

1 **The Education and Research 3D Radiative Transfer Toolbox (EaR³T) – Towards the**
2 **Mitigation of 3D Bias in Airborne and Spaceborne Passive Imagery Cloud Retrievals**

3

4 Hong Chen^{1,2}, K. Sebastian Schmidt^{1,2}, Steven T. Massie², Vikas Nataraja², Matthew S. Norgren²,
5 Jake J. Gristey^{3,4}, Graham Feingold⁴, Robert E. Holz⁵, Hironobu Iwabuchi⁶

6

7

8 ¹Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA

9 ²Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA

10 ³Cooperative Institute for Research in Environmental Sciences, University of Colorado,
11 Boulder, CO, USA

12 ⁴NOAA Chemical Sciences Laboratory, Boulder, CO, USA

13 ⁵Space Science and Engineering Center, University of Wisconsin–Madison, Madison, WI, USA

14 ⁶Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai, Miyagi, Japan

15

16

17

18

19 *Correspondence to:* Hong Chen (hong.chen-1@colorado.edu)

20 **Abstract**

21 We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR³T, pronounced
22 [3:t]) for quantifying and mitigating artifacts in atmospheric radiation science algorithms due to spatially
23 inhomogeneous clouds and surfaces, and show the benefits of automated, realistic radiance and irradiance
24 generation along extended satellite orbits, flight tracks from entire aircraft field missions, and synthetic data
25 generation from model data. EaR³T is a modularized Python package that provides high-level interfaces to
26 automate the process of 3D radiative transfer (RT) calculations. After introducing the package, we present
27 initial findings from four applications, which are intended as blueprints to future in-depth scientific studies.
28 The first two applications use EaR³T as a satellite radiance simulator for the NASA Orbiting Carbon
29 Observatory 2 (OCO-2) and Moderate Resolution Imaging Spectroradiometer (MODIS) missions, which
30 generate synthetic satellite observations with 3D-RT on the basis of cloud field properties from
31 imagery-based retrievals and other input data. In the case of inhomogeneous cloud fields, we show that the
32 synthetic radiances are often inconsistent with the original radiance measurements. This lack of radiance
33 consistency points to biases in heritage imagery cloud retrievals due to sub-pixel resolution clouds and
34 3D-RT effects. They come to light because the simulator's 3D-RT engine replicates processes in nature that
35 conventional 1D-RT retrievals do not capture. We argue that 3D radiance consistency (closure) can serve
36 as a metric for assessing the performance of a cloud retrieval in presence of spatial cloud inhomogeneity
37 even with limited independent validation data. The other two applications show how airborne measured
38 irradiance data can be used to independently validate imagery-derived cloud products via radiative closure
39 in irradiance. This is accomplished by simulating downwelling irradiance from geostationary cloud
40 retrievals of Advanced Himawari Imager (AHI) along all the below-cloud aircraft flight tracks of the Cloud,
41 Aerosol and Monsoon Processes Philippines Experiment (CAMP²Ex, NASA 2019), and comparing the
42 irradiances with the collocated airborne measurements. In contrast to case studies in the past, EaR³T
43 facilitates the use of observations from entire field campaigns for the statistical validation of
44 satellite-derived irradiance. From the CAMP²Ex mission, we find a low bias of 10% in the satellite-derived
45 cloud transmittance, which we are able to attribute to a combination of the coarse resolution of the
46 geostationary imager and 3D-RT biases. Finally, we apply a recently developed context-aware
47 Convolutional Neural Network (CNN) cloud retrieval framework to high-resolution airborne imagery from
48 CAMP²Ex and show that the retrieved cloud optical thickness fields lead to better 3D radiance consistency
49 than the heritage independent pixel algorithm, opening the door to future mitigation of 3D-RT cloud
50 retrieval biases.

Deleted: -

Deleted: -

Deleted: isolated

Deleted: -

55 **1. Introduction**

56 Three-dimensional cloud effects in imagery-derived cloud properties have long been
57 considered an unavoidable error source when estimating the radiative effect of clouds and aerosols.
58 Consequently, research efforts involving satellite, aircraft, and surface observations in conjunction
59 with modeled clouds and radiative transfer calculations have focused on systematic bias
60 quantification under different atmospheric conditions. Barker and Liu (1995) studied the so-called
61 independent pixel approximation (IPA) bias in cloud optical thickness (COT) retrievals from
62 shortwave cloud reflectance. The bias arises when approximating the radiative transfer relating to
63 COT and measured reflectance at the pixel or cloud column level through one-dimensional (1D)
64 radiative transfer (RT) calculations, while ignoring its radiative context. However, net horizontal
65 photon transport and other effects such as shading engender column-to-column radiative
66 interactions that can only be captured in a three-dimensional (3D) framework, and can be regarded
67 as a 3D perturbation or bias relative to the 1D-RT (IPA) baseline. 3D biases affect not only cloud
68 remote sensing but they also propagate into the derived irradiance fields and cloud radiative effects
69 (CRE). Since the derivation of regional and global CRE relies heavily on satellite imagery, any
70 systematic 3D bias impacts the accuracy of the Earth's radiative budget. Likewise, imagery-based
71 aerosol remote sensing in the vicinity of clouds can be biased by net horizontal photon transport
72 (Marshak et al., 2008). Additionally, satellite shortwave spectroscopy retrievals of CO₂ mixing
73 ratio are affected by nearby clouds (Massie et al., 2017), albeit through a different physical
74 mechanism than in aerosol and cloud remote sensing (Chen et al., 2023).

75 Given the importance of 3D perturbations for atmospheric remote sensing, ongoing
76 research seeks to mitigate the 3D effects. Cloud tomography, for example, inverts multi-angle
77 radiances to infer the 3D cloud extinction distribution (Levis et al., 2020). This is achieved through
78 iterative adjustments to the cloud field until the calculated radiances match the observations.
79 Convolutional neural networks (CNNs, Masuda et al., 2019; Nataraja et al., 2022) account for
80 3D-RT perturbations in COT retrievals through pattern-based machine learning that operates on
81 collections of imagery pixels, rather than treating them in isolation like IPA. Unlike tomography,
82 CNNs require training based on extensive cloud-type specific synthetic data with the ground truth
83 of cloud optical properties and their associated radiances from 3D-RT calculations. Once the
84 CNNs are trained, they do not require real-time 3D-RT calculations and can therefore be useful in
85 an operational setting. Whatever the future may hold for context-aware multi-pixel or multi-sensor

Deleted: Schmidt

Deleted: 2022

88 cloud retrievals, there is a paradigm shift on the horizon that started when the radiation concept
89 for the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE, Illingworth et al., 2015) was
90 first proposed (Barker et al., 2012). It foresees a closure loop where broadband radiances, along
91 with irradiance, are calculated in a 3D-RT framework from multi-sensor input fields (Barker et al.,
92 2011), and subsequently compared to independent observations by radiometers pointing in three
93 directions (nadir, forward-, and backward-viewing along the orbit). This built-in radiance closure
94 can serve as an accuracy metric for any downstream radiation products such as heating rates and
95 CRE. Any inconsistencies can be used to nudge the input fields towards the truth in subsequent
96 loop iterations akin to optimal estimation, or propagated into uncertainties of the cloud and
97 radiation products.

98 This general approach to radiative closure is also being considered for the National
99 Aeronautics and Space Administration (NASA) Atmospheric Observation System (AOS,
100 developed under the A-CCP, Aerosol and Cloud, Convection and Precipitation study), a mission
101 that is currently in its early implementation stages. Owing to its focus on studying
102 aerosol-cloud-precipitation-radiation interactions at the process level, it requires radiation
103 observables at a finer spatial resolution than achieved with missions to date. At target scales close
104 to 1 km, 3D-RT effects are much more pronounced than at the traditional 20 km scale of NASA
105 radiation products (O'Hirok and Gautier, 2005; Ham et al., 2014; Song et al., 2016; Gristey et al.,
106 2020a). Since this leads to biases beyond the desired accuracy of the radiation products, mitigation
107 of 3D-RT cloud remote sensing biases needs to be actively pursued over the next few years.

108 Transitioning to an explicit treatment of 3D-RT in operational approaches entails a new
109 generation of code architectures that can be easily configured for various instrument constellations,
110 interlink remote sensing parameters with irradiances, heating rates, and other radiative effects, and
111 can be used for automated processing of large data quantities. A number of 3D solvers are available
112 for different purposes, for example, the I3RC (International Intercomparison of 3D Radiation
113 Codes: Cahalan et al., 2005) community Monte Carlo code¹, which now also includes an online
114 simulator² [that was described in Várnai et al. \(2022\) and used in Gatebe et al. \(2021\)](#); MCARaTS
115 (Monte Carlo Atmospheric Radiative Transfer Simulator³: Iwabuchi, 2006); MYSTIC (Monte

Deleted: (Gatebe et al., 2021)

¹ <https://earth.gsfc.nasa.gov/climate/model/i3rc>, last accessed on 26 November, 2022.

² <http://i3rcsimulator.umbc.edu>, last accessed on 26 November, 2022.

³ <https://sites.google.com/site/mcarats/monte-carlo-atmospheric-radiative-transfer-simulator-mcarats>, last accessed on 26 November, 2022.

117 Carlo code for the physically correct tracing of photons in cloudy atmospheres: Mayer, 2009),
118 which is embedded in libRadtran (library for radiative transfer, Mayer and Kylling, 2005);
119 McSCIA (Monte Carlo [RT] for SCIAmacy: Spada et al., 2006), which is optimized for satellite
120 radiance simulations (including limb-viewing) in a spherical atmosphere; McARTIM
121 (Deutschmann et al., 2011), with several hyperspectral polarimetric applications such as
122 differential optical absorption spectroscopy; and SHDOM (Spherical Harmonic Discrete Ordinate
123 Method⁴: Evans, 1998), which, unlike the other methods, is a deterministic solver with polarimetric
124 capabilities (Doicu et al., 2013; Emde et al., 2015) that is differentiable and can therefore be used
125 for tomography (Loveridge et al., 2022).

126 For the future operational application of 3D-RT, it is, however, desirable to run various
127 different solvers in one common architecture that automates the processing of various formats of
128 3D atmospheric input fields (including satellite data), allows the user to choose from various
129 options for atmospheric absorption and scattering, and simulates radiance and irradiance data for
130 real-world scenes. Here, we introduce one such tool that could serve as the seed for this architecture:
131 the Education and Research 3D Radiative Transfer Toolbox (EaR³T, pronounced [ɛ:t]). It has been
132 developed over the past few years at the University of Colorado to automate 3D-RT calculations
133 based on imagery or model cloud fields. [It can be operated in two ways— 1\) with minimal user](#)
134 [input, where certain RT parameters are bypassed through default settings, for quick radiation](#)
135 [conceptual analysis; 2\) with detailed RT parameters setup by user for radiation closure purpose.](#)
136 EaR³T is maintained and extended by graduate students as part of their education, and applied to
137 various different research projects including machine learning for atmospheric radiation and
138 remote sensing (Gristey et al., 2020b; 2022; Nataraja et al., 2022), as well as radiative closure and
139 satellite simulators (this paper and [Chen et al., 2023](#)). It is implemented as a modularized Python
140 package with various application codes that combine the functionality in different ways, which,
141 once set up, autonomously process large amounts of data required by airborne and satellite remote
142 sensing and for machine learning applications.

143 The goal of the paper is to introduce EaR³T as a versatile tool for systematically quantifying
144 and mitigating 3D cloud effects in radiation science as foreseen in future missions. To do so, we
145 will first showcase EaR³T as an automated radiance simulator for two satellite instruments, the
146 Orbiting Carbon Observatory-2 (OCO-2, [application code 1](#), [App. 1](#)) and the Moderate Resolution

Deleted: with minimal user input

Deleted: Schmidt

Deleted: 2022

Deleted: this application is referred to as App. 1 in this
manuscript

⁴ <https://coloradolinux.com/shdom>, last accessed on 26 November, 2022.

152 Imaging Spectroradiometer (MODIS, application code 2, App. 2) from publicly available satellite
153 retrieval products. In the spirit of radiance closure, the intended use is the comparison of modeled
154 radiances with the original measurements to assess the accuracy of the input data, as follows:
155 operational IPA COT products are made using 1D-RT, and thus the accompanying radiances are
156 consistent with the original measurements under that 1D-RT assumption only. That is,
157 self-consistency is assured if 1D-RT is used in both the inversion and radiance simulation.
158 However, since nature creates 3D-RT radiation fields, we break this traditional symmetry in this
159 manuscript and introduce the concept of 3D radiance consistency where closure is only achieved
160 if the original measurements are consistent with the 3D-RT (rather than the 1D-RT) simulations.
161 The level of inconsistency is then used as a metric for the magnitude of 3D-RT retrieval artifacts
162 as envisioned by the architects of the EarthCARE radiation concept (Barker et al., 2012).

163 Subsequently, we discuss applications where EaR³T performs radiative closure in the
164 traditional sense, i.e., between irradiances derived from satellite products and collocated airborne
165 or ground-based observations. The aircraft Cloud, Aerosol and Monsoon Processes Philippines
166 Experiment (CAMP²Ex, Reid et al., 2023), conducted by NASA in the Philippines in 2019, serves
167 as a testbed of this approach. Here, we use EaR³T's automated processing capabilities to derive
168 irradiance from geostationary imagery cloud products and then compare these to cumulative
169 measurements made along all flight legs of the campaign (application code 3, App. 3). In contrast
170 to previous studies that often rely on a number of cases (e.g., Schmidt et al., 2010; Kindel et al.,
171 2010), we perform closure systematically for the entire data set, enabling us to identify 3D-RT
172 biases in a statistically significant manner. Finally, we apply a regionally and cloud type specific
173 CNN, introduced by Nataraja et al. (2022) that is included with the EaR³T distribution, to
174 high-resolution camera imagery from CAMP²Ex. This last example demonstrates mitigation of
175 3D-RT biases in cloud retrievals using the concept of radiance closure to quantify its performance
176 against the baseline IPA (application code 4, App. 4).

177 The general concept of EaR³T with an overview of the applications, along with the data
178 used for both parts of the paper is presented in section 2, followed by a description of the
179 procedures of EaR³T in section 3. Results for the OCO-2 and MODIS satellite simulators (part 1)
180 are shown in section 4, followed by the quantification and mitigation of 3D-RT biases with
181 CAMP²Ex data in section 5 and section 6 (part 2). A summary and conclusion are provided in

Deleted: -

Deleted: 2022

Deleted: -

185 section 7. The code, along with the applications presented in this paper, can be downloaded from
 186 the GitHub repository: <https://github.com/hong-chen/er3t>.

187

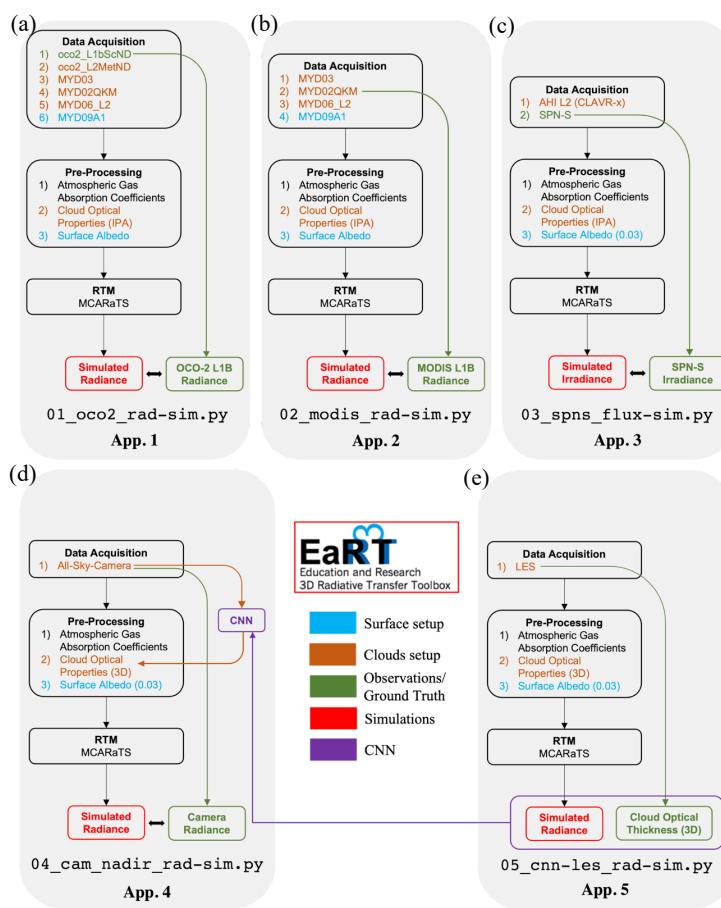
188 2. Functionality and Data Flow within EaR³T

189 2.1 Overview

190 To introduce EaR³T as a satellite radiance simulator tool and to demonstrate its use for the
 191 quantification and mitigation of 3D cloud remote sensing biases, five applications (Figure 1) are
 192 included in the GitHub software release:

Deleted: , four of which are discussed in this paper

193



194

196 **Figure 1.** Flow charts of EaR³T applications for (a) OCO-2 radiance simulation at 768.52 nm (data described in section
197 2.2.1 and 2.2.2, results discussed in section 4.1), (b) MODIS radiance simulation at 650 nm (data described
198 in section 2.2.1, results discussed in section 4.2), (c) SPN-S irradiance simulation at 745 nm (data described
199 in section 2.2.3 and 2.2.4, results discussed in section 5), (d) all-sky camera radiance simulation at 600 nm
200 (data described in section 2.2.5, results discussed in section 6), and (e) radiance simulation at 600 nm based
201 on LES data for CNN training (Appendix B). The data products and their abbreviations are described in
202 section 2.2.

203

- 204 1. App. 1, section 4.1 (`examples/01_oc02_rad-sim.py`): Radiance simulations along
205 the track of OCO-2, based on data products from MODIS and others – to assess consistency
206 (closure) between simulated and measured radiance;
- 207 2. App. 2, section 4.2 (`examples/02_modis_rad-sim.py`): MODIS radiance
208 simulations – to assess self-consistency of MODIS level-2 (L2) products with the
209 associated radiance fields (L1B product) under spatially inhomogeneous conditions;
- 210 3. App. 3, section 5 (`examples/03_spns_flux-sim.py`): Irradiance simulations along
211 aircraft flight tracks, utilizing the L2 cloud products of the AHI, and comparison with
212 aircraft measurements – to quantify retrieval biases due to 3D cloud structure based with
213 data from an entire aircraft field campaign;
- 214 4. App. 4, section 6 (`examples/04_cam_nadir_rad-sim.py`): Mitigation of 3D
215 cloud biases in passive imagery COT retrievals from an airborne camera, application of a
216 convolutional neural network (CNN) and subsequent comparison of CNN-derived
217 radiances with the original measurements – to illustrate how the radiance self-consistency
218 concept assesses the fidelity of cloud retrievals.
- 219 5. App. 5, Appendix B (`examples/05_cnn-les_rad-sim.py`): Generation of training
220 data for the CNN (App. 4) based on LES inputs. The training datasets contains 1) the
221 ground truth of COT from the LES data; 2) realistic radiance simulated by EaR³T based on
222 the LES cloud fields.

223 Figure 1 shows the high-level workflow of the applications. The first four share the general
224 concept of evaluating simulations (the output from the EaR³T, indicated in red at the bottom of
225 each column) with observations (indicated in green at the bottom) from various satellite and
226 aircraft instruments. The workflow of each application consists of three parts – 1) data acquisition,
227 2) pre-processing, and 3) RTM setup and execution. EaR³T includes functions to ingest data from

Deleted: 4

Deleted: 4

Deleted: The results for the first four applications are interpreted in section 4.1, section 4.2, section 5, and section 6. The results for App. 5 are discussed in detail in a separate paper by Nataraja et al. (2022). In this paper, we will only provide a brief description for App. 5 in Appendix B.

235 various different sources, e.g., satellite data from publicly available data archives, which can be
236 combined in different ways to accommodate input data depending on the application specifics. For
237 example, in App. 1, EaR³T is used to automatically download and process MODIS and OCO-2
238 data files based on the user-specified region, date and time. Building on the templates provided in
239 the current code distribution, the functionality can be extended to new spaceborne or airborne
240 instruments. Panel (e) of Figure 1 shows a fifth application that was developed for earlier papers
241 (Gristey et al., 2020a and 2020b; Nataraja et al., 2022; Gristey et al., 2022). In contrast to the first
242 four, which use imagery products as input, the fifth application ingests model output from a Large
243 Eddy Simulation (LES) and produces irradiance data for surface energy budget applications, or
244 synthetic radiance fields for training a CNN. Details and results are described in the respective
245 papers. The remainder of Section 2 introduces the data used in this paper, as well as the input for
246 EaR³T. Subsequently, Section 3 describes the EaR³T procedures.
247

248 2.2 Data

249 The radiance simulations in App. 1 and App. 2 use data from the OCO-2 and MODIS-Aqua
250 instruments, both of which are in a sun-synchronous polar orbit with an early-afternoon equator
251 crossing time within NASA's A-Train satellite constellation. Figure 2 visualizes radiance
252 measurements by OCO-2 in the context of MODIS Aqua imagery over a partially vegetated and
253 partially cloud-covered land, illustrating that MODIS provides imagery and scene context for
254 OCO-2, which in turn observes radiances from a narrow swath. The region is located in southwest
255 Colorado in the United States of America. We selected this case because both the surface and
256 clouds are varied along with diverse surface types. The surface features green forest and brown
257 soil, whereas clouds include small cumulus and large cumulonimbus. In addition, this scene
258 contains relatively homogeneous cloud fields in the north and inhomogeneous cloud fields in the
259 south, which allows us to evaluate the simulations from various aspects of cloud morphology. To
260 simulate the radiances of both instruments we use data products from OCO-2 and MODIS, as well
261 as reanalysis products from NASA's Global Modeling and Assimilation Office (GMAO) sampled
262 at OCO-2 footprints and distributed along with OCO-2 data (section 2.2.2).
263

Deleted: The fifth column

Deleted: an application that differs from the first four, and

Deleted: Furthermore, Schmidt et al. (2022) builds upon App. 1 to study the mechanism of 3D cloud biases in OCO-2 passive spectroscopy retrievals.

Deleted: After the required data files have been downloaded in the data acquisition step, EaR³T pre-processes them and generates the optical properties of atmospheric gases, clouds, aerosols, and the surface. In Figure 1, the mapping from input data to these properties is color-coded component-wise (brown for associated cloud property processing if available, blue for associated surface property processing if available, green for associated ground truth property). The version used in this paper (v0.1.0; Chen and Schmidt, 2022) only includes MCARaTS as the 3D RT solver, but others are planned for the future. MCARaTS is a radiative transfer solver uses Monte Carlo photon-tracing method (Iwabuchi, 2006). It outputs radiation (radiance or irradiance) based on the inputs of radiative properties of surface and atmospheric constituents (e.g., gases, aerosols, clouds) such as single scattering albedo, scattering phase function, or asymmetry parameters, along with solar and sensor viewing geometries. The setup of these input properties is implemented in EaR³T's pre-processing steps, which translates atmospheric properties into solver-specific input with minimum user intervention. To achieve this, EaR³T is modular so that it can be extended as new solvers are added. Although the five specific applications in this paper do not include aerosol layers, the setup of aerosol fields is fully supported and has been used in other applications (e.g., Gristey et al., 2022). After pre-processing, the optical properties are fed into the RT solver. Finally, the user obtains radiation output from EaR³T, either radiance or irradiance. The output is saved in HDF5 format and can be easily distributed and accessed by various programming languages. The data variables contained in the HDF5 output are provided in Table 1. The aforementioned three steps – data acquisition, pre-processing, and RTM setup and execution are automated such that the 3D/1D-RT calculations can be performed for any region at any date and time using satellite or aircraft data or other data resources such as LES. EaR³T is hosted on GitHub at <https://www.github.com/hong-chen/er3t>. Since it is developed as an educational and research 3D-RT tool collection by students, it is a living code base, intended to be updated over time. The master code modules for the five applications as listed in Figure 1 are included in the EaR³T package under the `examples` directory. In the current release (v0.1.0), only a limited documentation for the installation and usage, including example codes for EaR³T, are provided. More effort will be dedicated for documentation in the near-future.



316
317
318
319
320
321

Figure 2. OCO-2 measured radiance (units: $\text{Wm}^{-2}\text{nm}^{-1}\text{sr}^{-1}$) at 768.52 nm, overlaid on MODIS Aqua RGB imagery over southwestern Colorado (USA) on 2 September, 2019. The inset shows an enlarged portion along the track, illustrating that OCO-2 radiances co-vary with MODIS-Aqua radiance observations (the circles are used to indicate the geolocation of OCO-2 footprints).

322 For App. 3 (irradiance simulations and 3D cloud bias quantification), we use geostationary
323 imagery from the Japanese Space Agency's Advanced Himawari Imager to provide cloud
324 information in the area of the flight path of the NASA CAMP²Ex aircraft (Reid et al., 2023). The
325 AHI data are used in conjunction with aircraft measurements of shortwave spectral radiation
326 (section 2.2.4). Subsequently (App. 4: 3D cloud bias mitigation), we demonstrate the concept of
327 radiance closure under partially cloudy conditions with airborne camera imagery (section 2.2.5).
328 The underlying cloud retrieval is based on a convolutional neural network (CNN), which is
329 described in a related paper (Nataraja et al., 2022) in this special issue and relies on
330 EaR³T-generated synthetic radiance data based on Large Eddy Simulations (LES).

331

332 **2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS)**

333 The MODIS instruments are multi-use multispectral radiometers onboard NASA's Terra
334 and Aqua satellites, which were launched in 1999 and 2002 respectively. MODIS was conceived
335 as a central element of the Earth Observing System (EOS, King and Platnick, 2018). For App. 1
336 and App. 2, EaR³T ingests MODIS level 1B radiance products at the quarter kilometer scale
337 (channels 1 and 2, bands centered at 650 and 860 nm), MxD02QKM, where 'x' stands for 'O' in
338 the case of MODIS on Terra, and 'Y' in the case of Aqua data), the geolocation product (MxD03),
339 the level 2 cloud product (MxD06), and the surface ~~BRDF (bidirectional reflectance distribution~~

Deleted: 2022

Deleted: -

Deleted: reflectance

343 function) product (MCD43A3). For this paper, we mainly use Aqua data (MYD) from data
344 collection 6.1.

Deleted: MxD09A1

Deleted: only

Deleted: ,

Deleted: . All the data are publicly available, and are distributed at the LAADS (Level-1 and Atmosphere Archive & Distribution System) Distributed Active Archive Center (DAAC) by NASA's Goddard Space Flight Center

345 For cloud properties in App. 2, we use the MODIS cloud product (MxD06L2, collection
346 6.1). It provides cloud properties such as cloud optical thickness (COT), cloud effective radius
347 (CER), cloud thermodynamic phase, cloud top height (CTH), etc. (Nakajima and King, 1990;
348 Platnick et al., 2003). Since 3D cloud effects such as horizontal photon transport are most
349 significant at small spatial scales (e.g., Song et al., 2016), we use the high-resolution red (650 nm)
350 channel 1 (250 m), and derive COT directly from the reflectance in the Level-1B data
351 (MYD02QKM) instead of using the coarser-scale operational product from MYD06. CER and
352 CTH are sourced from MYD06 and re-gridded to 250 m. The EaR³T strategy for MODIS data is
353 similar, in principle, to the more advanced method by Deneke et al. (2021), which uses a
354 high-resolution wide-band visible channel from geostationary imagery to up-sample narrow-band
355 coarse-resolution channels. However, we simplified cloud detection and COT retrieval (referred
356 to as COT_{IPA}) from reflectance data for the purpose of our paper by using a threshold method
357 (Appendix C1) and an IPA reflectance-to-COT mapping (Appendix C2). In future versions of
358 EaR³T this will be upgraded to more sophisticated algorithms. A simple algorithm (Appendix D1)
359 is used to correct for the parallax shift based on the sensor geometries and cloud heights. The cloud
360 top height data is provided by the MODIS L2 cloud product and assuming cloud base is the same.

Deleted: derivation of COT

Formatted: Subscript

Deleted: the

Deleted: two-stream approximation

361 For the surface albedo required by the RTM, we used MCD43A3, which provides BRDF
362 calculated from a combination of Aqua and Terra MODIS and MISR (Multi-Angle Imaging
363 Spectroradiometer) clear-sky observations aggregated over a 16-day period (Strahler et al., 1999).
364 This product contains white sky albedo (WSA, also known as bihemispherical reflectance), which
365 is obtained by integrating the BRDF over all viewing angles (Strahler et al., 1999). The WSA is
366 available on a sinusoidal grid with a spatial resolution of 500 m for MODIS band 2, and includes
367 atmospheric correction for gas and aerosol scattering and absorption. Assuming a Lambertian
368 surface in this first release of EaR³T, we used the WSA (referred to as surface albedo from now
369 on), as surface albedo input to the RTM.

Deleted: MYD09A1

Deleted: cloud-cleared surface reflectance observations aggregated...

Deleted: n

Deleted: 8

Deleted: Vermote et al., 2015

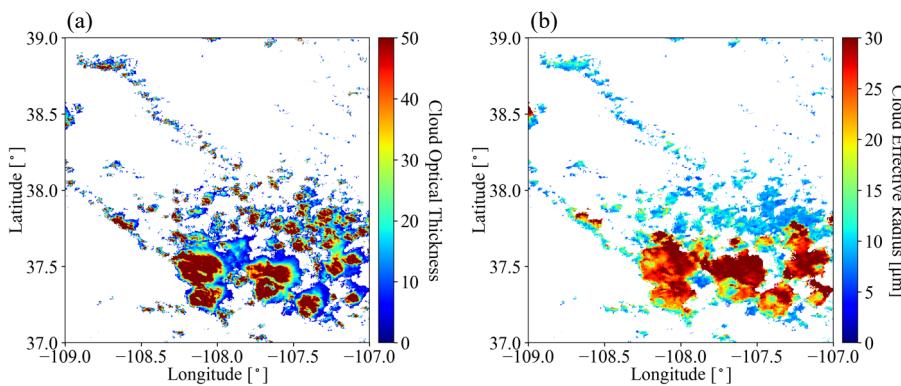
Deleted: surface reflectance

371 2.2.2 Orbiting Carbon Observatory 2 (OCO-2)

372 The OCO-2 satellite was inserted into NASA's A-Train constellation in 2014 and flies
373 about 6 minutes ahead of Aqua. OCO-2 provides the column-averaged carbon dioxide (CO₂)

391 dry-air mole fraction (XCO_2) through passive spectroscopy based on hyperspectral radiance
392 observations in three narrow wavelength regions, the Oxygen A-Band (~ 0.76 micron), the weak
393 CO_2 band (~ 1.60 micron), and the strong CO_2 band (~ 2.06 micron). As shown in the inset of Figure
394 2, it takes measurements in eight footprints across a narrow swath. Each of the footprints has a
395 size around 1-2 km, and the spectra for the three bands are provided by separate, co-registered
396 spectrometers (Crisp et al., 2015).

397 The ~~used~~ OCO-2 data products ~~are~~ 1) Level 1B calibrated and geolocated science radiance
398 spectra (L1bScND), 2) standard Level 2 geolocated XCO_2 retrievals results (L2StdND), 3)
399 meteorological parameters interpolated from GMAO (L2MetND) at OCO-2 footprint location.
400 Since MODIS on Aqua overflies a scene 6 minutes after OCO-2, the clouds move with the wind
401 over this time period. We therefore added a wind correction on top of the parallax-corrected cloud
402 fields obtained from MODIS (section 2.2.1). This was done with the 10 m wind speed data from
403 L2MetND (see Appendix D2). For the same scene as shown in Figure 2, Figure 3 shows (a) COT_{IPA} ,
404 (b) CER , and (c) CTH , all corrected for both parallax and wind effects (these corrections are shown
405 in Figure ~~A5~~ in Appendix ~~D2~~). The parallax and wind corrections are imperfect as certain
406 assumptions are involved. For example, they rely on the cloud top height from the MODIS cloud
407 product. In addition, they process the whole scene with one single sensor viewing geometry. To
408 minimize artifacts introduced by the assumptions, one can apply the simulation to a smaller region.
409



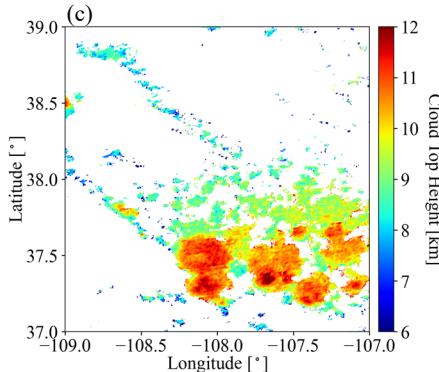
Deleted: of

Deleted: are downloaded from NASA GES DISC (Goddard Earth Science Data Archive and Information Services Center) data archive (https://oco2.gesdisc.eosdis.nasa.gov/data/OCO2_DATA)

Formatted: Subscript

Deleted: A2

Deleted: D



419

420 **Figure 3.** (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the [IPA reflectance-to-COT](#)
 421 [mapping](#) ([Appendix C2](#)), (b) cloud effective radius (units: μm), and (c) cloud top height (units: km)
 422 collocated from the MODIS L2 cloud product. The locations of the cloudy pixels were shifted to account
 423 for parallax and wind effects. The parallax correction ranged from near 0 for low clouds and 1 km for high
 424 clouds (10 km CTH). The wind correction was around 0.8 km, given the [median](#) wind speed of 2 m/s to the
 425 east.

426

427 The OCO-2 data (L2StdND) themselves only provide sparse [surface BRDF \(referred to as](#)
 428 [surface albedo from now on\)](#) for the footprints that are clear, while EaR^3T requires surface albedo
 429 for the whole domain. Therefore, we used [MCD43A3](#) as a starting point. However, since MODIS
 430 does not have a channel in the Oxygen A-Band, MODIS band 2 (860 nm) was used as a proxy for
 431 the 760 nm OCO-2 channel as follows: we collocated the OCO-2 retrieved 760 nm [surface albedo](#)
 432 α_{OCO} within the corresponding 860 nm MODIS [MCD43A3](#) data α_{MOD} , as shown in Figure 4a
 433 (same domain as Figures 2 and 3) and calculated a scaling factor assuming a linear relationship
 434 between α_{OCO} and α_{MOD} ($\alpha_{\text{OCO}} = c \cdot \alpha_{\text{MOD}}$). Figure 4b shows α_{OCO} versus α_{MOD} for all
 435 cloud-free OCO-2 footprints. The red line shows a linear regression (derived scale factor $c=0.867$).
 436 Optionally, the OCO-2-scaled MODIS-derived [surface albedo](#) fields can be replaced by the OCO-2
 437 [surface albedo](#) products for pixels where they are available. [The replacement is done for App. 1.](#)
 438 The scaled and replaced [surface albedo](#) is then treated as input to the RTM assuming a Lambertian
 439 surface.

440

Deleted: two-stream approximation

Deleted: Eq. A2

Deleted: average

Deleted: surface reflectance

Deleted: MYD09A1

Deleted: surface reflectance

Deleted: ROCO

Deleted: MYD09A1

Deleted: R_{MOD}

Deleted: R_{OCO}

Deleted: R_{MOD}

Deleted: $R_{\text{OCO}} = a \cdot R_{\text{MOD}}$

Deleted: ROCO

Deleted: R_{MOD}

Deleted: -

Deleted: $a=0.93$

Deleted: surface reflectance

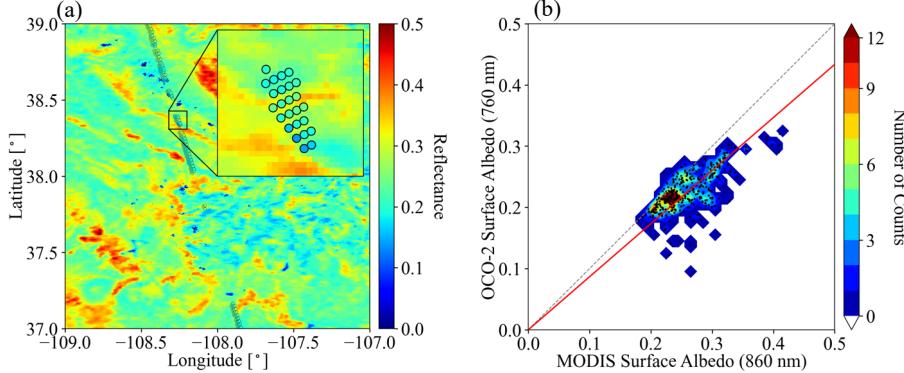
Deleted: -

Deleted: surface

Deleted: reflectance

Deleted: surface reflectance

Deleted: surface albedo



463
464 **Figure 4.** (a) Surface ~~albedo~~ from the OCO-2 L2 product in the Oxygen A-band (near 760 nm), overlaid on the ~~surface~~
465 ~~albedo~~ from the MODIS ~~MCD43A3~~ product at 860 nm. (b) OCO-2 ~~surface albedo~~ at 760 nm versus MODIS
466 ~~surface albedo~~ at 860 nm, along with linear regression ($\alpha_{OCO} = c \cdot \alpha_{MOD}$) as indicated by the red line (slope
467 $c = 0.867$).

468 2.2.3 Advanced Himawari Imager (AHI)

469 The Advanced Himawari Imager (AHI, used for App. 3) is a payload on Himawari-8, a
470 geostationary satellite operated by the Meteorological Satellite Center (MSC) of the Japanese
471 Meteorological Agency. The AHI provides 16 channels of spectral radiance measurements from
472 the shortwave ($0.47\mu\text{m}$) to the infrared ($13.3\mu\text{m}$). During CAMP²Ex, the NASA in-field
473 operational team closely collaborated with the team from MSC to provide AHI satellite imagery
474 at the highest resolution over the Philippine Sea. From the AHI imagery, the cloud product
475 generation system - Clouds from AVHRR Extended System (CLAVR-x), was used to generate
476 cloud products from the AHI imagery (Heidinger et al., 2014). The cloud products from CLAVR-x
477 include cloud optical thickness, cloud effective radius, and cloud top height at 2 (at nadir) to 5 km
478 spatial resolution. Since AHI provides continuous regional scans every 10 minutes the AHI cloud
479 product has a temporal resolution of 10 minutes.

480
481
482 **2.2.4 Spectral Sunshine Pyranometer (SPN-S)**

483 The SPN-S is a prototype spectral version of the commercially available global-diffuse
484 SPN1 pyranometer (Wood et al., 2017; Norgren et al., 2022). The radiometer uses a 7-detector
485 design in combination with a fixed shadow mask that enables the simultaneous measurement of
486 both diffuse and global irradiances, from which the direct component of the global irradiance is

Deleted: reflectance
Deleted: surface reflectance
Deleted: MYD09
Deleted: surface reflectance
Deleted: surface reflectance
Deleted: $y=ax$
Deleted: a
Deleted: 0.9337

Deleted: -

496 calculated via subtraction. The detector measures spectral irradiance from 350 to 1000 nm, and the
497 spectrum is sampled at 1 nm resolution with 1 Hz timing.

498 During the CAMP²Ex mission, the SPN-S was mounted to the top of the NASA P-3 aircraft
499 where it sampled downwelling solar irradiance. To ensure accurate measurements, pre- and
500 ~~post~~^{mission} laboratory-based calibrations were completed using tungsten “FEL” lamps that are
501 traceable to a National Institute of Standards and Technology standard. Additionally, the direct
502 and global irradiances were corrected for deviations of the SPN-S sensor plane from horizontal
503 that are the result of changes in the aircraft’s pitch or roll. This attitude correction applied to the
504 irradiance data is a modified version of the method outlined in Long et al. (2010). However,
505 whereas Long et al. (2010) employ a “box” flight pattern to characterize the sensor offset angles,
506 in this study an aggregation of flight data containing aircraft heading changes under clear-sky
507 conditions are used as a substitute. The estimated uncertainty of the SPN-S system is 6 to 8%, with
508 4 to 6% uncertainty stemming from the radiometric lamp calibration process, and up to another 2%
509 resulting from insufficient knowledge of the sensor cosine response. The stability of the system
510 under operating conditions is 0.5%. A thorough description of the SPN-S and its calibration and
511 correction procedures is provided in Norgren et al. (2022). In this paper (App. 3) only the global
512 downwelling irradiance sampled by the 745 nm channel is used.

513

514 **2.2.5 Airborne All-Sky Camera (ASC)**

515 The All-Sky Camera (used for App. 4) is a commercially available camera (ALCOR
516 ALPHEA 6.0CW⁵) with fish-eye optics for hemispheric imaging. It has a Charge-Coupled Device
517 (CCD) detector that measures radiances in red, green, and blue channels. Radiometric and
518 geometric calibrations were performed at the Laboratory of Atmospheric and Space Physics at the
519 University of Colorado Boulder. The three-color channels are centered at 493, 555, and 626 nm
520 for blue, green, and red, respectively, with bandwidths of 50 – 100 nm. Only radiance data from
521 the red channel are used in this paper. The spatial resolution of the ASC depends on the altitude of
522 the aircraft and the viewing zenith angle. Across the hemispheric field of view of the camera, the
523 resolution of the field angle is approximately constant, at about 0.09°. At a flight level of 5 km,

Deleted: -

⁵https://www.alcor-system.com/common/allSky/docs/ALPHEA_Camera%20ALL%20SKY%20CAMERA_Doc.pdf
last accessed on April 24, 2022.

525 this translates to a spatial resolution of 8 m at nadir. However, due to accuracy limitations of the
526 geometric calibration and the navigational data from Inertial Navigation System (INS), the nadir
527 geolocation accuracy could only be verified to within ± 50 m. During the CAMP²Ex flights, the
528 camera exposure time was set manually to minimize saturation of the detector. The standard image
529 frame rate is 1 Hz. The precision of the camera radiances is on the order of 1%, and the radiometric
530 accuracy is 6 – 7%.

531

532 3. EaR³T Procedures

533 In the previous section, we described the ~~input data for the~~ EaR³T applications. In this
534 section, we will focus on ~~providing the complete workflow (shown in Figure 1)~~ for the five
535 applications.

536 After the required data files have been automatically downloaded in the data acquisition
537 step as described in previous section, EaR³T pre-processes them and generates the optical
538 properties of atmospheric gases, clouds, aerosols, and the surface. In Figure 1, the mapping from
539 input data to these properties is color-coded component-wise (brown for associated cloud property
540 processing if available, blue for associated surface property processing if available, green for
541 associated ground truth property). The EaR³T code base used in this paper (v0.1.1; Chen and
542 Schmidt, 2022) only includes MCARaTS as the 3D RT solver, but others are planned for the future.
543 MCARaTS is a radiative transfer solver that uses a Monte Carlo photon-tracing method (Iwabuchi,
544 2006). It outputs radiation (radiance or irradiance) based on the inputs of radiative properties of
545 surface and atmospheric constituents (e.g., gases, aerosols, clouds) such as single scattering albedo,
546 scattering phase function or asymmetry parameter, along with solar and sensor viewing geometries.
547 The setup of these input properties is implemented in EaR³T’s pre-processing steps, which
548 translates atmospheric properties into solver-specific input with minimum user intervention. To
549 achieve this, EaR³T is modular so that it can be extended as new solvers are added. Although the
550 five specific applications in this paper do not include aerosol layers, the setup of aerosol fields is
551 fully supported and has been used in other applications (e.g., Gristey et al., 2022). After pre-
552 processing, the optical properties are fed into the RT solver. Finally, the user obtains radiation
553 output from EaR³T, either radiance or irradiance. The output is saved in HDF5 format and can be
554 easily distributed and accessed by various programming languages. The data variables contained
555 in the HDF5 output are provided in Table A2 in Appendix A1.

Moved (insertion) [2]

Deleted: general workflow

Deleted: of

Deleted: , along with relevant data

Deleted: the specific implementation of

Deleted: the

Deleted: through the

Deleted: EaR³T software package. It is a toolbox for 3D-RT with modules for automatic input data download and processing, generation of radiative and optical properties of surface, atmospheric gases, clouds and aerosols, wrappers for 3D-RT solvers and output post-processing, with the end goal to simulate radiances and irradiances along entire satellite orbits or aircraft flight tracks. Unlike established radiative transfer packages such as libRadtran (Mayer and Kylling, 2005; Emde et al., 2016), which provide extensive libraries of optical properties along with a selection of solvers, EaR³T focuses on automated radiative transfer for two- or three-dimensional cloud, aerosol, and surface input data, and therefore only comes with minimal options for optical properties, and solvers.

576 The processes of data acquisition, pre-processing, and RTM setup and execution (shown
577 in Figure 1) are automated such that the 3D/1D-RT calculations can be performed for any region
578 at any date and time using satellite or aircraft data or other data resources such as LES. A detailed
579 code walk-through of App. 1 and 2 is provided in Appendix A2. Since EaR³T is developed as an
580 educational and research 3D-RT tool collection by students, it is a living code base, intended to be
581 updated over time. The master code modules for the five applications as listed in Figure 1 are
582 included in the EaR³T package under the `examples` directory. In the current release (v0.1.1),
583 only a limited documentation for the installation and usage, including example code for EaR³T, is
584 provided. More effort will be dedicated for documentation in the near-future.

585 In the following sections, we discuss results obtained from EaR³T, starting with those from
586 `examples/01_oc02_rad-sim.py` and `examples/02_modis_rad-sim.py` (section
587 4), `examples/03_spns_flux-sim.py` (section 5), and concluding with
588 `examples/04_cam_nadir_rad-sim.py` (section 6). The usage of the EaR³T package
589 including the technical input and output parameters and code walk-through is provided in
590 Appendix A.

591
592 **4. EaR³T as a 3D Satellite Radiance Simulator**

593 This section demonstrates the automated 3D radiance simulation for satellite instruments
594 by EaR³T for OCO-2 and MODIS measured radiance based on publicly available MODIS retrieval
595 products. The OCO-2 application is an example of radiance consistency between two distinct
596 satellite instruments where the measurements of one (here, OCO-2) are compared with the
597 simulations based on data products from the other (here, MODIS). The MODIS application, on
598 the other hand, is an example of radiance self-consistency. We will show how inconsistencies can
599 be used for detecting cloud and surface property retrieval biases.

600 **4.1 OCO-2 (App. 1)**

601 The OCO-2 radiance measurements at 768.52 nm for our sample scene in the context of
602 MODIS imagery were shown in Figure 2. For that track segment, Figure 5a shows the simulated
603 radiance along with the measurements as a function of latitude. The radiance was averaged over
604 every 0.01° latitude window from 37° N to 39° N (the standard deviation within the bin indicated
605 by the shaded color). In clear-sky regions (e.g., around 38.2° N), the 3D simulations (red) are
606 systematically higher than the measurements (black), even though the footprint-level OCO-2

Moved up [2]: In the previous section, we described the general workflow of EaR³T applications, along with relevant data. In this section, we will focus on the specific implementation of the workflow through the EaR³T software package. It is a toolbox for 3D-RT with modules for automatic input data download and processing, generation of radiative and optical properties of surface, atmospheric gases, clouds and aerosols, wrappers for 3D-RT solvers and output post-processing, with the end goal to simulate radiances and irradiances along entire satellite orbits or aircraft flight tracks. Unlike established radiative transfer packages such as libRadtran (Mayer and Kylling, 2005; Emde et al., 2016), which provide extensive libraries of optical properties along with a selection of solvers, EaR³T focuses on automated radiative transfer for two- or three-dimensional cloud, aerosol, and surface input data, and therefore only comes with minimal options for optical properties, and solvers.

Deleted: The initial release (version 0.1.0) is available at <https://github.com/hong-chen/er3t>.

Moved down [1]: In addition to MCARaTS, planned solvers for the future include MYSTIC (Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres, Mayer, 2009) and SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and Evans, 2009).

Deleted: After the data acquisition step, the satellite data are fed into the pre-processing step for 1) atmospheric gases (`er3t/pre/atm`), 2) clouds (`er3t/pre/cld`), 3) surface (`er3t/pre/sfc`) as shown in Figure 1. In the default configuration of the App. 1, the standard US atmosphere (Anderson et al., 1986; included in the EaR³T repository) is used within `atm`. EaR³T supports the input of user-specified atmospheric profiles, e.g., atmospheric profiles from reanalysis data for App. 2 as described in Schmidt et al. (2022), by making changes in `atm_atmmod` (from `er3t/pre/atm`). Subsequently, molecular scattering coefficients are calculated by `ca1_mol_ext` (from `er3t/util`), and absorption coefficients for atmospheric gases are generated by (`er3t/pre/abs`). At the current development stage, two options are available: Line-by-line (used by App. 1): The repository includes a sample file of absorption coefficient profiles for a subset of wavelengths within OCO-2's Oxygen A-Band channel, corresponding to a range of atmospheric transmittance values from low (opaque) to high (so-called "continuum" wavelength). They were generated by an external code (Schmidt et al., 2022) based on OCO-2's line-by-line absorption coefficient database (ABSCO, Payne et al., 2020). For each OCO-2 spectrometer wavelength within a given channel, hundreds of individual absorption coefficient profiles at the native resolution of ABSKO need to be considered across the instrument line shape (ILS, also known as the slit function) of the spectrometer. The ILS, as well as the incident solar irradiance, are also included in the file. In subsequent steps, EaR³T performs RT calculations at the native spectral resolution of ABSKO, but then combines the output by convolving with the ILS and outputs OCO-2 radiances or reflectances at the subset of wavelengths. [...]

Deleted: The detailed RT setup for the applications is provided Table A1 in Appendix A

743 surface albedo retrieval was used to replace and scale the MCD43 surface albedo field as described
 744 in section 2.2.2 (Figure 4). This is probably because, unlike the MCD43 algorithm which relies on
 745 multiple overpasses and multiple-days for cloud-clearing, the OCO-2 retrieval is done for any clear
 746 footprint. Clouds in the vicinity lead to enhanced diffuse illumination that is erroneously attributed
 747 to the surface albedo itself. The EaR³T IPA calculations of the clear-sky pixels (blue) essentially
 748 reverse the 3D effect and therefore match the observations better. The 3D calculations enhance the
 749 reflectance through the very same 3D cloud effects that led to the enhanced surface illumination
 750 in the first place. It is possible to correct this effect by down-scaling the surface albedo according
 751 to the ratio between clear-sky 3D and IPA calculations, but this process is currently not automated.
 752

Deleted: retrieval

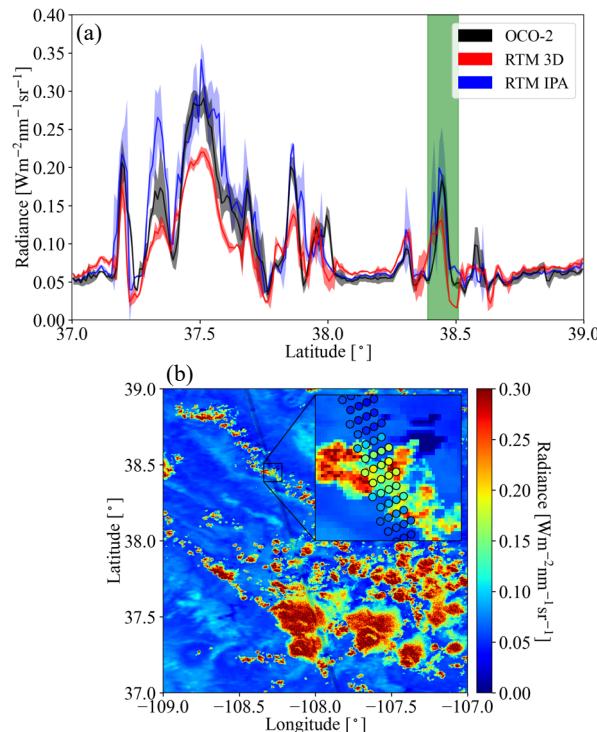
Deleted: MYD09

Deleted: surface reflectance

Deleted: MYD09

Deleted: reflectance

Deleted: surface reflectance



753

754

755 **Figure 5.** (a) Latitudinally averaged (0.01° spacing) radiance calculations from EaR³T (red: 3D, blue: IPA) and OCO-
 756 2 measured radiance at 768.52 nm (black). The green shaded area indicates the inset shown in (b). (b) The

763 same as Figure 2 except OCO-2 measured radiance overlaid on IPA radiance simulations at 768.52 nm. The
764 solar zenith angle (SZA) for the radiance simulation case is ~~34.3°~~.

Deleted: 33.57

765

766 In the cloudy locations ([radiance value greater than ~0.05](#)), the IPA calculations match the
767 OCO-2 observations on a footprint-by-footprint level (see Figure 5b), demonstrating that wind and
768 parallax corrections were performed successfully. Of course, there is not always a perfect
769 agreement because of morphological changes in the cloud field over the course of six minutes. It
770 is, however, apparent that the 3D calculations agree to a much lesser extent with the observations
771 than the IPA calculations. Just like the mismatch for the clear-sky pixels indicates a bias in the
772 input [surface albedo](#), the bias here means that the input cloud properties (most importantly COT)
773 are inaccurate. For most of the reflectance peaks, the 3D simulations are too low, which means
774 that the input COT is biased low. This is due to 3D cloud effects on the MODIS-based cloud
775 retrieval. Since they are done with IPA, any net horizontal photon transport is not considered,
776 which leads to an apparent surface brightening as noted above, at the expense of the cloud
777 brightness. As a result, the COT from darker clouds is significantly underestimated. This
778 commonly known problem (Barker and Liu, 1995), with several aspects discussed in the
779 subsequent EaR³T applications, can be identified by radiance consistency checks such as the one
780 shown in Figure 5, and mitigated by novel types of cloud retrievals that do take horizontal photon
781 transport into account (section 6).

Deleted: surface reflectance

782

783 4.2 MODIS (App. 2)

784 To go beyond the OCO-2 track and understand the bias between simulated and observed
785 radiances from a domain perspective, we now consider the radiance simulations for the MODIS
786 650 nm channel. The setup is exactly the same as for the OCO-2 simulations, except that 1) the
787 viewing zenith angle is set to the average viewing zenith angle of MODIS within the shown domain
788 (instead of OCO-2), and 2) the [surface albedo \(or WSA\)](#) from [MCD43 js](#) used directly, this time
789 from the 650 nm channel without rescaling. Figure 6a shows the MODIS measured radiance field,
790 while Figure 6b shows the EaR³T 3D simulations. Visually, the clouds from the EaR³T simulation
791 are generally darker than the observed clouds, which is in line with our aforementioned explanation
792 of net horizontal photon transport. They are also blurrier because radiative smoothing (Marshak et
793 al., 1995) propagates into the retrieved COT fields, which are subsequently used as input to EaR³T.

Deleted: surface reflectances

Deleted: MYD09

Deleted: are

799 The IPA RT calculations agree with the observations for clouds (see Figure A4a in Appendix C2),
 800 which is expected as the IPA calculations and retrievals go through the same RT process, and the
 801 darkening and smoothing effects (referred to as 3D effects) are due to horizontal photon transport.
 802 To look at the 3D effects more quantitatively, Figure 7 shows a heatmap plot of simulated radiance
 803 versus observed radiance. It shows that the radiance for cloud-covered pixels (labeled “cloudy”)
 804 from EaR³T are mostly low-biased while good agreement between simulations and observations
 805 was achieved for clear-sky radiance (labeled “clear-sky”). The good agreement over clear-sky
 806 regions is expected. As mentioned above, we use MCD43 as surface albedo input, which in
 807 contrast to the OCO-2 surface albedo product is appropriately cloud-screened and therefore does
 808 not have a reflectance high bias. There is, of course, a reflectance enhancement in the vicinity of
 809 clouds, but that is captured by the EaR³T calculations. The fact that the calculations agree with the
 810 observations even for clear-sky pixels in the vicinity of clouds, shows that the concept of radiance
 811 consistency works to ensure correct satellite retrievals even in the presence of clouds. It also
 812 corroborates our observation from section 4.1 that COT_{IPA} is low biased. Since the MODIS
 813 reflectance is not self-consistent with respect to 3D RT calculations using COT_{IPA} as shown for
 814 the *cloudy* pixels in Figure 7, we can identify a bias in the cloud properties even without knowing
 815 the ground truth of COT. On the other hand, successful closure in radiance (self-consistency)
 816 would provide an indication that the input fields including COT are accurate, although it is
 817 certainly a weaker metric than direct verification of the retrievals through aircraft-satellite retrieval
 818 validation using observations from in-situ instruments.

Deleted: darkening and smoothing

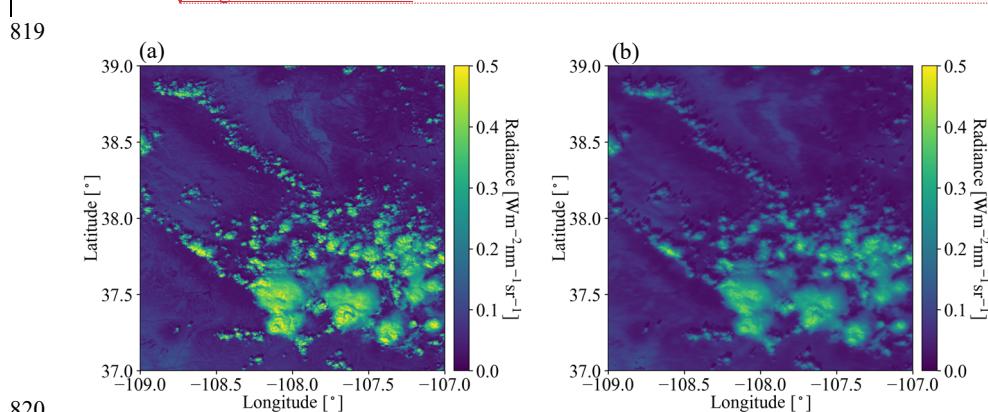
Deleted: MYD09

Deleted: surface reflectance

Deleted: surface reflectance

Deleted: aircraft

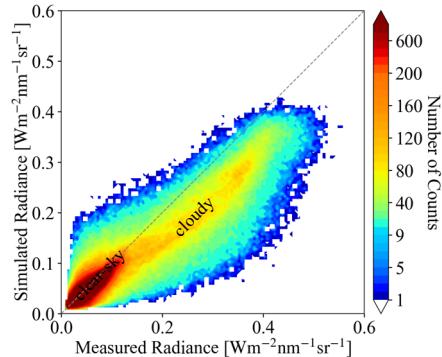
Deleted: with



827 **Figure 6.** (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance at 650 nm from EaR³T.
 828 The solar zenith angle for the radiance simulation case is ~~34.94°~~.

Deleted: 34.42

829
830



831
 832 **Figure 7.** Heatmap plot of EaR³T simulated 3D radiance vs. MODIS measured radiance at 650 nm.
 833

834 Summarizing the two satellite radiance simulator applications, one can say that EaR³T
 835 enables a radiance consistency check for inhomogeneous cloud scenes. We demonstrated that a
 836 lack of simulation-observation consistency (MODIS versus OCO-2) and self-consistency (MODIS
 837 versus MODIS) can be traced back to biased ~~surface albedo~~ or cloud fields in the simulator input.
 838 This can become a diagnostic tool for the quality of retrieval products from future or current
 839 missions, even when the ground truth is not known. Although not shown, the errors in the
 840 simulated radiance associated with the fixed-SZA assumption (domain average) are negligible.
 841 However, the vertical extent of the clouds affects the simulated radiance – the larger the vertical
 842 extent, the larger the 3D effects (more horizontal photon transport). Since we make the assumption
 843 of 1) a cloud geometric thickness of 1 km for clouds with CTH less than 4 km, and 2) cloud base
 844 height of 3 km for clouds with CTH greater than 4km, the simulated radiance at the satellite sensor
 845 level is valid for that proxy cloud only. For clouds that are geometrically thicker than the assumed
 846 cloud geometrical thickness, the simulated radiance would be even lower due to enhanced
 847 horizontal photon transport. Either way, the comparison with the actual radiance measurements
 848 will reveal a lack of closure. Additionally, although the clouds introduce the lion's share of the 3D
 849 bias that is identified by the radiance consistency check, additional discrepancies can be introduced

Deleted: surface reflectance

Deleted: It should be pointed out that

Deleted: if no thickness information is provided

Deleted: deeper

855 in different ways. For example, the topography (mountainous region in Colorado) is not considered
856 by MCARaTS (it is considered by MYSTIC, but this solver has not been implemented yet).

857 For ~~the~~ reference of simulation running time: The MODIS simulation (domain size of
858 $[Nx=846, Ny=846]$) took about ~~15 minutes~~ on a Linux workstation with ~~8~~ CPUs for three 3D RT
859 runs with 10^8 photons. With a slightly modified setup and parallelization, the automation can be
860 easily applied for entire satellite orbits, although more research is required to optimize the
861 computation speed depending on the desired output accuracy.

862

863 5. EaR³T as 3D Aircraft Irradiance Simulator (App. 3)

864 In contrast to the previous applications that focused on satellite remote sensing, we will
865 now be applying EaR³T to quantify 3D cloud retrieval biases through direct, systematic validation
866 of imagery-derived *irradiances* against aircraft measurements, instead of using the indirect path
867 of radiance consistency in section 4. Previous studies (e.g., Schmidt et al., 2007; Kindel et al.,
868 2010) conducted radiative closure between remote sensing derived and measured irradiance using
869 isolated flight legs as case studies. Here, with the efficiency afforded by the automated nature of
870 EaR³T, we are able to conduct radiative closure of irradiance through a statistical approach that
871 employs campaign-scale amounts of measurement data. Specifically, we used EaR³T to perform
872 large-scale downwelling irradiance simulations at 745 nm based on geostationary cloud retrievals
873 from AHI for the CAMP²Ex campaign, and directly compare these simulations to the SPN-S
874 measured irradiances onboard the P-3 aircraft. This is done for all below-cloud legs from the entire
875 campaign with the aim to assess the degree to which satellite-derived near-surface irradiances
876 reproduce the true conditions below clouds.

877 The irradiance simulation process is similar to the previously described radiance simulation
878 in section 4, with only a few modifications. First, we used cloud optical properties from the AHI
879 cloud product (COT, CER and CTH) as direct inputs into EaR³T. Secondly, we used a constant
880 ocean surface ~~albedo~~ value of 0.03. Such simplification in surface albedo is made under the
881 assumption that 1) the ocean surface is calm with no whitecaps, and that 2) the Lambertian ~~BRDF~~
882 is sufficient (instead of directionally dependent BRDF) to represent surface albedo for the
883 irradiance calculation. Since the ocean surface albedo can greatly differ from 0.03 when the Sun
884 is extremely low (Li et al., 2006), we excluded data under low-Sun conditions where the SZA is
885 greater than 45°. Lastly, since EaR³T can only perform 3D simulations for a domain at a single

~~Deleted: technical~~

~~Deleted: 1188~~

~~Deleted: 1188~~

~~Deleted: one~~

~~Deleted: hour~~

~~Deleted: 12~~

~~Deleted: each~~

~~Deleted: reflectance~~

~~Deleted: bidirectional reflectance distribution function (BRDF)...~~

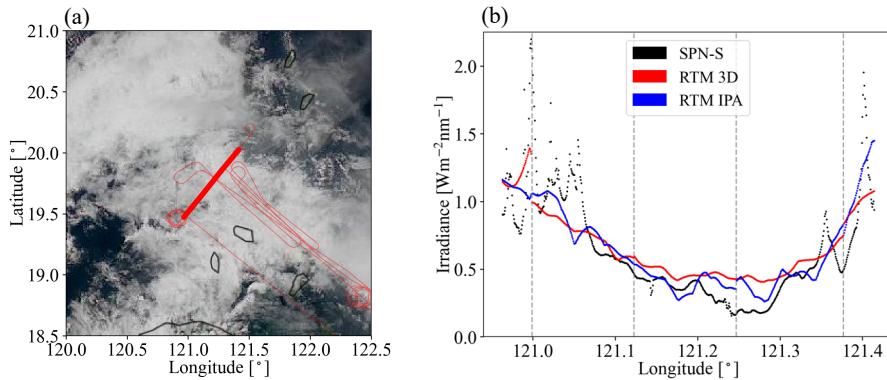
896 specified solar geometry, we divided each CAMP²Ex research flight into small flight track
897 segments where each segment contains 6 minutes of flight time. The size and shape of the flight
898 track segments can vary significantly due to the aircraft maneuvers, aircraft direction, aircraft
899 speed, etc. For each flight track segment, EaR³T performs irradiance simulations for a domain that
900 extends half a degree at an averaged solar zenith angle. In contrast to the radiance simulation output,
901 which is two-dimensional at a specified altitude and sensor geometry, the irradiance simulation
902 output is three dimensional. In addition to x (longitude) and y (latitude) vectors, it has a vertical
903 dimension along z (altitude). From the simulated three-dimensional irradiance field, the irradiance
904 for the flight track segment is linearly interpolated to the x-y-z location (longitude, latitude, and
905 altitude) of the aircraft. EaR³T automatically sub-divides the flight track into tiles encompassing
906 track segments, and extracts the necessary information from the aircraft navigational data. Based
907 on the aircraft time and position, EaR³T downloads the AHI cloud product that is closest in time
908 and space to the domain containing the flight track segment.

909 Figure 8 shows the simulated irradiance for a sample flight track below clouds on 20
910 September, 2019. Figure 8a shows the flight track overlaid on AHI imagery. Figure 8b shows 3D
911 (in red) and IPA (in blue) downwelling irradiance simulations for the highlighted flight track in
912 Figure 8a, as well as measurements by the SPN-S (in black). Since the 3D and IPA simulations
913 are performed separately at discrete solar and sensor geometries for each flight track segment based
914 on potentially changing cloud fields from one geostationary satellite image to the next,
915 discontinuities in the calculations (indicated by gray dashed lines) are expected. The diffuse
916 irradiance (downwelling and upwelling) can also be simulated and compared with radiometer
917 measurements (not shown here). Since the irradiance was simulated/measured below clouds, high
918 values of downwelling irradiance indicate thin-cloud or cloud-free regions while low values of
919 downwelling irradiance indicate thick-cloud regions. The simulations successfully captured this
920 general behavior – clouds thickened from west to east until around 121.25° E, and thinned
921 eastwards. However, the fine-scale variabilities in irradiance were not captured by the simulations
922 due to the coarse resolution of COT in the AHI cloud product (3-5 km). Additionally, the
923 simulations also missed the clear-sky regions in the very east and west of the flight track as
924 indicated by high downwelling irradiance values measured by SPN-S. This is probably also due to
925 the coarse resolution of the AHI COT product where small cloud gaps are not represented. Large
926 discrepancies between simulations and observations occur in the mid-section of the flight track

927 where clouds are present (e.g., longitude range from 121.15° to 121.3°). Although the 3D
 928 calculations differ somewhat from the IPA results, they are both biased high, likely because the
 929 input COT (the IPA-retrieved AHI product) is biased low. This bias is caused by the same
 930 mechanism that was discussed earlier in the MODIS examples (section 4.2). This begs the question
 931 whether this is true for the entire field mission. To answer the question, we performed a *systematic*
 932 comparison of the cloud transmittance for *all* available below-cloud flight tracks from CAMP²Ex,
 933 using EaR³T's automated processing pipeline. The output of this pipeline is visualized in time-
 934 synchronized flight videos (Chen et al., 2022), which show the simulations and observations along
 935 all flight legs point by point. These videos give a glimpse of the general cloud environment during
 936 the field campaign from the geostationary satellite perspective.

937

938



939
 940 **Figure 8.** (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea on 20 September, 2019.
 941 The thin line shows the entire flight track within the domain. The thick line highlights the specific leg
 942 analyzed in (b). (b) Measured downwelling irradiance from SPN-S at 745 nm and calculated 3D and IPA
 943 irradiance from EaR³T for the highlighted flight track in (a).

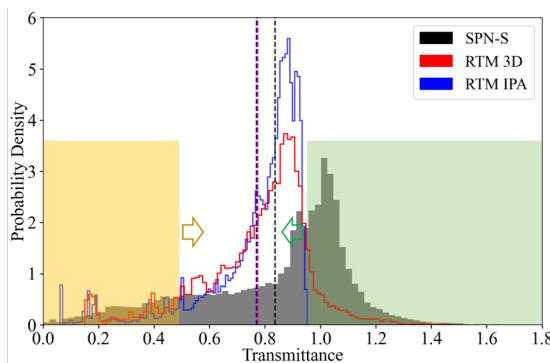
944

945 For this comparison, we use transmittance instead of irradiance. The transmittance is
 946 calculated by dividing the downwelling irradiance below clouds (F_{\downarrow}^{bottom}) by the downwelling
 947 irradiance at the top of the atmosphere extracted from the Kurucz solar spectra (F_{\downarrow}^{TOA} ; Kurucz,
 948 1992) at incident solar zenith angle (SZA), where

949
$$\text{Transmittance} = \frac{F_{\downarrow}^{\text{bottom}}}{F_{\downarrow}^{\text{TOA}} \cdot \cos(\text{SZA})}$$

950 Thus the transmittance has less diurnal dependence than the irradiance. Figure 9 shows the
 951 histograms of the simulated and measured cloud transmittance from all below-cloud legs. The
 952 average values are indicated by dashed lines. Although the averaged values of IPA and 3D
 953 transmittance are close, their distributions are different. Only the 3D calculations and the measured
 954 transmittance reach values beyond 1. This occurs in clear-sky regions in the vicinity of clouds that
 955 receive photons scattered by the clouds as previously discussed for the OCO-2 application.

956



957
 958 **Figure 9.** Histogram of measured transmittance from SPN-S at 745 nm (dark gray filled) and calculated 3D (red solid
 959 line) and IPA (blue solid line) transmittance from EaR³T for all the below-cloud flight tracks during
 960 CAMP²Ex in 2019. The mean values are indicated by dashed lines. The yellow (green) shaded area
 961 represents the relatively low (high) transmittance region where the probability density of the observed
 962 transmittance (dark gray filled) is greater than the calculations.

Deleted: black

Deleted: black

963
 964 Both the distribution and the mean value of the simulations are different from the
 965 observations – the simulation histograms peak at around 0.9 while the observation histogram peaks
 966 at around 1. The histograms indicate that the RT simulations miss most of the clear-sky conditions
 967 because of the coarse resolution of the AHI cloud product. If clouds underfill a pixel, AHI
 968 interprets the pixel as cloudy in most cases. This leads to an underestimation of clear-sky regions
 969 since cumulus and high cirrus were ubiquitous during CAMP²Ex. The area on the left (highlighted
 970 in yellow) has low cloud transmittance associated with thick clouds. In this range, the histograms
 971 of the calculations are generally below the observations, and the PDF of the calculations is offset

974 to the right (indicated by the yellow arrow). This means that the transmittance is overestimated by
975 both IPA and 3D RT, and thus that the COT of thick clouds is underestimated, consistent with
976 what we found before (Figure 8b). [The high-biased transmittance below-cloud is also consistent](#)
977 [with the findings of low-biased reflectance \(App. 1 and 2\), both indicating COT of the optically](#)
978 [thick clouds are low-biased](#). The high-transmittance end (highlighted in green) is associated with
979 clear-sky and thin clouds. Here, the peak of the PDF is shifted to the left (green arrow), and the
980 calculations are biased low. This is caused by a combination of 1) the overestimation in COT of
981 thin clouds due a 3D bias in the AHI IPA retrieval, 2) the aforementioned resolution effect that
982 underestimates the occurrence of clear-sky regions (or overestimation in cloud fraction), and 3)
983 net horizontal photon transport from clouds into clear-sky pixels. Overall, the calculations
984 underestimate the true transmittance by 10%. This might seem to contradict Figure 7, where the
985 calculated reflected radiance was biased low due to the *underestimation* of COT in the heritage
986 retrievals, which would correspond to an *overestimation* of the radiation transmitted by clouds.
987 This effect is indeed apparent in the yellow-shaded area of Figure 9 (high COTs), but the means
988 (dashed lines) show exactly the opposite. To understand that, one has to consider that the histogram
989 depicts all-sky conditions, which include both cloudy and clear pixels. In this case, the direction
990 of the overall (all-sky) bias follows the direction of the thin-cloud/clear bias, rather than the
991 direction of the thick cloud bias. For different study regions of the globe with different cloud
992 fractions, cloud size distributions, and possibly different imager resolutions, the direction and
993 magnitude of the bias might be very different.

994 Summarizing, this application demonstrates that the EaR³T's automation feature allows
995 systematic simulation-to-observation comparisons. If aircraft observations are available, then
996 closure between satellite-derived irradiance and suborbital measurements is a more powerful
997 verification of satellite cloud retrieval products than the radiance consistency from the earlier
998 stand-alone satellite applications. Even more powerful is the new approach to process the data
999 from an entire field mission for assessing the quality of cloud products in a region of interest (in
1000 this case, the CAMP²Ex area of operation).

1001

1002 **6. EaR³T for Mitigating 3D Cloud Retrieval Biases (App. 4)**

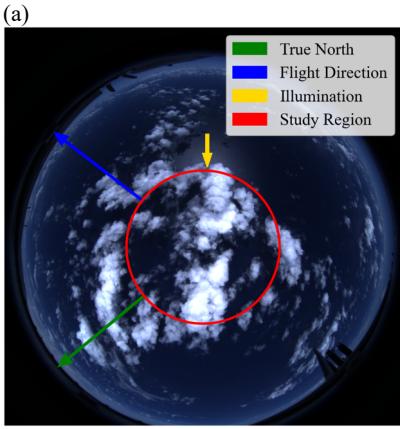
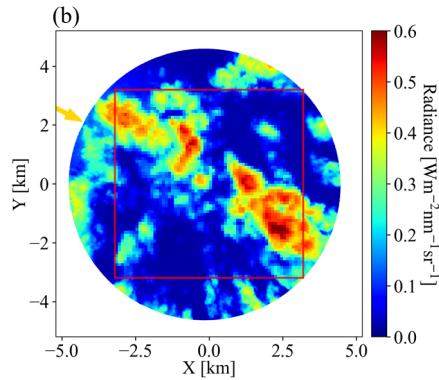
1003 In this section, we will use high-resolution imagery from a radiometrically calibrated
1004 all-sky camera flown during the CAMP²Ex to isolate the 3D bias (sometimes referred to as IPA

1005 bias) and explore its mitigation with a newly developed CNN cloud retrieval framework (Nataraja
1006 et al., 2022). The CNN, unlike IPA, takes pixel-to-pixel net horizontal photon transport into
1007 account. It exploits the spatial context of pixels in cloud radiance imagery, and extracts a higher-
1008 dimensional, multi-scale representation of the radiance to retrieve COT fields as the output. It does
1009 so by learning on “training data”, which in this case was input radiance and COT pairs synthetically
1010 generated by EaR³T using LES data from the Sulu Sea. The best CNN model, trained on different
1011 coarsened resolutions of the data pairs, is included within the EaR³T repository. For App. 4, this
1012 CNN is applied to real imagery data for the first time, which in our case are near-nadir observations
1013 by the all-sky camera (section 2.2.5) that flew in CAMP²Ex.

1014 The CNN model was trained at a single (fixed) sun-sensor geometry (solar zenith angle,
1015 SZA=29.2°; solar azimuth angle, SAA=323.8°, viewing zenith angle, VZA=0°), at a spatial
1016 resolution of 100 m. We therefore chose a camera scene with a matching SZA (28.9°), and rotated
1017 the radiance imagery to match SAA=323.8°, and subsequently gridded the 8-12 m native
1018 resolution camera data to 100 m. Figure 10a shows the RGB imagery captured by the all-sky
1019 camera over the Philippine Sea at 02:10:06 UTC on 5 October 2019. The Sun is located at the
1020 southeast (as indicated by the yellow arrow) and can be easily identified from the sun glint. Note
1021 that this image has not yet been geolocated; it is depicted as acquired in the aircraft reference frame.
1022 Figure 10b shows the rotated scene of the red channel radiance for the region encircled in yellow
1023 in Figure 10a. The sun (as indicated by the yellow arrow) is now at SAA=323.8°. The selected
1024 study region is indicated by the red rectangle in Figure 10b (6.4x6.4 km²), where the raw radiance
1025 of the camera is gridded at 100 m resolution to match the spatial resolution of the training dataset
1026 of the CNN.

1027

1028



1029

1030 **Figure 10.** (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP²Ex for a cloud scene centered
 1031 at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 UTC on 5 October, 2019. The arrows
 1032 indicate the true north (green), flight direction (blue), and illumination (where the sunlight comes from,
 1033 yellow). (b) Red channel radiance measured by the camera for the circular area indicated by the red circle
 1034 in (a). Red squared region shows gridded radiance with a pixel size of 64x64 and spatial resolution of 100
 1035 m.

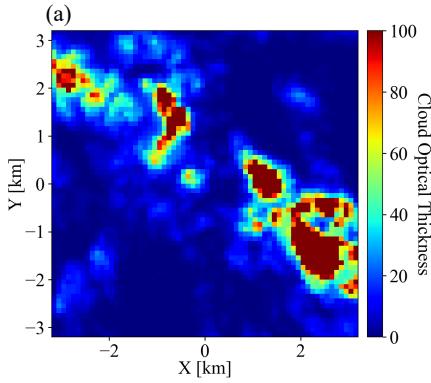
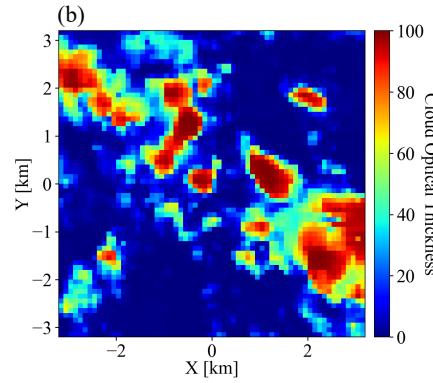
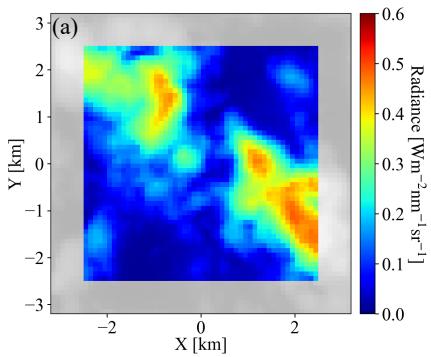
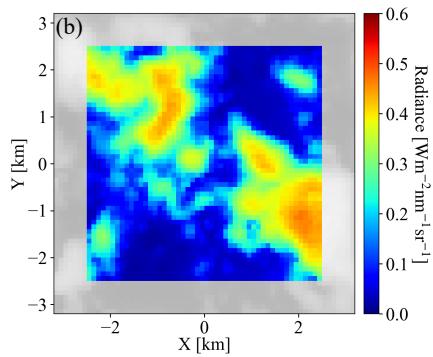
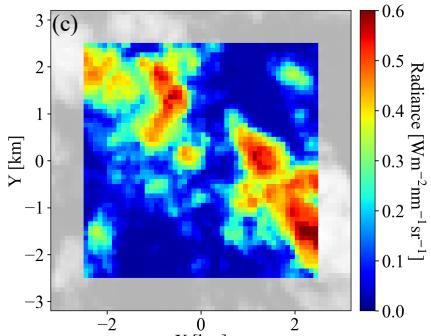
1036

1037 From the radiance field, we used both the traditional IPA (based on the [IPA reflectance-to-](#)
 1038 [COT_{IPA} mapping](#)) and the new CNN to retrieve COT fields. Figure 11 shows the COT_{IPA} and COT_{CNN}
 1039 fields, which are visually quite different. For relatively thin clouds (e.g., at around {2, 1.8}), the
 1040 CNN tends to retrieve larger COT values than COT_{IPA} . Also, it returns more spatial structure than
 1041 the IPA (e.g., around {2,-1}). To assess how either retrieval performs, we now apply the radiance
 1042 self-consistency approach introduced with MODIS data in section 4.2. Using both the IPA and the
 1043 CNN retrieval as input, we had EaR³T calculate the (synthetic) radiance that the camera should
 1044 have observed if the retrieval were accurate. The clouds are assumed to be located at 1-2 km. Such
 1045 an assumption is inferred from low-level aircraft observations of clouds on the same day. These
 1046 radiance fields are shown in Figure 12a and 12b, and can be compared to Figure 12c. Seven edge
 1047 pixels have been removed from the original domain because the CNN performs poorly at edge
 1048 pixels, and because the 3D calculations use periodic boundary conditions.

1049

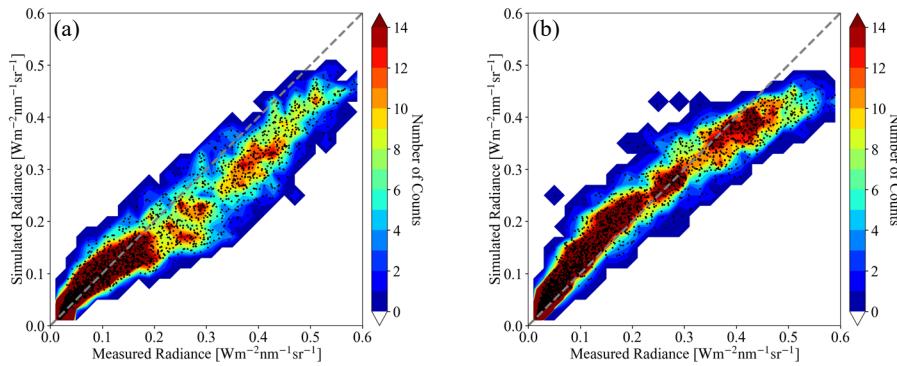
Deleted: two-stream

Deleted: approximation



1059 **Figure 12.** 3D radiance calculations from EaR³T at 600 nm based on cloud optical thickness field **(a)** estimated by
 1060 IPA, and **(b)** predicted by the CNN. The radiance measured by the all-sky camera (the same as Figure
 1061 10b) is provided in the same format at **(c)** for comparison. The calculations were originally performed
 1062 for the 64x64 domain. Then 7 pixels along each side of the domain (contoured in gray) were excluded,
 1063 which resulted in a 50x50 domain.

1064
 1065



1066
 1067 **Figure 13.** Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based on cloud optical thickness
 1068 **(a)** estimated by IPA and **(b)** predicted by the CNN vs. measured red channel radiance from all-sky camera.
 1069

1070 As evident from the brightest pixels in Figures 12b and 12c, the radiances simulated on the
 1071 basis of the COT_{CNN} input are markedly lower than actually observed by the camera. This is
 1072 because the CNN was trained on a LES dataset with limited COT range that excluded the largest
 1073 COT that occurred in practice. This means that the observational data went beyond the original
 1074 training envelope of the CNN, which highlights the importance of choosing the CNN training data
 1075 carefully for a given region. In Figure 13, the simulations are directly compared with the original
 1076 observations, confirming that indeed the CNN-generated data are below the observations on the
 1077 high radiance end. Otherwise, the CNN-generated radiances agree with the observations. In
 1078 contrast, the IPA-generated data are high biased for the optically very thin clouds (radiance below
 1079 0.1) and systematically low-biased for the thick clouds (radiance above 0.2), when comparing with
 1080 the observations, over the dynamic range of the COT, which is indicative of the 3D retrieval bias
 1081 that we discussed earlier. A small high bias occurs in the COT_{CNN} based radiance simulations for
 1082 the optically thin clouds (radiance value below 0.2). This probably because the CNN training as

Deleted: CNN COT

Deleted: lower
Deleted: than

1086 described by Nataraja et al. (2022) is 1) based on a surface albedo of 0 and 2) aerosol-free
1087 atmospheric environment (also aerosol-free setup for radiance simulations in Figure 13), where in
1088 reality the ocean is slightly brighter and atmosphere is mixed with aerosols. Here again, the
1089 radiance self-consistency approach proves useful despite the absence of ground truth data for the
1090 COT. This is valuable because in reality satellite remote sensing does not have the ground truth of
1091 COT, whereas radiance measurements are always available. For the CNN, the self-consistency of
1092 the radiance is remarkable for most of the clouds (radiance smaller than 0.4), which encompass
1093 86.8% of the total number of image pixels.

Deleted: extremely helpful

Deleted: the thinner

Deleted: 83.5

1094 Finally, we use EaR³T to propagate the 3D cloud retrieval bias into the associated bias in
1095 estimating the cloud radiative effect from passive imagery retrievals, which means that we are
1096 returning from a remote sensing to an energy perspective (irradiance) at the end of the paper. The
1097 calculated cloud radiative effects (CRE) of both below-clouds (at the surface) and above-clouds
1098 (at 2.5 km) are shown in Figure 14a and 14b. The most important histograms are those from 3D
1099 irradiance calculations based on the CNN retrievals (gray solid line), as this combination would
1100 be used in a next-generation framework for deriving CRE from passive remote sensing, and the
1101 other would be IPA irradiance calculations based on the IPA retrieval (red solid line), as done in
1102 the traditional (heritage) approach. The dashed lines are the other combinations. The mean values
1103 (red vs. gray) indicate that in our case the traditional approach would lead to a high bias of more
1104 than to 28% both at the surface and 20% above clouds due to low-biased COT_{IPA} (consistent with
1105 findings of low-biased COT_{IPA}-derived reflectance from App. 1&2 and high-biased COT_{IPA}-
1106 derived transmittance from App. 3). Here again, 3D biases do not cancel each other out in the
1107 domain average. If the CNN had better fidelity even for optically thick clouds, the real bias in CRE
1108 would be even larger. A minor, but interesting finding is that regardless of which COT retrieval is
1109 used, the mean CRE is similar for IPA and 3D irradiance calculations (e.g., $CRE_{IPA}(COT_{CNN}) \approx$
1110 $CRE_{3D}(COT_{CNN})$, blue vertical dashed line locates near to gray vertical solid line), even though
1111 the PDFs are different. By far the largest impact on accuracy comes from the retrieval technique,
1112 not from the subsequent CRE calculations. Here again, the self-consistency check turns out as a
1113 powerful metric to assess retrieval accuracy. Of course, we only used a single case in this part of
1114 the paper. For future evaluation of the CNN versus the IPA, one would need to process larger
1115 quantities of data in an automated fashion as done in the first part of the paper. This is beyond the
1116 scope of this introductory paper, and will be included in future releases of EaR³T and the CNN.

Deleted: 25

Deleted:

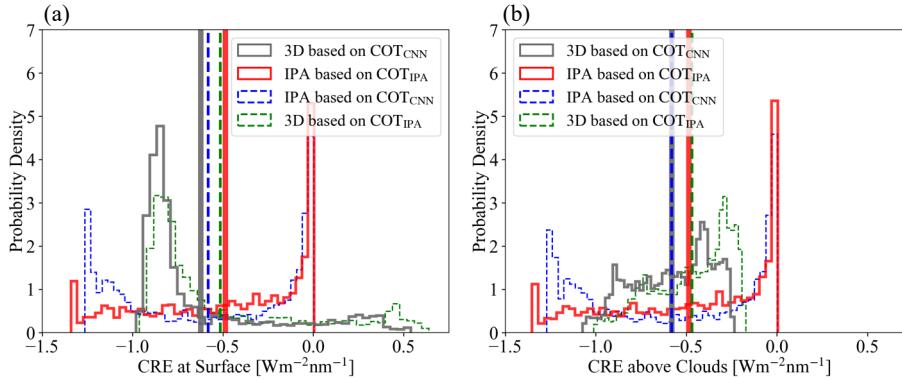
Deleted: very

Deleted: overlay

Deleted: very

Deleted: dissimilar

1127



1128

1129 **Figure 14.** Histograms of cloud radiative effects derived from 1) 3D irradiance calculations based on COT_{CNN} (solid
 1130 gray), 2) IPA irradiance calculations based on COT_{IPA} (solid red), 3) IPA irradiance calculations based on
 1131 COT_{CNN} (dashed blue), and 4) 3D irradiance calculations based on COT_{IPA} (dashed green) both (a) at the
 1132 surface and (b) above the clouds. The mean values are indicated by vertical lines.

1133

1134 7. Summary and Conclusion

1135 In this paper, we introduced EaR³T, a toolbox that provides high-level interfaces to
 1136 automate and facilitate 1D- and 3D-RT calculations. We presented applications that used EaR³T
 1137 to:

- 1138 a) build a processing pipeline that can automatically simulate 3D radiance fields for satellite
 1139 instruments (currently OCO-2 and MODIS) from publicly available satellite surface and
 1140 cloud products at any given time over any specific region;
- 1141 b) build a processing pipeline that can automatically simulate irradiance along all flight legs
 1142 of aircraft missions, based on geostationary cloud products;
- 1143 c) simulate radiance and irradiance for high-resolution COT fields retrieved from an airborne
 1144 camera, using both a traditional 1D-RT (IPA) approach, and a newly developed 3D-RT
 1145 (CNN) approach that considers the spatial context of a pixel.

1146 Unlike other satellite simulators that employ 1D-RT, EaR³T is capable of performing the radiance
 1147 and irradiance calculations in 3D-RT mode. Optionally, it can be turned off to link back to
 1148 traditional 1D-RT codes, and to calculate 3D perturbations by considering the changes of 3D-RT
 1149 fields relative to the 1D-RT baseline.

1150 With the processing pipeline under a) (App. 1 and App. 2, section 4), we prototyped a
1151 3D-RT powered radiance loop (we call it “radiance self-consistency”) that is envisioned for
1152 upcoming satellite missions such as EarthCARE and AOS. Retrieved cloud fields (in our case,
1153 from MODIS and from an airborne camera) are fed back into a 3D-RT simulation engine to
1154 calculate at-sensor radiances, which are then compared with the original measurements. Beyond
1155 currently included sensors, others can be added easily, taking advantage of the modular design of
1156 EaR³T. This radiance closure loop facilitates the evaluation of passive imagery products,
1157 especially under spatially inhomogeneous cloud conditions. The automation of EaR³T permits
1158 calculations at any time and over any given region, and statistics can be built by looping over entire
1159 orbits as necessary. The concept of radiance self-consistency could be valuable even for existing
1160 imagery datasets because it allows the automated quantification of 3D-RT biases even without
1161 ground truth such as airborne irradiance from suborbital activities. Also, it can be easily extended
1162 to spectral or multi-angle observations as available from MODIS and MISR (Multi-Angle Imaging
1163 Spectroradiometer), and thus providing more powerful constraints to the remote sensing products.
1164 In the future it should be possible to include a 3D-RT pipeline such as EaR³T into operational
1165 processing of satellite derived data products.

Deleted: consistency

1166 Benefiting from the automation of EaR³T in b) (App. 3, section 5), we performed 3D-RT
1167 irradiance calculations for the entire CAMP²Ex field campaign, moving well beyond radiation
1168 closure case studies, and instead systematically evaluating satellite-derived radiation fields with
1169 aircraft data for an entire region. From the comparison based on all below-cloud flight tracks
1170 during the entire campaign, we found that the satellite-derived cloud transmittance was biased low
1171 by 10% compared to the observations when relying on the heritage satellite cloud product.

1172 From the statistical results of the CAMP²Ex irradiance closure in b), we concluded that the
1173 bias between satellite-derived irradiances and the ground truth from aircraft measurements was
1174 due to a combination of the coarse spatial resolution of the geostationary imagery products and
1175 3D-RT effects. To minimize the coarse-resolution part of the bias and thus to isolate the 3D-RT
1176 bias, we used high-resolution airborne camera imagery in c) (App. 4, section 6), and found that
1177 even with increased imager resolution, biases persisted. The at-sensor radiance derived from
1178 COT_{IPA} was inconsistent with the original measurements. For cloudy pixels, the calculated
1179 radiance was well below the observations, confirming an overall low bias in COT_{IPA}. This low bias
1180 could be largely mitigated with the context-aware CNN developed separately in Nataraja et al.

Deleted: IPA COT retrievals

Deleted: IPA COT

1184 (2022) and included in EaR³T. Of course, this novel technique has limitations. For example, the
1185 camera reflectance data went beyond the CNN training envelope, which would need to be extended
1186 to larger COT in the future. In addition, the CNN only reproduces two-dimensional clouds fields
1187 and does not provide access to the vertical dimension, which will be the next frontier to tackle.
1188 Still, the greatly improved radiance consistency from COT_{IPA} to COT_{CNN} indicates that the EaR³T-
1189 LES-CNN approach shows great promise for the mitigation of 3D-RT biases associated with
1190 heritage cloud retrievals. We also discovered that for this particular case, the CRE calculated from
1191 traditional 1D cloud products can introduce a warm bias of at least 28% at the surface and 20%
1192 above clouds.

1193 EaR³T has proven to be capable of facilitating 3D-RT calculations for both remote sensing
1194 and radiative energy studies. Beyond the applications described in this paper, EaR³T has already
1195 been extensively used by a series of on-going research projects such as producing massive 3D-RT
1196 calculations as training data for a new generation of CNN models (Nataraja et al., 2022), evaluating
1197 3D cloud radiative effects associated with aerosols (Gristey et al., 2022), creating flight track and
1198 satellite track simulations for mission planning etc. More importantly, the strategies provided in
1199 this paper put novel machine learning algorithms on a physical footing, opening the door for the
1200 mitigation of complexity-induced biases in the near-future. More development effort will be
1201 invested into EaR³T in the future, with the goals of minimizing the barriers to using 3D-RT
1202 calculations, and to promote 3D cloud studies. EaR³T will continue to be an educational tool driven
1203 by graduate students. In the future, we plan to add support for additional publicly available 3D RT
1204 solvers, e.g., SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and
1205 Evans, 2009), as well as built-in support for HITRAN and associated correlated-k methods
1206 (currently, we are implementing such an approach for the longwave wavelength range). From a
1207 research perspective, we anticipate that EaR³T will enable the systematic quantification and
1208 mitigation of 3D-RT biases of imagery-derived cloud-aerosol radiative effects, and may be the
1209 starting point for operational use of 3D-RT for future satellite missions.

1210

Deleted: 25

Moved (insertion) [1]

Deleted: In addition to MCARaTS, planned solvers for the future include MYSTIC (Monte Carlo code for the physically correct tracing of photons in cloudy atmospheres, Mayer, 2009) and

Deleted: , e.g., SHDOM

1217 **Appendix A**

1218 **A1 - Technical Input and Output Parameters of EaR³T**

1219 EaR³T provides various functions that can be combined to tailored pipelines for automatic
1220 3D radiative transfer (3D-RT) calculations as described ~~in~~ this paper (App. 1 – 5), as well as for
1221 complex research projects beyond. Since EaR³T is written in Python, the modules and functions
1222 can be integrated into existing functions developed by the users themselves. Parallelization is
1223 enabled in EaR³T by default through multi-processing to accelerate computations. If multiple
1224 CPUs are available, EaR³T will distribute jobs for the 3D RT calculations. By default, the
1225 maximum number of CPUs will be used. Since EaR³T is designed to make the process of setting
1226 up and running 3D-RT calculations simple, some parameters that are unavailable from the input
1227 data but are required by the RT solvers are populated via default values and assumptions. However,
1228 this does not mean that by using EaR³T, one must use these assumptions; they can be easily
1229 superseded by user-provided settings. To facilitate this process, Table A1 provides a detailed list
1230 of parameters (subject to change in future updates) that can be controlled and modified by the user.
1231 In `examples/02_modis_rad-sim.py`, we defined these user-controllable parameters as
1232 global variables for providing easy access to user. In the future, most of the parameters will be
1233 controllable through a dedicated configuration file for optimal transparency. These parameters can
1234 be changed within the code. For instance, by changing the parameters of `'date'` (Line 67 in
1235 `examples/02_modis_rad-sim.py`) and `'region'` (Line 68 in
1236 `examples/02_modis_rad-sim.py`) within params into the following:

1237 `params['date'] = datetime.datetime(2022, 2, 10)`
1238 `params['region'] = [-6.8, -2.8, 17.0, 21.0]`

1239 one can perform similar RT calculations (as demonstrated in App. 2) for another date and region
1240 of interest (here, west Sahara Desert on 10 February, 2022). ~~Note that the code is under active
1241 development, the line numbers are only valid in the version release of v0.1.1 and might change in
1242 the future. Given the input parameters, EaR³T will calculate radiance or irradiance and save the
1243 calculations into a HDF5 (Hierarchical Data Format version 5) file. The output data variables are
1244 provided in Table A2.~~

1245 In addition to the example code, intuitive and simple examples are provided in
1246 `examples/00_er3t_mca.py` and `examples/00_er3t_lrt.py` for users who are
1247 interested in learning the basics of setting up EaR³T for calculations. At the current stage, only

Deleted: App. 1 – 5 of

Deleted: _date

Deleted: _region

Deleted: _date

Deleted: _region

Deleted: Note that the cloud detection algorithms we
included in the code are imperfect (they only work
satisfactorily for the App. 2 case we presented in this paper);
for other regions on the globe, they may need to be adjusted.

Deleted: Automation of this feature is planned for the future

1258 limited documentation is provided. However, community support is available from the author of
 1259 this paper through Discord⁶. In the near-future, more effort will be invested into documentation to
 1260 give the user more autonomy in creating new applications that cannot be derived from those
 1261 provided in our paper.

1262

Parameters	App. 1 examples/01_oc o2_rad-sim.py	App. 2 examples/02_mo dis_rad-sim.py	App. 3 examples/03_sp ns_flux-sim.py	App. 4 examples/04_ca m_nadir_rad- sim.py	App. 5 examples/05_cn n-les_rad- sim.py
Date	September 2, 2019 Specified at Line 66: params['date'] And Line 1569: date	September 2, 2019 Specified at Line 68: params['date'] And Line 1311: date	September 20, 2019 Specified at Line 439: date And Line 238: date	October 5, 2019 Specified at Line 59: params['date'] And Line 215: date	October 5, 2019 Specified at Line 58: params['date'] And Line 126: date
Geographical Region	Specified at Line 69: params['region'] 1	Specified at Line 69: params['region'] 1	Variable (depends on aircraft location)	N/A	N/A
Z Grid (Number of Grids/Resolution)	40 / 0.5 km Specified at Line 1476: levels	40 / 0.5 km Specified at Line 1220: levels	20 / 1 km Specified at Line 180: levels	40 / 0.5 km Specified at Line 174: levels	50 / 0.4km Specified at Line 92: levels
Wavelength	768.52 nm Specified at Line 67: params['wavele ngth'] 1	650 nm Specified at Line 67: params['wavele ngth'] 1	745 nm Specified at Line 440: wavelength	600 nm Specified at Line 58: params['wavele ngth'] 1	600 nm Specified at Line 57: params['wavele ngth'] 1
Atmospheric Gas Profile	US standard atmosphere Specified at Line 1479: atm0	US standard atmosphere Specified at Line 1223: atm0	US standard atmosphere Specified at Line 183: atm0	US standard atmosphere Specified at Line 177: atm0	US standard atmosphere Specified at Line 68: params['atmosp heric_profile'] 1 And Line 94: atm0
Atmospheric Gas Absorption	Case specific Specified at Line 1487: abs0	Default Absorption Database (Coddington et al., 2008) Specified at Line 1230: abs0	Default Absorption Database (Coddington et al., 2008) Specified at Line 189: abs0	Default Absorption Database (Coddington et al., 2008) Specified at Line 184: abs0	Default Absorption Database (Coddington et al., 2008) Specified at Line 97: abs0
Cloud Top Height (CTH)	From MODIS L2 cloud product Specified at Line 1520: data1['cth_2d'] And Line 1530: cld0	From MODIS L2 cloud product Specified at Line 1263: data1['cth_2d'] And Line 1273: cld0	From AHI L2 cloud product Specified at Line 208: cth_2d And Lines 212: cld0	2 km Specified at Line 63: params['cloud top height'] And Lines 199: cld0	From LES Specified at Line 103: cld0
Cloud Geometrical Thickness	1 km for CTH < 4 km; Variable that cloud base height is at 3 km for CTH > 4 km Specified at Line 1527: cgt	1 km for CTH < 4 km; Variable that cloud base height is at 3 km for CTH > 4 km Specified at Line 1270: cgt	1 km Specified at Line 212: cgt	1 km Specified at Line 64: params['cloud geometrical th ickness']	From LES Specified at Line 103: cld0

⁶ <https://discord.gg/ntqsguwaWv>

Cloud Optical Thickness	Used IPA reflectance-to-COT mapping for MODIS LIB Reflectance at 250 m resolution Specified at Line 1518: data['cot_2d'] And Line 1530: cld0	Used IPA reflectance-to-COT mapping for MODIS LIB Reflectance at 250 m resolution Specified at Line 1261: data['cot_2d'] And Line 1273: cld0	From AHI L2 cloud product Specified at Line 198: cot_2d And Lines 212: cld0	Used IPA reflectance-to-COT mapping and CNN for camera red channel radiance/reflectance at 100 m resolution Specified at Lines 474 and 493: cot_2d And Lines 199: cld0	From LES Specified at Line 103: cld0
Cloud Effective Radius	From MODIS L2 Cloud Product Specified at Line 1519: data['cer_2d'] And Line 1530: cld0	From MODIS L2 Cloud Product Specified at Line 1262: data['cer_2d'] And Line 1273: cld0	From AHI L2 cloud product Specified at Line 199: cer_2d And Lines 212: cld0	12 micron Specified at Lines 475 and 494: cer_2d And Lines 199: cld0	From LES Specified at Line 103: cld0
Scattering Phase Function	Mie (water cloud) Specified at Line 1536: pha0 And Line 1573: sca	Mie (water cloud) Specified at Line 1279: pha0 And Line 1315: sca	Mie (water cloud) Specified at Line 219: pha0 And Line 237: sca	Mie (water cloud) Specified at Line 190: pha0 And Line 219: sca	Mie (water cloud) Specified at Line 111: pha0 And Line 130: sca
Surface Albedo	From MODIS surface albedo product and scaled by OCO-2 Specified at Line 1501: mod43 And Line 1503: sfc_2d	From MODIS surface albedo product Specified at Line 1244: mod43 And Line 1246: sfc_2d	0.03 Implicitly specified by default at Line 234: mcarats_ng	0.03 Specified at Line 61: params['surface_albedo'] And Line 218: surface_albedo	0.03 Specified at Line 59: params['surface_albedo'] And Line 133: surface_albedo
Solar Zenith Angle	From OCO-2 geolocation file Specified at Line 1554: sza And Line 1576: solar Zenith angle	From MODIS geolocation file Specified at Line 1296: sza And Line 1318: solar Zenith angle	Variable (depends on aircraft location and date and time)	28.90° Specified at Line 464: geometry['sza'] 1 And Line 222: solar Zenith angle	29.16° Specified at Line 60: params['solar zenith angle'] And Line 134: solar Zenith angle
Solar Azimuth Angle	From OCO-2 geolocation file Specified at Line 1555: saa And Line 1577: solar azimuth angle	From MODIS geolocation file Specified at Line 1297: saa And Line 1319: solar azimuth angle	Variable (depends on aircraft location and date and time)	296.83° Specified at Line 465: geometry['saa'] 1 And Line 223: solar azimuth angle	296.83° Specified at Line 61: params['solar azimuth angle'] 1 And Line 135: solar azimuth angle
Sensor Altitude	705 km (satellite altitude) Implicitly specified by default at Line 1568: mcarats_ng	705 km (satellite altitude) Implicitly specified by default at Line 1310: mcarats_ng	N/A, three-dimensional irradiance outputs at user-defined Z grid	5.48 km (flight altitude) Specified at Line 466: geometry['alt'] 1 And Line 224: sensor_altitude	705 km (satellite altitude) Specified at Line 64: params['sensor altitude'] And Line 138: sensor altitude
Sensor Zenith Angle	From OCO-2 geolocation file Specified at Line 1557: vza	From MODIS geolocation file Specified at Line 1302: vza	0° (nadir) Implicitly specified by default at Line 234: mcarats_ng	0° (nadir) Implicitly specified by default at Line 214: mcarats_ng	0° (nadir) Specified at Line 62: params['sensor zenith angle'] 1

	And Line 1578: sensor zenith angle	And Line 1320: sensor zenith angle			And Line 136: sensor zenith angle
Sensor Azimuth Angle	From OCO-2 geolocation file Specified at Line 1558: vaa And Line 1579: sensor azimuth angle	From MODIS geolocation file Specified at Line 1303: vaa And Line 1321: sensor azimuth angle	0° (insignificant for nadir) Implicitly specified by default at Line 234: mcarats_ng	0° (insignificant for nadir) Implicitly specified by default at Line 214: mcarats_ng	0° (insignificant for nadir) <u>Specified at Line 63: params['sensor azimuth angle '1]</u> And Line 137: sensor azimuth angle
Number of Photons	1×10^8 per run Specified at Line 70: params['photon '1] And Line 1583: photons	1×10^8 per run Specified at Line 70: params['photon '1] And Line 1325: photons	1×10^7 per run Specified at Line 50: params['photon '1] And Line 243: photons	1×10^7 per run Specified at Line 60: params['photon '1] And Line 228: photons	1×10^8 per run Specified at Line 65: params['photon '1] And Line 141: photons
Number of Runs	3 Specified at Line 1581: Nrun	3 Specified at Line 1323: Nrun	3 Specified at Line 242: Nrun	3 Specified at Line 226: Nrun	3 Specified at Line 140: Nrun
Mode (3D or IPA)	3D and IPA Specified at Line 1704 and 1705: solver And Line 1584: solver	3D or IPA Specified at Line 1418: solver And Line 1326: solver	3D and IPA Specified at Lines 377 and 378: solver And Line 244: solver	3D Specified at Lines 507 and 508: solver And Line 229: solver	3D Specified at Line 143: solver
Parallelization Mode	Python multi-processing Specified at Line 1586: mp_mode	Python multi-processing Specified at Line 1328: mp_mode	Python multi-processing Specified at Line 247: mp_mode	Python multi-processing Specified at Line 231: mp_mode	Python multi-processing Specified at Line 145: mp_mode
Number of CPUs	12 Specified at Line 71: params['Ncpu '1] And Line 1585: Ncpu	12 Specified at Line 71: params['Ncpu '1] And Line 1327: Ncpu	12 Specified at Line 311: Ncpu And Line 246: Ncpu	12 Specified at Line 230: Ncpu	24 on clusters Specified at Line 144: Ncpu

1263

1264 **Table A1:** List of parameters used in the five applications. The line numbers used in the table are referring to the code
1265 script of each application. If two line numbers are provided, the first one indicates where the parameter is
1266 defined and the second one indicates where the parameter is passed into the radiative transfer setup. Users
1267 can change either one for customization purposes.

1268

1269

Metadata			
Variable Name	Description	Data Type	Dimension
<code>mean/N_photon</code>	Number of photons per run	Array	<code>N_g</code>
<code>mean/N_run</code>	Number of runs	Integer value	N/A
<code>mean/toa</code>	TOA downwelling flux	Float value	N/A
Radiance			
Variable Name	Description	Data Type	Dimension

mean/rad	Radiance field at user specified altitude averaged over different runs	Array	(N_x, N_y)
mean/rad_std	Standard deviation of the radiance fields from different runs	Array	(N_x, N_y)
Irradiance			
Variable Name	Description	Data Type	Dimension
mean/f_down	Downwelling irradiance averaged over different runs	Array	(N_x, N_y, N_z)
mean/f_down_std	Standard deviation of the downwelling irradiance from different runs	Array	(N_x, N_y, N_z)
mean/f_down_diffuse	Diffuse downwelling irradiance averaged over different runs	Array	(N_x, N_y, N_z)
mean/f_down_diffuse_std	Standard deviation of the diffuse downwelling irradiance from different runs	Array	(N_x, N_y, N_z)
mean/f_down_direct	Direct downwelling irradiance averaged over different runs	Array	(N_x, N_y, N_z)
mean/f_down_direct_std	Standard deviation of the direct downwelling irradiance from different runs	Array	(N_x, N_y, N_z)
mean/f_up	Upwelling irradiance averaged over different runs	Array	(N_x, N_y, N_z)
mean/f_up_std	Standard deviation of the upwelling irradiance from different runs	Array	(N_x, N_y, N_z)

1270

1271 **Table A2:** Data variables contained in the output HDF5 file from EaR³T for radiance and irradiance calculations. The
 1272 radiance is simulated with a user-specified sensor geometry at a given altitude using forward photon tracing.
 1273 The data variables listed under Metadata are included for both radiance and irradiance calculations. N_x,
 1274 N_y, and N_z are the number of pixels along x, y, and z direction, respectively. N_g is the number of g,
 1275 explained in [Appendix A2 – Correlated-k](#).

Deleted: 1

1276

1277 [A2 – EaR³T Code Walk-through](#)

1278 We will provide a code walk-through of the OCO-2 and MODIS simulator applications
 1279 with the codes `examples/01_oc02_rad-sim.py` (App. 1) and
 1280 `examples/02_modis_rad-sim.py` (App. 2). The data acquisition (first step in Figure 1)

Deleted: section 3

1283 uses functions in `er3t/util`. App. 1 and App. 2 use the functions in `er3t/util/modis.py`
1284 and `er3t/util/oco2.py` for downloading the MODIS and OCO-2 data files from the
1285 respective NASA data archives and for processing the data (e.g., geo-mapping, gridding etc.). The
1286 user supplies minimum input (date and time, as well as latitudes and longitudes of the region of
1287 interest), which need to be specified in `satellite_download` (within the application codes).
1288 For example, for App. 1 and App. 2, the only user inputs are the date and time and the region of
1289 interest – in this case September 2, 2019, with the westernmost, easternmost, southernmost, and
1290 northernmost longitudes and latitudes of 109°W, 107°W, 37°N, and 39°N. In order for EaR³T to
1291 access any data archives such as NASA Earthdata, the user needs to create an account with them
1292 and store the credentials locally (detailed instructions are provided separately along with the EaR³T
1293 distribution).

1294 After the data acquisition step, the satellite data are fed into the pre-processing step for 1)
1295 atmospheric gases (`er3t/pre/atm`), 2) clouds (`er3t/pre/cld`), 3) surface
1296 (`er3t/pre/sfc`) as shown in Figure 1. In the default configuration of the App. 1, the standard
1297 US atmosphere (Anderson et al., 1986; included in the EaR³T repository) is used within `atm`.
1298 EaR³T supports the input of user-specified atmospheric profiles, e.g., atmospheric profiles from
1299 reanalysis data for App. 2 as described in Chen et al. (2023), by making changes in `atm_atmmod`
1300 (from `er3t/pre/atm`). Subsequently, molecular scattering coefficients are calculated by
1301 `cal_mol_ext` (from `er3t/util`), and absorption coefficients for atmospheric gases are
1302 generated by (`er3t/pre/abs`). At the current development stage, two options are available:

1303 1. Line-by-line (used by App. 1): The repository includes a sample file of absorption coefficient
1304 profiles for a subset of wavelengths within OCO-2's Oxygen A-Band channel, corresponding
1305 to a range of atmospheric transmittance values from low (opaque) to high (so-
1306 called "continuum" wavelength). They were generated by an external code (Chen et al., 2023)
1307 based on OCO-2's line-by-line absorption coefficient database (ABSCO, Payne et al., 2020).
1308 They are calculated for a fixed mixing ratio of 400 ppm. In a subsequent paper (Chen et al.,
1309 2023), an OCO-2 specific EaR³T code will be published where the actual mixing ratio is
1310 used. For each OCO-2 spectrometer wavelength within a given channel, hundreds of
1311 individual absorption coefficient profiles at the native resolution of ABSKO need to be
1312 considered across the instrument line shape (ILS, also known as the slit function) of the
1313 spectrometer. The ILS, as well as the incident solar irradiance, are also included in the file.

1314 In subsequent steps, EaR³T performs RT calculations at the native spectral resolution of
1315 ABSCO, but then combines the output by convolving with the ILS and outputs OCO-2
1316 radiances or reflectances at the subset of wavelengths. For probabilistic (Monte Carlo) RT
1317 solvers such as MCARaTS, the number of photons can be kept relatively low (e.g., 10⁶
1318 photons), and can be adjusted according to the values of the ILS at a particular ABSCO
1319 wavelength. Any uncertainty at the ABSCO spectral resolution due to photon noise is greatly
1320 reduced by convolving with the ILS for the final output.

1321 2. Correlated-k (used by App. 2): This approach (Mlawer et al., 1997) is appropriate for
1322 instruments such as MODIS with much coarser spectral resolution than OCO-2, as well as
1323 for broadband calculations. In contrast to the line-by-line approach, RT calculations are not
1324 performed at the native resolution of the absorption database, but at Gaussian quadrature
1325 points (called “g’s”) that represent the full range of sorted absorption coefficients, and then
1326 combined using Gaussian quadrature weights. The repository includes an absorption
1327 database from Coddington et al. (2008), developed specifically for a radiometer with
1328 moderate spectral resolution on the basis of HITRAN (high-resolution transmission
1329 molecular absorption database) 2004 (Rothman et al., 2005). It was created for the ILS of
1330 the airborne Solar Spectral Flux Radiometer (SSFR, Pilewskie et al., 2003), but is applied to
1331 MODIS here, which has a moderate spectral resolution of 8-12 nm with 20-50 nm
1332 bandwidths. It uses 16 absorption coefficient bins (g’s) per target wavelength (this could
1333 either be an individual SSFR or a MODIS channel), which are calculated by EaR³T with the
1334 Coddington et al. (2008) database using the mixing ratios of atmospheric gases in the
1335 previously ingested profile. In future implementations, the code will be updated to enable
1336 flexible ILS and broadband calculations.

1337 The `er3t/pre/cld` module calculates extinction, thermodynamic phase, and effective
1338 droplet radius of clouds from the input data. The `er3t/pre/pha` module creates the required
1339 single scattering albedo and scattering phase function. The default is a Henyey-Greenstein phase
1340 function with a fixed asymmetry parameter of 0.85. Along with the current distribution (v0.1.1) of
1341 EaR³T, the Mie phase functions based on thermodynamic phase, effective droplet radius, and
1342 wavelength are supported. In this study, App. 1 and App. 2 use Mie phase functions calculated
1343 from Legendre polynomial coefficients (originally distributed along with libRadtran) based on the
1344 wavelength and cloud droplet effective radius. In the future, EaR³T will include stand-alone phase

1345 functions, which can be chosen on the basis of droplet size distributions in addition to effective
1346 radius. It is also possible to include aerosols in a similar fashion as clouds. This is done with the
1347 `er3t/pre/aer` module. In the case of aerosols, spectral single scattering albedo and asymmetry
1348 parameter are required as inputs in addition to the extinction fields.

1349 After the optical properties are calculated, they are passed into the 3D-RT step
1350 (`er3t/rtm/mca`). This step performs the setup of RT solver-specified input parameters and data
1351 files, distributing runs over multiple Central Processing Units (CPUs), and post-processing RT
1352 output files into a single, user-friendly HDF5 file. For example, when radiance is specified as
1353 output (default in App. 1 and App. 2), key information such as the radiance field and its standard
1354 deviation are stored in the final HDF5 file (details see Table 1).

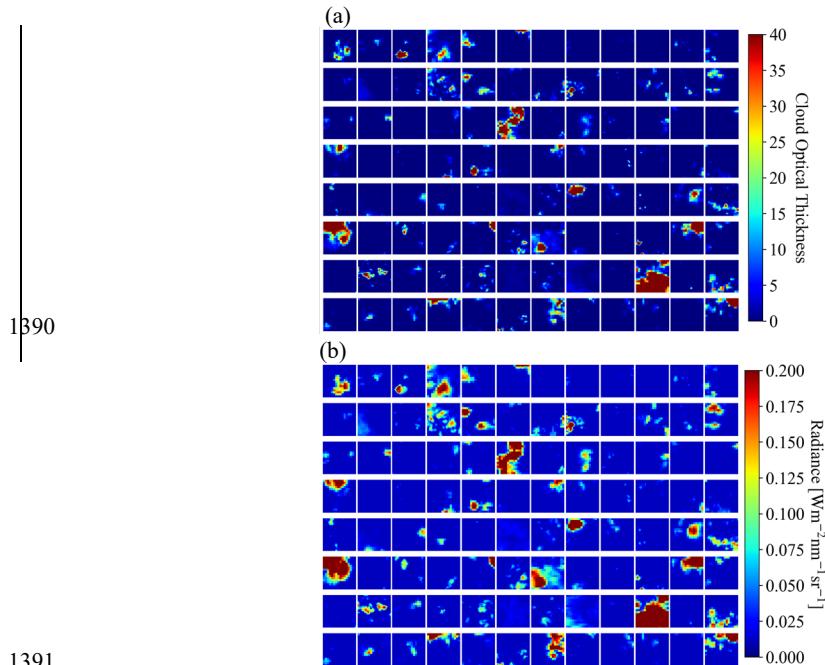
1355 While the EaR³T repository comes with various applications such as App. 1 and App. 2,
1356 described above, the functions used by these master or ‘wrapper’ programs can be organized in
1357 different ways, where the existing applications serve as templates for a quick start when developing
1358 new applications. The functions used by the master code pass information through the various
1359 steps as Python objects. For example, in `examples/01_oco2_rad-sim.py`, the downloaded
1360 and processed satellite data are stored into the `sat` object. Later, the `sat` object is passed into an
1361 EaR³T function to create the `cld` object that contains cloud optical properties. Similarly, EaR³T
1362 provides functions to create the `atm`, and `sfc` objects with optical properties for atmospheric
1363 gases and the surface. These objects (`atm`, `cld`, `sfc`) are in turn passed on to solver-specific
1364 modules for performing RT calculations. The user can choose to save the data of the intermediate
1365 objects into Python pickle files after the first run. In this way, multiple calls with identical input
1366 can re-use existing data, which accelerates the processing time of EaR³T. Unless the user specifies
1367 the `overwrite` keyword argument in the object call to reject saving pickle files, these shortcuts
1368 save significant time.

1369
1370 **Appendix B – App. 5 Radiance calculations based on the Large Eddy Simulation**

1371 The CNN COT retrieval framework was developed by Nataraja et al. (2022). It adapts a
1372 U-Net (Ronneberger et al., 2015) architecture and treats the retrieval of COT from radiance as a
1373 segmentation problem – probabilities of 36 COT classes (ranging from COT of 0 to 100) are
1374 returned as the final COT retrieved for a given cloud radiance field. It accounts for horizontal
1375 photon transport, which is neglected in traditional cloud retrieval algorithms; in other words, for

1376 the spatial context of cloudy pixels. It was trained on synthetic cloud fields generated by a Large
1377 Eddy Simulation (LES) model, which provides the ground truth of COT. Subsequently, EaR³T was
1378 used to calculate 3D-RT radiances at 600 nm for LES cloud fields to establish a mapping between
1379 radiance to COT. Only six LES cases were used to represent the variability of the cloud
1380 morphology. Each of these fields are 480x480 pixels across (spatial resolution of 100 m). These
1381 large fields were mapped onto thousands of 64x64 mini tiles with spatial resolution of 100 m as
1382 described in Nataraja et al., 2022. To keep the training data set small, mini tiles selectively sampled
1383 according to their mean COT and standard deviation. This ensured an even representation of the
1384 dynamic range of COT and its variability, which was termed homogenization of the training data
1385 set. Figure A1 shows a collection of samples from the training data as an illustration. All the
1386 aforementioned simulation setup and techniques in data process are included in the App. 5 example
1387 code, which can be applied to the LES data (a different scene from the 6 scenes) distributed along
1388 with EaR³T.

1389



1391

1392 **Figure A1.** Illustrations of 64x64 tiles of (a) cloud optical thickness from LES data and (b) calculated 3D radiance at
1393 600 nm from EaR³T for CNN training.

1394

1395 **Appendix C**

1396 **C1. Cloud Detection/Identification**

1397 Cloudy pixels are identified through a thresholding method based on the red, green, and
1398 blue channels of MODIS. When the radiance values of the red, green, and blue channels of a pixel
1399 are all greater than a pre-calculated threshold value, the pixel is considered as cloudy, as illustrated
1400 by the following equation

1401
$$\text{If } \begin{cases} \text{Red} > a_R \cdot \text{Quantile}(\text{Red}, q_0) & \text{Yes: cloudy} \\ \text{Blue} > a_B \cdot \text{Quantile}(\text{Blue}, q_0) & \text{No: clear sky} \\ \text{Green} > a_G \cdot \text{Quantile}(\text{Green}, q_0) \end{cases} \quad (A1)$$

1402 where a_R , a_B , and a_G are scale factors with a default value of 1.0, and Quantile returns the q_0
1403 percentile of the sorted reflectance data (ascending order; $q_0 = 0.5$ is equivalent to the median).

1404 The scale factors can be adjusted separately to perform fine tuning for different surface types. For
1405 example, adjusting a_G will be more effective for separating clouds from greenish vegetation
1406 surface than the other two factors. For simplicity, they are all set to 1.0 for the case shown in App.
1407 1 and 2. The q_0 is determined by the following equation,

1408
$$q_0 = \max(0, 1 - \text{frac}_{\text{cld}} \cdot 1.2) \quad (A2)$$

1409 where frac_{cld} is cloud fraction obtained from the MODIS L2 cloud product (number of cloudy
1410 pixels divided by the number of total pixels). Through the definition of q_0 , the threshold-based
1411 cloud detection method is pegged to the MODIS product at the domain scale. Because of the coarse
1412 resolution of the MODIS-based cloud mask, it cannot be used directly for our application.
1413 However, it uses many more channels than available at high spatial resolution, and is therefore
1414 more accurate. The factor of 1.2 can be adjusted. A value of higher than 1 allows for clouds that
1415 are not detected by MODIS (for various reasons, for example because of their spatial scale) to be
1416 picked up. At the same time, this leads to over-detection (false positives, i.e. clear-sky pixels
1417 identified as cloudy), and therefore the thresholding is only the first step (primary thresholding),
1418 followed by the next (secondary) step where false positives are removed.

1419 The secondary step is based on MODIS L2 cloud products: COT (cloud optical thickness),
1420 CER (cloud effective radius), and CTH (cloud top height). For the pixels that are identified as
1421 cloudy in the primary thresholding, especially at the lower end of the reflectance (Ref.), we rely

Deleted: simple

Deleted: the corresponding median value

Deleted: Median

Deleted: Median

Deleted: Median

Deleted: ,

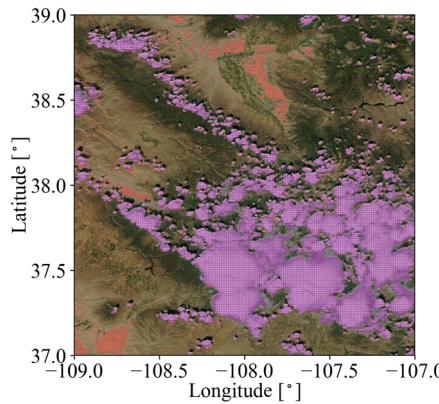
Deleted: ,

Deleted:

1430 on the clear-sky identifiers from MODIS L2 cloud product (where no cloud products are retrieved),
1431 as illustrated by the following equation

1432 **If** $Ref. < Median(Ref.) \& COT, CER, \text{ and } CTH \text{ are } NaN$ { **Yes:** clear sky
1433 **No:** cloudy } (A3)

1434 Figure A2 shows the cloud mask from primary thresholding (Equation A1, red and purple), and
1435 the pixels that are reverted to clear-sky by the secondary filter (Equation A2, red).



1436
1437 **Figure A2.** Cloud mask for the scene shown in Figure 2. Red and purple indicate pixels identified as cloudy through
1438 the primary thresholding (Equation A1) and purple indicates pixels finally identified as cloudy after applying
1439 secondary filter (Equation A3).

1440 C2. IPA Reflectance-to-COT Mapping

1441 In order to retrieve COT (cloud optical thickness) from cloud reflectance as measured by
1442 various instruments, we use the EaR³T built-in solver MCARaTS in IPA mode to calculate a
1443 lookup table of reflectance as a function of COT. The function for generating these lookup tables
1444 is included in EaR³T as `er3t.rtm.mca.func_ref_vs_cot`. Two mappings are generated
1445 for App. 1&2 to account for geometrically thin (cloud top height less than 4 km) and thick (cloud
1446 top height greater than 4 km) clouds separately while a single mapping is generated for App. 4.
1447 Specifically, for a range of COT (0 to 200), reflectance is calculated from EaR³T with the same
1448 input parameters (wavelength, viewing and solar geometries, and surface albedo) listed in Table
1449 A1 for each application except for a few simplifications described in the following table (Table
1450 A3):

Deleted: Note that this only works for partially cloud-covered scenes, and may lead to false positives if there is brightness contrast from objects other than clouds. This method was specifically applied for the cases in this paper and should be changed as appropriate for future applications.

Deleted: Two-Stream Approximation

1458

	App. 1 & 2		App. 4
Cloud Type	Geometrically Thin Clouds	Geometrically Thick Clouds	All
Cloud Effective Radius	$10 \mu m$	$20 \mu m$	$10 \mu m$
Cloud Top Height	3 km	10 km	2 km
Cloud Geometrical Thickness	1 km	7 km	1 km
Surface Albedo	0.08 (domain average of the MCD43 WSA)	0.08 (domain average of the MCD43 WSA)	0.03

1459

1460 **Table A3:** List of parameters for deriving IPA reflectance-to-COT (cloud optical thickness) mappings for App. 1&2
1461 and App. 4 in addition to Table A1.

1462

1463 The clouds are assumed horizontally homogeneous over a 2×2 pixel domain. For each
1464 calculation, 10^8 photons are used for running EaR³T in IPA mode. After calculating $R(COT)$, the
1465 inverse relationship of $COT(R)$ is then used for estimating COT at any given R for the cloudy
1466 pixels. Figure A3 shows the IPA reflectance-to-COT mappings created for App. 1&2, and App. 4.
1467 Note that the difference between the App. 1&2 thin clouds (blue) and App. 4 (green) is due to
1468 different surface albedos (when COT less than 20) and sensor viewing geometries (when COT
1469 greater than 20, specified in Table A1). Note that this approach will ensure IPA
1470 radiance/reflectance consistency (retrieved IPA COT will reproduce the exact IPA cloud
1471 reflectance, see Figure A4) because the radiative transfer processes of $R(COT)$ and $COT(R)$ are
1472 the same. However, since it makes some simplifications as mentioned above, uncertainties are
1473 expected for a complicated atmospheric environment (varying cloud thermodynamic phase,
1474 effective radius, cloud top height, geometrical thickness, vertical profile; variable surface albedo
1475 and topography), which are shown up as spread (deviations from identity line) in Figure A4.

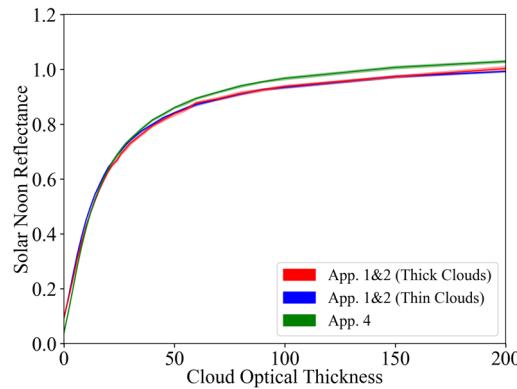
1476

Deleted: The two-stream approximation of the reflectance R is calculated using Eq. D2 from Chen et al. (2021), as follows:[†]

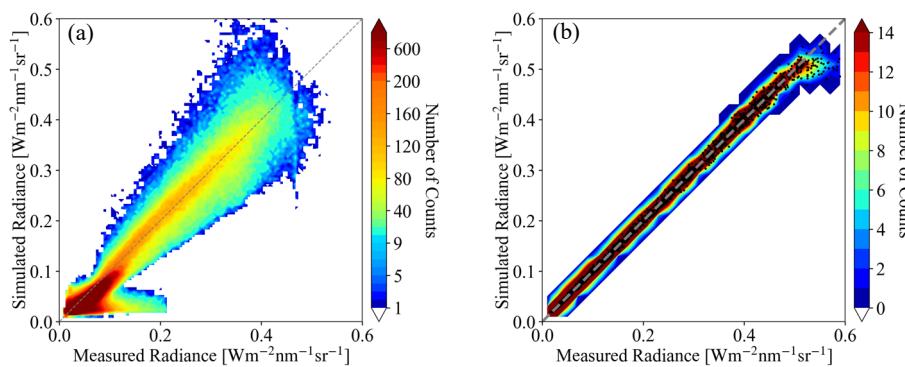
Deleted: τ

Deleted: τ

Deleted: does not take into account any cloud reflectance anisotropies.



1484
1485 **Figure A3.** The IPA reflectance-to-COT mappings used for App. 1&2 (red and blue) and App. 4 (green). The
1486 reflectance is normalized by the cosine of solar zenith angle (referred to as solar noon reflectance). The
1487 uncertainties associated with photon statistics are indicated by the shaded area.
1488



1489
1490 **Figure A4.** (a) and (b) are the same as Figure 7 and Figure 13b except for the IPA radiance calculations.
1491
1492

1493 **Appendix D**

1494 **D1. Parallax Correction**

1495 From the satellite's view, the clouds (especially high clouds) will be placed at inaccurate
1496 locations on the surface, which have shifted from their actual locations due to the parallax effect.

1497 We followed simple trigonometry to correct for it, as follows:

Deleted: simply

1499 Longitude correction (positive from west to east):

$$1500 \quad \delta lon = \frac{(z_{cld} - z_{sfc}) \cdot \tan(\theta) \cdot \sin(\phi)}{\pi \cdot R_{Earth}} \times 180^\circ$$

(A4) Deleted: B1

1501 Latitude correction (positive from south to north):

$$1502 \quad \delta lat = \frac{(z_{cld} - z_{sfc}) \cdot \tan(\theta) \cdot \cos(\phi)}{\pi \cdot R_{Earth}} \times 180^\circ$$

(A5) Deleted: B2

1503 where $(lon_{sat}, lat_{sat}, z_{sat})$ is the satellite location and θ and ϕ (0° at north, positive clockwise)
1504 are the sensor viewing zenith and azimuth angles. z_{cld} and z_{sfc} are the cloud top height and the
1505 surface height. R_{Earth} is the radius of the Earth. Figure A2 shows an illustration of the parallax
1506 correction for the cloud field in the inset in Figure 2. Note that discontinuities in the latitude and
1507 longitude fields arising from different combinations of sensor viewing geometries and cloud top
1508 and surface heights may lead to gaps in the cloud fields. These gaps are identified and filled in
1509 with the average of data from adjacent pixels (plus minus two pixels along x and y) through the
1510 following process:

$pixel_{ij}^{aft}$ is clear & $pixel_{ij}^{bef}$ is cloudy &

1511 If $cldfrac(pixel^{bef}[i-2:i+2, j-2:j+2]) > frac_a \& cldfrac(pixel^{aft}[i-2:i+2, j-2:j+2]) > frac_b \&$ Yes: fill $pixel_{ij}^{aft}$ with the average of

1512 where $pixel_{ij}$ indicates the pixel at i along x and j along y, bef and aft refer to before and after
1513 parallax correction respectively, cldfrac calculates cloud fraction (number of cloudy pixels
1514 divided by total pixel number), and cld selects data where pixels are identified as cloudy. The
1515 frac_a and frac_b are set to 0.7 for the cases demonstrated in the paper. Lower frac_a tends to over
1516 select clear-sky pixels at the cloud edge and lower frac_b tends to over correct clear-sky pixels
1517 within clouds that are not clear-sky due to parallax artifacts. While increase frac_a and frac_b
1518 tends to under correct parallax artifacts.

1519

1520 D2. Wind Correction

1521 The wind correction aims at correcting the movement of clouds when advected by the wind
1522 between two different satellites' overpasses.

1523 Longitude correction (positive from west to east):

$$1524 \quad \delta lon = \frac{ut \cdot \delta t}{\pi \cdot R_{Earth}} \times 180^\circ$$

(A6) Deleted: B3

1528 Latitude correction (positive from south to north):

1529
$$\delta lat = \frac{v \cdot \delta t}{\pi \cdot R_{Earth}} \times 180^\circ$$

(A7)

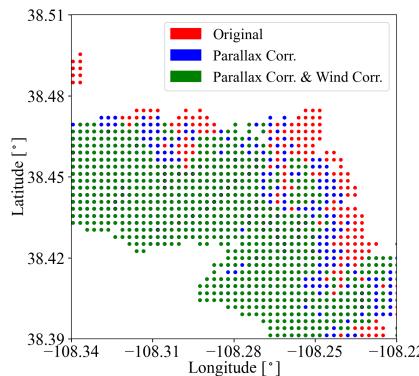
Deleted: B4

1530 where v and δt are the domain-averaged 10 m zonal and meridional wind speeds, and δt is the time
1531 difference between two different satellites that fly on the same orbit. Figure A2 shows the cloud
1532 location after applying the parallax (Appendix D1) and wind correction for the cloud field in the
1533 inset from Figure 2.

1534

1535

1536



1537
1538 **Figure A5.** An illustration of correcting cloud location (red) for parallax effect (blue) and wind effect (green) for the
1539 cloud field of the inset in Figure 2. Filled cloud gaps as described in Appendix D1 are indicated by black
1540 circles.
1541

Deleted: A2

1544 **Acknowledgement**

1545 The aircraft all-sky camera was radiometrically calibrated by the U.S. Naval Research Laboratory.

1546 We thank Jens Redemann for insightful discussions ~~on~~ Figure 9 (App. 3) about the apparent
1547 contradiction of the direction of the COT, reflectance, and transmittance biases.

1548 Deleted: about

1549 **Data availability**

1550 For App. 1 and App. 2, the OCO-2 data were provided by the NASA Goddard Earth Sciences Data
1551 and Information Services Center (GES DISC, <https://oco2.gesdisc.eosdis.nasa.gov/data>) and the
1552 MODIS data were provided by the NASA Goddard Space Flight Center's Level-1 and Atmosphere
1553 Archive and Distribution System (LAADS, <https://ladsweb.modaps.eosdis.nasa.gov/archive>),
1554 which are all publicly available and can be downloaded by EaR³T through the application code.
1555 For App. 3, the AHI data were processed by Holz's (coauthor of this paper) team. The SPN-S data
1556 were provided by Schmidt and Norgren (coauthors of this paper). Both the AHI and SPN-S data
1557 are publicly available at NASA Airborne Science Data for Atmospheric Composition
1558 (<https://www-air.larc.nasa.gov/missions/camp2ex/index.html>). The AHI data and the SPN-S data
1559 for the flight track indicated in Figure 8 of the paper are distributed along with EaR³T for
1560 demonstration purpose. For App. 4, all sky camera imagery and CNN model are distributed along
1561 with EaR³T. EaR³T is publicly available and can be accessed and downloaded at
1562 <https://github.com/hong-chen/er3t> (or <https://doi.org/10.5281/zenodo.7734965>, for v0.1.1, used in
1563 this paper; Chen and Schmidt, 2022).

1564 Deleted: 10.5281/zenodo.7374196

1565 Deleted: 0.1.0

1565 **Author contributions**

1566 All the authors helped with editing the paper. HC developed the EaR³T package in Python
1567 including the application code, performed the analysis, and wrote the majority of the paper with
1568 input from the other authors. KSS provided an initial MCARaTS simulation wrapper code in
1569 Interactive Data Language (IDL); helped with the structure design of EaR³T; and helped with
1570 interpreting the results and writing the paper. SM helped with the OCO-2 data interpretation. VN
1571 trained and provided the CNN model. MN helped with the SPN-S instrument calibration and data
1572 processing. JG and GF helped with testing EaR³T and the LES data interpretation. RH provided
1573 the AHI data and helped with the data interpretation. HI helped with the implementation of
1574 MCARaTS ~~in~~ EaR³T.

Deleted: into

1579 **References**

1580 Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL
1581 atmospheric constituent profiles (0–120 km), Tech. Rep. AFGL-TR-86-0110, Air Force
1582 Geophys. Lab., Hanscom Air Force Base, Bedford, Massachusetts, U.S.A., 1986.

1583 Barker, H. and Liu, D.: Inferring optical depth of broken clouds from Landsat data, *J. Climate*, 8,
1584 2620–2630, 1995.

1585 Barker, H. W., Jerg, M. P., Wehr, T., Kato, S., Donovan, D. P., and Hogan, R. J.: A 3D cloud
1586 construction algorithm for the EarthCARE satellite mission, *Q. J. Roy. Meteor. Soc.*, 137,
1587 1042–1058, <https://doi.org/10.1002/qj.824>, 2011.

1588 Barker, H. W., Kato, S., and Wehr, T.: Computation of solar radiative fluxes by 1-D and 3-D
1589 methods using cloudy atmospheres inferred from A-train satellite data, *Surv. Geophys.*, 33,
1590 657–676, 2012.

1591 Cahalan, R., Oreopoulos, L., Marshak, A., Evans, F., Davis, A., Pincus, R., Yetzen, K. H., Mayer,
1592 B., Yetzer, K. H., Mayer, B., Davies, R., Ackerman, T. P., Barker, H. W., Clothiaux, E. E.,
1593 Ellingson, R. G., Garay, M. J., Kassianov, E., Kinne, S., Macke, A., O'Hirok, W., Partain, P.
1594 T., Prigarin, S. M., Rublev, A. N., Stephens, G. L., Szczap, F., Takara, E. E., Varnai, T., Wen,
1595 G., and Zhuravleva, T.: The I3RC: Bringing Together the Most Advanced Radiative Transfer
1596 Tools for Cloudy Atmospheres, *B. Am. Meteorol. Soc.*, 86, 1275–1293, 2005.

1597 Chen, H. and Schmidt, S.: er3t-v0.1.1, <https://doi.org/10.5281/zenodo.7734965>, 2023.

1598 Chen, H., Schmidt, S., and Holz, R. E.: Synchronized Flight Videos for NASA CAMP²Ex,
1599 <https://doi.org/10.5281/zenodo.7358509>, 2022.

1600 [Chen, Y.-W., Schmidt, S., Massie, S., Chen, H., Crisp, D., Kulawik, S., Merrelli, A., McDuffie, J.,
1601 Iwabuchi, H.: Uncovering the Mechanism for Trace Gas Spectroscopy Biases in the Vicinity
1602 of Clouds With the OCO-2 3D Radiative Transfer Satellite Radiance Simulator, *Atmos. Meas.
1603 Tech.*, *in prep.*, 2023.](#)

1604 Crisp, D.: Measuring Atmospheric Carbon Dioxide from Space with the Orbiting Carbon
1605 Observatory-2 (OCO-2), *P. Soc. Photo.-Opt. Ins.*, 9607, 960702,
1606 <https://doi.org/10.1117/12.2187291>, 2015.

1607 Coddington, O., Schmidt, K. S., Pilewskie, P., Gore, W. J., Bergstrom, R., Roman, M., Redemann,
1608 J., Russell, P. B., Liu, J., and Schaaf, C. C.: Aircraft measurements of spectral surface albedo
1609 and its consistency with ground-based and space-borne observations, *J. Geophys. Res.*, 113,

Deleted: v0.1.0

Deleted: 10.5281/zenodo.7374196

Deleted: 2022

1613 D17209, doi:10.1029/2008JD010089, 2008.

1614 Deneke, H., Barrientos-Velasco, C., Bley, S., Hünerbein, A., Lenk, S., Macke, A., Meirink, J. F.,
1615 Schroedter-Homscheidt, M., Senf, F., Wang, P., Werner, F., and Wittuhn, J.: Increasing the
1616 spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-
1617 resolution visible channel: implementation and examples, *Atmos. Meas. Tech.*, 14, 5107–
1618 5126, <https://doi.org/10.5194/amt-14-5107-2021>, 2021.

1619 Deutschmann, T., Beirle, S., Friess, U., Grzegorski, M., Kern, C., Kritten, L., Platt, U., Prados-
1620 Roman, C., Pukite, J., Wagner, T., Werner, B., and Pfeilsticker, K.: The Monte Carlo
1621 atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and
1622 3-D features, *J. Quant. Spectrosc. Ra.*, 112(6), 1119–1137, ISSN 0022-4073,
1623 doi:10.1016/j.jqsrt.2010.12.009, 2011.

1624 Doicu, A., Efremenko, D., and Trautmann, T.: A multi-dimensional vector spherical harmonics
1625 discrete ordinate method for atmospheric radiative transfer, *J. Quant. Spectrosc. Ra.*, 118,
1626 121–131, <https://doi.org/10.1016/j.jqsrt.2012.12.009>, 2013.

1627 Emde, C., Barlakas, V., Cornet, C., Evans, F., Korkin, S., Ota, Y., Labonne, L. C., Lyapustin,
1628 A., Macke, A., Mayer, B., and Wendisch, M.: IPRT polarized radiative transfer model
1629 intercomparison project – Phase A, *Journal of Quantitative Spectroscopy and Radiative
1630 Transfer*, 164, 8–36, <https://doi.org/10.1016/j.jqsrt.2015.05.007>, 2015.

1631 Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter,
1632 B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative
1633 transfer calculations (version 2.0.1), *Geosci. Model Dev.*, 9, 1647–1672,
1634 <https://doi.org/10.5194/gmd-9-1647-2016>, 2016.

1635 Evans, K. F.: The spherical harmonics discrete ordinate method for three-dimensional atmospheric
1636 radiative transfer, *J. Atmos. Sci.*, 55, 429–446, 1998.

1637 Gatebe, C. K., Jethva, H., Gautam, R., Poudyal, R., and Várnai, T.: A new measurement approach
1638 for validating satellite-based above-cloud aerosol optical depth, *Atmos. Meas. Tech.*, 14,
1639 1405–1423, <https://doi.org/10.5194/amt-14-1405-2021>, 2021.

1640 Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.: Surface Solar Irradiance in
1641 Continental Shallow Cumulus Fields: Observations and Large-Eddy Simulation, *J. Atmos.
1642 Sci.*, 77, 1065–1080, <https://doi.org/10.1175/JAS-D-19-0261.1>, 2020a.

1643 Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.: On the Relationship

1644 Between Shallow Cumulus Cloud Field Properties and Surface Solar Irradiance, Geophysical
1645 Research Letters, 47, e2020GL090152, <https://doi.org/10.1029/2020GL090152>, 2020b.

1646 Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.:
1647 Influence of Aerosol Embedded in Shallow Cumulus Cloud Fields on the Surface Solar
1648 Irradiance, Journal of Geophysical Research: Atmospheres, 127, e2022JD036822,
1649 <https://doi.org/10.1029/2022JD036822>, 2022.

1650 Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X.: The Pathfinder Atmospheres-Extended
1651 AVHRR climate dataset, B. Am. Meteorol. Soc., 95, 909–922,
1652 <https://doi.org/10.1175/BAMS-D-12-00246.1>, 2014.

1653 Illingworth, A. J., Barker, H. W., Beljaars, A., Chepfer, H., Delanoe, J., Domenech, C., Donovan,
1654 D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T.,
1655 Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K.,
1656 Satoh, M., Wandinger, U., Wehr, T., and van Zadelhoff, G.: The EarthCARE Satellite: the
1657 next step forward in global measurements of clouds, aerosols, precipitation and radiation, B.
1658 Am. Meteorol. Soc, 96, 1311–1332, <https://doi.org/10.1175/BAMS-D-12-00227.1>, 2015.

1659 Iwabuchi, H.: Efficient Monte Carlo methods for radiative transfer modeling, J. Atmos. Sci., 63,
1660 2324–2339, 2006.

1661 Kindel, B. C., Schmidt, K. S., Pilewskie, P., Baum, B. A., Yang, P., and Platnick, S.: Observations
1662 and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud
1663 and Climate Coupling Experiment (TC⁴), J. Geophys. Res., 115, D00J18,
1664 doi:10.1029/2009JD013127, 2010.

1665 King, M., and Platnick, S.: The Earth Observing System (EOS), Comprehensive Remote Sensing,
1666 7, 26, doi:10.1016/b978-0-12-409548-9.10312-4, 2018.

1667 Levis, A., Schechner, Y. Y., Davis, A. B., and Loveridge, J.: Multi-View Polarimetric Scattering
1668 Cloud Tomography and Retrieval of Droplet Size, Remote Sens., 12, 2831,
1669 <https://doi.org/10.3390/rs12172831>, 2020.

1670 Li, J., Scinocca, J., Lazare, M., McFarlane, N., von Salzen, K., and Solheim, L.: Ocean Surface
1671 Albedo and Its Impact on Radiation Balance in Climate Models, J. Climate, 19, 6314–6333,
1672 2006.

1673 Long, C. N., Bucholtz, A., Jonsson, H., Schmid, B., Vogelmann, A., and Wood, J.: A Method of
1674 Correcting for Tilt from Horizontal in Downwelling Shortwave Irradiance Measurements on

1675 Moving Platforms, *The Open Atmospheric Science Journal*, 4, 78–87, 2010.

1676 Loveridge, J., Levis, A., Di Girolamo, L., Holodovsky, V., Forster, L., Davis, A. B., and Schechner,
1677 Y. Y.: Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography
1678 with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation, *Atmos.*
1679 *Meas. Tech. Discuss.* [preprint], <https://doi.org/10.5194/amt-2022-251>, in review, 2022.

1680 Masuda, R., Iwabuchi, H., Schmidt, K. S., Damiani, A. and Kudo, R.: Retrieval of Cloud Optical
1681 Thickness from Sky-View Camera Images using a Deep Convolutional Neural Network
1682 based on Three-Dimensional Radiative Transfer, *Remote Sensing*, 11(17), 1962,
1683 doi:10.3390/rs11171962, 2019.

1684 Marshak, A., Davis, A., Wiscombe, W., and Cahalan, R.: Radiative smoothing in fractal clouds, *J.*
1685 *Geophys. Res.*, 100, 26247–26261, <https://doi.org/10.1029/95JD02895>, 1995.

1686 Marshak, A., Wen, G., Coakley, J., Remer, L., Loeb, N. G., and Cahalan, R. F.: A simple model
1687 for the cloud adjacency effect and the apparent bluing of aerosols near clouds, *J. Geophys.*
1688 *Res.*, 113, D14S17, <https://doi.org/10.1029/2007JD009196>, 2008.

1689 Massie, S. T., Schmidt, K. S., Eldering, A., and Crisp, D.: Observational evidence of 3-D cloud
1690 effects in OCO-2 CO₂ retrievals, *J. Geophys. Res. Atmos.*, 122, 7064–7085,
1691 <https://doi.org/10.1002/2016JD026111>, 2017.

1692 Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer
1693 calculations – description and examples of use, *Atmos. Chem. Phys.*, 5, 1855–1877,
1694 <https://doi.org/10.5194/acp-5-1855-2005>, 2005.

1695 Mayer, B.: Radiative transfer in the cloudy atmosphere, *EPJ Web of Conferences*, 1, 75–99,
1696 doi:10.1140/epjconf/e2009-00912-1, 2009.

1697 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer
1698 for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, *J.*
1699 *Geophys. Res.*, 102, 16663–16682, 1997.

1700 Nakajima, T. and King, M. D.: Determination of the optical thickness and effective particle radius
1701 of clouds from reflected solar radiation measurements. Part I: Theory, *J. Atmos. Sci.*, 47,
1702 1878–1893, 1990.

1703 Nataraja, V., Schmidt, S., Chen, H., Yamaguchi, T., Kazil, J., Feingold, G., Wolf, K., and Iwabuchi,
1704 H.: Segmentation-Based Multi-Pixel Cloud Optical Thickness Retrieval Using a
1705 Convolutional Neural Network, *Atmos. Meas. Tech.*, 15, 5181–5205, doi:10.5194/amt-15-

1706 5181-2022, 2022.

1707 Norgren, M. S., Wood, J., Schmidt, K. S., van Diedenhoven, B., Stamnes, S. A., Ziembra, L. D.,
1708 Crosbie, E. C., Shook, M. A., Kittelman, A. S., LeBlanc, S. E., Broccardo, S., Freitag, S., and
1709 Reid, J. S.: Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral
1710 irradiances measured by a total-diffuse radiometer, *Atmos. Meas. Tech.*, 15, 1373–1394,
1711 <https://doi.org/10.5194/amt-15-1373-2022>, 2022.

1712 Payne, V. H., Drouin, B. J., Oyafuso, F., Kuai, L., Fisher, B. M., Sung, K., Nemchicka, D.,
1713 Crawford, T. J., Smyth, M., Crisp, D., Adkins, E., Hodges, J. T., Long, D. A., Mlawer, E. J.,
1714 Merrelli, A., Lunny, E., and O'Dell, C. W.: Absorption coefficient (ABSCO) tables for the
1715 Orbiting Carbon Observatories: version 5.1, *J. Quant. Spectrosc. Ra.*, 255, 1–16,
1716 <https://doi.org/10.1016/j.jqsrt.2020.107217>, 2020.

1717 Pilewskie, P., Pommier, J., Bergstrom, R., Gore, W., Howard, S., Rabbette, M., Schmid, B., Hobbs,
1718 P. V., and Tsay, S. C.: Solar spectral radiative forcing during the Southern African Regional
1719 Science Initiative, *J. Geophys. Res.*, 108, 8486, <https://doi.org/10.1029/2002JD002411>, 2003.

1720 Pincus, R. and Evans, K. F.: Computational cost and accuracy in calculating three-dimensional
1721 radiative transfer: Results for new implementations of Monte Carlo and SHDOM, *J. Atmos.*
1722 *Sci.*, 66, 3131–3146, 2009.

1723 Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riédi, J. C., and Frey, R.
1724 A.: The MODIS cloud products: Algorithms and examples from Terra, *IEEE T. Geosci.*
1725 *Remote*, 41, 459–473, 2003.

1726 Reid, J. S., Maring, H. B., Narisma, G. T., van den Heever, S., Di Girolamo, L., Ferrare, R.,
1727 Lawson, P., Mace, G. G., Simpas, J. B., Tanelli, S., Ziembra, L., van Diedenhoven, B.,
1728 Bruintjes, R., Bucholtz, A., Cairns, B., Cambaliza, M. O., Chen, G., Diskin, G. S., Flynn, J.
1729 H., Hostetler, C. A., Holz, R. E., Lang, T. J., Schmidt, K. S., Smith, G., Sorooshian, A.,
1730 Thompson, E. J., Thornhill, K. L., Trepte, C., Wang, J., Woods, S., Yoon, S., Alexandrov,
1731 M., Alvarez, S., Amiot, C. G., Bennett, J. R., Brooks, M., Burton, S. P., Cayanan, E., Chen,
1732 H., Collow, A., Crosbie, E., DaSilva, A., DiGangi, J. P., Flagg, D. D., Freeman, S. W., Fu,
1733 D., Fukada, E., Hilario, M. R. A., Hong, Y., Hristova-Veleva, S. M., Kuehn, R., Kowch, R.
1734 S., Leung, G. R., Loveridge, J., Meyer, K., Miller, R. M., Montes, M. J., Moum, J. N., Nenes,
1735 T., Nesbitt, S. W., Norgren, M., Nowotnick, E. P., Rauber, R. M., Reid, E. A., Rutledge, S.,
1736 Schlosser, J. S., Sekiyama, T. T., Shook, M. A., Sokolowsky, G. A., Stamnes, S. A., Tanaka,

1737 [T. Y., Wasilewski, A., Xian, P., Xiao, Q., Xu, Z., and Zavaleta, J.](#): The coupling between
 1738 tropical meteorology, aerosol lifecycle, convection, and radiation, during the Clouds, Aerosol
 1739 and Monsoon Processes Philippines Experiment (CAMP²Ex), *B. Am. Meteorol. Soc.*,
 1740 [https://doi.org/10.1175/BAMS-D-21-0285.1, 2023](https://doi.org/10.1175/BAMS-D-21-0285.1).

1741 Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image
 1742 segmentation, in: International Conference on Medical image computing and computer-
 1743 assisted intervention, 234–241, Springer, https://doi.org/10.1007/978-3-319-24574-4_28,
 1744 2015.

1745 Rothman, L., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L., Carleer, M.,
 1746 Chackerian, C., Chance, K., Coudert, L., Dana, V., Devi, V., Flaud, J.-M., Gamache, R.,
 1747 Gold- man, A., Hartmann, J.-M., Jucks, K., Maki, A., Mandin, J.- Y., Massie, S., Orphal, J.,
 1748 Perrin, A., Rinsland, C., Smith, M., Tennyson, J., Tolchenov, R., Toth, R., Vander Auwera,
 1749 J., Varanasi, P., and Wagner, G.: The HITRAN 2004 molecular spectroscopic database, *J.*
 1750 *Quant. Spectrosc. Ra.*, 96, 139–204, <https://doi.org/10.1016/j.jqsrt.2004.10.008>, 2005.

1751 Schmidt, K. S., Pilewskie, P., Platnick, S., Wind, G., Yang, P., and Wendisch, M.: Comparing
 1752 irradiance fields derived from Moderate Resolution Imaging Spectroradiometer airborne
 1753 simulator cirrus cloud retrievals with solar spectral flux radiometer measurements, *J. Geophys.*
 1754 *Res.*, 112, D24206, doi:10.1029/2007JD008711, 2007.

1755 Schmidt, S., Pilewskie, P., Mayer, B., Wendisch, M., Kindel, B., Platnick, S., King, M. D., Wind,
 1756 G., Arnold, G. T., Tian, L., Heymsfield, G., and Kalesse, H.: Apparent absorption of solar
 1757 spectral irradiance in heterogeneous ice clouds, *J. Geophys. Res.*, 115, D00J22,
 1758 <https://doi.org/10.1029/2009JD013124>, 2010.

1759 [Song, S., Schmidt, K. S., Pilewskie, P., King, M. D., Heidinger, A. K., Walther, A., Iwabuchi, H.,](#)
 1760 Wind, G., and Coddington, O. M.

1761 : The Spectral Signature of Cloud Spatial Structure in
 1762 Shortwave Irradiance, *Atmos. Chem. Phys.*, 16, 13791–13806, <https://doi.org/10.5194/acp-16-13791-2016>, 2016.

1763 [Strahler, A., Muller, J., Lucht, W., Schaaf, C., Tsang, T., Gao, F., Li, X., Lewis, P., and Barnsley,](#)
 1764 [M.: MODIS BRDF/albedo product: algorithm theoretical basis document version 5.0,](#)
 1765 [MODIS documentation, 1999.](#)

1766 Spada, F., Krol, M. C., and Stammes, P.: McSCIA: application of the Equivalence Theorem in a
 1767 Monte Carlo radiative transfer model for spherical shell atmospheres, *Atmos. Chem. Phys.*,

Deleted: Reid, J. S., Maring, H. B., Narisma, G., van den Heever, S., DiGirolamo, L., Ferrare, R., Lawson, P., Mace, G. G., Simpas, J., Tanelli, S., Ziembka, L., van Diedenhoven, B., Bruntjes, R., Bucholtz, A., Cairns, B., Cambaliza, M. O., Chen, G., Diskin, G. S., Flynn, J. H., Hostetter, C. A., Holz, R. E., Lang, T. J., Schmidt, K. S., Smith, G., Sorooshian, A., Thompson, E. J., Thornhill, K. L., Treppte, C., Wang, J., Woods, S., Yoon, S., Alexandrov, M., Alvarez, S., Amiot, C., Bennett, J. R., Brooks, M., Burton, S. P., Cayanan, E., Chen, H., Collow, A., Crosbie, E., DaSilva, A., DiGangi, J. P., Flagg, D. D., Freeman, S. W., Fu, D., Fukada, E., Hilario, M. R. A., Hong, Y., Hristova-Veleva, S. M., Kuehn, R., Kowch, R. S., Leung, G. R., Loveridge, J., Meyer, K., Miller, R., Montes, M. J., Moum, J. N., Nenes, T., Nesbit, S. W., Norgen, M., Novak, E., Rauber, R. M., Reid, E. A., Rutledge, S., Schlosser, J. S., Sekiyama, T. T., Shook, M. A., Sokolowsky, G. A., Stammes, S. A., Sy, O. O., Tanaka, T. Y., Wasilewski, A., Xian, P., Xiao, Q., and Zavaleta, J.

Deleted: *in review*,

Deleted: 2022

Moved up [3]: Chen, Y.-W.,

Moved (insertion) [3]

Deleted: Chen, Y.-W., Schmidt, S., Massie, S., Chen, H., Crisp, D., Kulawik, S., Chen, Y.-W., Merrelli, A., McDuffie, J., Iwabuchi, H.: Uncovering the Mechanism for Trace Gas Spectroscopy Biases in the Vicinity of Clouds With the OCO-2 3D Radiative Transfer Satellite Radiance Simulator, *Atmos. Meas. Tech., in prep.*, 2022.

1796 6, 4823–4842, <https://doi.org/10.5194/acp-6-4823-2006>, 2006.

1797 Várnai, T., A. Marshak, C.-H. Huang: Publicly available online simulator of 3D radiative
processes, International Radiation Symposium 2022, Thessaloniki, Greece, 4–8 July 2022,
File listed as IRS_2022_paper_89.pdf at
[https://mycloud.auth.gr/index.php/s/t7fYkzsiFWYFdqy?path=/S4-](https://mycloud.auth.gr/index.php/s/t7fYkzsiFWYFdqy?path=/S4-General_Remote_Sensing_2022)
[General Remote Sensing, 2022](#),

1800 1801 1802 1803 1804 1805 Wood, J., Smyth, T. J., and Estellés, V.: Autonomous marine hyperspectral radiometers for determining solar irradiances and aerosol optical properties, *Atmos. Meas. Tech.*, 10, 1723–1737, <https://doi.org/10.5194/amt-10-1723-2017>, 2017.

Deleted: Vermote, E. F., Roger, J. C., and Ray J. P.: MODIS Surface Reflectance User's Guide, MODIS Land Surface Reflectance Science Computing Facility, Version 1.4, 1–35, 2015. [¶](#)

