number of 
Photons 

1×108 per run 
 
Specified at Line 72: 
photon_sim 
And Line 640: 
photons 

1×108 per run 
 
Specified at Line 71: 
_photon_sim 
And Line 514: 
photons 

1×107 per run 
 
Specified at Line 56: 
photon_sim 
And Line 246: 
photons 

1×108 per run 
 
Specified at Line 56: 
_photon_sim 
And Line 246: 
photons 

1×108 per run 
 
Specified at Line 66: 
photon_sim 
And Line 234: 
photons 

Number of 
Runs 

3 
 
Specified at Line 
638: Nrun 

3 
 
Specified at Line 
512: Nrun 

3 
 
Specified at Line 
245: Nrun 

3 
 
Specified at Line 
244: Nrun 

3 
 
Specified at Line 
233: Nrun 

Mode (3D or 
IPA) 

3D and IPA 
 
Specified at Line 
786: solver 
And Line 641: 
solver 

3D 
 
Specified at Line 
620: solver 
And Line 515: 
solver 

3D and IPA 
 
Specified at Lines 
380 and 381: 
solver 
And Line 247: 
solver 

3D 
 
Specified at Lines 
391 and 392: 
solver 
And Line 247: 
solver 

3D 
 
Specified at Line 
210: solver 
And Line 236: 
solver 

Parallelizatio
n Mode 

Python multi-
processing 
 
Specified at Line 
643: mp_mode 

Python multi-
processing 
 
Specified at Line 
517: mp_mode 

Python multi-
processing 
 
Specified at Line 
250: mp_mode 

Python multi-
processing 
 
Specified at Line 
249: mp_mode 

Python multi-
processing 
 
Specified at Line 
238: mp_mode 

Number of 
CPUs 

8 
 
Specified at Line 
642: Ncpu 

8 
 
Specified at Line 
516: Ncpu  

16 
 
Specified at Line 
314: Ncpu 
And Line 249: Ncpu 

12 
 
Specified at Line 
248: Ncpu 

24 on clusters 
 
Specified at Line 
237: Ncpu 

 1168 
Table A1: List of parameters used in the five applications. The line numbers used in the table are referring to the code 1169 

script of each application. If two line numbers are provided, the first one indicates where the parameter is 1170 
defined and the second one indicates where the parameter is passed into the radiative transfer setup. Users 1171 
can change either one for customization purposes. 1172 

 1173 

Appendix B – App. 5 Radiance calculations based on the Large Eddy Simulation 1174 

The CNN COT retrieval framework was developed by Nataraja et al. (2022). It adapts a 1175 

U-Net (Ronneberger et al., 2015) architecture and treats the retrieval of COT from radiance as a 1176 

segmentation problem – probabilities of 36 COT classes (ranging from COT of 0 to 100) are 1177 

returned as the final COT retrieved for a given cloud radiance field. It accounts for horizontal 1178 

photon transport, which is neglected in traditional cloud retrieval algorithms; in other words, for 1179 

the spatial context of cloudy pixels. It was trained on synthetic cloud fields generated by a Large 1180 

Eddy Simulation (LES) model, which provides the ground truth of COT. Subequently, EaR3T was 1181 

used to calculate 3D-RT radiances at 600 nm for LES cloud fields to establish a mapping between 1182 
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radiance to COT. Only six LES cases were used to represent the variability of the cloud 1183 

morphology. Each of these fields are 480x480 pixels across (spatial resolution of 100 m). These 1184 

large fields were mapped onto thousands of 64x64 mini tiles with spatial resolution of 100 m as 1185 

described in Nataraja et al., 2022. To keep the training data set small, mini tiles selectively sampled 1186 

according to their mean COT and standard deviation. This ensured an even representation of the 1187 

dynamic range of COT and its variability, which was termed homogenization of the training data 1188 

set. Figure A1 shows a collection of samples from the training data as an illustration. All the 1189 

aforementioned simulation setup and techniques in data process are included in the App. 5 example 1190 

code, which can be applied to the LES data (a different scene from the 6 scenes) distributed along 1191 

with EaR3T. 1192 

 1193 

                                         1194 

                                        1195 

(a) 

(b) 
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Figure A1. Illustrations of 64x64 tiles of (a) cloud optical thickness from LES data and (b) calculated 3D radiance 1196 
from EaR3T for CNN training. 1197 

 1198 

Appendix C 1199 

C1. Cloud Detection/Identification 1200 

Cloudy pixels are identified through a simple thresholding method based on the red, green, 1201 

and blue channels of MODIS. When the radiance values of the red, green, and blue channels of a 1202 

pixel are all greater than the corresponding median value, the pixel is considered as cloudy, as 1203 

illustrated by the following equation 1204 

𝐈𝐟			
𝑅𝑒𝑑 > 𝑀𝑒𝑑𝑖𝑎𝑛(𝑅𝑒𝑑)	&
𝐵𝑙𝑢𝑒 > 𝑀𝑒𝑑𝑖𝑎𝑛(𝐵𝑙𝑢𝑒)	&
𝐺𝑟𝑒𝑒𝑛 > 𝑀𝑒𝑑𝑖𝑎𝑛(𝐺𝑟𝑒𝑒𝑛)

		H
𝐘𝐞𝐬, cloudy
𝐍𝐨, clear	sky																																																																																(A1) 1205 

Note that this only works for partially cloud-covered scenes, and may lead to false positives if 1206 

there is brightness contrast from objects other than clouds. This method was specifically applied 1207 

for the cases in this paper and should be changed as appropriate for future applications. 1208 

 1209 

C2. Two-Stream Approximation 1210 

The two-stream approximation of the reflectance 𝑅 is calculated using Eq. D2 from Chen 1211 

et al. (2021), as follows: 1212 

𝑅 =
𝜏 + 𝛼 ⋅ \

2𝜇
(1 − 𝑔) ⋅ (1 − 𝛼)a

𝜏 + \
2𝜇

(1 − 𝑔) ⋅ (1 − 𝛼)a
																																																																																																											(A2) 1213 

where τ is the cloud optical thickness, 𝛼 is the surface albedo, 𝜇 is the cosine of the solar zenith 1214 

angle, and 𝑔 is the asymmetry parameter. A value of 0.85 is assumed for 𝑔. The domain average 1215 

of the solar zenith angle and surface albedo are calculated and used for estimating 𝜇 and 𝛼. Then, 1216 

for a range of 𝜏, we calculated the 𝑅 and obtained the relationship of 𝑅(𝜏). For those cloudy pixels 1217 

identified through A1, the inverse relationship of 𝜏(𝑅) is then used for estimating 𝜏 at any given 1218 

𝑅. Note that this approach does not take into account any cloud reflectance anisotropies. 1219 

 1220 

Appendix D 1221 

D1. Parallax Correction 1222 
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From the satellite's view, the clouds (especially high clouds) will be placed at inaccurate 1228 

locations on the surface, which have shifted from their actual locations due to the parallax effect. 1229 

We followed simply trigonometry to correct for it, as follows: 1230 

Longitude correction (positive from west to east): 1231 

𝛿𝑙𝑜𝑛 = d𝑧/01 − 𝑧23/f ⋅ tan(𝜃) ⋅ sin	(𝜙)
𝜋 ⋅ 𝑅456$7

× 180°																																																																														(B1) 1232 

Latitude correction (positive from south to north): 1233 

𝛿𝑙𝑎𝑡 = d𝑧/01 − 𝑧23/f ⋅ tan(𝜃) ⋅ cos	(𝜙)
𝜋 ⋅ 𝑅456$7

× 180°																																																																														(B2) 1234 

where (𝑙𝑜𝑛25$ , 𝑙𝑎𝑡25$ , 𝑧25$) is the satellite location and 𝜃 and 𝜙 (0º at north, positive clockwise) 1235 

are the sensor viewing zenith and azimuth angles. 𝑧/01 and 𝑧23/ are the cloud top height and the 1236 

surface height. 𝑅456$7  is the radius of the Earth. Figure A2 shows an illustration of parallax 1237 

correction for the cloud field in the inset in Figure 2.  1238 

 1239 

D2. Wind Correction 1240 

The wind correction aims at correcting the movement of clouds when advected by the wind 1241 

between two different satellites’ overpasses. 1242 

Longitude correction (positive from west to east): 1243 

𝛿𝑙𝑜𝑛 =
𝑢< ⋅ 𝛿𝑡

𝜋 ⋅ 𝑅456$7
× 180°																																																																																																																				(B3) 1244 

Latitude correction (positive from south to north): 1245 

𝛿𝑙𝑎𝑡 =
𝑣̅ ⋅ 𝛿𝑡

𝜋 ⋅ 𝑅456$7
× 180°																																																																																																																				(B4) 1246 

where 𝑢< and 𝑣̅ are the domain-averaged 10 m zonal and meridional wind speeds, and 𝛿𝑡 is the time 1247 

difference between two different satellites that fly on the same orbit. Figure A2 shows the cloud 1248 

location after applying the parallax (Appendix D1) and wind correction for the cloud field in the 1249 

inset from Figure 2. 1250 
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                                          1260 
Figure A2. An illustration of correcting cloud location (red) for parallax effect (blue) and wind effect (green) for the 1261 

cloud field of the inset in Figure 2. 1262 
 1263 

 1264 
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