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Abstract

We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR’T, pronounced
[3:t]) for quantifying and mitigating artifacts in atmospheric radiation science algorithms due to spatially
inhomogeneous clouds and surfaces, and show the benefits of automated, realistic radiance and irradiance
generation along extended satellite orbits, flight tracks from entire aircraft field missions, and synthetic data
generation from model data. EaR’T is a modularized Python package that provides high-level interfaces to
automate the process of 3D radiative transfer (RT) calculations. After introducing the package, we present
initial findings from four applications, which are intended as blueprints to future in-depth scientific studies.
The first two applications use EaR’T as a satellite radiance simulator for the NASA Orbiting Carbon
Observatory 2 (OCO-2) and Moderate Resolution Imaging Spectroradiometer (MODIS) missions, which
generate synthetic satellite observations with 3D-RT on the basis of cloud field properties from

imagery-based retrievals and other input data. In the case of inhomogeneous cloud fields, we show that the

synthetic radiances are often inconsistent with the original radiance measurements. This lack of radiance
consistency points to biases in heritage imagery cloud retrievals due to sub-pixel resolution clouds and

3D-RT effects. They come to light because the simulator’s 3D-RT engine replicates processes in nature that

conventional 1D-RT retrievals do not capture. We argue that 3D radiance consistency (closure) can serve
as a metric for assessing the performance of a cloud retrieval in presence of spatial cloud inhomogeneity
even with limited independent validation data. The other two applications show how airborne measured
irradiance data can be used to independently validate imagery-derived cloud products via radiative closure
in irradiance. This is accomplished by simulating downwelling irradiance from geostationary cloud
retrievals of Advanced Himawari Imager (AHI) along all the below-cloud aircraft flight tracks of the Cloud,
Aerosol and Monsoon Processes Philippines Experiment (CAMP?Ex, NASA 2019), and comparing the

irradiances with the collocated airborne measurements. In contrast to case studies in the past, EaR’T

facilitates the use of observations from entire field campaigns for the statistical validation of

satellite-derived irradiance. From the CAMP?Ex mission, we find a low bias of 10% in the satellite-derived

cloud transmittance, which we are able to attribute to a combination of the coarse resolution of the
geostationary imager and 3D-RT biases. Finally, we apply a recently developed context-aware
Convolutional Neural Network (CNN) cloud retrieval framework to high-resolution airborne imagery from
CAMP’Ex and show that the retrieved cloud optical thickness fields lead to better 3D radiance consistency
than the heritage independent pixel algorithm, opening the door to future mitigation of 3D-RT cloud

retrieval biases.
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1. Introduction

Three-dimensional cloud effects in imagery-derived cloud properties have long been
considered an unavoidable error source when estimating the radiative effect of clouds and aerosols.
Consequently, research efforts involving satellite, aircraft, and surface observations in conjunction
with modeled clouds and radiative transfer calculations have focused on systematic bias
quantification under different atmospheric conditions. Barker and Liu (1995) studied the so-called
independent pixel approximation (IPA) bias in cloud optical thickness (COT) retrievals from
shortwave cloud reflectance. The bias arises when approximating the radiative transfer relating to
COT and measured reflectance at the pixel or cloud column level through one-dimensional (1D)
radiative transfer (RT) calculations, while ignoring its radiative context. However, net horizontal
photon transport and other effects such as shading engender column-to-column radiative
interactions that can only be captured in a three-dimensional (3D) framework, and can be regarded
as a 3D perturbation or bias relative to the 1D-RT (IPA) baseline. 3D biases affect not only cloud
remote sensing but they also propagate into the derived irradiance fields and cloud radiative effects
(CRE). Since the derivation of regional and global CRE relies heavily on satellite imagery, any
systematic 3D bias impacts the accuracy of the Earth’s radiative budget. Likewise, imagery-based
aerosol remote sensing in the vicinity of clouds can be biased by net horizontal photon transport
(Marshak et al., 2008). Additionally, satellite shortwave spectroscopy retrievals of CO, mixing
ratio are affected by nearby clouds (Massie et al., 2017), albeit through a different physical

mechanism than in aerosol and cloud remote sensing (Chen et al., 2023).

Given the importance of 3D perturbations for atmospheric remote sensing, ongoing
research seeks to mitigate the 3D effects. Cloud tomography, for example, inverts multi-angle
radiances to infer the 3D cloud extinction distribution (Levis et al., 2020). This is achieved through
iterative adjustments to the cloud field until the calculated radiances match the observations.
Convolutional neural networks (CNNs, Masuda et al., 2019; Nataraja et al., 2022) account for
3D-RT perturbations in COT retrievals through pattern-based machine learning that operates on
collections of imagery pixels, rather than treating them in isolation like IPA. Unlike tomography,
CNNss require training based on extensive cloud-type specific synthetic data with the ground truth
of cloud optical properties and their associated radiances from 3D-RT calculations. Once the
CNNs are trained, they do not require real-time 3D-RT calculations and can therefore be useful in

an operational setting. Whatever the future may hold for context-aware multi-pixel or multi-sensor
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cloud retrievals, there is a paradigm shift on the horizon that started when the radiation concept
for the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE, Illingworth et al., 2015) was
first proposed (Barker et al., 2012). It foresees a closure loop where broadband radiances, along
with irradiance, are calculated in a 3D-RT framework from multi-sensor input fields (Barker et al.,
2011), and subsequently compared to independent observations by radiometers pointing in three
directions (nadir, forward-, and backward-viewing along the orbit). This built-in radiance closure
can serve as an accuracy metric for any downstream radiation products such as heating rates and
CRE. Any inconsistencies can be used to nudge the input fields towards the truth in subsequent
loop iterations akin to optimal estimation, or propagated into uncertainties of the cloud and
radiation products.

This general approach to radiative closure is also being considered for the National
Aeronautics and Space Administration (NASA) Atmospheric Observation System (AOS,
developed under the A-CCP, Aerosol and Cloud, Convection and Precipitation study), a mission
that is currently in its early implementation stages. Owing to its focus on studying
aerosol-cloud-precipitation-radiation interactions at the process level, it requires radiation
observables at a finer spatial resolution than achieved with missions to date. At target scales close
to 1 km, 3D-RT effects are much more pronounced than at the traditional 20 km scale of NASA
radiation products (O’Hirok and Gautier, 2005; Ham et al., 2014; Song et al., 2016; Gristey et al.,
2020a). Since this leads to biases beyond the desired accuracy of the radiation products, mitigation
of 3D-RT cloud remote sensing biases needs to be actively pursued over the next few years.

Transitioning to an explicit treatment of 3D-RT in operational approaches entails a new
generation of code architectures that can be easily configured for various instrument constellations,
interlink remote sensing parameters with irradiances, heating rates, and other radiative effects, and
can be used for automated processing of large data quantities. A number of 3D solvers are available
for different purposes, for example, the I3RC (International Intercomparison of 3D Radiation
Codes: Cahalan et al., 2005) community Monte Carlo code!, which now also includes an online

simulator? that was described in Varnai et al. (2022) and used in Gatebe et al. (2021); MCARaTS

( Deleted: (Gatebe et al., 2021)

(Monte Carlo Atmospheric Radiative Transfer Simulator’: Iwabuchi, 2006); MYSTIC (Monte

! https://earth.gsfc.nasa.gov/climate/model/i3rc, last accessed on 26 November, 2022.

2 http://i3rcsimulator.umbc.edu, last accessed on 26 November, 2022.

3 https://sites.google.com/site/mcarats/monte-carlo-atmospheric-radiative-transfer-simulator-mcarats, last accessed
on 26 November, 2022.



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

Carlo code for the physically correct tracing of photons in cloudy atmospheres: Mayer, 2009),
which is embedded in libRadtran (library for radiative transfer, Mayer and Kylling, 2005);
McSCIA (Monte Carlo [RT] for SCIAmachy: Spada et al., 2006), which is optimized for satellite
radiance simulations (including limb-viewing) in a spherical atmosphere; McARTIM
(Deutschmann et al., 2011), with several hyperspectral polarimetric applications such as
differential optical absorption spectroscopy; and SHDOM (Spherical Harmonic Discrete Ordinate
Method*: Evans, 1998), which, unlike the other methods, is a deterministic solver with polarimetric
capabilities (Doicu et al., 2013; Emde et al., 2015) that is differentiable and can therefore be used
for tomography (Loveridge et al., 2022).

For the future operational application of 3D-RT, it is, however, desirable to run various
different solvers in one common architecture that automates the processing of various formats of
3D atmospheric input fields (including satellite data), allows the user to choose from various

options for atmospheric absorption and scattering, and simulates radiance and irradiance data for

real-world scenes. Here, we introduce one such tool that could serve as the seed for this architecture:

the Education and Research 3D Radiative Transfer Toolbox (EaR>T, pronounced [3:t]). It has been
developed over the past few years at the University of Colorado to automate 3D-RT calculations

based on imagery or model cloud fields, It can be operated in two wa,

s— 1) with minimal user

input, where certain RT parameters are bypassed through default settings, for quick radiation

conceptual analysis; 2) with detailed RT parameters setup by user for radiation closure purpose.

EaR>T is maintained and extended by graduate students as part of their education, and applied to
various different research projects including machine learning for atmospheric radiation and
remote sensing (Gristey et al., 2020b; 2022; Nataraja et al., 2022), as well as radiative closure and

satellite simulators (this paper and Chen et al., 2023). It is implemented as a modularized Python

package with various application codes that combine the functionality in different ways, which,
once set up, autonomously process large amounts of data required by airborne and satellite remote
sensing and for machine learning applications.

The goal of the paper is to introduce EaR>T as a versatile tool for systematically quantifying
and mitigating 3D cloud effects in radiation science as foreseen in future missions. To do so, we
will first showcase EaR3T as an automated radiance simulator for two satellite instruments, the

Orbiting Carbon Observatory-2 (OCO-2, application code 1. App. 1) and the Moderate Resolution

4 https://coloradolinux.com/shdom, last accessed on 26 November, 2022.
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Imaging Spectroradiometer (MODIS, application code 2, App. 2) from publicly available satellite
retrieval products. In the spirit of radiance closure, the intended use is the comparison of modeled
radiances with the original measurements to assess the accuracy of the input data, as follows:
operational IPA COT products are made using 1D-RT, and thus the accompanying radiances are
consistent with the original measurements under that 1D-RT assumption only. That is,

selfsconsistency is assured if 1D-RT is used in both the inversion and radiance simulation.

(Deleted: -

However, since nature creates 3D-RT radiation fields, we break this traditional symmetry in this
manuscript and introduce the concept of 3D radiance consistency where closure is only achieved
if the original measurements are consistent with the 3D-RT (rather than the 1D-RT) simulations.
The level of inconsistency is then used as a metric for the magnitude of 3D-RT retrieval artifacts
as envisioned by the architects of the EarthCARE radiation concept (Barker et al., 2012).
Subsequently, we discuss applications where EaR3T performs radiative closure in the
traditional sense, i.e., between irradiances derived from satellite products and collocated airborne
or ground-based observations. The aircraft Cloud, Aerosol and Monsoon Processes Philippines

Experiment (CAMP?Ex, Reid et al., 2023), conducted by NASA in the Philippines in 2019, serves

( Deleted: 2022

as a testbed of this approach. Here, we use EaR3T’s automated processing capabilities to derive
irradiance from geostationary imagery cloud products and then compare these to cumulative
measurements made along all flight legs of the campaign (application code 3, App. 3). In contrast
to previous studies that often rely on a number of cases (e.g., Schmidt et al., 2010; Kindel et al.,
2010), we perform closure systematically for the entire data set, enabling us to identify 3D-RT
biases in a statistically significant manner. Finally, we apply a regionally and cloud type specific
CNN, introduced by Nataraja et al. (2022) that is included with the EaR3T distribution, to

high-resolution camera imagery from CAMP?Ex. This last example demonstrates mitigation of

(Deleted: -

3D-RT biases in cloud retrievals using the concept of radiance closure to quantify its performance
against the baseline IPA (application code 4, App. 4).

The general concept of EaR?*T with an overview of the applications, along with the data
used for both parts of the paper is presented in section 2, followed by a description of the
procedures of EaR>T in section 3. Results for the OCO-2 and MODIS satellite simulators (part 1)
are shown in section 4, followed by the quantification and mitigation of 3D-RT biases with

CAMP?Ex data in section 5 and section 6 (part 2). A summary and conclusion are provided in
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section 7. The code, along with the applications presented in this paper, can be downloaded from

the GitHub repository: https://github.com/hong-chen/er3t.

2. Functionality and Data Flow within EaR3T

2.1 Overview

To introduce EaR3T as a satellite radiance simulator tool and to demonstrate its use for the

quantification and mitigation of 3D cloud remote sensing biases, five applications (Figure 1) are

included in the GitHub software rel
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Figure 1. Flow charts of EaR’T applications for (a) OCO-2 radiance simulation at 768.52 nm (data described in section
2.2.1 and 2.2.2, results discussed in section 4.1), (b) MODIS radiance simulation at 650 nm (data described

in section 2.2.1, results discussed in section #.2), (¢) SPN-S irradiance simulation at 745 nm (data described

in section 2.2.3 and 2.2.4, results discussed in section 5), (d) all-sky camera radiance simulation at 600 nm
(data described in section 2.2.5, results discussed in section 6), and (e) radiance simulation at 600 nm based
on LES data for CNN training (Appendix B). The data products and their abbreviations are described in

section 2.2.

1. App. 1, section4.1 (examples/01_oco2_rad-sim.py): Radiance simulations along
the track of OCO-2, based on data products from MODIS and others — to assess consistency
(closure) between simulated and measured radiance;

2. App. 2, section 4.2 (examples/02_modis_rad-sim.py): MODIS radiance
simulations — to assess self-consistency of MODIS level-2 (L2) products with the
associated radiance fields (L1B product) under spatially inhomogeneous conditions;

3. App. 3, section 5 (examples/03_spns_flux-sim.py): Irradiance simulations along
aircraft flight tracks, utilizing the L2 cloud products of the AHI, and comparison with
aircraft measurements — to quantify retrieval biases due to 3D cloud structure based with
data from an entire aircraft field campaign;

4. App. 4, section 6 (examples/04 cam nadir rad-sim.py): Mitigation of 3D
cloud biases in passive imagery COT retrievals from an airborne camera, application of a
convolutional neural network (CNN) and subsequent comparison of CNN-derived
radiances with the original measurements — to illustrate how the radiance self-consistency
concept assesses the fidelity of cloud retrievals.

5. App. 5, Appendix B (examples/05_ cnn-les_rad-sim.py): Generation of training
data for the CNN (App. 4) based on LES inputs. The training datasets contains 1) the
ground truth of COT from the LES data; 2) realistic radiance simulated by EaR3T based on
the LES cloud fields.

Figure 1 shows the high-level workflow of the applications. The first four share the general
concept of evaluating simulations (the output from the EaR>T, indicated in red at the bottom of
each column) with observations (indicated in green at the bottom) from various satellite and

aircraft instruments. The workflow of each application consists of three parts — 1) data acquisition,

2) pre-processing, and 3) RTM setup and execution. EaR*T includes functions to ingest data from
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paper by Nataraja et al. (2022). In this paper, we will only
provide a brief description for App. 5 in Appendix B.
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various different sources, e.g., satellite data from publicly available data archives, which can be
combined in different ways to accommodate input data depending on the application specifics. For
example, in App. 1, EaR’T is used to automatically download and process MODIS and OCO-2
data files based on the user-specified region, date and time. Building on the templates provided in

the current code distribution, the functionality can be extended to new spaceborne or airborne

instruments. Panel (¢) of Figure 1 shows a fifth application that was developed for earlier papers

(Gristey et al., 2020a and 2020b; Nataraja et al., 2022; Gristey et al., 2022). In contrast to the first
four, which use imagery products as input, the fifth application ingests model output from a Large
Eddy Simulation (LES) and produces irradiance data for surface energy budget applications, or
synthetic radiance fields for training a CNN. Details and results are described in the respective

papers. Jhe remainder of Section 2 introduces the data used in this paper, as well as the input for

EaR3T. Subsequently, Section 3 describes the EaR?T procedures.

v

2.2 Data

The radiance simulations in App. 1 and App. 2 use data from the OCO-2 and MODIS-Aqua
instruments, both of which are in a sun-synchronous polar orbit with an early-afternoon equator
crossing time within NASA’s A-Train satellite constellation. Figure 2 visualizes radiance
measurements by OCO-2 in the context of MODIS Aqua imagery over a partially vegetated and
partially cloud-covered land, illustrating that MODIS provides imagery and scene context for
OCO-2, which in turn observes radiances from a narrow swath. The region is located in southwest
Colorado in the United States of America. We selected this case because both the surface and
clouds are varied along with diverse surface types. The surface features green forest and brown
soil, whereas clouds include small cumulus and large cumulonimbus. In addition, this scene
contains relatively homogeneous cloud fields in the north and inhomogeneous cloud fields in the
south, which allows us to evaluate the simulations from various aspects of cloud morphology. To
simulate the radiances of both instruments we use data products from OCO-2 and MODIS, as well
as reanalysis products from NASA’s Global Modeling and Assimilation Office (GMAO) sampled
at OCO-2 footprints and distributed along with OCO-2 data (section 2.2.2).

- CDeleted: The fifth column

CDeleted: an application that differs from the first four, and
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Deleted: Furthermore, Schmidt et al. (2022) builds upon
App. 1 to study the mechanism of 3D cloud biases in OCO-2
passive spectroscopy retrievals.

Deleted: — After the required data files have been
downloaded in the data acquisition step, EaR3T
pre-processes them and generates the optical properties of
atmospheric gases, clouds, aerosols, and the surface. In
Figure 1, the mapping from input data to these properties is
color-coded component-wise (brown for associated cloud
property processing if available, blue for associated surface
property processing if available, green for associated ground
truth property). The version used in this paper (v0.1.0; Chen
and Schmidt, 2022) only includes MCARaTS as the 3D RT
solver, but others are planned for the future. MCARaTS is a
radiative transfer solver uses Monte Carlo photon-tracing
method (Iwabuchi, 2006). It outputs radiation (radiance or
irradiance) based on the inputs of radiative properties of
surface and atmospheric constituents (e.g., gases, aerosols,
clouds) such as single scattering albedo, scattering phase
function, or asymmetry parameters, along with solar and
sensor viewing geometries. The setup of these input
properties is implemented in EaR*T’s pre-processing steps,
which translates atmospheric properties into solver-specific
input with minimum user intervention. To achieve this,
EaR>T is modular so that it can be extended as new solvers
are added. Although the five specific applications in this
paper do not include aerosol layers, the setup of acrosol
fields is fully supported and has been used in other
applications (e.g., Gristey et al., 2022). After pre-processing,
the optical properties are fed into the RT solver. Finally, the
user obtains radiation output from EaR>T, either radiance or
irradiance. The output is saved in HDF5 format and can be
easily distributed and accessed by various programming
languages. The data variables contained in the HDF5 output
are provided in Table 1.

The aforementioned three steps — data acquisition, pre-
processing, and RTM setup and execution are automated
such that the 3D/1D-RT calculations can be performed for
any region at any date and time using satellite or aircraft data
or other data resources such as LES. EaR*T is hosted on
GitHub at https://www.github.com/hong-chen/er3t. Since it
is developed as an educational and research 3D-RT tool
collection by students, it is a living code base, intended to be
updated over time. The master code modules for the five
applications as listed in Figure 1 are included in the EaR>T
package under the examples directory. In the current
release (v0.1.0), only a limited documentation for the
installation and usage, including example codes for EaR>T,
are provided. More effort will be dedicated for
documentation in the near-future.
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Figure 2. OCO-2 measured radiance (units: Wm?nm'sr"') at 768.52 nm, overlaid on MODIS Aqua RGB imagery
over southwestern Colorado (USA) on 2 September, 2019. The inset shows an enlarged portion along the
track, illustrating that OCO-2 radiances co-vary with MODIS-Aqua radiance observations (the circles are

used to indicate the geolocation of OCO-2 footprints).

For App. 3 (irradiance simulations and 3D cloud bias quantification), we use geostationary
imagery from the Japanese Space Agency’s Advanced Himawari Imager to provide cloud
information in the area of the flight path of the NASA CAMP?Ex aircraft (Reid et al., 2023). The

( Deleted: 2022

AHI data are used in conjunction with aircraft measurements of shortwave spectral radiation
(section 2.2.4). Subsequently (App. 4: 3D cloud bias mitigation), we demonstrate the concept of
radiance closure under partially cloudy conditions with airborne camera imagery (section 2.2.5).
The underlying cloud retrieval is based on a convolutional neural network (CNN), which is
described in a related paper (Nataraja et al., 2022) in this special issue and relies on

EaR>T-generated synthetic radiance data based on Large Eddy Simulations (LES).

. 'CDeleted: -

2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS)

The MODIS instruments are multi-use multispectral radiometers onboard NASA’s Terra
and Aqua satellites, which were launched in 1999 and 2002 respectively. MODIS was conceived
as a central element of the Earth Observing System (EOS, King and Platnick, 2018). For App. 1
and App. 2, EaR’T ingests MODIS level 1B radiance products at the quarter kilometer scale
(channels 1 and 2, bands centered at 650 and 860 nm), MxD02QKM, where ‘x’ stands for ‘O’ in
the case of MODIS on Terra, and “Y” in the case of Aqua data), the geolocation product (MxD03),
the level 2 cloud product (MxD06), and the surface BRDF (bidirectional reflectance distribution
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function) product (MCD43A3). For this paper, we mainly use Aqua data (MYD) from data

collection 6.1,

For cloud properties in App. 2, we use the MODIS cloud product (MxD06L2, collection k

6.1). It provides cloud properties such as cloud optical thickness (COT), cloud effective radius
(CER), cloud thermodynamic phase, cloud top height (CTH), etc. (Nakajima and King, 1990;
Platnick et al., 2003). Since 3D cloud effects such as horizontal photon transport are most
significant at small spatial scales (e.g., Song et al., 2016), we use the high-resolution red (650 nm)
channel 1 (250 m), and derive COT directly from the reflectance in the Level-1B data
(MYDO02QKM) instead of using the coarser-scale operational product from MYDO06. CER and
CTH are sourced from MYDO06 and re-gridded to 250 m. The EaR>T strategy for MODIS data is
similar, in principle, to the more advanced method by Deneke et al. (2021), which uses a
high-resolution wide-band visible channel from geostationary imagery to up-sample narrow-band

coarse-resolution channels. However, we simplified cloud detection and COT retrieval (referred
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EaR>T this will be upgraded to more sophisticated algorithms. A simple algorithm (Appendix D1)
is used to correct for the parallax shift based on the sensor geometries and cloud heights. The cloud
top height data is provided by the MODIS L2 cloud product and assuming cloud base is the same.

For the surface albedo required by the RTM, we used MCD43A3, which provides BRDF
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calculated from a_combination of Aqua and Terra MODIS and MISR (Multi-Angle Imaging

Spectroradiometer) clear-sky observations aggregated over a, ] 6-day period (Strahler et al., 1999).

This product contains white sky albedo (WSA, also known as bihemispherical reflectance), which

is obtained by integrating the BRDF over all viewing angles (Strahler et al.. 1999). The WSA is

available on a sinusoidal grid with a spatial resolution of 500 m for MODIS band 2, and includes
atmospheric correction for gas and aerosol scattering and absorption. Assuming a Lambertian
surface in this first release of EaR>T, we used the WSA (referred to as surface albedo from now

on),as surface albedo input to the RTM.
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2.2.2 Orbiting Carbon Observatory 2 (OCO-2)
The OCO-2 satellite was inserted into NASA’s A-Train constellation in 2014 and flies
about 6 minutes ahead of Aqua. OCO-2 provides the column-averaged carbon dioxide (COz)
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dry-air mole fraction (XCO,) through passive spectroscopy based on hyperspectral radiance
observations in three narrow wavelength regions, the Oxygen A-Band (~0.76 micron), the weak
COz band (~1.60 micron), and the strong CO2 band (~2.06 micron). As shown in the inset of Figure
2, it takes measurements in eight footprints across a narrow swath. Each of the footprints has a
size around 1-2 km, and the spectra for the three bands are provided by separate, co-registered
spectrometers (Crisp et al., 2015).

The used OCO-2 data products are 1) Level 1B calibrated and geolocated science radiance
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spectra (L1bScND), 2) standard Level 2 geolocated XCO; retrievals results (L2StdND), 3)
meteorological parameters interpolated from GMAO (L2MetND) at OCO-2 footprint location,
Since MODIS on Aqua overflies a scene 6 minutes after OCO-2, the clouds move with the wind
over this time period. We therefore added a wind correction on top of the parallax-corrected cloud
fields obtained from MODIS (section 2.2.1). This was done with the 10 m wind speed data from
L2MetND (see Appendix D2). For the same scene as shown in Figure 2, Figure 3 shows (a) COTpa,
(b) CER, and (c) CTH, all corrected for both parallax and wind effects (these corrections are shown

in Figure AS in Appendix D2). The parallax and wind corrections are imperfect as certain

assumptions are involved. For example, they rely on the cloud top height from the MODIS cloud
product. In addition, they process the whole scene with one single sensor viewing geometry. To

minimize artifacts introduced by the assumptions, one can apply the simulation to a smaller region.
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Figure 3. (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the [PA yeflectance-to-COT

mapping (Appendix C2), (b) cloud effective radius (units: um), and (c) cloud top height (units: km)

collocated from the MODIS L2 cloud product. The locations of the cloudy pixels were shifted to account
for parallax and wind effects. The parallax correction ranged from near 0 for low clouds and 1 km for high

clouds (10 km CTH). The wind correction was around 0.8 km, given the median wind speed of 2 m/s to the

cast.

The OCO-2 data (L2StdND) themselves only provide sparse surface BRDF (referred to as

surface albedo from now on) for the footprints that are clear, while EaR>T requires surface albedo
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for the whole domain. Therefore, we used MCD43A3 as a starting point. However, since MODIS

does not have a channel in the Oxygen A-Band, MODIS band 2 (860 nm) was used as a proxy for
the 760 nm OCO-2 channel as follows: we collocated the OCO-2 retrieved 760 nm surface albedo
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cloud-free OCO-2 footprints. The red line shows a linear regression (derived scale factor ¢=0.867).
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The scaled and replaced surface albedo is then treated as jnput to the RTM assuming a Lambertian . "
- CDeleted: surface reflectance
i CDeleted:

: CDeleted: surface
(Deleted: reflectance

surface.

13

( Deleted: MYDO9AI

(Deleted: Ruyop

- CDeleted: Roco

'CDeleted: Ryiop

CDeleted: Roco =aRuop

(Deleted: Roco

S :CDeleted: Ryiop

\ ‘CDeleted: -

( Deleted: a=0.93

CDeleted: surface reflectance

CDeleted: surface albedo

AN A AN A A A A A A AN A AN




469
470
471
472
473
474
475
476
|477
478
479
480
481
482
483
484
485
486

(b)

0.5 0.5
12
0.4 S04 9
o
c Z
— o < g
= 3%  F03 b ) £
[} = = 6 2
- (<]
! < o
£ E 8 a
g 028  £02 g
— =1
& . z
z K s 7
0.1 80.1 *
e - ©
> \ s 0
37.0 v 0.0 0.0
-109.0 -108.5 -108.0 -107.5 -107.0 0.0 0.1 0.2 0.3 0.4 0.5
Longitude [°] MODIS Surface Albedo (860 nm)
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2.2.3 Advanced Himawari Imager (AHI)

The Advanced Himawari Imager (AHI, used for App. 3) is a payload on Himawari-§8, a
geostationary satellite operated by the Meteorological Satellite Center (MSC) of the Japanese
Meteorological Agency. The AHI provides 16 channels of spectral radiance measurements from
the shortwave (0.47um) to the infrared (13.3pum). During CAMP?Ex, the NASA in-field
operational team closely collaborated with the team from MSC to provide AHI satellite imagery
at the highest resolution over the Philippine Sea. From the AHI imagery, the cloud product
generation system - Clouds from AVHRR Extended System (CLAVR-x), was used to generate
cloud products from the AHI imagery (Heidinger et al., 2014). The cloud products from CLAVR-x
include cloud optical thickness, cloud effective radius, and cloud top height at 2 (at nadir) to 5 km
spatial resolution. Since AHI provides continuous regional scans every 10 minutes the AHI cloud

product has a temporal resolution of 10 minutes.

2.2.4 Spectral Sunshine Pyranometer (SPN-S)

The SPN-S is a prototype spectral version of the commercially available global-diffuse
SPN1 pyranometer (Wood et al., 2017; Norgren et al., 2022). The radiometer uses a 7-detector
design in combination with a fixed shadow mask that enables the simultaneous measurement of

both diffuse and global irradiances, from which the direct component of the global irradiance is
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calculated via subtraction. The detector measures spectral irradiance from 350 to 1000 nm, and the
spectrum is sampled at 1 nm resolution with 1 Hz timing.

During the CAMP?Ex mission, the SPN-S was mounted to the top of the NASA P-3 aircraft
where it sampled downwelling solar irradiance. To ensure accurate measurements, pre- and

post-mission laboratory-based calibrations were completed using tungsten “FEL” lamps that are

(Deleted: -

traceable to a National Institute of Standards and Technology standard. Additionally, the direct
and global irradiances were corrected for deviations of the SPN-S sensor plane from horizontal
that are the result of changes in the aircraft’s pitch or roll. This attitude correction applied to the
irradiance data is a modified version of the method outlined in Long et al. (2010). However,
whereas Long et al. (2010) employ a “box” flight pattern to characterize the sensor offset angles,
in this study an aggregation of flight data containing aircraft heading changes under clear-sky
conditions are used as a substitute. The estimated uncertainty of the SPN-S system is 6 to 8%, with
4 to 6% uncertainty stemming from the radiometric lamp calibration process, and up to another 2%
resulting from insufficient knowledge of the sensor cosine response. The stability of the system
under operating conditions is 0.5%. A thorough description of the SPN-S and its calibration and
correction procedures is provided in Norgren et al. (2022). In this paper (App. 3) only the global

downwelling irradiance sampled by the 745 nm channel is used.

2.2.5 Airborne All-Sky Camera (ASC)

The All-Sky Camera (used for App. 4) is a commercially available camera (ALCOR
ALPHEA 6.0CW?) with fish-eye optics for hemispheric imaging. It has a Charge-Coupled Device
(CCD) detector that measures radiances in red, green, and blue channels. Radiometric and
geometric calibrations were performed at the Laboratory of Atmospheric and Space Physics at the
University of Colorado Boulder. The three-color channels are centered at 493, 555, and 626 nm
for blue, green, and red, respectively, with bandwidths of 50 — 100 nm. Only radiance data from
the red channel are used in this paper. The spatial resolution of the ASC depends on the altitude of
the aircraft and the viewing zenith angle. Across the hemispheric field of view of the camera, the

resolution of the field angle is approximately constant, at about 0.09°. At a flight level of 5 km,

Shttps://www.alcor-system.com/common/allSky/docs/ALPHEA Camera%20ALL%20SKY%20CAMERA_Doc.pdf
last accessed on April 24, 2022.
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this translates to a spatial resolution of 8 m at nadir. However, due to accuracy limitations of the
geometric calibration and the navigational data from Inertial Navigation System (INS), the nadir
geolocation accuracy could only be verified to within +£50 m. During the CAMP?Ex flights, the
camera exposure time was set manually to minimize saturation of the detector. The standard image
frame rate is 1 Hz. The precision of the camera radiances is on the order of 1%, and the radiometric

accuracy is 6 — 7%.

3. EaR3T Procedures

section, we will focus on providing the complete workflow (shown in Figure 1) for the five

applications,,

v—'(Moved (insertion) [2]

“CDeleted: general workflow

s of

After the required data files have been automatically downloaded in the data acquisition

step as described in previous section, EaR3T pre-processes them and generates the optical

:, along with relevant data

‘CDeleted: the

: the specific implementation of

properties of atmospheric gases, clouds, aerosols, and the surface. In Figure 1, the mapping from

input data to these properties is color-coded component-wise (brown for associated cloud property

processing if available, blue for associated surface property processing if available, green for

associated ground truth property). The EaR>T code base used in this paper (v0.1.1; Chen and
Schmidt, 2022) only includes MCARAaTS as the 3D RT solver, but others are planned for the future.

MCARAaTS is a radiative transfer solver that uses a Monte Carlo photon-tracing method (Iwabuchi,

2006). 1t outputs radiation (radiance or irradiance) based on the inputs of radiative properties of

surface and atmospheric constituents (e.g., gases, aerosols, clouds) such as single scattering albedo,

scattering phase function or asymmetry parameter, along with solar and sensor viewing geometries.

The setup of these input properties is implemented in EaR3T’s pre-processing steps, which

translates atmospheric properties into solver-specific input with minimum user intervention. To

achieve this, EaR>T is modular so that it can be extended as new solvers are added. Although the

five specific applications in this paper do not include aerosol layers, the setup of aerosol fields is

fully supported and has been used in other applications (e.g., Gristey et al., 2022). After pre-

processing, the optical properties are fed into the RT solver. Finally, the user obtains radiation

output from EaR>T, either radiance or irradiance. The output is saved in HDF5 format and can be

casily distributed and accessed by various programming languages. The data variables contained
in the HDF5 output are provided in Table A2 in Appendix Al.
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The processes of data acquisition, pre-processing, and RTM setup and execution (shown

in Figure 1) are automated such that the 3D/1D-RT calculations can be performed for any region

at any date and time using satellite or aircraft data or other data resources such as LES. A detailed

code walk-through of App. 1 and 2 is provided in Appendix A2. Since EaR3T is developed as an

educational and research 3D-RT tool collection by students, it is a living code base, intended to be

updated over time. The master code modules for the five applications as listed in Figure 1 are

included in the EaR3T package under the examples directory. In the current release (v0.1.1)

only a limited documentation for the installation and usage, including example code for EaR3T, is

provided. More effort will be dedicated for documentation in the near-future.,

In the following sections, we discuss results obtained from EaR>T, starting with those from

examples/01 oco2 rad-sim.py and examples/02 modis rad-sim.py (section

4), examples/03 spns_ flux-sim.py (section 5), and concluding with

examples/04_cam nadir rad-sim.py (section 6), The usage of the EaR’T package

‘ “[Deleted: The initial release (version 0.1.0) is available at j

“( Moved down [1]: In addition to MCARaTS, planned solvers

including the technical input and output parameters and code walk-through is provided in

Appendix A.

4. EaR3T as a 3D Satellite Radiance Simulator

This section demonstrates the automated 3D radiance simulation for satellite instruments
by EaR3T for OCO-2 and MODIS measured radiance based on publicly available MODIS retrieval
products. The OCO-2 application is an example of radiance consistency between two distinct
satellite instruments where the measurements of one (here, OCO-2) are compared with the
simulations based on data products from the other (here, MODIS). The MODIS application, on
the other hand, is an example of radiance self-consistency. We will show how inconsistencies can
be used for detecting cloud and surface property retrieval biases.

4.1 0CO-2 (App. 1)

The OCO-2 radiance measurements at 768.52 nm for our sample scene in the context of
MODIS imagery were shown in Figure 2. For that track segment, Figure 5a shows the simulated
radiance along with the measurements as a function of latitude. The radiance was averaged over
every 0.01° latitude window from 37° N to 39° N (the standard deviation within the bin indicated
by the shaded color). In clear-sky regions (e.g., around 38.2° N), the 3D simulations (red) are
systematically higher than the measurements (black), even though the footprint-level OCO-2
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for the future include MYSTIC (Monte Carlo code for the
physically correct tracing of photons in cloudy atmospheres,
Mayer, 2009) and SHDOM (Spherical Harmonic Discrete
Ordinate Method, Evans, 1998; Pincus and Evans, 2009).

fed into the pre-processing step for 1) atmospheric gases
(er3t/pre/atm), 2) clouds (er3t/pre/cld), 3)
surface (er3t/pre/sfc) as shown in Figure 1. In the
default configuration of the App. 1, the standard US
atmosphere (Anderson et al., 1986; included in the EaR*T
repository) is used within atm. EaR>T supports the input of
user-specified atmospheric profiles, e.g., atmospheric
profiles from reanalysis data for App. 2 as described in
Schmidt et al. (2022), by making changes in atm_atmmod
(from er3t/pre/atm). Subsequently, molecular
scattering coefficients are calculated by cal_mol_ext
(from er3t/util), and absorption coefficients for
atmospheric gases are generated by (er3t/pre/abs). At
the current development stage, two options are available:
Line-by-line (used by App. 1): The repository includes a
sample file of absorption coefficient profiles for a subset of
wavelengths within OCO-2’s Oxygen A-Band channel,
corresponding to a range of atmospheric transmittance values
from low (opaque) to high (so-called “continuum”
wavelength). They were generated by an external code
(Schmidt et al., 2022) based on OCO-2’s line-by-line
absorption coefficient database (ABSCO, Payne et al., 2020).
For each OCO-2 spectrometer wavelength within a given
channel, hundreds of individual absorption coefficient
profiles at the native resolution of ABSCO need to be
considered across the instrument line shape (ILS, also known
as the slit function) of the spectrometer. The ILS, as well as
the incident solar irradiance, are also included in the file. In
subsequent steps, EaR>T performs RT calculations at the
native spectral resolution of ABSCO, but then combines the
output by convolving with the ILS and outputs OCO-2
radiances or reflectances at the subset of wavelengths. (" T1]
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surface albedo retrieval was used to replace and scale the MCD43 surface albedo field as described

in section 2.2.2 (Figure 4). This is probably because, unlike the MCDA43 algorithm which relies on .

multiple overpasses and multiple-days for cloud-clearing, the OCO-2 retrieval is done for any clear
footprint. Clouds in the vicinity lead to enhanced diffuse illumination that is erroneously attributed

to the surface albedo itself. The EaR3T IPA calculations of the clear-sky pixels (blue) essentially
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reverse the 3D effect and therefore match the observations better. The 3D calculations enhance the

reflectance through the very same 3D cloud effects that led to the enhanced surface illumination

in the first place. It is possible to correct this effect by down-scaling the surface albedo according

to the ratio between clear-sky 3D and IPA calculations, but this process is currently not automated.
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Figure 5. (a) Latitudinally averaged (0.01° spacing) radiance calculations from EaR>T (red: 3D, blue: IPA) and OCO-
2 measured radiance at 768.52 nm (black) The green shaded area indicates the inset shown in (b). (b) The
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same as Figure 2 except OCO-2 measured radiance overlaid on IPA radiance simulations at 768.52 nm. The

solar zenith angle (SZA) for the radiance simulation case is 34.3°.

In the cloudy locations (radiance value greater than ~0.05), the IPA calculations match the
OCO-2 observations on a footprint-by-footprint level (see Figure 5b), demonstrating that wind and
parallax corrections were performed successfully. Of course, there is not always a perfect
agreement because of morphological changes in the cloud field over the course of six minutes. It
is, however, apparent that the 3D calculations agree to a much lesser extent with the observations
than the IPA calculations. Just like the mismatch for the clear-sky pixels indicates a bias in the

input surface albedo, the bias here means that the input cloud properties (most importantly COT)

( Deleted: 33.57
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are inaccurate. For most of the reflectance peaks, the 3D simulations are too low, which means
that the input COT is biased low. This is due to 3D cloud effects on the MODIS-based cloud
retrieval. Since they are done with IPA, any net horizontal photon transport is not considered,
which leads to an apparent surface brightening as noted above, at the expense of the cloud
brightness. As a result, the COT from darker clouds is significantly underestimated. This
commonly known problem (Barker and Liu, 1995), with several aspects discussed in the
subsequent EaR>T applications, can be identified by radiance consistency checks such as the one
shown in Figure 5, and mitigated by novel types of cloud retrievals that do take horizontal photon

transport into account (section 6).

4.2 MODIS (App. 2)

To go beyond the OCO-2 track and understand the bias between simulated and observed
radiances from a domain perspective, we now consider the radiance simulations for the MODIS
650 nm channel. The setup is exactly the same as for the OCO-2 simulations, except that 1) the
viewing zenith angle is set to the average viewing zenith angle of MODIS within the shown domain

(instead of OCO-2), and 2) the surface albedo (or WSA) from MCDA43 js used directly, this time

from the 650 nm channel without rescaling. Figure 6a shows the MODIS measured radiance field,
while Figure 6b shows the EaR3T 3D simulations. Visually, the clouds from the EaR>T simulation
are generally darker than the observed clouds, which is in line with our aforementioned explanation
of net horizontal photon transport. They are also blurrier because radiative smoothing (Marshak et

al., 1995) propagates into the retrieved COT fields, which are subsequently used as input to EaR3T.
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The IPA RT calculations agree with the observations for clouds (see Figure A4a in Appendix C2).

which is expected as the IPA calculations and retrievals go through the same RT process. and the

darkening and smoothing effects (referred to as 3D effects) are due to horizontal photon transport.

To look at the 3D effects more quantitatively, Figure 7 shows a heatmap plot of simulated radiance

CDeleted: darkening and smoothing

versus observed radiance. It shows that the radiance for cloud-covered pixels (labeled “cloudy”)
from EaR3T are mostly low-biased while good agreement between simulations and observations
was achieved for clear-sky radiance (labeled “clear-sky™). The good agreement over clear-sky

regions is expected. As mentioned above, we use MCD43 as surface albedo input, which in

contrast to the OCO-2 surface albedo product is appropriately cloud-screened and therefore does

not have a reflectance high bias. There is, of course, a reflectance enhancement in the vicinity of
clouds, but that is captured by the EaR3T calculations. The fact that the calculations agree with the
observations even for clear-sky pixels in the vicinity of clouds, shows that the concept of radiance
consistency works to ensure correct satellite retrievals even in the presence of clouds. It also
corroborates our observation from section 4.1 that COTipa is low biased. Since the MODIS

reflectance is not self-consistent with respect to 3D RT calculations using COTipa as shown for

the cloudy pixels in Figure 7, we can identify a bias in the cloud properties even without knowing
the ground truth of COT. On the other hand, successful closure in radiance (self-consistency)
would provide an indication that the input fields including COT are accurate, although it is

certainly a weaker metric than direct verification of the retrievals through aircraft-satellite retrieval
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Figure 6. (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance at 650 nm from EaR>T.

The solar zenith angle for the radiance simulation case is 34.94°.
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Figure 7. Heatmap plot of EaR*T simulated 3D radiance vs. MODIS measured radiance at 650 nm.

Summarizing the two satellite radiance simulator applications, one can say that EaR3T
enables a radiance consistency check for inhomogeneous cloud scenes. We demonstrated that a
lack of simulation-observation consistency (MODIS versus OCO-2) and self-consistency (MODIS
versus MODIS) can be traced back to biased surface albedo or cloud fields in the simulator input.
This can become a diagnostic tool for the quality of retrieval products from future or current

missions, even when the ground truth is not known. Although not shown, the errors in the

simulated radiance associated with the fixed-SZA assumption (domain average) are negligible.

However, the vertical extent of the clouds affects the simulated radiance — the larger the vertical
extent, the larger the 3D effects (more horizontal photon transport). Since we make the assumption

of 1) a cloud geometric thickness of 1 km for clouds with CTH less than 4 km. and 2) cloud base

height of 3 km for clouds with CTH greater than 4km, the simulated radiance at the satellite sensor

( Deleted: 34.42

CDeleted: surface reflectance

CDeleted: It should be pointed out that

CDeleted: if no thickness information is provided

—/

level is valid for that proxy cloud only. For clouds that are geometrically thicker than the assumed
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cloud geometrical thickness, the simulated radiance would be even lower due to enhanced

horizontal photon transport. Either way, the comparison with the actual radiance measurements

will reveal a lack of closure. Additionally, although the clouds introduce the lion’s share of the 3D

bias that is identified by the radiance consistency check, additional discrepancies can be introduced
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in different ways. For example, the topography (mountainous region in Colorado) is not considered
by MCARaTS (it is considered by MYSTIC, but this solver has not been implemented yet).
For the reference of simulation running time: The MODIS simulation (domain size of

[Nx=846, Ny=846]) took about,| 5 minutes,on a Linux workstation with 8 CPUs for three 3D RT

runs with 108 photons, With a slightly modified setup and parallelization, the automation can be

easily applied for entire satellite orbits, although more research is required to optimize the

computation speed depending on the desired output accuracy.

5. EaR>T as 3D Aircraft Irradiance Simulator (App. 3)

In contrast to the previous applications that focused on satellite remote sensing, we will
now be applying EaR>T to quantify 3D cloud retrieval biases through direct, systematic validation
of imagery-derived irradiances against aircraft measurements, instead of using the indirect path
of radiance consistency in section 4. Previous studies (e.g., Schmidt et al., 2007; Kindel et al.,
2010) conducted radiative closure between remote sensing derived and measured irradiance using
isolated flight legs as case studies. Here, with the efficiency afforded by the automated nature of
EaR>T, we are able to conduct radiative closure of irradiance through a statistical approach that
employs campaign-scale amounts of measurement data. Specifically, we used EaR>T to perform
large-scale downwelling irradiance simulations at 745 nm based on geostationary cloud retrievals
from AHI for the CAMP?Ex campaign, and directly compare these simulations to the SPN-S
measured irradiances onboard the P-3 aircraft. This is done for all below-cloud legs from the entire
campaign with the aim to assess the degree to which satellite-derived near-surface irradiances
reproduce the true conditions below clouds.

The irradiance simulation process is similar to the previously described radiance simulation
in section 4, with only a few modifications. First, we used cloud optical properties from the AHI
cloud product (COT, CER and CTH) as direct inputs into EaR3T. Secondly, we used a constant

ocean surface albedo value of 0.03. Such simplification in surface albedo is made under the
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assumption that 1) the ocean surface is calm with no whitecaps, and that 2) the Lambertian BRDF
is sufficient (instead of directionally dependent BRDF) to represent surface albedo for the
irradiance calculation. Since the ocean surface albedo can greatly differ from 0.03 when the Sun
is extremely low (Li et al., 2006), we excluded data under low-Sun conditions where the SZA is

greater than 45°. Lastly, since EaR>T can only perform 3D simulations for a domain at a single
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specified solar geometry, we divided each CAMP?Ex research flight into small flight track
segments where each segment contains 6 minutes of flight time. The size and shape of the flight
track segments can vary significantly due to the aircraft maneuvers, aircraft direction, aircraft
speed, etc. For each flight track segment, EaR3T performs irradiance simulations for a domain that
extends half'a degree at an averaged solar zenith angle. In contrast to the radiance simulation output,
which is two-dimensional at a specified altitude and sensor geometry, the irradiance simulation
output is three dimensional. In addition to x (longitude) and y (latitude) vectors, it has a vertical
dimension along z (altitude). From the simulated three-dimensional irradiance field, the irradiance
for the flight track segment is linearly interpolated to the x-y-z location (longitude, latitude, and
altitude) of the aircraft. EaR3T automatically sub-divides the flight track into tiles encompassing
track segments, and extracts the necessary information from the aircraft navigational data. Based
on the aircraft time and position, EaR3T downloads the AHI cloud product that is closest in time
and space to the domain containing the flight track segment.

Figure 8 shows the simulated irradiance for a sample flight track below clouds on 20
September, 2019. Figure 8a shows the flight track overlaid on AHI imagery. Figure 8b shows 3D
(in red) and IPA (in blue) downwelling irradiance simulations for the highlighted flight track in
Figure 8a, as well as measurements by the SPN-S (in black). Since the 3D and IPA simulations
are performed separately at discrete solar and sensor geometries for each flight track segment based
on potentially changing cloud fields from one geostationary satellite image to the next,
discontinuities in the calculations (indicated by gray dashed lines) are expected. The diffuse
irradiance (downwelling and upwelling) can also be simulated and compared with radiometer
measurements (not shown here). Since the irradiance was simulated/measured below clouds, high
values of downwelling irradiance indicate thin-cloud or cloud-free regions while low values of
downwelling irradiance indicate thick-cloud regions. The simulations successfully captured this
general behavior — clouds thickened from west to east until around 121.25° E, and thinned
eastwards. However, the fine-scale variabilities in irradiance were not captured by the simulations
due to the coarse resolution of COT in the AHI cloud product (3-5 km). Additionally, the
simulations also missed the clear-sky regions in the very east and west of the flight track as
indicated by high downwelling irradiance values measured by SPN-S. This is probably also due to
the coarse resolution of the AHI COT product where small cloud gaps are not represented. Large

discrepancies between simulations and observations occur in the mid-section of the flight track
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927  where clouds are present (e.g., longitude range from 121.15° to 121.3°). Although the 3D
928  calculations differ somewhat from the IPA results, they are both biased high, likely because the
929  input COT (the IPA-retrieved AHI product) is biased low. This bias is caused by the same
930  mechanism that was discussed earlier in the MODIS examples (section 4.2). This begs the question
931  whether this is true for the entire field mission. To answer the question, we performed a systematic
932  comparison of the cloud transmittance for all available below-cloud flight tracks from CAMP?Ex,
933  using EaR>T’s automated processing pipeline. The output of this pipeline is visualized in time-
934  synchronized flight videos (Chen et al., 2022), which show the simulations and observations along
935  all flight legs point by point. These videos give a glimpse of the general cloud environment during

936  the field campaign from the geostationary satellite perspective.
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940  Figure 8. (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea on 20 September, 2019.
941 The thin line shows the entire flight track within the domain. The thick line highlights the specific leg
942 analyzed in (b). (b) Measured downwelling irradiance from SPN-S at 745 nm and calculated 3D and IPA
943 irradiance from EaR’T for the highlighted flight track in (a).
944
945 For this comparison, we use transmittance instead of irradiance. The transmittance is

946  calculated by dividing the downwelling irradiance below clouds (F f’"m’m) by the downwelling
947  irradiance at the top of the atmosphere extracted from the Kurucz solar spectra (F]°4; Kurucz,

|948 1992) at incident solar zenith angle (SZA), where
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Thus the transmittance has less diurnal dependence than the irradiance. Figure 9 shows the
histograms of the simulated and measured cloud transmittance from all below-cloud legs. The
average values are indicated by dashed lines. Although the averaged values of IPA and 3D
transmittance are close, their distributions are different. Only the 3D calculations and the measured
transmittance reach values beyond 1. This occurs in clear-sky regions in the vicinity of clouds that

receive photons scattered by the clouds as previously discussed for the OCO-2 application.
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Figure 9. Histogram of measured transmittance from SPN-S at 745 nm (dark gray filled) and calculated 3D (red solid

line) and IPA (blue_solid line) transmittance from EaR3T for all the below-cloud flight tracks during
CAMP?Ex in 2019. The mean values are indicated by dashed lines. The yellow (green) shaded area
represents the relatively low (high) transmittance region where the probability density of the observed

transmittance (dark gray filled) is greater than the calculations.

Both the distribution and the mean value of the simulations are different from the
observations — the simulation histograms peak at around 0.9 while the observation histogram peaks
at around 1. The histograms indicate that the RT simulations miss most of the clear-sky conditions
because of the coarse resolution of the AHI cloud product. If clouds underfill a pixel, AHI
interprets the pixel as cloudy in most cases. This leads to an underestimation of clear-sky regions
since cumulus and high cirrus were ubiquitous during CAMP2Ex. The area on the left (highlighted
in yellow) has low cloud transmittance associated with thick clouds. In this range, the histograms

of the calculations are generally below the observations, and the PDF of the calculations is offset
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to the right (indicated by the yellow arrow). This means that the transmittance is overestimated by
both IPA and 3D RT, and thus that the COT of thick clouds is underestimated, consistent with

what we found before (Figure 8b). The high-biased transmittance below-cloud is also consistent

with the findings of low-biased reflectance (App. 1 and 2). both indicating COT of the optically

thick clouds are low-biased. The high-transmittance end (highlighted in green) is associated with

clear-sky and thin clouds. Here, the peak of the PDF is shifted to the left (green arrow), and the
calculations are biased low. This is caused by a combination of 1) the overestimation in COT of
thin clouds due a 3D bias in the AHI IPA retrieval, 2) the aforementioned resolution effect that
underestimates the occurrence of clear-sky regions (or overestimation in cloud fraction), and 3)
net horizontal photon transport from clouds into clear-sky pixels. Overall, the calculations
underestimate the true transmittance by 10%. This might seem to contradict Figure 7, where the
calculated reflected radiance was biased low due to the underestimation of COT in the heritage
retrievals, which would correspond to an overestimation of the radiation transmitted by clouds.
This effect is indeed apparent in the yellow-shaded area of Figure 9 (high COTs), but the means
(dashed lines) show exactly the opposite. To understand that, one has to consider that the histogram
depicts all-sky conditions, which include both cloudy and clear pixels. In this case, the direction
of the overall (all-sky) bias follows the direction of the thin-cloud/clear bias, rather than the
direction of the thick cloud bias. For different study regions of the globe with different cloud
fractions, cloud size distributions, and possibly different imager resolutions, the direction and
magnitude of the bias might be very different.

Summarizing, this application demonstrates that the EaR*T’s automation feature allows
systematic simulation-to-observation comparisons. If aircraft observations are available, then
closure between satellite-derived irradiance and suborbital measurements is a more powerful
verification of satellite cloud retrieval products than the radiance consistency from the earlier
stand-alone satellite applications. Even more powerful is the new approach to process the data
from an entire field mission for assessing the quality of cloud products in a region of interest (in

this case, the CAMP?Ex area of operation).
6. EaR>T for Mitigating 3D Cloud Retrieval Biases (App. 4)

In this section, we will use high-resolution imagery from a radiometrically calibrated

all-sky camera flown during the CAMP?Ex to isolate the 3D bias (sometimes referred to as IPA
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bias) and explore its mitigation with a newly developed CNN cloud retrieval framework (Nataraja
et al., 2022). The CNN, unlike IPA, takes pixel-to-pixel net horizontal photon transport into
account. It exploits the spatial context of pixels in cloud radiance imagery, and extracts a higher-
dimensional, multi-scale representation of the radiance to retrieve COT fields as the output. It does
s0 by learning on “training data”, which in this case was input radiance and COT pairs synthetically
generated by EaR3T using LES data from the Sulu Sea. The best CNN model, trained on different
coarsened resolutions of the data pairs, is included within the EaR3T repository. For App. 4, this
CNN is applied to real imagery data for the first time, which in our case are near-nadir observations
by the all-sky camera (section 2.2.5) that flew in CAMP?Ex.

The CNN model was trained at a single (fixed) sun-sensor geometry (solar zenith angle,
SZA=29.2°; solar azimuth angle, SAA=323.8°, viewing zenith angle, VZA=0°), at a spatial
resolution of 100 m. We therefore chose a camera scene with a matching SZA (28.9°), and rotated
the radiance imagery to match SAA=323.8°, and subsequently gridded the 8-12 m native
resolution camera data to 100 m. Figure 10a shows the RGB imagery captured by the all-sky
camera over the Philippine Sea at 02:10:06 UTC on 5 October 2019. The Sun is located at the
southeast (as indicated by the yellow arrow) and can be easily identified from the sun glint. Note
that this image has not yet been geolocated; it is depicted as acquired in the aircraft reference frame.
Figure 10b shows the rotated scene of the red channel radiance for the region encircled in yellow
in Figure 10a. The sun (as indicated by the yellow arrow) is now at SAA=323.8°. The selected
study region is indicated by the red rectangle in Figure 10b (6.4x6.4 km?), where the raw radiance
of the camera is gridded at 100 m resolution to match the spatial resolution of the training dataset

of the CNN.
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Figure 10. (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP?Ex for a cloud scene centered

at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 UTC on 5 October, 2019. The arrows
indicate the true north (green), flight direction (blue), and illumination (where the sunlight comes from,
yellow). (b) Red channel radiance measured by the camera for the circular area indicated by the red circle
in (a). Red squared region shows gridded radiance with a pixel size of 64x64 and spatial resolution of 100

m.

From the radiance field, we used both the traditional IPA (based on the IPA reflectance-to-

(Deleted: two-stream

COT mapping) and the new CNN to retrieve COT fields. Figure 11 shows the COTipa and COTcnn

(Deleted: approximation

fields, which are visually quite different. For relatively thin clouds (e.g., at around {2, 1.8}), the
CNN tends to retrieve larger COT values than COTipa. Also, it returns more spatial structure than
the IPA (e.g., around {2,-1}). To assess how either retrieval performs, we now apply the radiance
self-consistency approach introduced with MODIS data in section 4.2. Using both the IPA and the
CNN retrieval as input, we had EaR>T calculate the (synthetic) radiance that the camera should
have observed if the retrieval were accurate. The clouds are assumed to be located at 1-2 km. Such
an assumption is inferred from low-level aircraft observations of clouds on the same day. These
radiance fields are shown in Figure 12a and 12b, and can be compared to Figure 12¢. Seven edge
pixels have been removed from the original domain because the CNN performs poorly at edge

pixels, and because the 3D calculations use periodic boundary conditions.
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Figure 11. Cloud optical thickness for the gridded radiance in Figure 10b (a) estimated by IPA method and (b)

predicted by CNN.
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Figure 12. 3D radiance calculations from EaR>T at 600 nm based on cloud optical thickness field (a) estimated by
IPA, and (b) predicted by the CNN. The radiance measured by the all-sky camera (the same as Figure
10b) is provided in the same format at (c¢) for comparison. The calculations were originally performed
for the 64x64 domain. Then 7 pixels along each side of the domain (contoured in gray) were excluded,

which resulted in a 50x50 domain.
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Figure 13. Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based on cloud optical thickness

(a) estimated by IPA and (b) predicted by the CNN vs. measured red channel radiance from all-sky camera.

As evident from the brightest pixels in Figures 12b and 12c, the radiances simulated on the

basis of the COTcnn input are markedly lower than actually observed by the camera. This is

( Deleted: CNN COT

because the CNN was trained on a LES dataset with limited COT range that excluded the largest
COT that occurred in practice. This means that the observational data went beyond the original
training envelope of the CNN, which highlights the importance of choosing the CNN training data
carefully for a given region. In Figure 13, the simulations are directly compared with the original
observations, confirming that indeed the CNN-generated data are below the observations on the
high radiance end. Otherwise, the CNN-generated radiances agree with the observations. In

contrast, the IPA-generated data are high biased for the optically very thin clouds (radiance below

0.1) and systematically Jow-biased for the thick clouds (radiance above 0.2) when comparing with
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the observations, over the dynamic range of the COT, which is indicative of the 3D retrieval bias

that we discussed earlier. A small high bias occurs in the COTcnn based radiance simulations for

the optically thin clouds (radiance value below 0.2). This probably because the CNN training as
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described by Nataraja et al. (2022) is 1) based on a surface albedo of 0 and 2) aerosol-free

atmospheric environment (also aerosol-free setup for radiance simulations in Figure 13)., where in

reality the ocean is slightly brighter and atmosphere is mixed with aerosols. Here again, the

radiance self-consistency approach proves useful despite the absence of ground truth data for the

COT. This is yaluable because in reality satellite remote sensing does not have the ground truth of
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COT, whereas radiance measurements are always available. For the CNN, the self-consistency of

the radiance is remarkable for most of the clouds (radiance smaller than 0.4), which encompass
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86.8% of the total number of image pixels.
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Finally, we use EaR>T to propagate the 3D cloud retrieval bias into the associated bias in
estimating the cloud radiative effect from passive imagery retrievals, which means that we are
returning from a remote sensing to an energy perspective (irradiance) at the end of the paper. The
calculated cloud radiative effects (CRE) of both below-clouds (at the surface) and above-clouds

(at 2.5 km) are shown in Figure 14a and 14b. The most important histograms are those from 3D
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irradiance calculations based on the CNN retrievals (gray solid line), as this combination would
be used in a next-generation framework for deriving CRE from passive remote sensing, and the
other would be IPA irradiance calculations based on the IPA retrieval (red solid line), as done in
the traditional (heritage) approach. The dashed lines are the other combinations. The mean values
(red vs. gray) indicate that in our case the traditional approach would lead to a high bias of more

than to 28% both at the surface and 20% above clouds due to low-biased COTpa (consistent with
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findings of low-biased COTipa-derived reflectance from App. 1&2 and high-biased COTipa-

derived transmittance from App. 3). Here again, 3D biases do not cancel each other out in the

domain average. If the CNN had better fidelity even for optically thick clouds, the real bias in CRE
would be even larger. A minor, but interesting finding is that regardless of which COT retrieval is

used, the mean CRE is similar for IPA and 3D irradiance calculations (e.g., CREpa(COTcyn) =
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CRE3p(COTchw)s blue vertical dashed line Jocates near to gray vertical solid line), even though

the PDFs are different. By far the largest impact on accuracy comes from the retrieval technique,

not from the subsequent CRE calculations. Here again, the self-consistency check turns out as a
powerful metric to assess retrieval accuracy. Of course, we only used a single case in this part of
the paper. For future evaluation of the CNN versus the IPA, one would need to process larger
quantities of data in an automated fashion as done in the first part of the paper. This is beyond the

scope of this introductory paper, and will be included in future releases of EaR*T and the CNN.
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Figure 14. Histograms of cloud radiative effects derived from 1) 3D irradiance calculations based on COTenn (solid
gray), 2) IPA irradiance calculations based on COTipa (solid red), 3) IPA irradiance calculations based on
COTcnn (dashed blue), and 4) 3D irradiance calculations based on COTira (dashed green) both (a) at the

surface and (b) above the clouds. The mean values are indicated by vertical lines.

7. Summary and Conclusion

In this paper, we introduced EaR>T, a toolbox that provides high-level interfaces to
automate and facilitate 1D- and 3D-RT calculations. We presented applications that used EaR>T
to:

a) build a processing pipeline that can automatically simulate 3D radiance fields for satellite
instruments (currently OCO-2 and MODIS) from publicly available satellite surface and
cloud products at any given time over any specific region;

b) build a processing pipeline that can automatically simulate irradiance along all flight legs
of aircraft missions, based on geostationary cloud products;

c¢) simulate radiance and irradiance for high-resolution COT fields retrieved from an airborne
camera, using both a traditional 1D-RT (IPA) approach, and a newly developed 3D-RT
(CNN) approach that considers the spatial context of a pixel.

Unlike other satellite simulators that employ 1D-RT, EaR>T is capable of performing the radiance
and irradiance calculations in 3D-RT mode. Optionally, it can be turned off to link back to
traditional 1D-RT codes, and to calculate 3D perturbations by considering the changes of 3D-RT
fields relative to the 1D-RT baseline.

32



1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180

With the processing pipeline under a) (App. 1 and App. 2, section 4), we prototyped a

3D-RT powered radiance loop_(we call it “radiance self-consistency”) that is envisioned for

upcoming satellite missions such as EarthCARE and AOS. Retrieved cloud fields (in our case,
from MODIS and from an airborne camera) are fed back into a 3D-RT simulation engine to
calculate at-sensor radiances, which are then compared with the original measurements. Beyond
currently included sensors, others can be added easily, taking advantage of the modular design of
EaR>®T. This radiance closure loop facilitates the evaluation of passive imagery products,
especially under spatially inhomogeneous cloud conditions. The automation of EaR3*T permits
calculations at any time and over any given region, and statistics can be built by looping over entire

orbits as necessary. The concept of radiance self-consistency, could be valuable even for existing

CDeleted: consistency

imagery datasets because it allows the automated quantification of 3D-RT biases even without

ground truth such as airborne irradiance from suborbital activities. Also. it can be easily extended

to spectral or multi-angle observations as available from MODIS and MISR (Multi-Angle Imaging

Spectroradiometer), and thus providing more powerful constraints to the remote sensing products.

In the future it should be possible to include a 3D-RT pipeline such as EaR3T into operational
processing of satellite derived data products.

Benefitting from the automation of EaR3T in b) (App. 3, section 5), we performed 3D-RT
irradiance calculations for the entire CAMP?Ex field campaign, moving well beyond radiation
closure case studies, and instead systematically evaluating satellite-derived radiation fields with
aircraft data for an entire region. From the comparison based on all below-cloud flight tracks
during the entire campaign, we found that the satellite-derived cloud transmittance was biased low
by 10% compared to the observations when relying on the heritage satellite cloud product.

From the statistical results of the CAMP?Ex irradiance closure in b), we concluded that the
bias between satellite-derived irradiances and the ground truth from aircraft measurements was
due to a combination of the coarse spatial resolution of the geostationary imagery products and
3D-RT effects. To minimize the coarse-resolution part of the bias and thus to isolate the 3D-RT
bias, we used high-resolution airborne camera imagery in ¢) (App. 4, section 6), and found that
even with increased imager resolution, biases persisted. The at-sensor radiance derived from

COTpa was inconsistent with the original measurements. For cloudy pixels, the calculated

( Deleted: IPA COT retricvals

radiance was well below the observations, confirming an overall low bias in COTpa. This low bias

( Deleted: IPA COT

could be largely mitigated with the context-aware CNN developed separately in Nataraja et al.
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(2022) and included in EaR3T. Of course, this novel technique has limitations. For example, the
camera reflectance data went beyond the CNN training envelope, which would need to be extended
to larger COT in the future. In addition, the CNN only reproduces two-dimensional clouds fields
and does not provide access to the vertical dimension, which will be the next frontier to tackle.
Still, the greatly improved radiance consistency from COTipa to COTcny indicates that the EaR3T-
LES-CNN approach shows great promise for the mitigation of 3D-RT biases associated with
heritage cloud retrievals. We also discovered that for this particular case, the CRE calculated from

traditional 1D cloud products can introduce a warm bias of at least 28% at the surface and 20%

( Deleted: 25

above clouds.

EaR>T has proven to be capable of facilitating 3D-RT calculations for both remote sensing
and radiative energy studies. Beyond the applications described in this paper, EaR>T has already
been extensively used by a series of on-going research projects such as producing massive 3D-RT
calculations as training data for a new generation of CNN models (Nataraja et al., 2022), evaluating
3D cloud radiative effects associated with aerosols (Gristey et al., 2022), creating flight track and
satellite track simulations for mission planning etc. More importantly, the strategies provided in
this paper put novel machine learning algorithms on a physical footing, opening the door for the
mitigation of complexity-induced biases in the near-future. More development effort will be
invested into EaR3T in the future, with the goals of minimizing the barriers to using 3D-RT
calculations, and to promote 3D cloud studies. EaR3T will continue to be an educational tool driven

by graduate students. In the future, we plan to add support for additional publicly available 3D RT

solvers, e.g.., SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and

Evans, 2009), as well as built-in support for HITRAN and associated correlated-k methods

(currently, we are implementing such an approach for the longwave wavelength range). From a

research perspective, we anticipate that EaR3T will enable the systematic quantification and
mitigation of 3D-RT biases of imagery-derived cloud-aerosol radiative effects, and may be the

starting point for operational use of 3D-RT for future satellite missions.
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Appendix A
Al - Technical Input and Output Parameters of EaR*T
EaR>T provides various functions that can be combined to tailored pipelines for automatic

3D radiative transfer (3D-RT) calculations as described jn this paper (App. 1 — 5), as well as for

complex research projects beyond. Since EaR>T is written in Python, the modules and functions
can be integrated into existing functions developed by the users themselves. Parallelization is
enabled in EaR3T by default through multi-processing to accelerate computations. If multiple
CPUs are available, EaR*T will distribute jobs for the 3D RT calculations. By default, the
maximum number of CPUs will be used. Since EaR>T is designed to make the process of setting
up and running 3D-RT calculations simple, some parameters that are unavailable from the input
data but are required by the RT solvers are populated via default values and assumptions. However,
this does not mean that by using EaR3T, one must use these assumptions; they can be easily
superseded by user-provided settings. To facilitate this process, Table Al provides a detailed list
of parameters (subject to change in future updates) that can be controlled and modified by the user.
In examples/02_modis_rad-sim.py, we defined these user-controllable parameters as
global variables for providing easy access to user. In the future, most of the parameters will be

controllable through a dedicated configuration file for optimal transparency. These parameters can

be changed within the code. For instance, by changing the parameters of 'date' (Line 67 in

examples/02_modis_rad-sim.py) and . region' (Line 68 in

examples/02 modis_ rad-sim.py) within params into the following:
params|[ 'date'] = datetime.datetime (2022, 2, 10)

params[ 'region'] = [-6.8, -2.8, 17.0, 21.0]

one can perform similar RT calculations (as demonstrated in App. 2) for another date and region

of interest (here, west Sahara Desert on 10 February, 2022). Note that the code is under active

development, the line numbers are only valid in the version release of v0.1.1 and might change in

the future, Given the input parameters, EaR>T will calculate radiance or irradiance and save the

calculations into a HDF5 (Hierarchical Data Format version 5) file. The output data variables are

provided in Table A2.

In addition to the example code, intuitive and simple examples are provided in

examples/00_er3t mca.py and examples/00 er3t lrt.py for users who are

interested in learning the basics of setting up EaRT for calculations. At the current stage, only
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limited documentation is provided. However, community support is available from the author of

this paper through Discord®. In the near-future, more effort will be invested into documentation to

give the user more autonomy in creating new applications that cannot be derived from those

provided in our paper.

App. 1 App. 2 App. 3 App. 4 App. 5
Parameters examples/01_oc | examples/02_mo | examples/03_sp examp:!.es/04_ca examples/05_cn
Py N = = m_nadir_rad- n-les_rad-
02_rad-sim.py dis_rad-sim.py | ns_flux-sim.py sim by = sim p;
September 2,2019 | September 2,2019 | gopiomber 20,2019 | October 5, 2019 October 5, 2019
Specified at Line 66: | Specified at Line 68: . . - 0. S o
at poramar"aace’] | paramsraate’] | Spefedubie | Speifedg ity | Souifedu e s
P — 439:
9 .
And Line 1569: And Line I311: And Line 238: date | And Line 215: date | And Line 126: date
date date = -
: Specified at Line 69: | Specified at Line 69: .
Geographlcal params|[ 'region | params['region Varllable {depen.ds N/A N/A
Region T 1 on aircraft location)
Z Grid 40/0.5 km 40/0.5 km 20/1km 40/0.5km 50/0.4km
(Number of
Grids/Resolut | Specified at Line Specified at Line Specified at Line Specified at Line Specified at Line 92:
ion) 1476: 1evels 1220: 1evels 180: levels 174: levels levels
768.52 nm 650 nm 600 nm 600 nm
745 nm
Wavelength Specified at Line 67: | Specified at Line 67: . . Specified at Line 58: | Specified at Line 57:
s s Specified at Line s \
params| 'wavele | params[ 'wavele 440: 1 th params| 'wavele | params[ 'wavele
ngth' ngth' 240 waveleng ngth' ngth'
US standard
US standard US standard US standard US standard atmosphere
Atmospheric atmosphere atmosphere atmosphere atmosphere Specified at Lin 68:
Gas Profile Specified at Line Specified at Line Specified at Line Specified at Line h:i?:s r:;:‘ll): v
2 2 jeric profile
1479: atm0 1223: atm0 183: atm0 177: atm0 1
And Line 94: atm0
Default Absorption Default Absorption Default Absorption Default Absorption
. Case specific Database Database Database Database
Atmospheric P (Coddington et al., (Coddington et al., (Coddington et al., (Coddington et al.,
Gas Specified at Line 2008) 2008) 2008) 2008)
Absorption 1487: absO ) ) ) ) ) ) . .
— Specified at Line Specified at Line Specified at Line Specified at Line 97:
1230: absO 189: abs0 184: abs0 abs0
From MODIS L2 From MODIS L2 From AHI L2 cloud 2 km
cloud product cloud product
product . . From LES
Cloud Top Specified at Line Specified at Line Specified at Line sl;?:;:‘e; alt‘l:_]{r;eu%:
. S P [ . .
Height (CTH) | 1520: 1263: vgg_ ; 0 Specified at Line
- . . .o | 208:cth_2a top height']
data['cth 2d'] data['cth 2d'] = - " 103: c1d0
> — > And Lines 212: And Lines 199:
And Line 1530: And Line 1273: c1do = c1d0
cldo cldo
1 km for CTH <4 N _
m: 1 km for CTH <4 1 km
Cloud ble that cloud 1 km From LES
. 3 Specified at Line 64:
Ge_ometrlcal km for CTH >4 km Specified at Line params|[ 'cloud Specified at Line
Thickness 212: egt geometrical th | 103:c1d0
Specified at Line And Line 1270: cgt ickness
1527: cgt ——

¢ https://discord.gg/ntqsguwaWv
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Used IPA
reflectance-to-COT
mapping for MODIS
L1B Reflectance at

Used IPA
reflectance-to-COT
mapping for MODIS
L1B Reflectance at

From AHI L2 cloud
product

Used IPA
reflectance-to-COT
mapping and CNN
for camera red
channel

. X X Fi LES
Cloud Optical | 250 m resolution 250 m resolution radiance/reflectance rom
hick Specified at Line at 100 m resolution Specified at Line
Thickness Specified at Line Specified at Line 198: cot_2d 1(123' <140
1518: 1261: And Lines 212: Specified at Lines —
data['cot 2d4'] data['cot 2d4'] cldo 474 and 493:
And Line 1530: And Line 1273: cot 2d
cldo cldo And Lines 199:
cldo
From MODIS L2 From MODIS L2 .
F AHI L2 cl
Cloud Product Cloud Product rom cloud 12 micron
product F LES
Cloud Specified at Line Specified at Line Specified at Lines o
Effective pect pect Specified at Line 475 and 494: ) )
. 1519: 1262: 199: 2d cer 2d Specified at Line
Radius data['cer 2d'] | data['cer 24'] | = cer_ —_— 103: ¢c1d0
: e ; - And Lines 212: And Lines 199: I
And Line 1530: And Line 1273: c1d0 c1do
cldo cldo
S . Mie_(water cloud Mie_(water cloud Mie_(water cloud Mie (water cloud) Mie (water cloud)
cattering - . S .
" . " . " . . . .
Phase Specified at Line Specified at Line Specified at Line %SLM at Line %1 T_Lmed at Line
Function 1536: pha0 1279: pha0 219: pha0 T‘O TO
And Line 1573: sca | And Line 1315: sca | And Line 237: sca paad . paal. an.
7 o And Line 219: sca And Line 130: sca
From MODIS
surface albedo F“??“ MODIS 0.03 0.03
TRV surface albedo 0.03
product and scaled product Specified at Line 59:
Surface by 0CO-2 Implicitly specified S};e;:;l:: a.tsl";r:—f(:; params|[ ' surfac
. . . p :
Albedo Specified at Li Specified at Line by default at Line 1bedo’ e _albedo
pecified at Line 1244: mod43 234: M And Line 133:
1501: mod43 And Liow 1246: mcarats_n And Line 215: surface albedo
And Line 1503: slf1c 2“:; = —ng surface_albedo
sfc_2d —
From 0CO-2 From MODIS 28.90 29.16°
location fil location fil . .
geolocation file geolocation file Specified at Line Comeifiod ot Line 601
Solar Zenith Specified at Line Specified at Line Van‘able (depenfis 464: . . | params[ 'solar
y on aircraft location geometry[ 'sza - 0
Angle 1554: sza 1296: sza and date and time) ; = — | zenith angle']
And Line 1576: And Line 1318: And Line 222: And Line 134:
solar_zenith_a | solar_zenith_a === solar zenith a
solar_zenith a | —— ——
ngle ngle ngle - - ngle
From OCO-2 From MODIS 296.83 296.83°
1 ion fil 1 ion fil . . . .
Sol geolocation file geolocation file Specified at Line Specified at Line 61:
olar . ) ) . i : P [ 'solar
. Specified at Line Specified at Line Varl_able (depenfis 465: \ . arams solar 0
Azimuth 1555: saa 1297: saa on aircraft location geometry(['saa’ | azimuth angle
Angle o . o . and date and time) 1
e Ang Line ﬂ th Ang Line 13.1 o th And Line 223: And Line 135:
::gi:_az imuth_ ::gi:_az imuth_ solar_azimuth_ | solar azimuth
angle angle
i (et 705 km (satellite
705 km (satellite 705 km (satellite allitude altitude)
Iti Iti . .
S altitude) altitude) N/A, three- Specified at Line Specified at Line 64:
eln'sor Implicitly specified Implicitly specified ?;Tj&ig?z‘m uts at %metr 'a1¢' | params 'sensor
Altitude by default at Line by default at Line user-deﬁnede wrid ? vl alt] altitude
1568: 1310: g And Line 138:

mcarats_ng

mcarats_ng

And Line 224:
sensor_altitud

sensor altitud
e

Sensor Zenith
Angle

From OCO-2
geolocation file

Specified at Line
1557: vza

From MODIS
geolocation file

Specified at Line
1302: vza

0° (nadir)

Implicitly specified
by default at Line
234:
mcarats_ng

e
0° (nadir)

Implicitly specified
by default at Line
214:
mcarats_ng

0° (nadir)

Specified at Line 62:
params|[ 'sensor

zenith angle'
1
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1263
1264
1265
1266
1267
1268

1269

And Line 1578: And Line 1320: And Line 136:
sensor_zenith_ | sensor_zenith_ sensor zenith
angle angle angle
0° (.insigniﬁcant for
From OC.O'Z From MQDIS 0° (insignificant for 0° (insignificant for nadir)
geolocation file geolocation file nadir) nadir)
Sensor Soecified at Li Soecified at Li Specified at Line 63:
. .. . . . N . E '
Azimuth pecified at Line pCCl- fed at Line Implicitly specified Implicitly specified aramsl sensov
1 1303: vaa azimuth angle
303: . . g
Angle And Line 1579; And Line 1321; by defaultatLine | by defaultatLine 1} 7}
sensor_azimuth | sensor_azimuth | — — And Line 137:
— — mcarats_ng mcarats_ng .
_angle _angle - - sensor azimuth
angle
1x10% per run 1x10% per run 1x10 per run 1x10" per run 1x10% per run
Number of Specified at Line 70: | Specified at Line 70: | Specified at Line 50: | Specified at Line 60: | Specified at Line 65:
Phot params[ 'photon | params[ 'photon | params['photon | params|'photon | params|['photon
otons g g g g g
-1 -1 -1 -1
And Line 1583: And Line 1325: And Line 243: And Line 228: And Line 141:
photons photons photons photons photons
3 3 3 3 3
Number of
Runs Specified at Line Specified at Line Specified at Line Specified at Line Specified at Line
1581: Nrun 1323: Nrun 242: Nrun 226: Nrun 140: Nrun
3D and IPA 3D or IPA 3D and IPA 3D
. . . . . . 3D
Mode (3D or Specified at Line . . Specified at Lines Specified at Lines
( 1704 and 1705: Specified at Line 377 and 378: 507 and 508: . )
IPA) T — 1418: solver Specified at Line
solver ‘And Line 1326: solver solver 143: solver
And Line 1584: s;lver 20 And Line 244: And Line 229: i
solver solver solver
Python multi- Python multi- Python multi- Python multi- Python multi-
Parallelizatio processing processing processing processing processing
n Mode Specified at Line Specified at Line Specified at Line Specified at Line Specified at Line
1586: mp_mode 1328: mp_mode 247: mp_mode 231: mp_mode 145: mp_mode
2 2
7 7 2
12 24 on clusters
Number of Specified at Line 71: Specified at Line 71: Specified at Line
CPUs params|[ 'Ncpu'] | params[ 'Ncpu' 211)] - Nepu Specified at Line Specified at Line
And Line 1585: And Line 1327: = Nep . 230: Ncpu 144: Ncpu
Nepu Nepu And Line 246: Ncpu

Table Al: List of parameters used in the five applications. The line numbers used in the table are referring to the code

script of each application. If two line numbers are provided, the first one indicates where the parameter is

defined and the second one indicates where the parameter is passed into the radiative transfer setup. Users

can change either one for customization purposes.

Metadata
Variable Name Description Data Type Dimension
mean/N_photon Number orfuihotons per Array N_g
mean/N_run Number of runs Integer value N/A
mean/toa TOA downwelling flux Float value N/A
Radiance
Variable Name | Description [ Data Type | Dimension
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mean/rad

Radiance field at user
specified altitude
averaged over different
runs

Array

(N_x,N_y)

mean/rad_std

Standard deviation of
the radiance fields from
different runs

Array

(N_x,N_y)

Irradiance

Variable Name

Description

Data Type

Dimension

mean/f_down

Downwelling irradiance
averaged over different
runs

Array

(N_x, N_y, N_2)

mean/f_down_std

Standard deviation of
the downwelling
irradiance from different
runs

Array

(N_x,N_y,N_2)

mean/f_down_diffuse

Diffuse downwelling
irradiance averaged over
different runs

Array

(N_x,N_y, N_2)

mean/f_down_diffuse_std

Standard deviation of
the diffuse downwelling
irradiance from different

runs

Array

(N_x, N_y, N_2)

mean/f_down_direct

Direct downwelling
irradiance averaged over
different runs

Array

(N_x,N_y,N_2)

mean/f_down_direct_std

Standard deviation of
the direct downwelling
irradiance from different
runs

Array

(N_x,N_y,N_z)

mean/f_up

Upwelling irradiance
averaged over different
runs

Array

(N_x,N_y,N_z)

mean/f_up_std

Standard deviation of
the upwelling irradiance
from different runs

Array

(N_x,N_y, N_2)

Table A2: Data variables contained in the output HDFS5 file from EaR’T for radiance and irradiance calculations. The

radiance is simulated with a user-specified sensor geometry at a given altitude using forward photon tracing.
The data variables listed under Metadata are included for both radiance and irradiance calculations. N_x,
N vy, and N_z are the number of pixels along x, y, and z direction, respectively. N_g is the number of g,

explained in Appendix A2 — Correlated-k.

A2 — EaR3T Code Walk-through

We will provide a code walk-through of the OCO-2 and MODIS simulator applications

with the codes examples/01 oco2 rad-sim.py (App. 1) and

examples/02 modis rad-sim.py (App. 2). The data acquisition (first step in Figure 1)
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uses functions in er3t/util. App. 1 and App. 2 use the functions in er3t/util/modis.py

and er3t/util/oco2.py for downloading the MODIS and OCO-2 data files from the

respective NASA data archives and for processing the data (e.g., geo-mapping, gridding etc.). The

user supplies minimum input (date and time, as well as latitudes and longitudes of the region of

interest), which need to be specified in satellite download (within the application codes).

For example, for App. 1 and App. 2. the only user inputs are the date and time and the region of

interest — in this case September 2. 2019, with the westernmost, easternmost, southernmost, and
northernmost longitudes and latitudes of 109°W, 107°W. 37°N, and 39°N. In order for EaR>T to

access any data archives such as NASA Earthdata, the user needs to create an account with them
and store the credentials locally (detailed instructions are provided separately along with the EaR3T
distribution).

After the data acquisition step, the satellite data are fed into the pre-processing step for 1)

atmospheric gases (er3t/pre/atm), 2) clouds (er3t/pre/cld), 3) surface

(er3t/pre/sfc) as shown in Figure 1. In the default configuration of the App. 1, the standard

US atmosphere (Anderson et al., 1986: included in the EaR3T repository) is used within atm.

EaR>T supports the input of user-specified atmospheric profiles, e.g.. atmospheric profiles from

reanalysis data for App. 2 as described in Chen et al. (2023), by making changes in atm atmmod

(from er3t/pre/atm). Subsequently, molecular scattering coefficients are calculated by

cal mol ext (from er3t/util), and absorption coefficients for atmospheric gases are

generated by (er3t/pre/abs). At the current development stage, two options are available:

1. Line-by-line (used by App. 1): The repository includes a sample file of absorption coefficient

profiles for a subset of wavelengths within OCO-2’s Oxygen A-Band channel, corresponding
to a range of atmospheric transmittance values from low (opaque) to high (so-

called “continuum” wavelength). They were generated by an external code (Chen et al., 2023)

based on OCO-2’s line-by-line absorption coefficient database (ABSCO, Payne et al., 2020).

They are calculated for a fixed mixing ratio of 400 ppm. In a subsequent paper (Chen et al.,

2023), an OCO-2 specific EaR?*T code will be published where the actual mixing ratio is

used. For each OCO-2 spectrometer wavelength within a given channel, hundreds of

individual absorption coefficient profiles at the native resolution of ABSCO need to be

considered across the instrument line shape (ILS, also known as the slit function) of the

spectrometer. The ILS, as well as the incident solar irradiance, are also included in the file.
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In subsequent steps, EaR3T performs RT calculations at the native spectral resolution of

ABSCO, but then combines the output by convolving with the ILS and outputs OCO-2

radiances or reflectances at the subset of wavelengths. For probabilistic (Monte Carlo) RT

solvers such as MCARaTS, the number of photons can be kept relatively low (e.g., 10°

photons), and can be adjusted according to the values of the ILS at a particular ABSCO

wavelength. Any uncertainty at the ABSCO spectral resolution due to photon noise is greatly

reduced by convolving with the ILS for the final output.

2. Correlated-k (used by App. 2): This approach (Mlawer et al., 1997) is appropriate for

instruments such as MODIS with much coarser spectral resolution than OCO-2, as well as

for broadband calculations. In contrast to the line-by-line approach, RT calculations are not

performed at the native resolution of the absorption database, but at Gaussian quadrature

points (called “g’s”) that represent the full range of sorted absorption coefficients, and then

combined using Gaussian quadrature weights. The repository includes an absorption
database from Coddington et al. (2008), developed specifically for a radiometer with
moderate spectral resolution on the basis of HITRAN (high-resolution transmission
molecular absorption database) 2004 (Rothman et al., 2005). It was created for the ILS of

the airborne Solar Spectral Flux Radiometer (SSFR, Pilewskie et al., 2003), but is applied to

MODIS here, which has a moderate spectral resolution of 8-12 nm with 20-50 nm

bandwidths. It uses 16 absorption coefficient bins (g’s) per target wavelength (this could

either be an individual SSFR or a MODIS channel), which are calculated by EaR3T with the
Coddington et al. (2008) database using the mixing ratios of atmospheric gases in the

previously ingested profile. In future implementations, the code will be updated to enable
flexible ILS and broadband calculations.

The er3t/pre/cld module calculates extinction, thermodynamic phase, and effective

droplet radius of clouds from the input data. The er3t/pre/pha module creates the required

single scattering albedo and scattering phase function. The default is a Henyey-Greenstein phase

function with a fixed asymmetry parameter of 0.85. Along with the current distribution (v0.1.1) of

EaR3T, the Mie phase functions based on thermodynamic phase, effective droplet radius, and

wavelength are supported. In this study, App. 1 and App. 2 use Mie phase functions calculated

from Legendre polynomial coefficients (originally distributed along with libRadtran) based on the

wavelength and cloud droplet effective radius. In the future, EaR?T will include stand-alone phase
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functions, which can be chosen on the basis of droplet size distributions in addition to effective

radius. It is also possible to include aerosols in a similar fashion as clouds. This is done with the

er3t/pre/aer module. In the case of aerosols, spectral single scattering albedo and asymmetry

parameter are required as inputs in addition to the extinction fields.

After the optical properties are calculated, they are passed into the 3D-RT step

(er3t/rtm/mca). This step performs the setup of RT solver-specified input parameters and data

files, distributing runs over multiple Central Processing Units (CPUs), and post-processing RT

output files into a single, user-friendly HDFS file. For example, when radiance is specified as
output (default in App. 1 and App. 2). key information such as the radiance field and its standard

deviation are stored in the final HDF5 file (details see Table 1).

While the EaR3T repository comes with various applications such as App. 1 and App. 2

described above, the functions used by these master or ‘wrapper’ programs can be organized in

different ways, where the existing applications serve as templates for a quick start when developing

new applications. The functions used by the master code pass information through the various

steps as Python objects. For example, in examples/01 oco2 rad-sim.py, the downloaded

and processed satellite data are stored into the sat object. Later, the sat object is passed into an

EaR3T function to create the c1d object that contains cloud optical properties. Similarly, EaR>T

provides functions to create the atm, and sfc objects with optical properties for atmospheric

gases and the surface. These objects (atm, c1d, sfc) are in turn passed on to solver-specific

modules for performing RT calculations. The user can choose to save the data of the intermediate
objects into Python pickle files after the first run. In this way, multiple calls with identical input

can re-use existing data, which accelerates the processing time of EaR3T. Unless the user specifies

the overwrite keyword argument in the object call to reject saving pickle files, these shortcuts

save significant time.

Appendix B — App. 5 Radiance calculations based on the Large Eddy Simulation

The CNN COT retrieval framework was developed by Nataraja et al. (2022). It adapts a
U-Net (Ronneberger et al., 2015) architecture and treats the retrieval of COT from radiance as a
segmentation problem — probabilities of 36 COT classes (ranging from COT of 0 to 100) are
returned as the final COT retrieved for a given cloud radiance field. It accounts for horizontal

photon transport, which is neglected in traditional cloud retrieval algorithms; in other words, for
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the spatial context of cloudy pixels. It was trained on synthetic cloud fields generated by a Large
Eddy Simulation (LES) model, which provides the ground truth of COT. Subequently, EaR3T was
used to calculate 3D-RT radiances at 600 nm for LES cloud fields to establish a mapping between
radiance to COT. Only six LES cases were used to represent the variability of the cloud
morphology. Each of these fields are 480x480 pixels across (spatial resolution of 100 m). These
large fields were mapped onto thousands of 64x64 mini tiles with spatial resolution of 100 m as
described in Nataraja et al., 2022. To keep the training data set small, mini tiles selectively sampled
according to their mean COT and standard deviation. This ensured an even representation of the
dynamic range of COT and its variability, which was termed homogenization of the training data
set. Figure A1 shows a collection of samples from the training data as an illustration. All the
aforementioned simulation setup and techniques in data process are included in the App. 5 example
code, which can be applied to the LES data (a different scene from the 6 scenes) distributed along
with EaR>T.
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Figure Al. Illustrations of 64x64 tiles of (a) cloud optical thickness from LES data and (b) calculated 3D radiance at
600 nm from EaR3T for CNN training.

Appendix C
C1. Cloud Detection/Identification

Cloudy pixels are identified through a thresholding method based on the red, green, and -

‘CDeleted: simple

blue channels of MODIS. When the radiance values of the red, green, and blue channels of a pixel

are all greater than a pre-calculated threshold value, the pixel is considered as cloudy, as illustrated .-

by the following equation

Red > ag - Quantile(Red, qo) &
If Blue > ap - Quantile(Blue, qo) &
Green > a; ; QuantilecGreen, q)

{ Yes: cloudy (A1)

No: clear sky

Yy L ]

where ag. ag. and a; are scale factors with a default value of 1.0. and Quantile returns the g,

percentile of the sorted reflectance data (ascending order; g, = 0.5_is equivalent to the median).

The scale factors can be adjusted separately to perform fine tuning for different surface types. For

example, adjusting a,;_will be more effective for separating clouds from greenish vegetation

surface than the other two factors. For simplicity, they are all set to 1.0 for the case shown in App.

1 and 2. The g, is determined by the following equation

qo =max (0, 1— fracyy-1.2) (A2)

where frac,, is cloud fraction obtained from the MODIS L2 cloud product (number of cloudy

pixels divided by the number of total pixels). Through the definition of q,, the threshold-based

cloud detection method is pegged to the MODIS product at the domain scale. Because of the coarse

resolution of the MODIS-based cloud mask, it cannot be used directly for our application.

However, it uses many more channels than available at high spatial resolution, and is therefore

more accurate. The factor of 1.2 can be adjusted. A value of higher than 1 allows for clouds that

are not detected by MODIS (for various reasons, for example because of their spatial scale) to be

picked up. At the same time, this leads to over-detection (false positives, i.e. clear-sky pixels

identified as cloudy), and therefore the thresholding is only the first step (primary thresholding)

followed by the next (secondary) step where false positives are removed.

The secondary step is based on MODIS L2 cloud products: COT (cloud optical thickness)

CER (cloud effective radius), and CTH (cloud top height). For the pixels that are identified as

cloudy in the primary thresholding, especially at the lower end of the reflectance (Ref.), we rely

44

‘(Deleted: the corresponding median value

( Deleted: Median

‘ "CDeleted: Median

CDeleted: Median

 (Deleted:,

CDeleted: )

‘(Deleted:

AN




S ey

—_—

e iy e Gy wary

#30
A31

432

433
434
435

#36
#37
#38
#39

440
a1
142
143
144
145
146
147
148
149
450
451

on the clear-sky identifiers from MODIS L2 cloud product (where no cloud products are retrieved),

as illustrated by the following equation

Ref.< Median(Ref.) & {Yes: clear sky

If (A3)

COT,CER,and CTH are NaN No: cloudy

Figure A2 shows the cloud mask from primary thresholding (Equation Al, red and purple), and

the pixels that are reverted to clear-sky by the secondary filter (Equation A2, red).,

Latitude [°]
5]
oo
(=}

37—'?09.0 -108.5 -108.0 -107.5 -107.0

Longitude [°]

Figure A2. Cloud mask for the scene shown in Figure 2. Red and purple indicate pixels identified as cloudy through

the primary thresholding (Equation A1) and purple indicates pixels finally identified as cloudy after applying

secondary filter (Equation A3).

C2. JPA Reflectance-to-COT Mapping

‘| Deleted: Note that this only works for partially cloud-
covered scenes, and may lead to false positives if there is
brightness contrast from objects other than clouds. This
method was specifically applied for the cases in this paper
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In order to retrieve COT (cloud optical thickness) from cloud reflectance as measured by

various instruments, we use the EaR*T built-in solver MCARaTS in IPA mode to calculate a

lookup table of reflectance as a function of COT. The function for generating these lookup tables

is included in EaR’T as er3t.rtm.mca.func ref vs cot. Two mappings are generated

for App. 1&2 to account for geometrically thin (cloud top height less than 4 km) and thick (cloud

top height greater than 4 km) clouds separately while a single mapping is generated for App. 4.

Specifically, for a range of COT (0 to 200), reflectance is calculated from EaR>T with the same

input parameters (wavelength, viewing and solar geometries, and surface albedo) listed in Table

Al for each application except for a few simplifications described in the following table (Table

A3):
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162
163
164
165
166
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168
169
470
171
172
173
174
U75
176

App. 1 &2 App. 4
Cloud T Geometrically Thin Geometrically Thick Al
oud Type
Clouds Clouds T
Cloud Effective Radius 10 um 20 um 10 um
Cloud Top Height 3km 10 km 2 km
Cloud Geometrical
1 km 7 km 1 km
Thickness
0.08 (domain average of 0.08 (domain average of
Surface Albedo .03
the MCD43 WSA) the MCD43 WSA)

Table A3: List of parameters for deriving IPA reflectance-to-COT (cloud optical thickness) mappings for App. 1&2
and App. 4 in addition to Table Al.

v

The clouds are assumed horizontally homogeneous over a 2 X 2 pixel domain. For each

calculation, 108 photons are used for running EaR>T in IPA mode. After calculating R(COT), the

inverse relationship of COT(R) is then used for estimating (OT at any given R for the cloudy .-

pixels. Figure A3 shows the IPA reflectance-to-COT mappings created for App. 1&2, and App 4.

Note that the difference between the App. 1&2 thin clouds (blue) and App. 4 (green) is due to

different surface albedos (when COT less than 20) and sensor viewing geometries (when COT

greater than 20. specified in Table Al). Note that this approach will ensure IPA

radiance/reflectance consistency (retrieved IPA COT will reproduce the exact IPA cloud

reflectance, see Figure A4) because the radiative transfer processes of R(COT)_and COT (R)_are

the same. However, since it makes some simplifications as mentioned above, uncertainties are

expected for a _complicated atmospheric_environment (varying cloud thermodynamic phase, .

effective radius, cloud top height, geometrical thickness, vertical profile; variable surface albedo

and topography), which are shown up as spread (deviations from identity line) in Figure A4.
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Figure A3. The IPA reflectance-to-COT mappings used for App. 1&2 (red and blue) and App. 4 (green). The

reflectance is normalized by the cosine of solar zenith angle (referred to as solar noon reflectance). The

uncertainties associated with photon statistics are indicated by the shaded area.
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Figure A4. (a) and (b) are the same as Figure 7 and Figure 13b except for the IPA radiance calculations.

Appendix D
D1. Parallax Correction
From the satellite's view, the clouds (especially high clouds) will be placed at inaccurate

locations on the surface, which have shifted from their actual locations due to the parallax effect.

We followed simple trigonometry to correct for it, as follows: ) (Deleted: simply
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Longitude correction (positive from west to east):

_ (Zcia = Zsfc) - tan(6) - sin (¢)

Slon
T REarth

x 180° (A%)

Latitude correction (positive from south to north):

slat = (Faa = Zsre) tan(@) cos (@) o, (A5)
[ REarth v

where (l0ngqy, latsge, Zsqr) is the satellite location and 8 and ¢ (0° at north, positive clockwise)
are the sensor viewing zenith and azimuth angles. z.,4 and zf are the cloud top height and the
surface height. Rgg¢p 1S the radius of the Earth. Figure A2 shows an illustration of the parallax

correction for the cloud field in the inset in Figure 2. Note that discontinuities in the latitude and

longitude fields arising from different combinations of sensor viewing geometries and cloud top

and surface heights may lead to gaps in the cloud fields. These gaps are identified and filled in

with the average of data from adjacent pixels (plus minus two pixels along x and y) through the

following process:
pixelfjft is clear & pixelfjef is cloudy &
If cldfrac(pixelbef[i — 2004 2,j - 2:j+2]) > frac,& {
cldfrac(pixel™ i — 2:i +2,j — 2:j + 2]) > frac,&

where l)ixell-/- indicates the pixel at i along x and j along y. bef_and aft refer to before and after

parallax correction respectively, cldfrac_calculates cloud fraction (number of cloudy pixels

divided by total pixel number), and cld selects data where pixels are identified as cloudy. The

frac, and fracy, are setto 0.7 for the cases demonstrated in the paper. Lower frac, tends to over

select clear-sky pixels at the cloud edge and lower frac, tends to over correct clear-sky pixels

within clouds that are not clear-sky due to parallax artifacts. While increase frac, and frac,

tends to under correct parallax artifacts.

D2. Wind Correction
The wind correction aims at correcting the movement of clouds when advected by the wind
between two different satellites’ overpasses.

Longitude correction (positive from west to east):

-6t
dlon = ——— x 180° (A6)
T - Rgarth v

48

( Deleted: B1

( Deleted: B2

Yes: fill pixelfjft with the average of
cld(pixel®t[i — 2:i +2,j = 2:j +2])

) (Deleted: B3



1528  Latitude correction (positive from south to north):

1’99 slat = —2 L 180° (7  (eens
T Rggren ;

1530  where u and v are the domain-averaged 10 m zonal and meridional wind speeds, and 6t is the time

1531  difference between two different satellites that fly on the same orbit. Figure A2 shows the cloud

1532 location after applying the parallax (Appendix D1) and wind correction for the cloud field in the

1533 inset from Figure 2.
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B Original
I Parallax Corr.
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38.48
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3845
E
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3839 :
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1537 Longitude [°]
1538 Figure A5. An illustration of correcting cloud location (red) for parallax effect (blue) and wind effect (green) for the ( Deleted: A2
1539 cloud field of the inset in Figure 2. Filled cloud gaps as described in Appendix D1 are indicated by black
1540 circles.
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