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Abstract 20 
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T, pronounced 21 

[ɜːt]) for quantifying and mitigating artifacts in atmospheric radiation science algorithms due to spatially 22 
inhomogeneous clouds and surfaces, and show the benefits of automated, realistic radiance and irradiance 23 
generation along extended satellite orbits, flight tracks from entire aircraft field missions, and synthetic data 24 
generation from model data. EaR3T is a modularized Python package that provides high-level interfaces to 25 
automate the process of 3D radiative transfer (RT) calculations. After introducing the package, we present 26 
initial findings from four applications, which are intended as blueprints to future in-depth scientific studies. 27 
The first two applications use EaR3T as a satellite radiance simulator for the NASA Orbiting Carbon 28 
Observatory 2 (OCO-2) and Moderate Resolution Imaging Spectroradiometer (MODIS) missions, which 29 
generate synthetic satellite observations with 3D-RT on the basis of cloud field properties from 30 
imagery-based retrievals and other input data. In the case of inhomogeneous cloud fields, we show that the 31 
synthetic radiances are often inconsistent with the original radiance measurements. This lack of radiance 32 
consistency points to biases in heritage imagery cloud retrievals due to sub-pixel resolution clouds and 33 
3D-RT effects. They come to light because the simulator’s 3D-RT engine replicates processes in nature that 34 
conventional 1D-RT retrievals do not capture. We argue that 3D radiance consistency (closure) can serve 35 
as a metric for assessing the performance of a cloud retrieval in presence of spatial cloud inhomogeneity 36 
even with limited independent validation data. The other two applications show how airborne measured 37 
irradiance data can be used to independently validate imagery-derived cloud products via radiative closure 38 
in irradiance. This is accomplished by simulating downwelling irradiance from geostationary cloud 39 
retrievals of Advanced Himawari Imager (AHI) along all the below-cloud aircraft flight tracks of the Cloud, 40 
Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex, NASA 2019), and comparing the 41 
irradiances with the collocated airborne measurements. In contrast to case studies in the past, EaR3T 42 
facilitates the use of observations from entire field campaigns for the statistical validation of 43 
satellite-derived irradiance. From the CAMP2Ex mission, we find a low bias of 10% in the satellite-derived 44 
cloud transmittance, which we are able to attribute to a combination of the coarse resolution of the 45 
geostationary imager and 3D-RT biases. Finally, we apply a recently developed context-aware 46 
Convolutional Neural Network (CNN) cloud retrieval framework to high-resolution airborne imagery from 47 
CAMP2Ex and show that the retrieved cloud optical thickness fields lead to better 3D radiance consistency 48 
than the heritage independent pixel algorithm, opening the door to future mitigation of 3D-RT cloud 49 
retrieval biases.  50 
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1. Introduction 55 

Three-dimensional cloud effects in imagery-derived cloud properties have long been 56 

considered an unavoidable error source when estimating the radiative effect of clouds and aerosols. 57 

Consequently, research efforts involving satellite, aircraft, and surface observations in conjunction 58 

with modeled clouds and radiative transfer calculations have focused on systematic bias 59 

quantification under different atmospheric conditions. Barker and Liu (1995) studied the so-called 60 

independent pixel approximation (IPA) bias in cloud optical thickness (COT) retrievals from 61 

shortwave cloud reflectance. The bias arises when approximating the radiative transfer relating to 62 

COT and measured reflectance at the pixel or cloud column level through one-dimensional (1D) 63 

radiative transfer (RT) calculations, while ignoring its radiative context. However, net horizontal 64 

photon transport and other effects such as shading engender column-to-column radiative 65 

interactions that can only be captured in a three-dimensional (3D) framework, and can be regarded 66 

as a 3D perturbation or bias relative to the 1D-RT (IPA) baseline. 3D biases affect not only cloud 67 

remote sensing but they also propagate into the derived irradiance fields and cloud radiative effects 68 

(CRE). Since the derivation of regional and global CRE relies heavily on satellite imagery, any 69 

systematic 3D bias impacts the accuracy of the Earth’s radiative budget. Likewise, imagery-based 70 

aerosol remote sensing in the vicinity of clouds can be biased by net horizontal photon transport 71 

(Marshak et al., 2008). Additionally, satellite shortwave spectroscopy retrievals of CO2 mixing 72 

ratio are affected by nearby clouds (Massie et al., 2017), albeit through a different physical 73 

mechanism than in aerosol and cloud remote sensing (Chen et al., 2023). 74 

Given the importance of 3D perturbations for atmospheric remote sensing, ongoing 75 

research seeks to mitigate the 3D effects. Cloud tomography, for example, inverts multi-angle 76 

radiances to infer the 3D cloud extinction distribution (Levis et al., 2020). This is achieved through 77 

iterative adjustments to the cloud field until the calculated radiances match the observations. 78 

Convolutional neural networks (CNNs, Masuda et al., 2019; Nataraja et al., 2022) account for 79 

3D-RT perturbations in COT retrievals through pattern-based machine learning that operates on 80 

collections of imagery pixels, rather than treating them in isolation like IPA. Unlike tomography, 81 

CNNs require training based on extensive cloud-type specific synthetic data with the ground truth 82 

of cloud optical properties and their associated radiances from 3D-RT calculations. Once the 83 

CNNs are trained, they do not require real-time 3D-RT calculations and can therefore be useful in 84 

an operational setting. Whatever the future may hold for context-aware multi-pixel or multi-sensor 85 
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cloud retrievals, there is a paradigm shift on the horizon that started when the radiation concept 88 

for the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE, Illingworth et al., 2015) was 89 

first proposed (Barker et al., 2012). It foresees a closure loop where broadband radiances, along 90 

with irradiance, are calculated in a 3D-RT framework from multi-sensor input fields (Barker et al., 91 

2011), and subsequently compared to independent observations by radiometers pointing in three 92 

directions (nadir, forward-, and backward-viewing along the orbit). This built-in radiance closure 93 

can serve as an accuracy metric for any downstream radiation products such as heating rates and 94 

CRE. Any inconsistencies can be used to nudge the input fields towards the truth in subsequent 95 

loop iterations akin to optimal estimation, or propagated into uncertainties of the cloud and 96 

radiation products. 97 

This general approach to radiative closure is also being considered for the National 98 

Aeronautics and Space Administration (NASA) Atmospheric Observation System (AOS, 99 

developed under the A-CCP, Aerosol and Cloud, Convection and Precipitation study), a mission 100 

that is currently in its early implementation stages. Owing to its focus on studying 101 

aerosol-cloud-precipitation-radiation interactions at the process level, it requires radiation 102 

observables at a finer spatial resolution than achieved with missions to date. At target scales close 103 

to 1 km, 3D-RT effects are much more pronounced than at the traditional 20 km scale of NASA 104 

radiation products (O’Hirok and Gautier, 2005; Ham et al., 2014; Song et al., 2016; Gristey et al., 105 

2020a). Since this leads to biases beyond the desired accuracy of the radiation products, mitigation 106 

of 3D-RT cloud remote sensing biases needs to be actively pursued over the next few years. 107 

Transitioning to an explicit treatment of 3D-RT in operational approaches entails a new 108 

generation of code architectures that can be easily configured for various instrument constellations, 109 

interlink remote sensing parameters with irradiances, heating rates, and other radiative effects, and 110 

can be used for automated processing of large data quantities. A number of 3D solvers are available 111 

for different purposes, for example, the I3RC (International Intercomparison of 3D Radiation 112 

Codes: Cahalan et al., 2005) community Monte Carlo code1, which now also includes an online 113 

simulator2 that was described in Várnai et al. (2022) and used in Gatebe et al. (2021); MCARaTS 114 

(Monte Carlo Atmospheric Radiative Transfer Simulator3: Iwabuchi, 2006); MYSTIC (Monte 115 

 
1 https://earth.gsfc.nasa.gov/climate/model/i3rc, last accessed on 26 November, 2022. 
2 http://i3rcsimulator.umbc.edu, last accessed on 26 November, 2022. 
3 https://sites.google.com/site/mcarats/monte-carlo-atmospheric-radiative-transfer-simulator-mcarats, last accessed 
on 26 November, 2022. 
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Carlo code for the physically correct tracing of photons in cloudy atmospheres: Mayer, 2009), 117 

which is embedded in libRadtran (library for radiative transfer, Mayer and Kylling, 2005); 118 

McSCIA (Monte Carlo [RT] for SCIAmachy: Spada et al., 2006), which is optimized for satellite 119 

radiance simulations (including limb-viewing) in a spherical atmosphere; McARTIM 120 

(Deutschmann et al., 2011), with several hyperspectral polarimetric applications such as 121 

differential optical absorption spectroscopy; and SHDOM (Spherical Harmonic Discrete Ordinate 122 

Method4: Evans, 1998), which, unlike the other methods, is a deterministic solver with polarimetric 123 

capabilities (Doicu et al., 2013; Emde et al., 2015) that is differentiable and can therefore be used 124 

for tomography (Loveridge et al., 2022).  125 

For the future operational application of 3D-RT, it is, however, desirable to run various 126 

different solvers in one common architecture that automates the processing of various formats of 127 

3D atmospheric input fields (including satellite data), allows the user to choose from various 128 

options for atmospheric absorption and scattering, and simulates radiance and irradiance data for 129 

real-world scenes. Here, we introduce one such tool that could serve as the seed for this architecture: 130 

the Education and Research 3D Radiative Transfer Toolbox (EaR3T, pronounced [ɜːt]). It has been 131 

developed over the past few years at the University of Colorado to automate 3D-RT calculations 132 

based on imagery or model cloud fields. It can be operated in two ways– 1) with minimal user 133 

input, where certain RT parameters are bypassed through default settings, for quick radiation 134 

conceptual analysis; 2) with detailed RT parameters setup by user for radiation closure purpose. 135 

EaR3T is maintained and extended by graduate students as part of their education, and applied to 136 

various different research projects including machine learning for atmospheric radiation and 137 

remote sensing (Gristey et al., 2020b; 2022; Nataraja et al., 2022), as well as radiative closure and 138 

satellite simulators (this paper and Chen et al., 2023). It is implemented as a modularized Python 139 

package with various application codes that combine the functionality in different ways, which, 140 

once set up, autonomously process large amounts of data required by airborne and satellite remote 141 

sensing and for machine learning applications. 142 

The goal of the paper is to introduce EaR3T as a versatile tool for systematically quantifying 143 

and mitigating 3D cloud effects in radiation science as foreseen in future missions. To do so, we 144 

will first showcase EaR3T as an automated radiance simulator for two satellite instruments, the 145 

Orbiting Carbon Observatory-2 (OCO-2, application code 1, App. 1) and the Moderate Resolution 146 

 
4 https://coloradolinux.com/shdom, last accessed on 26 November, 2022. 
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Imaging Spectroradiometer (MODIS, application code 2, App. 2) from publicly available satellite 152 

retrieval products. In the spirit of radiance closure, the intended use is the comparison of modeled 153 

radiances with the original measurements to assess the accuracy of the input data, as follows: 154 

operational IPA COT products are made using 1D-RT, and thus the accompanying radiances are 155 

consistent with the original measurements under that 1D-RT assumption only. That is, 156 

self-consistency is assured if 1D-RT is used in both the inversion and radiance simulation. 157 

However, since nature creates 3D-RT radiation fields, we break this traditional symmetry in this 158 

manuscript and introduce the concept of 3D radiance consistency where closure is only achieved 159 

if the original measurements are consistent with the 3D-RT (rather than the 1D-RT) simulations. 160 

The level of inconsistency is then used as a metric for the magnitude of 3D-RT retrieval artifacts 161 

as envisioned by the architects of the EarthCARE radiation concept (Barker et al., 2012). 162 

Subsequently, we discuss applications where EaR3T performs radiative closure in the 163 

traditional sense, i.e., between irradiances derived from satellite products and collocated airborne 164 

or ground-based observations. The aircraft Cloud, Aerosol and Monsoon Processes Philippines 165 

Experiment (CAMP2Ex, Reid et al., 2023), conducted by NASA in the Philippines in 2019, serves 166 

as a testbed of this approach. Here, we use EaR3T’s automated processing capabilities to derive 167 

irradiance from geostationary imagery cloud products and then compare these to cumulative 168 

measurements made along all flight legs of the campaign (application code 3, App. 3). In contrast 169 

to previous studies that often rely on a number of cases (e.g., Schmidt et al., 2010; Kindel et al., 170 

2010), we perform closure systematically for the entire data set, enabling us to identify 3D-RT 171 

biases in a statistically significant manner. Finally, we apply a regionally and cloud type specific 172 

CNN, introduced by Nataraja et al. (2022) that is included with the EaR3T distribution, to 173 

high-resolution camera imagery from CAMP2Ex. This last example demonstrates mitigation of 174 

3D-RT biases in cloud retrievals using the concept of radiance closure to quantify its performance 175 

against the baseline IPA (application code 4, App. 4). 176 

The general concept of EaR3T with an overview of the applications, along with the data 177 

used for both parts of the paper is presented in section 2, followed by a description of the 178 

procedures of EaR3T in section 3. Results for the OCO-2 and MODIS satellite simulators (part 1) 179 

are shown in section 4, followed by the quantification and mitigation of 3D-RT biases with 180 

CAMP2Ex data in section 5 and section 6 (part 2). A summary and conclusion are provided in 181 
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section 7. The code, along with the applications presented in this paper, can be downloaded from 185 

the GitHub repository: https://github.com/hong-chen/er3t. 186 

 187 

2. Functionality and Data Flow within EaR3T 188 

2.1 Overview 189 

 To introduce EaR3T as a satellite radiance simulator tool and to demonstrate its use for the 190 

quantification and mitigation of 3D cloud remote sensing biases, five applications (Figure 1) are 191 

included in the GitHub software release: 192 

 193 

                194 

(a) (b) (c) 

(d) (e) 

Deleted: , four of which are discussed in this paper195 
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Figure 1. Flow charts of EaR3T applications for (a) OCO-2 radiance simulation at 768.52 nm (data described in section 196 
2.2.1 and 2.2.2, results discussed in section 4.1), (b) MODIS radiance simulation at 650 nm (data described 197 
in section 2.2.1, results discussed in section 4.2), (c) SPN-S irradiance simulation at 745 nm (data described 198 
in section 2.2.3 and 2.2.4, results discussed in section 5), (d) all-sky camera radiance simulation at 600 nm 199 
(data described in section 2.2.5, results discussed in section 6), and (e) radiance simulation at 600 nm based 200 
on LES data for CNN training (Appendix B). The data products and their abbreviations are described in 201 
section 2.2. 202 

 203 

1. App. 1, section 4.1 (examples/01_oco2_rad-sim.py): Radiance simulations along 204 

the track of OCO-2, based on data products from MODIS and others – to assess consistency 205 

(closure) between simulated and measured radiance; 206 

2. App. 2, section 4.2 (examples/02_modis_rad-sim.py): MODIS radiance 207 

simulations – to assess self-consistency of MODIS level-2 (L2) products with the 208 

associated radiance fields (L1B product) under spatially inhomogeneous conditions; 209 

3. App. 3, section 5 (examples/03_spns_flux-sim.py): Irradiance simulations along 210 

aircraft flight tracks, utilizing the L2 cloud products of the AHI, and comparison with 211 

aircraft measurements – to quantify retrieval biases due to 3D cloud structure based with 212 

data from an entire aircraft field campaign; 213 

4. App. 4, section 6 (examples/04_cam_nadir_rad-sim.py): Mitigation of 3D 214 

cloud biases in passive imagery COT retrievals from an airborne camera, application of a 215 

convolutional neural network (CNN) and subsequent comparison of CNN-derived 216 

radiances with the original measurements – to illustrate how the radiance self-consistency 217 

concept assesses the fidelity of cloud retrievals. 218 

5. App. 5, Appendix B (examples/05_cnn-les_rad-sim.py): Generation of training 219 

data for the CNN (App. 4) based on LES inputs. The training datasets contains 1) the 220 

ground truth of COT from the LES data; 2) realistic radiance simulated by EaR3T based on 221 

the LES cloud fields. 222 

Figure 1 shows the high-level workflow of the applications. The first four share the general 223 

concept of evaluating simulations (the output from the EaR3T, indicated in red at the bottom of 224 

each column) with observations (indicated in green at the bottom) from various satellite and 225 

aircraft instruments. The workflow of each application consists of three parts – 1) data acquisition, 226 

2) pre-processing, and 3) RTM setup and execution. EaR3T includes functions to ingest data from 227 
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various different sources, e.g., satellite data from publicly available data archives, which can be 235 

combined in different ways to accommodate input data depending on the application specifics. For 236 

example, in App. 1, EaR3T is used to automatically download and process MODIS and OCO-2 237 

data files based on the user-specified region, date and time. Building on the templates provided in 238 

the current code distribution, the functionality can be extended to new spaceborne or airborne 239 

instruments. Panel (e) of Figure 1 shows a fifth application that was developed for earlier papers 240 

(Gristey et al., 2020a and 2020b; Nataraja et al., 2022; Gristey et al., 2022). In contrast to the first 241 

four, which use imagery products as input, the fifth application ingests model output from a Large 242 

Eddy Simulation (LES) and produces irradiance data for surface energy budget applications, or 243 

synthetic radiance fields for training a CNN. Details and results are described in the respective 244 

papers. The remainder of Section 2 introduces the data used in this paper, as well as the input for 245 

EaR3T. Subsequently, Section 3 describes the EaR3T procedures. 246 

 247 

2.2 Data 248 

The radiance simulations in App. 1 and App. 2 use data from the OCO-2 and MODIS-Aqua 249 

instruments, both of which are in a sun-synchronous polar orbit with an early-afternoon equator 250 

crossing time within NASA’s A-Train satellite constellation. Figure 2 visualizes radiance 251 

measurements by OCO-2 in the context of MODIS Aqua imagery over a partially vegetated and 252 

partially cloud-covered land, illustrating that MODIS provides imagery and scene context for 253 

OCO-2, which in turn observes radiances from a narrow swath. The region is located in southwest 254 

Colorado in the United States of America. We selected this case because both the surface and 255 

clouds are varied along with diverse surface types. The surface features green forest and brown 256 

soil, whereas clouds include small cumulus and large cumulonimbus. In addition, this scene 257 

contains relatively homogeneous cloud fields in the north and inhomogeneous cloud fields in the 258 

south, which allows us to evaluate the simulations from various aspects of cloud morphology. To 259 

simulate the radiances of both instruments we use data products from OCO-2 and MODIS, as well 260 

as reanalysis products from NASA’s Global Modeling and Assimilation Office (GMAO) sampled 261 

at OCO-2 footprints and distributed along with OCO-2 data (section 2.2.2). 262 

 263 
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                                        316 
Figure 2. OCO-2 measured radiance (units: Wm-2nm-1sr-1) at 768.52 nm, overlaid on MODIS Aqua RGB imagery 317 

over southwestern Colorado (USA) on 2 September, 2019. The inset shows an enlarged portion along the 318 
track, illustrating that OCO-2 radiances co-vary with MODIS-Aqua radiance observations (the circles are 319 
used to indicate the geolocation of OCO-2 footprints). 320 

 321 

For App. 3 (irradiance simulations and 3D cloud bias quantification), we use geostationary 322 

imagery from the Japanese Space Agency’s Advanced Himawari Imager to provide cloud 323 

information in the area of the flight path of the NASA CAMP2Ex aircraft (Reid et al., 2023). The 324 

AHI data are used in conjunction with aircraft measurements of shortwave spectral radiation 325 

(section 2.2.4). Subsequently (App. 4: 3D cloud bias mitigation), we demonstrate the concept of 326 

radiance closure under partially cloudy conditions with airborne camera imagery (section 2.2.5). 327 

The underlying cloud retrieval is based on a convolutional neural network (CNN), which is 328 

described in a related paper (Nataraja et al., 2022) in this special issue and relies on 329 

EaR3T-generated synthetic radiance data based on Large Eddy Simulations (LES). 330 

 331 

2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS) 332 

The MODIS instruments are multi-use multispectral radiometers onboard NASA’s Terra 333 

and Aqua satellites, which were launched in 1999 and 2002 respectively. MODIS was conceived 334 

as a central element of the Earth Observing System (EOS, King and Platnick, 2018). For App. 1 335 

and App. 2, EaR3T ingests MODIS level 1B radiance products at the quarter kilometer scale 336 

(channels 1 and 2, bands centered at 650 and 860 nm), MxD02QKM, where ‘x’ stands for ‘O’ in 337 

the case of MODIS on Terra, and ‘Y’ in the case of Aqua data), the geolocation product (MxD03), 338 

the level 2 cloud product (MxD06), and the surface BRDF (bidirectional reflectance distribution 339 
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Deleted: -341 

Deleted: reflectance 342 



 11 

function) product (MCD43A3). For this paper, we mainly use Aqua data (MYD) from data 343 

collection 6.1. 344 

 For cloud properties in App. 2, we use the MODIS cloud product (MxD06L2, collection 345 

6.1). It provides cloud properties such as cloud optical thickness (COT), cloud effective radius 346 

(CER), cloud thermodynamic phase, cloud top height (CTH), etc. (Nakajima and King, 1990; 347 

Platnick et al., 2003). Since 3D cloud effects such as horizontal photon transport are most 348 

significant at small spatial scales (e.g., Song et al., 2016), we use the high-resolution red (650 nm) 349 

channel 1 (250 m), and derive COT directly from the reflectance in the Level-1B data 350 

(MYD02QKM) instead of using the coarser-scale operational product from MYD06. CER and 351 

CTH are sourced from MYD06 and re-gridded to 250 m. The EaR3T strategy for MODIS data is 352 

similar, in principle, to the more advanced method by Deneke et al. (2021), which uses a 353 

high-resolution wide-band visible channel from geostationary imagery to up-sample narrow-band 354 

coarse-resolution channels. However, we simplified cloud detection and COT retrieval (referred 355 

to as COTIPA) from reflectance data for the purpose of our paper by using a threshold method 356 

(Appendix C1) and an IPA reflectance-to-COT mapping (Appendix C2). In future versions of 357 

EaR3T this will be upgraded to more sophisticated algorithms. A simple algorithm (Appendix D1) 358 

is used to correct for the parallax shift based on the sensor geometries and cloud heights. The cloud 359 

top height data is provided by the MODIS L2 cloud product and assuming cloud base is the same. 360 

For the surface albedo required by the RTM, we used MCD43A3, which provides BRDF 361 

calculated from a combination of Aqua and Terra MODIS and MISR (Multi-Angle Imaging 362 

Spectroradiometer) clear-sky observations aggregated over a 16-day period (Strahler et al., 1999). 363 

This product contains white sky albedo (WSA, also known as bihemispherical reflectance), which 364 

is obtained by integrating the BRDF over all viewing angles (Strahler et al., 1999). The WSA is 365 

available on a sinusoidal grid with a spatial resolution of 500 m for MODIS band 2, and includes 366 

atmospheric correction for gas and aerosol scattering and absorption. Assuming a Lambertian 367 

surface in this first release of EaR3T, we used the WSA (referred to as surface albedo from now 368 

on) as surface albedo input to the RTM. 369 

 370 

2.2.2 Orbiting Carbon Observatory 2 (OCO-2) 371 

The OCO-2 satellite was inserted into NASA’s A-Train constellation in 2014 and flies 372 

about 6 minutes ahead of Aqua. OCO-2 provides the column-averaged carbon dioxide (CO2) 373 
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dry-air mole fraction (XCO2) through passive spectroscopy based on hyperspectral radiance 391 

observations in three narrow wavelength regions, the Oxygen A-Band (~0.76 micron), the weak 392 

CO2 band (~1.60 micron), and the strong CO2 band (~2.06 micron). As shown in the inset of Figure 393 

2, it takes measurements in eight footprints across a narrow swath. Each of the footprints has a 394 

size around 1-2 km, and the spectra for the three bands are provided by separate, co-registered 395 

spectrometers (Crisp et al., 2015). 396 

The used OCO-2 data products are 1) Level 1B calibrated and geolocated science radiance 397 

spectra (L1bScND), 2) standard Level 2 geolocated XCO2 retrievals results (L2StdND), 3) 398 

meteorological parameters interpolated from GMAO (L2MetND) at OCO-2 footprint location. 399 

Since MODIS on Aqua overflies a scene 6 minutes after OCO-2, the clouds move with the wind 400 

over this time period. We therefore added a wind correction on top of the parallax-corrected cloud 401 

fields obtained from MODIS (section 2.2.1). This was done with the 10 m wind speed data from 402 

L2MetND (see Appendix D2). For the same scene as shown in Figure 2, Figure 3 shows (a) COTIPA, 403 

(b) CER, and (c) CTH, all corrected for both parallax and wind effects (these corrections are shown 404 

in Figure A5 in Appendix D2). The parallax and wind corrections are imperfect as certain 405 

assumptions are involved. For example, they rely on the cloud top height from the MODIS cloud 406 

product. In addition, they process the whole scene with one single sensor viewing geometry. To 407 

minimize artifacts introduced by the assumptions, one can apply the simulation to a smaller region. 408 

 409 

 410 
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 419 
Figure 3. (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the IPA reflectance-to-COT 420 

mapping (Appendix C2), (b) cloud effective radius (units: 𝜇m), and (c) cloud top height (units: km) 421 
collocated from the MODIS L2 cloud product. The locations of the cloudy pixels were shifted to account 422 
for parallax and wind effects. The parallax correction ranged from near 0 for low clouds and 1 km for high 423 
clouds (10 km CTH). The wind correction was around 0.8 km, given the median wind speed of 2 m/s to the 424 
east. 425 

 426 

 The OCO-2 data (L2StdND) themselves only provide sparse surface BRDF (referred to as 427 

surface albedo from now on) for the footprints that are clear, while EaR3T requires surface albedo 428 

for the whole domain. Therefore, we used MCD43A3 as a starting point. However, since MODIS 429 

does not have a channel in the Oxygen A-Band, MODIS band 2 (860 nm) was used as a proxy for 430 

the 760 nm OCO-2 channel as follows: we collocated the OCO-2 retrieved 760 nm surface albedo 431 

𝛼!"!  within the corresponding 860 nm MODIS MCD43A3 data 𝛼#!$  as shown in Figure 4a 432 

(same domain as Figures 2 and 3) and calculated a scaling factor assuming a linear relationship 433 

between 𝛼!"!  and 𝛼#!$  ( 𝛼!"! = 𝑐 ⋅ 𝛼#!$ ). Figure 4b shows 𝛼!"!  versus 𝛼#!$  for all 434 

cloud-free OCO-2 footprints. The red line shows a linear regression (derived scale factor c=0.867). 435 

Optionally, the OCO-2-scaled MODIS-derived surface albedo fields can be replaced by the OCO-2 436 

surface albedo products for pixels where they are available. The replacement is done for App. 1. 437 

The scaled and replaced surface albedo is then treated as input to the RTM assuming a Lambertian 438 

surface. 439 

 440 
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      463 
Figure 4. (a) Surface albedo from the OCO-2 L2 product in the Oxygen A-band (near 760 nm), overlaid on the surface 464 

albedo from the MODIS MCD43A3 product at 860 nm. (b) OCO-2 surface albedo at 760 nm versus MODIS 465 
surface albedo at 860 nm, along with linear regression (𝛼!"! = 𝑐 ⋅ 𝛼#!$) as indicated by the red line (slope 466 
c=0.867). 467 

 468 

2.2.3 Advanced Himawari Imager (AHI) 469 

The Advanced Himawari Imager (AHI, used for App. 3) is a payload on Himawari-8, a 470 

geostationary satellite operated by the Meteorological Satellite Center (MSC) of the Japanese 471 

Meteorological Agency. The AHI provides 16 channels of spectral radiance measurements from 472 

the shortwave (0.47µm) to the infrared (13.3µm). During CAMP2Ex, the NASA in-field 473 

operational team closely collaborated with the team from MSC to provide AHI satellite imagery 474 

at the highest resolution over the Philippine Sea. From the AHI imagery, the cloud product 475 

generation system - Clouds from AVHRR Extended System (CLAVR-x), was used to generate 476 

cloud products from the AHI imagery (Heidinger et al., 2014). The cloud products from CLAVR-x 477 

include cloud optical thickness, cloud effective radius, and cloud top height at 2 (at nadir) to 5 km 478 

spatial resolution. Since AHI provides continuous regional scans every 10 minutes the AHI cloud 479 

product has a temporal resolution of 10 minutes. 480 

 481 

2.2.4 Spectral Sunshine Pyranometer (SPN-S) 482 

The SPN-S is a prototype spectral version of the commercially available global-diffuse 483 

SPN1 pyranometer (Wood et al., 2017; Norgren et al., 2022). The radiometer uses a 7-detector 484 

design in combination with a fixed shadow mask that enables the simultaneous measurement of 485 

both diffuse and global irradiances, from which the direct component of the global irradiance is 486 
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calculated via subtraction. The detector measures spectral irradiance from 350 to 1000 nm, and the 496 

spectrum is sampled at 1 nm resolution with 1 Hz timing. 497 

During the CAMP2Ex mission, the SPN-S was mounted to the top of the NASA P-3 aircraft 498 

where it sampled downwelling solar irradiance. To ensure accurate measurements, pre- and 499 

post-mission laboratory-based calibrations were completed using tungsten “FEL” lamps that are 500 

traceable to a National Institute of Standards and Technology standard. Additionally, the direct 501 

and global irradiances were corrected for deviations of the SPN-S sensor plane from horizontal 502 

that are the result of changes in the aircraft’s pitch or roll. This attitude correction applied to the 503 

irradiance data is a modified version of the method outlined in Long et al. (2010). However, 504 

whereas Long et al. (2010) employ a “box” flight pattern to characterize the sensor offset angles, 505 

in this study an aggregation of flight data containing aircraft heading changes under clear-sky 506 

conditions are used as a substitute. The estimated uncertainty of the SPN-S system is 6 to 8%, with 507 

4 to 6% uncertainty stemming from the radiometric lamp calibration process, and up to another 2% 508 

resulting from insufficient knowledge of the sensor cosine response. The stability of the system 509 

under operating conditions is 0.5%. A thorough description of the SPN-S and its calibration and 510 

correction procedures is provided in Norgren et al. (2022). In this paper (App. 3) only the global 511 

downwelling irradiance sampled by the 745 nm channel is used.  512 

 513 

2.2.5 Airborne All-Sky Camera (ASC) 514 

The All-Sky Camera (used for App. 4) is a commercially available camera (ALCOR 515 

ALPHEA 6.0CW5) with fish-eye optics for hemispheric imaging. It has a Charge-Coupled Device 516 

(CCD) detector that measures radiances in red, green, and blue channels. Radiometric and 517 

geometric calibrations were performed at the Laboratory of Atmospheric and Space Physics at the 518 

University of Colorado Boulder. The three-color channels are centered at 493, 555, and 626 nm 519 

for blue, green, and red, respectively, with bandwidths of 50 – 100 nm. Only radiance data from 520 

the red channel are used in this paper. The spatial resolution of the ASC depends on the altitude of 521 

the aircraft and the viewing zenith angle. Across the hemispheric field of view of the camera, the 522 

resolution of the field angle is approximately constant, at about 0.09º. At a flight level of 5 km, 523 

 
5https://www.alcor-system.com/common/allSky/docs/ALPHEA_Camera%20ALL%20SKY%20CAMERA_Doc.pdf 
last accessed on April 24, 2022. 
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this translates to a spatial resolution of 8 m at nadir. However, due to accuracy limitations of the 525 

geometric calibration and the navigational data from Inertial Navigation System (INS), the nadir 526 

geolocation accuracy could only be verified to within ±50 m. During the CAMP2Ex flights, the 527 

camera exposure time was set manually to minimize saturation of the detector. The standard image 528 

frame rate is 1 Hz. The precision of the camera radiances is on the order of 1%, and the radiometric 529 

accuracy is 6 – 7%. 530 

 531 

3. EaR3T Procedures 532 

In the previous section, we described the input data for the EaR3T applications. In this 533 

section, we will focus on providing the complete workflow (shown in Figure 1) for the five 534 

applications. 535 

After the required data files have been automatically downloaded in the data acquisition 536 

step as described in previous section, EaR3T pre-processes them and generates the optical 537 

properties of atmospheric gases, clouds, aerosols, and the surface. In Figure 1, the mapping from 538 

input data to these properties is color-coded component-wise (brown for associated cloud property 539 

processing if available, blue for associated surface property processing if available, green for 540 

associated ground truth property). The EaR3T code base used in this paper (v0.1.1; Chen and 541 

Schmidt, 2022) only includes MCARaTS as the 3D RT solver, but others are planned for the future. 542 

MCARaTS is a radiative transfer solver that uses a Monte Carlo photon-tracing method (Iwabuchi, 543 

2006). It outputs radiation (radiance or irradiance) based on the inputs of radiative properties of 544 

surface and atmospheric constituents (e.g., gases, aerosols, clouds) such as single scattering albedo, 545 

scattering phase function or asymmetry parameter, along with solar and sensor viewing geometries. 546 

The setup of these input properties is implemented in EaR3T’s pre-processing steps, which 547 

translates atmospheric properties into solver-specific input with minimum user intervention. To 548 

achieve this, EaR3T is modular so that it can be extended as new solvers are added. Although the 549 

five specific applications in this paper do not include aerosol layers, the setup of aerosol fields is 550 

fully supported and has been used in other applications (e.g., Gristey et al., 2022). After pre-551 

processing, the optical properties are fed into the RT solver. Finally, the user obtains radiation 552 

output from EaR3T, either radiance or irradiance. The output is saved in HDF5 format and can be 553 

easily distributed and accessed by various programming languages. The data variables contained 554 

in the HDF5 output are provided in Table A2 in Appendix A1. 555 
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The processes of data acquisition, pre-processing, and RTM setup and execution (shown 576 

in Figure 1) are automated such that the 3D/1D-RT calculations can be performed for any region 577 

at any date and time using satellite or aircraft data or other data resources such as LES. A detailed 578 

code walk-through of App. 1 and 2 is provided in Appendix A2. Since EaR3T is developed as an 579 

educational and research 3D-RT tool collection by students, it is a living code base, intended to be 580 

updated over time. The master code modules for the five applications as listed in Figure 1 are 581 

included in the EaR3T package under the examples directory. In the current release (v0.1.1), 582 

only a limited documentation for the installation and usage, including example code for EaR3T, is 583 

provided. More effort will be dedicated for documentation in the near-future. 584 

In the following sections, we discuss results obtained from EaR3T, starting with those from 585 

examples/01_oco2_rad-sim.py and examples/02_modis_rad-sim.py (section 586 

4), examples/03_spns_flux-sim.py (section 5), and concluding with 587 

examples/04_cam_nadir_rad-sim.py (section 6). The usage of the EaR3T package 588 

including the technical input and output parameters and code walk-through is provided in 589 

Appendix A. 590 

 591 

4. EaR3T as a 3D Satellite Radiance Simulator 592 

This section demonstrates the automated 3D radiance simulation for satellite instruments 593 

by EaR3T for OCO-2 and MODIS measured radiance based on publicly available MODIS retrieval 594 

products. The OCO-2 application is an example of radiance consistency between two distinct 595 

satellite instruments where the measurements of one (here, OCO-2) are compared with the 596 

simulations based on data products from the other (here, MODIS). The MODIS application, on 597 

the other hand, is an example of radiance self-consistency. We will show how inconsistencies can 598 

be used for detecting cloud and surface property retrieval biases. 599 

4.1 OCO-2 (App. 1) 600 

The OCO-2 radiance measurements at 768.52 nm for our sample scene in the context of 601 

MODIS imagery were shown in Figure 2. For that track segment, Figure 5a shows the simulated 602 

radiance along with the measurements as a function of latitude. The radiance was averaged over 603 

every 0.01° latitude window from 37° N to 39° N (the standard deviation within the bin indicated 604 

by the shaded color). In clear-sky regions (e.g., around 38.2º N), the 3D simulations (red) are 605 

systematically higher than the measurements (black), even though the footprint-level OCO-2 606 
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surface albedo retrieval was used to replace and scale the MCD43 surface albedo field as described 743 

in section 2.2.2 (Figure 4). This is probably because, unlike the MCD43 algorithm which relies on 744 

multiple overpasses and multiple-days for cloud-clearing, the OCO-2 retrieval is done for any clear 745 

footprint. Clouds in the vicinity lead to enhanced diffuse illumination that is erroneously attributed 746 

to the surface albedo itself. The EaR3T IPA calculations of the clear-sky pixels (blue) essentially 747 

reverse the 3D effect and therefore match the observations better. The 3D calculations enhance the 748 

reflectance through the very same 3D cloud effects that led to the enhanced surface illumination 749 

in the first place. It is possible to correct this effect by down-scaling the surface albedo according 750 

to the ratio between clear-sky 3D and IPA calculations, but this process is currently not automated. 751 

 752 

                                                      753 

                                            754 
Figure 5. (a) Latitudinally averaged (0.01° spacing) radiance calculations from EaR3T (red: 3D, blue: IPA) and OCO-755 

2 measured radiance at 768.52 nm (black) The green shaded area indicates the inset shown in (b). (b) The 756 
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same as Figure 2 except OCO-2 measured radiance overlaid on IPA radiance simulations at 768.52 nm. The 763 
solar zenith angle (SZA) for the radiance simulation case is 34.3°. 764 

 765 

In the cloudy locations (radiance value greater than ~0.05), the IPA calculations match the 766 

OCO-2 observations on a footprint-by-footprint level (see Figure 5b), demonstrating that wind and 767 

parallax corrections were performed successfully. Of course, there is not always a perfect 768 

agreement because of morphological changes in the cloud field over the course of six minutes. It 769 

is, however, apparent that the 3D calculations agree to a much lesser extent with the observations 770 

than the IPA calculations. Just like the mismatch for the clear-sky pixels indicates a bias in the 771 

input surface albedo, the bias here means that the input cloud properties (most importantly COT) 772 

are inaccurate. For most of the reflectance peaks, the 3D simulations are too low, which means 773 

that the input COT is biased low. This is due to 3D cloud effects on the MODIS-based cloud 774 

retrieval. Since they are done with IPA, any net horizontal photon transport is not considered, 775 

which leads to an apparent surface brightening as noted above, at the expense of the cloud 776 

brightness. As a result, the COT from darker clouds is significantly underestimated. This 777 

commonly known problem (Barker and Liu, 1995), with several aspects discussed in the 778 

subsequent EaR3T applications, can be identified by radiance consistency checks such as the one 779 

shown in Figure 5, and mitigated by novel types of cloud retrievals that do take horizontal photon 780 

transport into account (section 6). 781 

 782 

4.2 MODIS (App. 2) 783 

 To go beyond the OCO-2 track and understand the bias between simulated and observed 784 

radiances from a domain perspective, we now consider the radiance simulations for the MODIS 785 

650 nm channel. The setup is exactly the same as for the OCO-2 simulations, except that 1) the 786 

viewing zenith angle is set to the average viewing zenith angle of MODIS within the shown domain 787 

(instead of OCO-2), and 2) the surface albedo (or WSA) from MCD43 is used directly, this time 788 

from the 650 nm channel without rescaling. Figure 6a shows the MODIS measured radiance field, 789 

while Figure 6b shows the EaR3T 3D simulations. Visually, the clouds from the EaR3T simulation 790 

are generally darker than the observed clouds, which is in line with our aforementioned explanation 791 

of net horizontal photon transport. They are also blurrier because radiative smoothing (Marshak et 792 

al., 1995) propagates into the retrieved COT fields, which are subsequently used as input to EaR3T. 793 
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The IPA RT calculations agree with the observations for clouds (see Figure A4a in Appendix C2), 799 

which is expected as the IPA calculations and retrievals go through the same RT process, and the 800 

darkening and smoothing effects (referred to as 3D effects) are due to horizontal photon transport. 801 

To look at the 3D effects more quantitatively, Figure 7 shows a heatmap plot of simulated radiance 802 

versus observed radiance. It shows that the radiance for cloud-covered pixels (labeled “cloudy”) 803 

from EaR3T are mostly low-biased while good agreement between simulations and observations 804 

was achieved for clear-sky radiance (labeled “clear-sky”). The good agreement over clear-sky 805 

regions is expected. As mentioned above, we use MCD43 as surface albedo input, which in 806 

contrast to the OCO-2 surface albedo product is appropriately cloud-screened and therefore does 807 

not have a reflectance high bias. There is, of course, a reflectance enhancement in the vicinity of 808 

clouds, but that is captured by the EaR3T calculations. The fact that the calculations agree with the 809 

observations even for clear-sky pixels in the vicinity of clouds, shows that the concept of radiance 810 

consistency works to ensure correct satellite retrievals even in the presence of clouds. It also 811 

corroborates our observation from section 4.1 that COTIPA is low biased. Since the MODIS 812 

reflectance is not self-consistent with respect to 3D RT calculations using COTIPA as shown for 813 

the cloudy pixels in Figure 7, we can identify a bias in the cloud properties even without knowing 814 

the ground truth of COT. On the other hand, successful closure in radiance (self-consistency) 815 

would provide an indication that the input fields including COT are accurate, although it is 816 

certainly a weaker metric than direct verification of the retrievals through aircraft-satellite retrieval 817 

validation using observations from in-situ instruments. 818 
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Figure 6. (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance at 650 nm from EaR3T. 827 
The solar zenith angle for the radiance simulation case is 34.94°. 828 

 829 
 830 

                                             831 
Figure 7. Heatmap plot of EaR3T simulated 3D radiance vs. MODIS measured radiance at 650 nm. 832 
 833 

Summarizing the two satellite radiance simulator applications, one can say that EaR3T 834 

enables a radiance consistency check for inhomogeneous cloud scenes. We demonstrated that a 835 

lack of simulation-observation consistency (MODIS versus OCO-2) and self-consistency (MODIS 836 

versus MODIS) can be traced back to biased surface albedo or cloud fields in the simulator input. 837 

This can become a diagnostic tool for the quality of retrieval products from future or current 838 

missions, even when the ground truth is not known. Although not shown, the errors in the 839 

simulated radiance associated with the fixed-SZA assumption (domain average) are negligible. 840 

However, the vertical extent of the clouds affects the simulated radiance – the larger the vertical 841 

extent, the larger the 3D effects (more horizontal photon transport). Since we make the assumption 842 

of 1) a cloud geometric thickness of 1 km for clouds with CTH less than 4 km, and 2) cloud base 843 

height of 3 km for clouds with CTH greater than 4km, the simulated radiance at the satellite sensor 844 

level is valid for that proxy cloud only. For clouds that are geometrically thicker than the assumed 845 

cloud geometrical thickness, the simulated radiance would be even lower due to enhanced 846 

horizontal photon transport. Either way, the comparison with the actual radiance measurements 847 

will reveal a lack of closure. Additionally, although the clouds introduce the lion’s share of the 3D 848 

bias that is identified by the radiance consistency check, additional discrepancies can be introduced 849 
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in different ways. For example, the topography (mountainous region in Colorado) is not considered 855 

by MCARaTS (it is considered by MYSTIC, but this solver has not been implemented yet).  856 

For the reference of simulation running time: The MODIS simulation (domain size of 857 

[Nx=846, Ny=846]) took about 15 minutes on a Linux workstation with 8 CPUs for three 3D RT 858 

runs with 108 photons. With a slightly modified setup and parallelization, the automation can be 859 

easily applied for entire satellite orbits, although more research is required to optimize the 860 

computation speed depending on the desired output accuracy. 861 

 862 

5. EaR3T as 3D Aircraft Irradiance Simulator (App. 3) 863 

In contrast to the previous applications that focused on satellite remote sensing, we will 864 

now be applying EaR3T to quantify 3D cloud retrieval biases through direct, systematic validation 865 

of imagery-derived irradiances against aircraft measurements, instead of using the indirect path 866 

of radiance consistency in section 4. Previous studies (e.g., Schmidt et al., 2007; Kindel et al., 867 

2010) conducted radiative closure between remote sensing derived and measured irradiance using 868 

isolated flight legs as case studies. Here, with the efficiency afforded by the automated nature of 869 

EaR3T, we are able to conduct radiative closure of irradiance through a statistical approach that 870 

employs campaign-scale amounts of measurement data. Specifically, we used EaR3T to perform 871 

large-scale downwelling irradiance simulations at 745 nm based on geostationary cloud retrievals 872 

from AHI for the CAMP2Ex campaign, and directly compare these simulations to the SPN-S 873 

measured irradiances onboard the P-3 aircraft. This is done for all below-cloud legs from the entire 874 

campaign with the aim to assess the degree to which satellite-derived near-surface irradiances 875 

reproduce the true conditions below clouds. 876 

The irradiance simulation process is similar to the previously described radiance simulation 877 

in section 4, with only a few modifications. First, we used cloud optical properties from the AHI 878 

cloud product (COT, CER and CTH) as direct inputs into EaR3T. Secondly, we used a constant 879 

ocean surface albedo value of 0.03. Such simplification in surface albedo is made under the 880 

assumption that 1) the ocean surface is calm with no whitecaps, and that 2) the Lambertian BRDF 881 

is sufficient (instead of directionally dependent BRDF) to represent surface albedo for the 882 

irradiance calculation. Since the ocean surface albedo can greatly differ from 0.03 when the Sun 883 

is extremely low (Li et al., 2006), we excluded data under low-Sun conditions where the SZA is 884 

greater than 45°. Lastly, since EaR3T can only perform 3D simulations for a domain at a single 885 
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specified solar geometry, we divided each CAMP2Ex research flight into small flight track 896 

segments where each segment contains 6 minutes of flight time. The size and shape of the flight 897 

track segments can vary significantly due to the aircraft maneuvers, aircraft direction, aircraft 898 

speed, etc. For each flight track segment, EaR3T performs irradiance simulations for a domain that 899 

extends half a degree at an averaged solar zenith angle. In contrast to the radiance simulation output, 900 

which is two-dimensional at a specified altitude and sensor geometry, the irradiance simulation 901 

output is three dimensional. In addition to x (longitude) and y (latitude) vectors, it has a vertical 902 

dimension along z (altitude). From the simulated three-dimensional irradiance field, the irradiance 903 

for the flight track segment is linearly interpolated to the x-y-z location (longitude, latitude, and 904 

altitude) of the aircraft. EaR3T automatically sub-divides the flight track into tiles encompassing 905 

track segments, and extracts the necessary information from the aircraft navigational data. Based 906 

on the aircraft time and position, EaR3T downloads the AHI cloud product that is closest in time 907 

and space to the domain containing the flight track segment. 908 

Figure 8 shows the simulated irradiance for a sample flight track below clouds on 20 909 

September, 2019. Figure 8a shows the flight track overlaid on AHI imagery. Figure 8b shows 3D 910 

(in red) and IPA (in blue) downwelling irradiance simulations for the highlighted flight track in 911 

Figure 8a, as well as measurements by the SPN-S (in black). Since the 3D and IPA simulations 912 

are performed separately at discrete solar and sensor geometries for each flight track segment based 913 

on potentially changing cloud fields from one geostationary satellite image to the next, 914 

discontinuities in the calculations (indicated by gray dashed lines) are expected. The diffuse 915 

irradiance (downwelling and upwelling) can also be simulated and compared with radiometer 916 

measurements (not shown here). Since the irradiance was simulated/measured below clouds, high 917 

values of downwelling irradiance indicate thin-cloud or cloud-free regions while low values of 918 

downwelling irradiance indicate thick-cloud regions. The simulations successfully captured this 919 

general behavior – clouds thickened from west to east until around 121.25° E, and thinned 920 

eastwards. However, the fine-scale variabilities in irradiance were not captured by the simulations 921 

due to the coarse resolution of COT in the AHI cloud product (3-5 km). Additionally, the 922 

simulations also missed the clear-sky regions in the very east and west of the flight track as 923 

indicated by high downwelling irradiance values measured by SPN-S. This is probably also due to 924 

the coarse resolution of the AHI COT product where small cloud gaps are not represented. Large 925 

discrepancies between simulations and observations occur in the mid-section of the flight track 926 
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where clouds are present (e.g., longitude range from 121.15° to 121.3°). Although the 3D 927 

calculations differ somewhat from the IPA results, they are both biased high, likely because the 928 

input COT (the IPA-retrieved AHI product) is biased low. This bias is caused by the same 929 

mechanism that was discussed earlier in the MODIS examples (section 4.2). This begs the question 930 

whether this is true for the entire field mission. To answer the question, we performed a systematic 931 

comparison of the cloud transmittance for all available below-cloud flight tracks from CAMP2Ex, 932 

using EaR3T’s automated processing pipeline. The output of this pipeline is visualized in time-933 

synchronized flight videos (Chen et al., 2022), which show the simulations and observations along 934 

all flight legs point by point. These videos give a glimpse of the general cloud environment during 935 

the field campaign from the geostationary satellite perspective. 936 

 937 

 938 

       939 
Figure 8. (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea on 20 September, 2019. 940 

The thin line shows the entire flight track within the domain. The thick line highlights the specific leg 941 
analyzed in (b). (b) Measured downwelling irradiance from SPN-S at 745 nm and calculated 3D and IPA 942 
irradiance from EaR3T for the highlighted flight track in (a). 943 

 944 

For this comparison, we use transmittance instead of irradiance. The transmittance is 945 

calculated by dividing the downwelling irradiance below clouds (𝐹↓
&'((')) by the downwelling 946 

irradiance at the top of the atmosphere extracted from the Kurucz solar spectra (𝐹↓
*!+; Kurucz, 947 

1992) at incident solar zenith angle (SZA), where 948 

(a) (b) 
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𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 =
𝐹↓
&'((')

𝐹↓
*!+ ⋅ cos(𝑆𝑍𝐴)

 949 

Thus the transmittance has less diurnal dependence than the irradiance. Figure 9 shows the 950 

histograms of the simulated and measured cloud transmittance from all below-cloud legs. The 951 

average values are indicated by dashed lines. Although the averaged values of IPA and 3D 952 

transmittance are close, their distributions are different. Only the 3D calculations and the measured 953 

transmittance reach values beyond 1. This occurs in clear-sky regions in the vicinity of clouds that 954 

receive photons scattered by the clouds as previously discussed for the OCO-2 application. 955 

 956 

                                 957 
Figure 9. Histogram of measured transmittance from SPN-S at 745 nm (dark gray filled) and calculated 3D (red solid 958 

line) and IPA (blue solid line) transmittance from EaR3T for all the below-cloud flight tracks during 959 
CAMP2Ex in 2019. The mean values are indicated by dashed lines. The yellow (green) shaded area 960 
represents the relatively low (high) transmittance region where the probability density of the observed 961 
transmittance (dark gray filled) is greater than the calculations.  962 

 963 

Both the distribution and the mean value of the simulations are different from the 964 

observations – the simulation histograms peak at around 0.9 while the observation histogram peaks 965 

at around 1. The histograms indicate that the RT simulations miss most of the clear-sky conditions 966 

because of the coarse resolution of the AHI cloud product. If clouds underfill a pixel, AHI 967 

interprets the pixel as cloudy in most cases. This leads to an underestimation of clear-sky regions 968 

since cumulus and high cirrus were ubiquitous during CAMP2Ex. The area on the left (highlighted 969 

in yellow) has low cloud transmittance associated with thick clouds. In this range, the histograms 970 

of the calculations are generally below the observations, and the PDF of the calculations is offset 971 
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to the right (indicated by the yellow arrow). This means that the transmittance is overestimated by 974 

both IPA and 3D RT, and thus that the COT of thick clouds is underestimated, consistent with 975 

what we found before (Figure 8b). The high-biased transmittance below-cloud is also consistent 976 

with the findings of low-biased reflectance (App. 1 and 2), both indicating COT of the optically 977 

thick clouds are low-biased. The high-transmittance end (highlighted in green) is associated with 978 

clear-sky and thin clouds. Here, the peak of the PDF is shifted to the left (green arrow), and the 979 

calculations are biased low. This is caused by a combination of 1) the overestimation in COT of 980 

thin clouds due a 3D bias in the AHI IPA retrieval, 2) the aforementioned resolution effect that 981 

underestimates the occurrence of clear-sky regions (or overestimation in cloud fraction), and 3) 982 

net horizontal photon transport from clouds into clear-sky pixels. Overall, the calculations 983 

underestimate the true transmittance by 10%. This might seem to contradict Figure 7, where the 984 

calculated reflected radiance was biased low due to the underestimation of COT in the heritage 985 

retrievals, which would correspond to an overestimation of the radiation transmitted by clouds. 986 

This effect is indeed apparent in the yellow-shaded area of Figure 9 (high COTs), but the means 987 

(dashed lines) show exactly the opposite. To understand that, one has to consider that the histogram 988 

depicts all-sky conditions, which include both cloudy and clear pixels. In this case, the direction 989 

of the overall (all-sky) bias follows the direction of the thin-cloud/clear bias, rather than the 990 

direction of the thick cloud bias. For different study regions of the globe with different cloud 991 

fractions, cloud size distributions, and possibly different imager resolutions, the direction and 992 

magnitude of the bias might be very different. 993 

Summarizing, this application demonstrates that the EaR3T’s automation feature allows 994 

systematic simulation-to-observation comparisons. If aircraft observations are available, then 995 

closure between satellite-derived irradiance and suborbital measurements is a more powerful 996 

verification of satellite cloud retrieval products than the radiance consistency from the earlier 997 

stand-alone satellite applications. Even more powerful is the new approach to process the data 998 

from an entire field mission for assessing the quality of cloud products in a region of interest (in 999 

this case, the CAMP2Ex area of operation). 1000 

 1001 

6. EaR3T for Mitigating 3D Cloud Retrieval Biases (App. 4) 1002 

In this section, we will use high-resolution imagery from a radiometrically calibrated 1003 

all-sky camera flown during the CAMP2Ex to isolate the 3D bias (sometimes referred to as IPA 1004 
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bias) and explore its mitigation with a newly developed CNN cloud retrieval framework (Nataraja 1005 

et al., 2022). The CNN, unlike IPA, takes pixel-to-pixel net horizontal photon transport into 1006 

account. It exploits the spatial context of pixels in cloud radiance imagery, and extracts a higher-1007 

dimensional, multi-scale representation of the radiance to retrieve COT fields as the output. It does 1008 

so by learning on “training data”, which in this case was input radiance and COT pairs synthetically 1009 

generated by EaR3T using LES data from the Sulu Sea. The best CNN model, trained on different 1010 

coarsened resolutions of the data pairs, is included within the EaR3T repository. For App. 4, this 1011 

CNN is applied to real imagery data for the first time, which in our case are near-nadir observations 1012 

by the all-sky camera (section 2.2.5) that flew in CAMP2Ex. 1013 

The CNN model was trained at a single (fixed) sun-sensor geometry (solar zenith angle, 1014 

SZA=29.2°; solar azimuth angle, SAA=323.8°, viewing zenith angle, VZA=0º), at a spatial 1015 

resolution of 100 m. We therefore chose a camera scene with a matching SZA (28.9°), and rotated 1016 

the radiance imagery to match SAA=323.8°, and subsequently gridded the 8-12 m native 1017 

resolution camera data to 100 m. Figure 10a shows the RGB imagery captured by the all-sky 1018 

camera over the Philippine Sea at 02:10:06 UTC on 5 October 2019. The Sun is located at the 1019 

southeast (as indicated by the yellow arrow) and can be easily identified from the sun glint. Note 1020 

that this image has not yet been geolocated; it is depicted as acquired in the aircraft reference frame. 1021 

Figure 10b shows the rotated scene of the red channel radiance for the region encircled in yellow 1022 

in Figure 10a. The sun (as indicated by the yellow arrow) is now at SAA=323.8°. The selected 1023 

study region is indicated by the red rectangle in Figure 10b (6.4x6.4 km2), where the raw radiance 1024 

of the camera is gridded at 100 m resolution to match the spatial resolution of the training dataset 1025 

of the CNN. 1026 

 1027 

 1028 
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           1029 
Figure 10. (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP2Ex for a cloud scene centered 1030 

at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 UTC on 5 October, 2019. The arrows 1031 
indicate the true north (green), flight direction (blue), and illumination (where the sunlight comes from, 1032 
yellow). (b) Red channel radiance measured by the camera for the circular area indicated by the red circle 1033 
in (a). Red squared region shows gridded radiance with a pixel size of 64x64 and spatial resolution of 100 1034 
m. 1035 

 1036 

From the radiance field, we used both the traditional IPA (based on the IPA reflectance-to-1037 

COT mapping) and the new CNN to retrieve COT fields. Figure 11 shows the COTIPA and COTCNN 1038 

fields, which are visually quite different. For relatively thin clouds (e.g., at around {2, 1.8}), the 1039 

CNN tends to retrieve larger COT values than COTIPA. Also, it returns more spatial structure than 1040 

the IPA (e.g., around {2,-1}). To assess how either retrieval performs, we now apply the radiance 1041 

self-consistency approach introduced with MODIS data in section 4.2. Using both the IPA and the 1042 

CNN retrieval as input, we had EaR3T calculate the (synthetic) radiance that the camera should 1043 

have observed if the retrieval were accurate. The clouds are assumed to be located at 1-2 km. Such 1044 

an assumption is inferred from low-level aircraft observations of clouds on the same day. These 1045 

radiance fields are shown in Figure 12a and 12b, and can be compared to Figure 12c. Seven edge 1046 

pixels have been removed from the original domain because the CNN performs poorly at edge 1047 

pixels, and because the 3D calculations use periodic boundary conditions. 1048 

 1049 
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           1052 
Figure 11. Cloud optical thickness for the gridded radiance in Figure 10b (a) estimated by IPA method and (b) 1053 

predicted by CNN. 1054 
 1055 

 1056 

           1057 

 1058 
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Figure 12. 3D radiance calculations from EaR3T at 600 nm based on cloud optical thickness field (a) estimated by 1059 
IPA, and (b) predicted by the CNN. The radiance measured by the all-sky camera (the same as Figure 1060 
10b) is provided in the same format at (c) for comparison. The calculations were originally performed 1061 
for the 64x64 domain. Then 7 pixels along each side of the domain (contoured in gray) were excluded, 1062 
which resulted in a 50x50 domain. 1063 

 1064 

 1065 

           1066 
Figure 13. Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based on cloud optical thickness 1067 

(a) estimated by IPA and (b) predicted by the CNN vs. measured red channel radiance from all-sky camera. 1068 
 1069 

As evident from the brightest pixels in Figures 12b and 12c, the radiances simulated on the 1070 

basis of the COTCNN input are markedly lower than actually observed by the camera. This is 1071 

because the CNN was trained on a LES dataset with limited COT range that excluded the largest 1072 

COT that occurred in practice. This means that the observational data went beyond the original 1073 

training envelope of the CNN, which highlights the importance of choosing the CNN training data 1074 

carefully for a given region. In Figure 13, the simulations are directly compared with the original 1075 

observations, confirming that indeed the CNN-generated data are below the observations on the 1076 

high radiance end. Otherwise, the CNN-generated radiances agree with the observations. In 1077 

contrast, the IPA-generated data are high biased for the optically very thin clouds (radiance below 1078 

0.1) and systematically low-biased for the thick clouds (radiance above 0.2) when comparing with 1079 

the observations, over the dynamic range of the COT, which is indicative of the 3D retrieval bias 1080 

that we discussed earlier. A small high bias occurs in the COTCNN based radiance simulations for 1081 

the optically thin clouds (radiance value below 0.2). This probably because the CNN training as 1082 
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described by Nataraja et al. (2022) is 1) based on a surface albedo of 0 and 2) aerosol-free 1086 

atmospheric environment (also aerosol-free setup for radiance simulations in Figure 13), where in 1087 

reality the ocean is slightly brighter and atmosphere is mixed with aerosols. Here again, the 1088 

radiance self-consistency approach proves useful despite the absence of ground truth data for the 1089 

COT. This is valuable because in reality satellite remote sensing does not have the ground truth of 1090 

COT, whereas radiance measurements are always available. For the CNN, the self-consistency of 1091 

the radiance is remarkable for most of the clouds (radiance smaller than 0.4), which encompass 1092 

86.8% of the total number of image pixels. 1093 

Finally, we use EaR3T to propagate the 3D cloud retrieval bias into the associated bias in 1094 

estimating the cloud radiative effect from passive imagery retrievals, which means that we are 1095 

returning from a remote sensing to an energy perspective (irradiance) at the end of the paper. The 1096 

calculated cloud radiative effects (CRE) of both below-clouds (at the surface) and above-clouds 1097 

(at 2.5 km) are shown in Figure 14a and 14b. The most important histograms are those from 3D 1098 

irradiance calculations based on the CNN retrievals (gray solid line), as this combination would 1099 

be used in a next-generation framework for deriving CRE from passive remote sensing, and the 1100 

other would be IPA irradiance calculations based on the IPA retrieval (red solid line), as done in 1101 

the traditional (heritage) approach. The dashed lines are the other combinations. The mean values 1102 

(red vs. gray) indicate that in our case the traditional approach would lead to a high bias of more 1103 

than to 28% both at the surface and 20% above clouds due to low-biased COTIPA (consistent with 1104 

findings of low-biased COTIPA-derived reflectance from App. 1&2 and high-biased COTIPA-1105 

derived transmittance from App. 3). Here again, 3D biases do not cancel each other out in the 1106 

domain average. If the CNN had better fidelity even for optically thick clouds, the real bias in CRE 1107 

would be even larger. A minor, but interesting finding is that regardless of which COT retrieval is 1108 

used, the mean CRE is similar for IPA and 3D irradiance calculations (e.g., 𝐶𝑅𝐸,-+(𝐶𝑂𝑇"..);;;;;;;;;;;;;;;;;;;;;; ≈1109 

𝐶𝑅𝐸/$(𝐶𝑂𝑇"..);;;;;;;;;;;;;;;;;;;;;, blue vertical dashed line locates near to gray vertical solid line), even though 1110 

the PDFs are different. By far the largest impact on accuracy comes from the retrieval technique, 1111 

not from the subsequent CRE calculations. Here again, the self-consistency check turns out as a 1112 

powerful metric to assess retrieval accuracy. Of course, we only used a single case in this part of 1113 

the paper. For future evaluation of the CNN versus the IPA, one would need to process larger 1114 

quantities of data in an automated fashion as done in the first part of the paper. This is beyond the 1115 

scope of this introductory paper, and will be included in future releases of EaR3T and the CNN. 1116 
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 1127 

    1128 
Figure 14. Histograms of cloud radiative effects derived from 1) 3D irradiance calculations based on COTCNN (solid 1129 

gray), 2) IPA irradiance calculations based on COTIPA (solid red), 3) IPA irradiance calculations based on 1130 
COTCNN (dashed blue), and 4) 3D irradiance calculations based on COTIPA (dashed green) both (a) at the 1131 
surface and (b) above the clouds. The mean values are indicated by vertical lines. 1132 

 1133 

7. Summary and Conclusion 1134 

In this paper, we introduced EaR3T, a toolbox that provides high-level interfaces to 1135 

automate and facilitate 1D- and 3D-RT calculations. We presented applications that used EaR3T 1136 

to: 1137 

a) build a processing pipeline that can automatically simulate 3D radiance fields for satellite 1138 

instruments (currently OCO-2 and MODIS) from publicly available satellite surface and 1139 

cloud products at any given time over any specific region; 1140 

b) build a processing pipeline that can automatically simulate irradiance along all flight legs 1141 

of aircraft missions, based on geostationary cloud products; 1142 

c) simulate radiance and irradiance for high-resolution COT fields retrieved from an airborne 1143 

camera, using both a traditional 1D-RT (IPA) approach, and a newly developed 3D-RT 1144 

(CNN) approach that considers the spatial context of a pixel. 1145 

Unlike other satellite simulators that employ 1D-RT, EaR3T is capable of performing the radiance 1146 

and irradiance calculations in 3D-RT mode. Optionally, it can be turned off to link back to 1147 

traditional 1D-RT codes, and to calculate 3D perturbations by considering the changes of 3D-RT 1148 

fields relative to the 1D-RT baseline. 1149 
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With the processing pipeline under a) (App. 1 and App. 2, section 4), we prototyped a 1150 

3D-RT powered radiance loop (we call it “radiance self-consistency”) that is envisioned for 1151 

upcoming satellite missions such as EarthCARE and AOS. Retrieved cloud fields (in our case, 1152 

from MODIS and from an airborne camera) are fed back into a 3D-RT simulation engine to 1153 

calculate at-sensor radiances, which are then compared with the original measurements. Beyond 1154 

currently included sensors, others can be added easily, taking advantage of the modular design of 1155 

EaR3T. This radiance closure loop facilitates the evaluation of passive imagery products, 1156 

especially under spatially inhomogeneous cloud conditions. The automation of EaR3T permits 1157 

calculations at any time and over any given region, and statistics can be built by looping over entire 1158 

orbits as necessary. The concept of radiance self-consistency could be valuable even for existing 1159 

imagery datasets because it allows the automated quantification of 3D-RT biases even without 1160 

ground truth such as airborne irradiance from suborbital activities. Also, it can be easily extended 1161 

to spectral or multi-angle observations as available from MODIS and MISR (Multi-Angle Imaging 1162 

Spectroradiometer), and thus providing more powerful constraints to the remote sensing products. 1163 

In the future it should be possible to include a 3D-RT pipeline such as EaR3T into operational 1164 

processing of satellite derived data products. 1165 

 Benefitting from the automation of EaR3T in b) (App. 3, section 5), we performed 3D-RT 1166 

irradiance calculations for the entire CAMP2Ex field campaign, moving well beyond radiation 1167 

closure case studies, and instead systematically evaluating satellite-derived radiation fields with 1168 

aircraft data for an entire region. From the comparison based on all below-cloud flight tracks 1169 

during the entire campaign, we found that the satellite-derived cloud transmittance was biased low 1170 

by 10% compared to the observations when relying on the heritage satellite cloud product. 1171 

From the statistical results of the CAMP2Ex irradiance closure in b), we concluded that the 1172 

bias between satellite-derived irradiances and the ground truth from aircraft measurements was 1173 

due to a combination of the coarse spatial resolution of the geostationary imagery products and 1174 

3D-RT effects. To minimize the coarse-resolution part of the bias and thus to isolate the 3D-RT 1175 

bias, we used high-resolution airborne camera imagery in c) (App. 4, section 6), and found that 1176 

even with increased imager resolution, biases persisted. The at-sensor radiance derived from 1177 

COTIPA was inconsistent with the original measurements. For cloudy pixels, the calculated 1178 

radiance was well below the observations, confirming an overall low bias in COTIPA. This low bias 1179 

could be largely mitigated with the context-aware CNN developed separately in Nataraja et al. 1180 
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(2022) and included in EaR3T. Of course, this novel technique has limitations. For example, the 1184 

camera reflectance data went beyond the CNN training envelope, which would need to be extended 1185 

to larger COT in the future. In addition, the CNN only reproduces two-dimensional clouds fields 1186 

and does not provide access to the vertical dimension, which will be the next frontier to tackle. 1187 

Still, the greatly improved radiance consistency from COTIPA to COTCNN indicates that the EaR3T-1188 

LES-CNN approach shows great promise for the mitigation of 3D-RT biases associated with 1189 

heritage cloud retrievals. We also discovered that for this particular case, the CRE calculated from 1190 

traditional 1D cloud products can introduce a warm bias of at least 28% at the surface and 20% 1191 

above clouds. 1192 

EaR3T has proven to be capable of facilitating 3D-RT calculations for both remote sensing 1193 

and radiative energy studies. Beyond the applications described in this paper, EaR3T has already 1194 

been extensively used by a series of on-going research projects such as producing massive 3D-RT 1195 

calculations as training data for a new generation of CNN models (Nataraja et al., 2022), evaluating 1196 

3D cloud radiative effects associated with aerosols (Gristey et al., 2022), creating flight track and 1197 

satellite track simulations for mission planning etc. More importantly, the strategies provided in 1198 

this paper put novel machine learning algorithms on a physical footing, opening the door for the 1199 

mitigation of complexity-induced biases in the near-future. More development effort will be 1200 

invested into EaR3T in the future, with the goals of minimizing the barriers to using 3D-RT 1201 

calculations, and to promote 3D cloud studies. EaR3T will continue to be an educational tool driven 1202 

by graduate students. In the future, we plan to add support for additional publicly available 3D RT 1203 

solvers, e.g., SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and 1204 

Evans, 2009), as well as built-in support for HITRAN and associated correlated-k methods 1205 

(currently, we are implementing such an approach for the longwave wavelength range). From a 1206 

research perspective, we anticipate that EaR3T will enable the systematic quantification and 1207 

mitigation of 3D-RT biases of imagery-derived cloud-aerosol radiative effects, and may be the 1208 

starting point for operational use of 3D-RT for future satellite missions.  1209 
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Appendix A 1217 

A1 - Technical Input and Output Parameters of EaR3T 1218 

EaR3T provides various functions that can be combined to tailored pipelines for automatic 1219 

3D radiative transfer (3D-RT) calculations as described in this paper (App. 1 – 5), as well as for 1220 

complex research projects beyond. Since EaR3T is written in Python, the modules and functions 1221 

can be integrated into existing functions developed by the users themselves. Parallelization is 1222 

enabled in EaR3T by default through multi-processing to accelerate computations. If multiple 1223 

CPUs are available, EaR3T will distribute jobs for the 3D RT calculations. By default, the 1224 

maximum number of CPUs will be used. Since EaR3T is designed to make the process of setting 1225 

up and running 3D-RT calculations simple, some parameters that are unavailable from the input 1226 

data but are required by the RT solvers are populated via default values and assumptions. However, 1227 

this does not mean that by using EaR3T, one must use these assumptions; they can be easily 1228 

superseded by user-provided settings. To facilitate this process, Table A1 provides a detailed list 1229 

of parameters (subject to change in future updates) that can be controlled and modified by the user. 1230 

In examples/02_modis_rad-sim.py, we defined these user-controllable parameters as 1231 

global variables for providing easy access to user. In the future, most of the parameters will be 1232 

controllable through a dedicated configuration file for optimal transparency. These parameters can 1233 

be changed within the code. For instance, by changing the parameters of 'date' (Line 67 in 1234 

examples/02_modis_rad-sim.py) and 'region' (Line 68 in 1235 

examples/02_modis_rad-sim.py) within params into the following: 1236 

params['date']   = datetime.datetime(2022, 2, 10) 1237 

params['region'] = [-6.8, -2.8, 17.0, 21.0] 1238 

one can perform similar RT calculations (as demonstrated in App. 2) for another date and region 1239 

of interest (here, west Sahara Desert on 10 February, 2022). Note that the code is under active 1240 

development, the line numbers are only valid in the version release of v0.1.1 and might change in 1241 

the future. Given the input parameters, EaR3T will calculate radiance or irradiance and save the 1242 

calculations into a HDF5 (Hierarchical Data Format version 5) file. The output data variables are 1243 

provided in Table A2. 1244 

In addition to the example code, intuitive and simple examples are provided in 1245 

examples/00_er3t_mca.py and examples/00_er3t_lrt.py for users who are 1246 

interested in learning the basics of setting up EaR3T for calculations. At the current stage, only 1247 

Deleted: App. 1 – 5 of1248 

Deleted: _date1249 

Deleted: _region1250 

Deleted: _date1251 

Deleted: _region1252 

Deleted: Note that the cloud detection algorithms we 1253 
included in the code are imperfect (they only work 1254 
satisfactorily for the App. 2 case we presented in this paper); 1255 
for other regions on the globe, they may need to be adjusted. 1256 
Deleted: Automation of this feature is planned for the future1257 
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limited documentation is provided. However, community support is available from the author of 1258 

this paper through Discord6. In the near-future, more effort will be invested into documentation to 1259 

give the user more autonomy in creating new applications that cannot be derived from those 1260 

provided in our paper. 1261 
 1262 

Parameters 
App. 1 
 
examples/01_oc
o2_rad-sim.py 

App. 2 
 
examples/02_mo
dis_rad-sim.py 

App. 3 
 
examples/03_sp
ns_flux-sim.py 

App. 4 
 
examples/04_ca
m_nadir_rad-
sim.py 

App. 5 
 
examples/05_cn
n-les_rad-
sim.py 

Date 

September 2, 2019 
 
Specified at Line 66: 
params['date'] 
And Line 1569: 
date 

September 2, 2019 
 
Specified at Line 68: 
params['date'] 
And Line 1311: 
date 

September 20, 2019 
 
Specified at Line 
439: date 
And Line 238: date 

October 5, 2019 
 
Specified at Line 59: 
params['date'] 
And Line 215: date 

October 5, 2019 
 
Specified at Line 58: 
params['date'] 
And Line 126: date 

Geographical 
Region 

Specified at Line 69: 
params['region
'] 

Specified at Line 69: 
params['region
'] 

Variable (depends 
on aircraft location) N/A N/A 

Z Grid 
(Number of 
Grids/Resolut
ion) 

40 / 0.5 km 
 
Specified at Line 
1476: levels 

40 / 0.5 km 
 
Specified at Line 
1220: levels 

20 / 1 km 
 
Specified at Line 
180: levels 

40 / 0.5 km 
 
Specified at Line 
174: levels 

50 / 0.4km 
 
Specified at Line 92: 
levels 

Wavelength 

768.52 nm 
 
Specified at Line 67: 
params['wavele
ngth'] 

650 nm 
 
Specified at Line 67: 
params['wavele
ngth'] 

745 nm 
 
Specified at Line 
440: wavelength 

600 nm 
 
Specified at Line 58: 
params['wavele
ngth'] 

600 nm 
 
Specified at Line 57: 
params['wavele
ngth'] 

Atmospheric 
Gas Profile 

US standard 
atmosphere 
 
Specified at Line 
1479: atm0 

US standard 
atmosphere 
 
Specified at Line 
1223: atm0 

US standard 
atmosphere 
 
Specified at Line 
183: atm0 

US standard 
atmosphere 
 
Specified at Line 
177: atm0 

US standard 
atmosphere 
 
Specified at Line 68: 
params['atmosp
heric_profile'
] 
And Line 94: atm0  

Atmospheric 
Gas 
Absorption 

Case specific  
 
Specified at Line 
1487: abs0 

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
1230: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
189: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
184: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 97: 
abs0  

Cloud Top 
Height (CTH) 

From MODIS L2 
cloud product 
 
Specified at Line 
1520: 
data['cth_2d'] 
And Line 1530: 
cld0  

From MODIS L2 
cloud product 
 
Specified at Line 
1263: 
data['cth_2d'] 
And Line 1273: 
cld0  

From AHI L2 cloud 
product 
 
Specified at Line 
208: cth_2d 
And Lines 212: 
cld0  

2 km 
 
Specified at Line 63: 
params['cloud_
top_height'] 
And Lines 199: 
cld0 

From LES 
 
Specified at Line 
103: cld0 

Cloud 
Geometrical 
Thickness 

1 km for CTH < 4 
km; 
Variable that cloud 
base height is at 3 
km for CTH > 4 km 
 
Specified at Line 
1527: cgt  

1 km for CTH < 4 
km; 
Variable that cloud 
base height is at 3 
km for CTH > 4 km 
 
And Line 1270: cgt 

1 km 
 
Specified at Line 
212: cgt 

1 km 
 
Specified at Line 64: 
params['cloud_
geometrical_th
ickness'] 

From LES 
 
Specified at Line 
103: cld0 

 
6 https://discord.gg/ntqsguwaWv 
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Cloud Optical 
Thickness 

Used IPA 
reflectance-to-COT 
mapping for MODIS 
L1B Reflectance at 
250 m resolution 
 
Specified at Line 
1518: 
data['cot_2d'] 
And Line 1530: 
cld0  

Used IPA 
reflectance-to-COT 
mapping for MODIS 
L1B Reflectance at 
250 m resolution 
 
Specified at Line 
1261: 
data['cot_2d'] 
And Line 1273: 
cld0 

From AHI L2 cloud 
product 
 
Specified at Line 
198: cot_2d 
And Lines 212: 
cld0 

Used IPA 
reflectance-to-COT 
mapping and CNN 
for camera red 
channel 
radiance/reflectance 
at 100 m resolution 
 
Specified at Lines 
474 and 493: 
cot_2d 
And Lines 199: 
cld0  

From LES 
 
Specified at Line 
103: cld0 

Cloud 
Effective 
Radius 

From MODIS L2 
Cloud Product 
 
Specified at Line 
1519: 
data['cer_2d'] 
And Line 1530: 
cld0 

From MODIS L2 
Cloud Product 
 
Specified at Line 
1262: 
data['cer_2d'] 
And Line 1273: 
cld0 

From AHI L2 cloud 
product 
 
Specified at Line 
199: cer_2d 
And Lines 212: 
cld0 

12 micron 
 
Specified at Lines 
475 and 494: 
cer_2d 
And Lines 199: 
cld0 

From LES 
 
Specified at Line 
103: cld0 

Scattering 
Phase 
Function 

Mie (water cloud) 
 
Specified at Line 
1536: pha0 
And Line 1573: sca 

Mie (water cloud) 
 
Specified at Line 
1279: pha0 
And Line 1315: sca 

Mie (water cloud) 
 
Specified at Line 
219: pha0 
And Line 237: sca  

Mie (water cloud) 
 
Specified at Line 
190: 
pha0 
And Line 219: sca  

Mie (water cloud) 
 
Specified at Line 
111: 
pha0 
And Line 130: sca 

Surface 
Albedo 

From MODIS 
surface albedo 
product and scaled 
by OCO-2 
 
Specified at Line 
1501: mod43 
And Line 1503: 
sfc_2d 

From MODIS 
surface albedo 
product 
 
Specified at Line 
1244: mod43 
And Line 1246: 
sfc_2d 

0.03 
 
Implicitly specified 
by default at Line 
234: 
mcarats_ng 

0.03 
 
Specified at Line 61: 
params['surfac
e_albedo'] 
And Line 218: 
surface_albedo 

0.03 
 
Specified at Line 59: 
params['surfac
e_albedo'] 
And Line 133: 
surface_albedo 
  

Solar Zenith 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
1554: sza 
And Line 1576: 
solar_zenith_a
ngle 

From MODIS 
geolocation file 
 
Specified at Line 
1296: sza 
And Line 1318: 
solar_zenith_a
ngle 

Variable (depends 
on aircraft location 
and date and time) 

28.90° 
 
Specified at Line 
464: 
geometry['sza'
] 
And Line 222: 
solar_zenith_a
ngle 

29.16° 
 
Specified at Line 60: 
params['solar_
zenith_angle'] 
And Line 134: 
solar_zenith_a
ngle 

Solar 
Azimuth 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
1555: saa 
And Line 1577: 
solar_azimuth_
angle 

From MODIS 
geolocation file 
 
Specified at Line 
1297: saa 
And Line 1319: 
solar_azimuth_
angle 

Variable (depends 
on aircraft location 
and date and time) 

296.83° 
 
Specified at Line 
465: 
geometry['saa'
] 
And Line 223: 
solar_azimuth_
angle 

296.83° 
 
Specified at Line 61: 
params['solar_
azimuth_angle'
] 
And Line 135: 
solar_azimuth_
angle 

Sensor 
Altitude 

705 km (satellite 
altitude) 
 
Implicitly specified 
by default at Line 
1568: 
mcarats_ng  

705 km (satellite 
altitude) 
 
Implicitly specified 
by default at Line 
1310: 
mcarats_ng 

N/A, three-
dimensional 
irradiance outputs at 
user-defined Z grid 

5.48 km (flight 
altitude) 
 
Specified at Line 
466: 
geometry['alt'
] 
And Line 224: 
sensor_altitud
e 

705 km (satellite 
altitude) 
 
Specified at Line 64: 
params['sensor
_altitude] 
And Line 138: 
sensor_altitud
e 

Sensor Zenith 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
1557: vza 

From MODIS 
geolocation file 
 
Specified at Line 
1302: vza 

0° (nadir) 
 
Implicitly specified 
by default at Line 
234: 
mcarats_ng  

0° (nadir) 
 
Implicitly specified 
by default at Line 
214: 
mcarats_ng 

0° (nadir) 
 
Specified at Line 62: 
params['sensor
_zenith_angle'
] 
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And Line 1578: 
sensor_zenith_
angle 

And Line 1320: 
sensor_zenith_
angle  

And Line 136: 
sensor_zenith_
angle 

Sensor 
Azimuth 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
1558: vaa 
And Line 1579: 
sensor_azimuth
_angle 

From MODIS 
geolocation file 
 
Specified at Line 
1303: vaa 
And Line 1321: 
sensor_azimuth
_angle 

0° (insignificant for 
nadir) 
 
Implicitly specified 
by default at Line 
234: 
mcarats_ng 

0° (insignificant for 
nadir) 
 
Implicitly specified 
by default at Line 
214: 
mcarats_ng 

0° (insignificant for 
nadir) 
 
Specified at Line 63: 
params['sensor
_azimuth_angle
'] 
And Line 137: 
sensor_azimuth
_angle 

Number of 
Photons 

1×108 per run 
 
Specified at Line 70: 
params['photon
'] 
And Line 1583: 
photons 

1×108 per run 
 
Specified at Line 70: 
params['photon
'] 
And Line 1325: 
photons 

1×107 per run 
 
Specified at Line 50: 
params['photon
'] 
And Line 243: 
photons 

1×107 per run 
 
Specified at Line 60: 
params['photon
'] 
And Line 228: 
photons 

1×108 per run 
 
Specified at Line 65: 
params['photon
'] 
And Line 141: 
photons 

Number of 
Runs 

3 
 
Specified at Line 
1581: Nrun 

3 
 
Specified at Line 
1323: Nrun 

3 
 
Specified at Line 
242: Nrun 

3 
 
Specified at Line 
226: Nrun 

3 
 
Specified at Line 
140: Nrun 

Mode (3D or 
IPA) 

3D and IPA 
 
Specified at Line 
1704 and 1705: 
solver 
And Line 1584: 
solver 

3D or IPA 
 
Specified at Line 
1418: solver 
And Line 1326: 
solver 

3D and IPA 
 
Specified at Lines 
377 and 378: 
solver 
And Line 244: 
solver 

3D 
 
Specified at Lines 
507 and 508: 
solver 
And Line 229: 
solver 

3D 
 
Specified at Line 
143: solver 

Parallelizatio
n Mode 

Python multi-
processing 
 
Specified at Line 
1586: mp_mode 

Python multi-
processing 
 
Specified at Line 
1328: mp_mode 

Python multi-
processing 
 
Specified at Line 
247: mp_mode 

Python multi-
processing 
 
Specified at Line 
231: mp_mode 

Python multi-
processing 
 
Specified at Line 
145: mp_mode 

Number of 
CPUs 

12 
 
Specified at Line 71: 
params['Ncpu'] 
And Line 1585: 
Ncpu 

12 
 
Specified at Line 71: 
params['Ncpu'] 
And Line 1327: 
Ncpu  

12 
 
Specified at Line 
311: Ncpu 
And Line 246: Ncpu 

12 
 
Specified at Line 
230: Ncpu 

24 on clusters 
 
Specified at Line 
144: Ncpu 

 1263 
Table A1: List of parameters used in the five applications. The line numbers used in the table are referring to the code 1264 

script of each application. If two line numbers are provided, the first one indicates where the parameter is 1265 
defined and the second one indicates where the parameter is passed into the radiative transfer setup. Users 1266 
can change either one for customization purposes. 1267 

 1268 
 1269 

Metadata 

Variable Name Description Data Type Dimension 

mean/N_photon Number of photons per 
run Array N_g 

mean/N_run Number of runs Integer value N/A 
mean/toa TOA downwelling flux Float value N/A 

Radiance 

Variable Name Description Data Type Dimension 
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mean/rad 

Radiance field at user 
specified altitude 

averaged over different 
runs 

Array (N_x, N_y) 

mean/rad_std 
Standard deviation of 

the radiance fields from 
different runs 

Array (N_x, N_y) 

Irradiance 

Variable Name Description Data Type Dimension 

mean/f_down 
Downwelling irradiance 
averaged over different 

runs 
Array (N_x, N_y, N_z) 

mean/f_down_std 

Standard deviation of 
the downwelling 

irradiance from different 
runs 

Array (N_x, N_y, N_z) 

mean/f_down_diffuse 
Diffuse downwelling 

irradiance averaged over 
different runs 

Array (N_x, N_y, N_z) 

mean/f_down_diffuse_std 

Standard deviation of 
the diffuse downwelling 
irradiance from different 

runs 

Array (N_x, N_y, N_z) 

mean/f_down_direct 
Direct downwelling 

irradiance averaged over 
different runs 

Array (N_x, N_y, N_z) 

mean/f_down_direct_std 

Standard deviation of 
the direct downwelling 

irradiance from different 
runs 

Array (N_x, N_y, N_z) 

mean/f_up 
Upwelling irradiance 

averaged over different 
runs 

Array (N_x, N_y, N_z) 

mean/f_up_std 
Standard deviation of 

the upwelling irradiance 
from different runs 

Array (N_x, N_y, N_z) 

 1270 
Table A2: Data variables contained in the output HDF5 file from EaR3T for radiance and irradiance calculations. The 1271 

radiance is simulated with a user-specified sensor geometry at a given altitude using forward photon tracing. 1272 
The data variables listed under Metadata are included for both radiance and irradiance calculations. N_x, 1273 
N_y, and N_z are the number of pixels along x, y, and z direction, respectively. N_g is the number of g, 1274 
explained in Appendix A2 – Correlated-k. 1275 

 1276 

A2 – EaR3T Code Walk-through 1277 

We will provide a code walk-through of the OCO-2 and MODIS simulator applications 1278 

with the codes examples/01_oco2_rad-sim.py (App. 1) and 1279 

examples/02_modis_rad-sim.py (App. 2). The data acquisition (first step in Figure 1) 1280 

Deleted: 11281 

Deleted: section 31282 
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uses functions in er3t/util. App. 1 and App. 2 use the functions in er3t/util/modis.py 1283 

and er3t/util/oco2.py for downloading the MODIS and OCO-2 data files from the 1284 

respective NASA data archives and for processing the data (e.g., geo-mapping, gridding etc.). The 1285 

user supplies minimum input (date and time, as well as latitudes and longitudes of the region of 1286 

interest), which need to be specified in satellite_download (within the application codes). 1287 

For example, for App. 1 and App. 2, the only user inputs are the date and time and the region of 1288 

interest – in this case September 2, 2019, with the westernmost, easternmost, southernmost, and 1289 

northernmost longitudes and latitudes of 109°W, 107°W, 37°N, and 39°N. In order for EaR3T to 1290 

access any data archives such as NASA Earthdata, the user needs to create an account with them 1291 

and store the credentials locally (detailed instructions are provided separately along with the EaR3T 1292 

distribution). 1293 

After the data acquisition step, the satellite data are fed into the pre-processing step for 1) 1294 

atmospheric gases (er3t/pre/atm), 2) clouds (er3t/pre/cld), 3) surface 1295 

(er3t/pre/sfc) as shown in Figure 1. In the default configuration of the App. 1, the standard 1296 

US atmosphere (Anderson et al., 1986; included in the EaR3T repository) is used within atm. 1297 

EaR3T supports the input of user-specified atmospheric profiles, e.g., atmospheric profiles from 1298 

reanalysis data for App. 2 as described in Chen et al. (2023), by making changes in atm_atmmod 1299 

(from er3t/pre/atm). Subsequently, molecular scattering coefficients are calculated by 1300 

cal_mol_ext (from er3t/util), and absorption coefficients for atmospheric gases are 1301 

generated by (er3t/pre/abs). At the current development stage, two options are available: 1302 

1. Line-by-line (used by App. 1): The repository includes a sample file of absorption coefficient 1303 

profiles for a subset of wavelengths within OCO-2’s Oxygen A-Band channel, corresponding 1304 

to a range of atmospheric transmittance values from low (opaque) to high (so-1305 

called “continuum” wavelength). They were generated by an external code (Chen et al., 2023) 1306 

based on OCO-2’s line-by-line absorption coefficient database (ABSCO, Payne et al., 2020). 1307 

They are calculated for a fixed mixing ratio of 400 ppm. In a subsequent paper (Chen et al., 1308 

2023), an OCO-2 specific EaR3T code will be published where the actual mixing ratio is 1309 

used. For each OCO-2 spectrometer wavelength within a given channel, hundreds of 1310 

individual absorption coefficient profiles at the native resolution of ABSCO need to be 1311 

considered across the instrument line shape (ILS, also known as the slit function) of the 1312 

spectrometer. The ILS, as well as the incident solar irradiance, are also included in the file. 1313 
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In subsequent steps, EaR3T performs RT calculations at the native spectral resolution of 1314 

ABSCO, but then combines the output by convolving with the ILS and outputs OCO-2 1315 

radiances or reflectances at the subset of wavelengths. For probabilistic (Monte Carlo) RT 1316 

solvers such as MCARaTS, the number of photons can be kept relatively low (e.g., 106 1317 

photons), and can be adjusted according to the values of the ILS at a particular ABSCO 1318 

wavelength. Any uncertainty at the ABSCO spectral resolution due to photon noise is greatly 1319 

reduced by convolving with the ILS for the final output. 1320 

2. Correlated-k (used by App. 2): This approach (Mlawer et al., 1997) is appropriate for 1321 

instruments such as MODIS with much coarser spectral resolution than OCO-2, as well as 1322 

for broadband calculations. In contrast to the line-by-line approach, RT calculations are not 1323 

performed at the native resolution of the absorption database, but at Gaussian quadrature 1324 

points (called “g’s”) that represent the full range of sorted absorption coefficients, and then 1325 

combined using Gaussian quadrature weights. The repository includes an absorption 1326 

database from Coddington et al. (2008), developed specifically for a radiometer with 1327 

moderate spectral resolution on the basis of HITRAN (high-resolution transmission 1328 

molecular absorption database) 2004 (Rothman et al., 2005). It was created for the ILS of 1329 

the airborne Solar Spectral Flux Radiometer (SSFR, Pilewskie et al., 2003), but is applied to 1330 

MODIS here, which has a moderate spectral resolution of 8-12 nm with 20-50 nm 1331 

bandwidths. It uses 16 absorption coefficient bins (g’s) per target wavelength (this could 1332 

either be an individual SSFR or a MODIS channel), which are calculated by EaR3T with the 1333 

Coddington et al. (2008) database using the mixing ratios of atmospheric gases in the 1334 

previously ingested profile. In future implementations, the code will be updated to enable 1335 

flexible ILS and broadband calculations. 1336 

The er3t/pre/cld module calculates extinction, thermodynamic phase, and effective 1337 

droplet radius of clouds from the input data. The er3t/pre/pha module creates the required 1338 

single scattering albedo and scattering phase function. The default is a Henyey-Greenstein phase 1339 

function with a fixed asymmetry parameter of 0.85. Along with the current distribution (v0.1.1) of 1340 

EaR3T, the Mie phase functions based on thermodynamic phase, effective droplet radius, and 1341 

wavelength are supported. In this study, App. 1 and App. 2 use Mie phase functions calculated 1342 

from Legendre polynomial coefficients (originally distributed along with libRadtran) based on the 1343 

wavelength and cloud droplet effective radius. In the future, EaR3T will include stand-alone phase 1344 
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functions, which can be chosen on the basis of droplet size distributions in addition to effective 1345 

radius. It is also possible to include aerosols in a similar fashion as clouds. This is done with the 1346 

er3t/pre/aer module. In the case of aerosols, spectral single scattering albedo and asymmetry 1347 

parameter are required as inputs in addition to the extinction fields. 1348 

After the optical properties are calculated, they are passed into the 3D-RT step 1349 

(er3t/rtm/mca). This step performs the setup of RT solver-specified input parameters and data 1350 

files, distributing runs over multiple Central Processing Units (CPUs), and post-processing RT 1351 

output files into a single, user-friendly HDF5 file. For example, when radiance is specified as 1352 

output (default in App. 1 and App. 2), key information such as the radiance field and its standard 1353 

deviation are stored in the final HDF5 file (details see Table 1). 1354 

While the EaR3T repository comes with various applications such as App. 1 and App. 2, 1355 

described above, the functions used by these master or ‘wrapper’ programs can be organized in 1356 

different ways, where the existing applications serve as templates for a quick start when developing 1357 

new applications. The functions used by the master code pass information through the various 1358 

steps as Python objects. For example, in examples/01_oco2_rad-sim.py, the downloaded 1359 

and processed satellite data are stored into the sat object. Later, the sat object is passed into an 1360 

EaR3T function to create the cld object that contains cloud optical properties. Similarly, EaR3T 1361 

provides functions to create the atm, and sfc objects with optical properties for atmospheric 1362 

gases and the surface. These objects (atm, cld, sfc) are in turn passed on to solver-specific 1363 

modules for performing RT calculations. The user can choose to save the data of the intermediate 1364 

objects into Python pickle files after the first run. In this way, multiple calls with identical input 1365 

can re-use existing data, which accelerates the processing time of EaR3T. Unless the user specifies 1366 

the overwrite keyword argument in the object call to reject saving pickle files, these shortcuts 1367 

save significant time. 1368 

 1369 

Appendix B – App. 5 Radiance calculations based on the Large Eddy Simulation 1370 

The CNN COT retrieval framework was developed by Nataraja et al. (2022). It adapts a 1371 

U-Net (Ronneberger et al., 2015) architecture and treats the retrieval of COT from radiance as a 1372 

segmentation problem – probabilities of 36 COT classes (ranging from COT of 0 to 100) are 1373 

returned as the final COT retrieved for a given cloud radiance field. It accounts for horizontal 1374 

photon transport, which is neglected in traditional cloud retrieval algorithms; in other words, for 1375 
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the spatial context of cloudy pixels. It was trained on synthetic cloud fields generated by a Large 1376 

Eddy Simulation (LES) model, which provides the ground truth of COT. Subequently, EaR3T was 1377 

used to calculate 3D-RT radiances at 600 nm for LES cloud fields to establish a mapping between 1378 

radiance to COT. Only six LES cases were used to represent the variability of the cloud 1379 

morphology. Each of these fields are 480x480 pixels across (spatial resolution of 100 m). These 1380 

large fields were mapped onto thousands of 64x64 mini tiles with spatial resolution of 100 m as 1381 

described in Nataraja et al., 2022. To keep the training data set small, mini tiles selectively sampled 1382 

according to their mean COT and standard deviation. This ensured an even representation of the 1383 

dynamic range of COT and its variability, which was termed homogenization of the training data 1384 

set. Figure A1 shows a collection of samples from the training data as an illustration. All the 1385 

aforementioned simulation setup and techniques in data process are included in the App. 5 example 1386 

code, which can be applied to the LES data (a different scene from the 6 scenes) distributed along 1387 

with EaR3T. 1388 

 1389 

                                         1390 

                                        1391 

(a) 

(b) 
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Figure A1. Illustrations of 64x64 tiles of (a) cloud optical thickness from LES data and (b) calculated 3D radiance at 1392 
600 nm from EaR3T for CNN training. 1393 

 1394 

Appendix C 1395 

C1. Cloud Detection/Identification 1396 

Cloudy pixels are identified through a thresholding method based on the red, green, and 1397 

blue channels of MODIS. When the radiance values of the red, green, and blue channels of a pixel 1398 

are all greater than a pre-calculated threshold value, the pixel is considered as cloudy, as illustrated 1399 

by the following equation 1400 

𝐈𝐟			
𝑅𝑒𝑑 > 𝑎0 ⋅ 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑅𝑒𝑑, 𝑞1)	&
𝐵𝑙𝑢𝑒 > 𝑎2 ⋅ 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐵𝑙𝑢𝑒, 𝑞1)	&
𝐺𝑟𝑒𝑒𝑛 > 𝑎3 ⋅ 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐺𝑟𝑒𝑒𝑛, 𝑞1)

		J
𝐘𝐞𝐬:	cloudy
𝐍𝐨:	clear	sky																																																																	(A1) 1401 

where 𝑎0, 𝑎2, and 𝑎3  are scale factors with a default value of 1.0, and 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 returns the 𝑞1 1402 

percentile of the sorted reflectance data (ascending order; 𝑞1 = 0.5 is equivalent to the median). 1403 

The scale factors can be adjusted separately to perform fine tuning for different surface types. For 1404 

example, adjusting 𝑎3  will be more effective for separating clouds from greenish vegetation 1405 

surface than the other two factors. For simplicity, they are all set to 1.0 for the case shown in App. 1406 

1 and 2. The 𝑞1 is determined by the following equation, 1407 

𝑞1 = max	(0,				1 − 𝑓𝑟𝑎𝑐456 ⋅ 1.2)																																																																																																								(A2) 1408 

where 𝑓𝑟𝑎𝑐456 is cloud fraction obtained from the MODIS L2 cloud product (number of cloudy 1409 

pixels divided by the number of total pixels). Through the definition of 𝑞1, the threshold-based 1410 

cloud detection method is pegged to the MODIS product at the domain scale. Because of the coarse 1411 

resolution of the MODIS-based cloud mask, it cannot be used directly for our application. 1412 

However, it uses many more channels than available at high spatial resolution, and is therefore 1413 

more accurate. The factor of 1.2 can be adjusted. A value of higher than 1 allows for clouds that 1414 

are not detected by MODIS (for various reasons, for example because of their spatial scale) to be 1415 

picked up. At the same time, this leads to over-detection (false positives, i.e. clear-sky pixels 1416 

identified as cloudy), and therefore the thresholding is only the first step (primary thresholding), 1417 

followed by the next (secondary) step where false positives are removed. 1418 

The secondary step is based on MODIS L2 cloud products: COT (cloud optical thickness), 1419 

CER (cloud effective radius), and CTH (cloud top height). For the pixels that are identified as 1420 

cloudy in the primary thresholding, especially at the lower end of the reflectance (Ref.), we rely 1421 

Deleted: simple 1422 
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on the clear-sky identifiers from MODIS L2 cloud product (where no cloud products are retrieved), 1430 

as illustrated by the following equation 1431 

𝐈𝐟				 𝑅𝑒𝑓. < 𝑀𝑒𝑑𝑖𝑎𝑛(𝑅𝑒𝑓. )	&
𝐶𝑂𝑇, 𝐶𝐸𝑅, 𝑎𝑛𝑑	𝐶𝑇𝐻	𝑎𝑟𝑒	𝑁𝑎𝑁					J

𝐘𝐞𝐬:	clear	sky
𝐍𝐨:	cloudy 																																																																			(A3) 1432 

Figure A2 shows the cloud mask from primary thresholding (Equation A1, red and purple), and 1433 

the pixels that are reverted to clear-sky by the secondary filter (Equation A2, red). 1434 

 1435 

                                       1436 
Figure A2. Cloud mask for the scene shown in Figure 2. Red and purple indicate pixels identified as cloudy through 1437 

the primary thresholding (Equation A1) and purple indicates pixels finally identified as cloudy after applying 1438 
secondary filter (Equation A3). 1439 

 1440 

C2. IPA Reflectance-to-COT Mapping 1441 

In order to retrieve COT (cloud optical thickness) from cloud reflectance as measured by 1442 

various instruments, we use the EaR3T built-in solver MCARaTS in IPA mode to calculate a 1443 

lookup table of reflectance as a function of COT. The function for generating these lookup tables 1444 

is included in EaR3T as er3t.rtm.mca.func_ref_vs_cot. Two mappings are generated 1445 

for App. 1&2 to account for geometrically thin (cloud top height less than 4 km) and thick (cloud 1446 

top height greater than 4 km) clouds separately while a single mapping is generated for App. 4. 1447 

Specifically, for a range of COT (0 to 200), reflectance is calculated from EaR3T with the same 1448 

input parameters (wavelength, viewing and solar geometries, and surface albedo) listed in Table 1449 

A1 for each application except for a few simplifications described in the following table (Table 1450 

A3): 1451 
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 1458 
 App. 1 & 2 App. 4 

Cloud Type 
Geometrically Thin 

Clouds 

Geometrically Thick 

Clouds 
All 

Cloud Effective Radius 10 𝜇𝑚 20 𝜇𝑚 10 𝜇𝑚 

Cloud Top Height 3 km 10 km 2 km 

Cloud Geometrical 

Thickness 
1 km 7 km 1 km 

Surface Albedo 
0.08 (domain average of 

the MCD43 WSA) 

0.08 (domain average of 

the MCD43 WSA) 
0.03 

 1459 
Table A3: List of parameters for deriving IPA reflectance-to-COT (cloud optical thickness) mappings for App. 1&2 1460 

and App. 4 in addition to Table A1. 1461 
 1462 

The clouds are assumed horizontally homogeneous over a 2 × 2  pixel domain. For each 1463 

calculation, 107 photons are used for running EaR3T in IPA mode. After calculating 𝑅(𝐶𝑂𝑇), the 1464 

inverse relationship of 𝐶𝑂𝑇(𝑅) is then used for estimating 𝐶𝑂𝑇 at any given 𝑅 for the cloudy 1465 

pixels. Figure A3 shows the IPA reflectance-to-COT mappings created for App. 1&2, and App 4. 1466 

Note that the difference between the App. 1&2 thin clouds (blue) and App. 4 (green) is due to 1467 

different surface albedos (when COT less than 20) and sensor viewing geometries (when COT 1468 

greater than 20, specified in Table A1). Note that this approach will ensure IPA 1469 

radiance/reflectance consistency (retrieved IPA COT will reproduce the exact IPA cloud 1470 

reflectance, see Figure A4) because the radiative transfer processes of 𝑅(𝐶𝑂𝑇) and 𝐶𝑂𝑇(𝑅) are 1471 

the same. However, since it makes some simplifications as mentioned above, uncertainties are 1472 

expected for a complicated atmospheric environment (varying cloud thermodynamic phase, 1473 

effective radius, cloud top height, geometrical thickness, vertical profile; variable surface albedo 1474 

and topography), which are shown up as spread (deviations from identity line) in Figure A4.  1475 

 1476 

Deleted: The two-stream approximation of the reflectance 𝑅 1477 
is calculated using Eq. D2 from Chen et al. (2021), as 1478 
follows:¶1479 

Deleted: 𝜏1480 
Deleted: 𝜏1481 

Deleted:  does not take into account any cloud reflectance 1482 
anisotropies.1483 



 47 

                              1484 
Figure A3. The IPA reflectance-to-COT mappings used for App. 1&2 (red and blue) and App. 4 (green). The 1485 

reflectance is normalized by the cosine of solar zenith angle (referred to as solar noon reflectance). The 1486 
uncertainties associated with photon statistics are indicated by the shaded area. 1487 

 1488 

         1489 
Figure A4. (a) and (b) are the same as Figure 7 and Figure 13b except for the IPA radiance calculations. 1490 
 1491 

 1492 

Appendix D 1493 

D1. Parallax Correction 1494 

From the satellite's view, the clouds (especially high clouds) will be placed at inaccurate 1495 

locations on the surface, which have shifted from their actual locations due to the parallax effect. 1496 

We followed simple trigonometry to correct for it, as follows: 1497 

(a) (b) 
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Longitude correction (positive from west to east): 1499 

𝛿𝑙𝑜𝑛 = k𝑧456 − 𝑧894m ⋅ tan(𝜃) ⋅ sin	(𝜙)
𝜋 ⋅ 𝑅:;<(=

× 180°																																																																														(A4) 1500 

Latitude correction (positive from south to north): 1501 

𝛿𝑙𝑎𝑡 = k𝑧456 − 𝑧894m ⋅ tan(𝜃) ⋅ cos	(𝜙)
𝜋 ⋅ 𝑅:;<(=

× 180°																																																																														(A5) 1502 

where (𝑙𝑜𝑛8;( , 𝑙𝑎𝑡8;( , 𝑧8;() is the satellite location and 𝜃 and 𝜙 (0º at north, positive clockwise) 1503 

are the sensor viewing zenith and azimuth angles. 𝑧456 and 𝑧894 are the cloud top height and the 1504 

surface height. 𝑅:;<(= is the radius of the Earth. Figure A2 shows an illustration of the parallax 1505 

correction for the cloud field in the inset in Figure 2. Note that discontinuities in the latitude and 1506 

longitude fields arising from different combinations of sensor viewing geometries and cloud top 1507 

and surface heights may lead to gaps in the cloud fields. These gaps are identified and filled in 1508 

with the average of data from adjacent pixels (plus minus two pixels along x and y) through the 1509 

following process: 1510 

𝐈𝐟			
𝑝𝑖𝑥𝑒𝑙>?

;9(	𝑖𝑠	𝑐𝑙𝑒𝑎𝑟	&	𝑝𝑖𝑥𝑒𝑙>?
&@9	𝑖𝑠	𝑐𝑙𝑜𝑢𝑑𝑦		&

𝑐𝑙𝑑𝑓𝑟𝑎𝑐(𝑝𝑖𝑥𝑒𝑙&@9[𝑖 − 2: 𝑖 + 2, 𝑗 − 2: 𝑗 + 2]) > 𝑓𝑟𝑎𝑐;&
𝑐𝑙𝑑𝑓𝑟𝑎𝑐(𝑝𝑖𝑥𝑒𝑙;9([𝑖 − 2: 𝑖 + 2, 𝑗 − 2: 𝑗 + 2]) > 𝑓𝑟𝑎𝑐&&

		~
𝐘𝐞𝐬:	fill	𝑝𝑖𝑥𝑒𝑙>?

;9(	with	the	average	of
𝑐𝑙𝑑(𝑝𝑖𝑥𝑒𝑙;9([𝑖 − 2: 𝑖 + 2, 𝑗 − 2: 𝑗 + 2])

 1511 

where 𝑝𝑖𝑥𝑒𝑙>? indicates the pixel at 𝑖 along x and 𝑗 along y, 𝑏𝑒𝑓  and 𝑎𝑓𝑡 refer to before and after 1512 

parallax correction respectively, 𝑐𝑙𝑑𝑓𝑟𝑎𝑐  calculates cloud fraction (number of cloudy pixels 1513 

divided by total pixel number), and 𝑐𝑙𝑑 selects data where pixels are identified as cloudy. The 1514 

𝑓𝑟𝑎𝑐; and 𝑓𝑟𝑎𝑐& are set to 0.7 for the cases demonstrated in the paper. Lower 𝑓𝑟𝑎𝑐; tends to over 1515 

select clear-sky pixels at the cloud edge and lower 𝑓𝑟𝑎𝑐& tends to over correct clear-sky pixels 1516 

within clouds that are not clear-sky due to parallax artifacts. While increase 𝑓𝑟𝑎𝑐;  and 𝑓𝑟𝑎𝑐& 1517 

tends to under correct parallax artifacts. 1518 

 1519 

D2. Wind Correction 1520 

The wind correction aims at correcting the movement of clouds when advected by the wind 1521 

between two different satellites’ overpasses. 1522 

Longitude correction (positive from west to east): 1523 

𝛿𝑙𝑜𝑛 =
𝑢; ⋅ 𝛿𝑡

𝜋 ⋅ 𝑅:;<(=
× 180°																																																																																																																			(A6) 1524 
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Latitude correction (positive from south to north): 1528 

𝛿𝑙𝑎𝑡 =
𝑣̅ ⋅ 𝛿𝑡

𝜋 ⋅ 𝑅:;<(=
× 180°																																																																																																																				(A7) 1529 

where 𝑢; and 𝑣̅ are the domain-averaged 10 m zonal and meridional wind speeds, and 𝛿𝑡 is the time 1530 

difference between two different satellites that fly on the same orbit. Figure A2 shows the cloud 1531 

location after applying the parallax (Appendix D1) and wind correction for the cloud field in the 1532 

inset from Figure 2. 1533 

 1534 

 1535 

 1536 

                                          1537 
Figure A5. An illustration of correcting cloud location (red) for parallax effect (blue) and wind effect (green) for the 1538 

cloud field of the inset in Figure 2. Filled cloud gaps as described in Appendix D1 are indicated by black 1539 
circles. 1540 
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