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Abstract 20 
We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR3T, pronounced 21 

[ɜːt]) for quantifying and mitigating artifacts in atmospheric radiation science algorithms due to spatially 22 
inhomogeneous clouds and surfaces, and show the benefits of automated, realistic radiance and irradiance 23 
generation along extended satellite orbits, flight tracks from entire aircraft field missions, and synthetic data 24 
generation from model data. EaR3T is a modularized Python package that provides high-level interfaces to 25 
automate the process of 3D radiative transfer (RT) calculations. After introducing the package, we present 26 
initial findings from four applications, which are intended as blueprints to future in-depth scientific studies. 27 
The first two applications use EaR3T as a satellite radiance simulator for the NASA Orbiting Carbon 28 
Observatory 2 (OCO-2) and Moderate Resolution Imaging Spectroradiometer (MODIS) missions, which 29 
generate synthetic satellite observations with 3D-RT on the basis of cloud field properties from 30 
imagery-based retrievals and other input data. In the case of inhomogeneous cloud fields, we show that the 31 
synthetic radiances are often inconsistent with the original radiance measurements. This lack of radiance 32 
consistency points to biases in heritage imagery cloud retrievals due to sub-pixel resolution clouds and 33 
3D-RT effects. They come to light because the simulator’s 3D-RT engine replicates processes in nature that 34 
conventional 1D-RT retrievals do not capture. We argue that 3D radiance consistency (closure) can serve 35 
as a metric for assessing the performance of a cloud retrieval in presence of spatial cloud inhomogeneity 36 
even with limited independent validation data. The other two applications show how airborne measured 37 
irradiance data can be used to independently validate imagery-derived cloud products via radiative closure 38 
in irradiance. This is accomplished by simulating downwelling irradiance from geostationary cloud 39 
retrievals of Advanced Himawari Imager (AHI) along all the below-cloud aircraft flight tracks of the Cloud, 40 
Aerosol and Monsoon Processes Philippines Experiment (CAMP2Ex, NASA 2019), and comparing the 41 
irradiances with the collocated airborne measurements. In contrast to case studies in the past, EaR3T 42 
facilitates the use of observations from entire field campaigns for the statistical validation of 43 
satellite-derived irradiance. From the CAMP2Ex mission, we find a low bias of 10% in the satellite-derived 44 
cloud transmittance, which we are able to attribute to a combination of the coarse resolution of the 45 
geostationary imager and 3D-RT biases. Finally, we apply a recently developed context-aware 46 
Convolutional Neural Network (CNN) cloud retrieval framework to high-resolution airborne imagery from 47 
CAMP2Ex and show that the retrieved cloud optical thickness fields lead to better 3D radiance consistency 48 
than the heritage independent pixel algorithm, opening the door to future mitigation of 3D-RT cloud 49 
retrieval biases.  50 
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1. Introduction 51 

Three-dimensional cloud effects in imagery-derived cloud properties have long been 52 

considered an unavoidable error source when estimating the radiative effect of clouds and aerosols. 53 

Consequently, research efforts involving satellite, aircraft, and surface observations in conjunction 54 

with modeled clouds and radiative transfer calculations have focused on systematic bias 55 

quantification under different atmospheric conditions. Barker and Liu (1995) studied the so-called 56 

independent pixel approximation (IPA) bias in cloud optical thickness (COT) retrievals from 57 

shortwave cloud reflectance. The bias arises when approximating the radiative transfer relating to 58 

COT and measured reflectance at the pixel or cloud column level through one-dimensional (1D) 59 

radiative transfer (RT) calculations, while ignoring its radiative context. However, net horizontal 60 

photon transport and other effects such as shading engender column-to-column radiative 61 

interactions that can only be captured in a three-dimensional (3D) framework, and can be regarded 62 

as a 3D perturbation or bias relative to the 1D-RT (IPA) baseline. 3D biases affect not only cloud 63 

remote sensing but they also propagate into the derived irradiance fields and cloud radiative effects 64 

(CRE). Since the derivation of regional and global CRE relies heavily on satellite imagery, any 65 

systematic 3D bias impacts the accuracy of the Earth’s radiative budget. Likewise, imagery-based 66 

aerosol remote sensing in the vicinity of clouds can be biased by net horizontal photon transport 67 

(Marshak et al., 2008). Additionally, satellite shortwave spectroscopy retrievals of CO2 mixing 68 

ratio are affected by nearby clouds (Massie et al., 2017), albeit through a different physical 69 

mechanism than in aerosol and cloud remote sensing. 70 

Given the importance of 3D perturbations for atmospheric remote sensing, ongoing 71 

research seeks to mitigate the 3D effects. Cloud tomography, for example, inverts multi-angle 72 

radiances to infer the 3D cloud extinction distribution (Levis et al., 2020). This is achieved through 73 

iterative adjustments to the cloud field until the calculated radiances match the observations. 74 

Convolutional neural networks (CNNs, Masuda et al., 2019; Nataraja et al., 2022) account for 75 

3D-RT perturbations in COT retrievals through pattern-based machine learning that operates on 76 

collections of imagery pixels, rather than treating them in isolation like IPA. Unlike tomography, 77 

CNNs require training based on extensive cloud-type specific synthetic data with the ground truth 78 

of cloud optical properties and their associated radiances from 3D-RT calculations. Once the 79 

CNNs are trained, they do not require real-time 3D-RT calculations and can therefore be useful in 80 

an operational setting. Whatever the future may hold for context-aware multi-pixel or multi-sensor 81 
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cloud retrievals, there is a paradigm shift on the horizon that started when the radiation concept 82 

for the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE, Illingworth et al., 2015) was 83 

first proposed (Barker et al., 2012). It foresees a closure loop where broadband radiances, along 84 

with irradiance, are calculated in a 3D-RT framework from multi-sensor input fields (Barker et al., 85 

2011), and subsequently compared to independent observations by radiometers pointing in three 86 

directions (nadir, forward-, and backward-viewing along the orbit). This built-in radiance closure 87 

can serve as an accuracy metric for any downstream radiation products such as heating rates and 88 

CRE. Any inconsistencies can be used to nudge the input fields towards the truth in subsequent 89 

loop iterations akin to optimal estimation, or propagated into uncertainties of the cloud and 90 

radiation products. 91 

This general approach to radiative closure is also being considered for the National 92 

Aeronautics and Space Administration (NASA) Atmospheric Observation System (AOS, 93 

developed under the A-CCP, Aerosol and Cloud, Convection and Precipitation study), a mission 94 

that is currently in its early implementation stages. Owing to its focus on studying 95 

aerosol-cloud-precipitation-radiation interactions at the process level, it requires radiation 96 

observables at a finer spatial resolution than achieved with missions to date. At target scales close 97 

to 1 km, 3D-RT effects are much more pronounced than at the traditional 20 km scale of NASA 98 

radiation products (O’Hirok and Gautier, 2005; Ham et al., 2014; Song et al., 2016; Gristey et al., 99 

2020a). Since this leads to biases beyond the desired accuracy of the radiation products, mitigation 100 

of 3D-RT cloud remote sensing biases needs to be actively pursued over the next few years. 101 

Transitioning to an explicit treatment of 3D-RT in operational approaches entails a new 102 

generation of code architectures that can be easily configured for various instrument constellations, 103 

interlink remote sensing parameters with irradiances, heating rates, and other radiative effects, and 104 

can be used for automated processing of large data quantities. A number of 3D solvers are available 105 

for different purposes, for example, the I3RC (International Intercomparison of 3D Radiation 106 

Codes: Cahalan et al., 2005) community Monte Carlo code1, which now also includes an online 107 

simulator2 that was described in Várnai et al. (2022) and used in Gatebe et al. (2021); MCARaTS 108 

(Monte Carlo Atmospheric Radiative Transfer Simulator3: Iwabuchi, 2006); MYSTIC (Monte 109 

 
1 https://earth.gsfc.nasa.gov/climate/model/i3rc, last accessed on 26 November, 2022. 
2 http://i3rcsimulator.umbc.edu, last accessed on 26 November, 2022. 
3 https://sites.google.com/site/mcarats/monte-carlo-atmospheric-radiative-transfer-simulator-mcarats, last accessed 
on 26 November, 2022. 
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Carlo code for the physically correct tracing of photons in cloudy atmospheres: Mayer, 2009), 110 

which is embedded in libRadtran (library for radiative transfer, Mayer and Kylling, 2005); 111 

McSCIA (Monte Carlo [RT] for SCIAmachy: Spada et al., 2006), which is optimized for satellite 112 

radiance simulations (including limb-viewing) in a spherical atmosphere; McARTIM 113 

(Deutschmann et al., 2011), with several hyperspectral polarimetric applications such as 114 

differential optical absorption spectroscopy; and SHDOM (Spherical Harmonic Discrete Ordinate 115 

Method4: Evans, 1998), which, unlike the other methods, is a deterministic solver with polarimetric 116 

capabilities (Doicu et al., 2013; Emde et al., 2015) that is differentiable and can therefore be used 117 

for tomography (Loveridge et al., 2022).  118 

For the future operational application of 3D-RT, it is, however, desirable to run various 119 

different solvers in one common architecture that automates the processing of various formats of 120 

3D atmospheric input fields (including satellite data), allows the user to choose from various 121 

options for atmospheric absorption and scattering, and simulates radiance and irradiance data for 122 

real-world scenes. Here, we introduce one such tool that could serve as the seed for this architecture: 123 

the Education and Research 3D Radiative Transfer Toolbox (EaR3T, pronounced [ɜːt]). It has been 124 

developed over the past few years at the University of Colorado to automate 3D-RT calculations 125 

based on imagery or model cloud fields. It can be operated in two ways– 1) with minimal user 126 

input, where certain RT parameters are bypassed through default settings, for quick radiation 127 

conceptual analysis; 2) with detailed RT parameters setup by user for radiation closure purpose. 128 

EaR3T is maintained and extended by graduate students as part of their education, and applied to 129 

various different research projects including machine learning for atmospheric radiation and 130 

remote sensing (Gristey et al., 2020b; 2022; Nataraja et al., 2022), as well as radiative closure and 131 

satellite simulators. It is implemented as a modularized Python package with various application 132 

codes that combine the functionality in different ways, which, once set up, autonomously process 133 

large amounts of data required by airborne and satellite remote sensing and for machine learning 134 

applications. 135 

The goal of the paper is to introduce EaR3T as a versatile tool for systematically quantifying 136 

and mitigating 3D cloud effects in radiation science as foreseen in future missions. To do so, we 137 

will first showcase EaR3T as an automated radiance simulator for two satellite instruments, the 138 

Orbiting Carbon Observatory-2 (OCO-2, application code 1, App. 1) and the Moderate Resolution 139 

 
4 https://coloradolinux.com/shdom, last accessed on 26 November, 2022. 
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Imaging Spectroradiometer (MODIS, application code 2, App. 2) from publicly available satellite 140 

retrieval products. In the spirit of radiance closure, the intended use is the comparison of modeled 141 

radiances with the original measurements to assess the accuracy of the input data, as follows: 142 

operational IPA COT products are made using 1D-RT, and thus the accompanying radiances are 143 

consistent with the original measurements under that 1D-RT assumption only. That is, 144 

self-consistency is assured if 1D-RT is used in both the inversion and radiance simulation. 145 

However, since nature creates 3D-RT radiation fields, we break this traditional symmetry in this 146 

manuscript and introduce the concept of 3D radiance consistency where closure is only achieved 147 

if the original measurements are consistent with the 3D-RT (rather than the 1D-RT) simulations. 148 

The level of inconsistency is then used as a metric for the magnitude of 3D-RT retrieval artifacts 149 

as envisioned by the architects of the EarthCARE radiation concept (Barker et al., 2012). 150 

Subsequently, we discuss applications where EaR3T performs radiative closure in the 151 

traditional sense, i.e., between irradiances derived from satellite products and collocated airborne 152 

or ground-based observations. The aircraft Cloud, Aerosol and Monsoon Processes Philippines 153 

Experiment (CAMP2Ex, Reid et al., 2023), conducted by NASA in the Philippines in 2019, serves 154 

as a testbed of this approach. Here, we use EaR3T’s automated processing capabilities to derive 155 

irradiance from geostationary imagery cloud products and then compare these to cumulative 156 

measurements made along all flight legs of the campaign (application code 3, App. 3). In contrast 157 

to previous studies that often rely on a number of cases (e.g., Schmidt et al., 2010; Kindel et al., 158 

2010), we perform closure systematically for the entire data set, enabling us to identify 3D-RT 159 

biases in a statistically significant manner. Finally, we apply a regionally and cloud type specific 160 

CNN, introduced by Nataraja et al. (2022) that is included with the EaR3T distribution, to 161 

high-resolution camera imagery from CAMP2Ex. This last example demonstrates mitigation of 162 

3D-RT biases in cloud retrievals using the concept of radiance closure to quantify its performance 163 

against the baseline IPA (application code 4, App. 4). 164 

The general concept of EaR3T with an overview of the applications, along with the data 165 

used for both parts of the paper is presented in section 2, followed by a description of the 166 

procedures of EaR3T in section 3. Results for the OCO-2 and MODIS satellite simulators (part 1) 167 

are shown in section 4, followed by the quantification and mitigation of 3D-RT biases with 168 

CAMP2Ex data in section 5 and section 6 (part 2). A summary and conclusion are provided in 169 
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section 7. The code, along with the applications presented in this paper, can be downloaded from 170 

the GitHub repository: https://github.com/hong-chen/er3t. 171 

 172 

2. Functionality and Data Flow within EaR3T 173 

2.1 Overview 174 

 To introduce EaR3T as a satellite radiance simulator tool and to demonstrate its use for the 175 

quantification and mitigation of 3D cloud remote sensing biases, five applications (Figure 1) are 176 

included in the GitHub software release: 177 

 178 

                179 

(a) (b) (c) 

(d) (e) 



 8 

Figure 1. Flow charts of EaR3T applications for (a) OCO-2 radiance simulation at 768.52 nm (data described in section 180 
2.2.1 and 2.2.2, results discussed in section 4.1), (b) MODIS radiance simulation at 650 nm (data described 181 
in section 2.2.1, results discussed in section 4.2), (c) SPN-S irradiance simulation at 745 nm (data described 182 
in section 2.2.3 and 2.2.4, results discussed in section 5), (d) all-sky camera radiance simulation at 600 nm 183 
(data described in section 2.2.5, results discussed in section 6), and (e) radiance simulation at 600 nm based 184 
on LES data for CNN training (Appendix B). The data products and their abbreviations are described in 185 
section 2.2. 186 

 187 

1. App. 1, section 4.1 (examples/01_oco2_rad-sim.py): Radiance simulations along 188 

the track of OCO-2, based on data products from MODIS and others – to assess consistency 189 

(closure) between simulated and measured radiance; 190 

2. App. 2, section 4.2 (examples/02_modis_rad-sim.py): MODIS radiance 191 

simulations – to assess self-consistency of MODIS level-2 (L2) products with the 192 

associated radiance fields (L1B product) under spatially inhomogeneous conditions; 193 

3. App. 3, section 5 (examples/03_spns_flux-sim.py): Irradiance simulations along 194 

aircraft flight tracks, utilizing the L2 cloud products of the AHI, and comparison with 195 

aircraft measurements – to quantify retrieval biases due to 3D cloud structure based with 196 

data from an entire aircraft field campaign; 197 

4. App. 4, section 6 (examples/04_cam_nadir_rad-sim.py): Mitigation of 3D 198 

cloud biases in passive imagery COT retrievals from an airborne camera, application of a 199 

convolutional neural network (CNN) and subsequent comparison of CNN-derived 200 

radiances with the original measurements – to illustrate how the radiance self-consistency 201 

concept assesses the fidelity of cloud retrievals. 202 

5. App. 5, Appendix B (examples/05_cnn-les_rad-sim.py): Generation of training 203 

data for the CNN (App. 4) based on LES inputs. The training datasets contains 1) the 204 

ground truth of COT from the LES data; 2) realistic radiance simulated by EaR3T based on 205 

the LES cloud fields. 206 

Figure 1 shows the high-level workflow of the applications. The first four share the general 207 

concept of evaluating simulations (the output from the EaR3T, indicated in red at the bottom of 208 

each column) with observations (indicated in green at the bottom) from various satellite and 209 

aircraft instruments. The workflow of each application consists of three parts – 1) data acquisition, 210 

2) pre-processing, and 3) RTM setup and execution. EaR3T includes functions to ingest data from 211 
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various different sources, e.g., satellite data from publicly available data archives, which can be 212 

combined in different ways to accommodate input data depending on the application specifics. For 213 

example, in App. 1, EaR3T is used to automatically download and process MODIS and OCO-2 214 

data files based on the user-specified region, date and time. Building on the templates provided in 215 

the current code distribution, the functionality can be extended to new spaceborne or airborne 216 

instruments. Panel (e) of Figure 1 shows a fifth application that was developed for earlier papers 217 

(Gristey et al., 2020a and 2020b; Nataraja et al., 2022; Gristey et al., 2022). In contrast to the first 218 

four, which use imagery products as input, the fifth application ingests model output from a Large 219 

Eddy Simulation (LES) and produces irradiance data for surface energy budget applications, or 220 

synthetic radiance fields for training a CNN. Details and results are described in the respective 221 

papers. The remainder of Section 2 introduces the data used in this paper, as well as the input for 222 

EaR3T. Subsequently, Section 3 describes the EaR3T procedures. 223 

 224 

2.2 Data 225 

The radiance simulations in App. 1 and App. 2 use data from the OCO-2 and MODIS-Aqua 226 

instruments, both of which are in a sun-synchronous polar orbit with an early-afternoon equator 227 

crossing time within NASA’s A-Train satellite constellation. Figure 2 visualizes radiance 228 

measurements by OCO-2 in the context of MODIS Aqua imagery over a partially vegetated and 229 

partially cloud-covered land, illustrating that MODIS provides imagery and scene context for 230 

OCO-2, which in turn observes radiances from a narrow swath. The region is located in southwest 231 

Colorado in the United States of America. We selected this case because both the surface and 232 

clouds are varied along with diverse surface types. The surface features green forest and brown 233 

soil, whereas clouds include small cumulus and large cumulonimbus. In addition, this scene 234 

contains relatively homogeneous cloud fields in the north and inhomogeneous cloud fields in the 235 

south, which allows us to evaluate the simulations from various aspects of cloud morphology. To 236 

simulate the radiances of both instruments we use data products from OCO-2 and MODIS, as well 237 

as reanalysis products from NASA’s Global Modeling and Assimilation Office (GMAO) sampled 238 

at OCO-2 footprints and distributed along with OCO-2 data (section 2.2.2). 239 

 240 
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                                        241 
Figure 2. OCO-2 measured radiance (units: Wm-2nm-1sr-1) at 768.52 nm, overlaid on MODIS Aqua RGB imagery 242 

over southwestern Colorado (USA) on 2 September, 2019. The inset shows an enlarged portion along the 243 
track, illustrating that OCO-2 radiances co-vary with MODIS-Aqua radiance observations (the circles are 244 
used to indicate the geolocation of OCO-2 footprints). 245 

 246 

For App. 3 (irradiance simulations and 3D cloud bias quantification), we use geostationary 247 

imagery from the Japanese Space Agency’s Advanced Himawari Imager to provide cloud 248 

information in the area of the flight path of the NASA CAMP2Ex aircraft (Reid et al., 2023). The 249 

AHI data are used in conjunction with aircraft measurements of shortwave spectral radiation 250 

(section 2.2.4). Subsequently (App. 4: 3D cloud bias mitigation), we demonstrate the concept of 251 

radiance closure under partially cloudy conditions with airborne camera imagery (section 2.2.5). 252 

The underlying cloud retrieval is based on a convolutional neural network (CNN), which is 253 

described in a related paper (Nataraja et al., 2022) in this special issue and relies on 254 

EaR3T-generated synthetic radiance data based on Large Eddy Simulations (LES). 255 

 256 

2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS) 257 

The MODIS instruments are multi-use multispectral radiometers onboard NASA’s Terra 258 

and Aqua satellites, which were launched in 1999 and 2002 respectively. MODIS was conceived 259 

as a central element of the Earth Observing System (EOS, King and Platnick, 2018). For App. 1 260 

and App. 2, EaR3T ingests MODIS level 1B radiance products at the quarter kilometer scale 261 

(channels 1 and 2, bands centered at 650 and 860 nm), MxD02QKM, where ‘x’ stands for ‘O’ in 262 

the case of MODIS on Terra, and ‘Y’ in the case of Aqua data), the geolocation product (MxD03), 263 

the level 2 cloud product (MxD06), and the surface BRDF (bidirectional reflectance distribution 264 



 11 

function) product (MCD43A3). For this paper, we mainly use Aqua data (MYD) from data 265 

collection 6.1. 266 

 For cloud properties in App. 2, we use the MODIS cloud product (MxD06L2, collection 267 

6.1). It provides cloud properties such as cloud optical thickness (COT), cloud effective radius 268 

(CER), cloud thermodynamic phase, cloud top height (CTH), etc. (Nakajima and King, 1990; 269 

Platnick et al., 2003). Since 3D cloud effects such as horizontal photon transport are most 270 

significant at small spatial scales (e.g., Song et al., 2016), we use the high-resolution red (650 nm) 271 

channel 1 (250 m), and derive COT directly from the reflectance in the Level-1B data 272 

(MYD02QKM) instead of using the coarser-scale operational product from MYD06. CER and 273 

CTH are sourced from MYD06 and re-gridded to 250 m. The EaR3T strategy for MODIS data is 274 

similar, in principle, to the more advanced method by Deneke et al. (2021), which uses a 275 

high-resolution wide-band visible channel from geostationary imagery to up-sample narrow-band 276 

coarse-resolution channels. However, we simplified cloud detection and COT retrieval (referred 277 

to as COTIPA) from reflectance data for the purpose of our paper by using a threshold method 278 

(Appendix C1) and an IPA reflectance-to-COT mapping (Appendix C2). In future versions of 279 

EaR3T this will be upgraded to more sophisticated algorithms. A simple algorithm (Appendix D1) 280 

is used to correct for the parallax shift based on the sensor geometries and cloud heights. The cloud 281 

top height data is provided by the MODIS L2 cloud product and assuming cloud base is the same. 282 

For the surface albedo required by the RTM, we used MCD43A3, which provides BRDF 283 

calculated from a combination of Aqua and Terra MODIS and MISR (Multi-Angle Imaging 284 

Spectroradiometer) clear-sky observations aggregated over a 16-day period (Strahler et al., 1999). 285 

This product contains white sky albedo (WSA, also known as bihemispherical reflectance), which 286 

is obtained by integrating the BRDF over all viewing angles (Strahler et al., 1999). The WSA is 287 

available on a sinusoidal grid with a spatial resolution of 500 m for MODIS band 2, and includes 288 

atmospheric correction for gas and aerosol scattering and absorption. Assuming a Lambertian 289 

surface in this first release of EaR3T, we used the WSA (referred to as surface albedo from now 290 

on) as surface albedo input to the RTM. 291 

 292 

2.2.2 Orbiting Carbon Observatory 2 (OCO-2) 293 

The OCO-2 satellite was inserted into NASA’s A-Train constellation in 2014 and flies 294 

about 6 minutes ahead of Aqua. OCO-2 provides the column-averaged carbon dioxide (CO2) 295 
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dry-air mole fraction (XCO2) through passive spectroscopy based on hyperspectral radiance 296 

observations in three narrow wavelength regions, the Oxygen A-Band (~0.76 micron), the weak 297 

CO2 band (~1.60 micron), and the strong CO2 band (~2.06 micron). As shown in the inset of Figure 298 

2, it takes measurements in eight footprints across a narrow swath. Each of the footprints has a 299 

size around 1-2 km, and the spectra for the three bands are provided by separate, co-registered 300 

spectrometers (Crisp et al., 2015). 301 

The used OCO-2 data products are 1) Level 1B calibrated and geolocated science radiance 302 

spectra (L1bScND), 2) standard Level 2 geolocated XCO2 retrievals results (L2StdND), 3) 303 

meteorological parameters interpolated from GMAO (L2MetND) at OCO-2 footprint location. 304 

Since MODIS on Aqua overflies a scene 6 minutes after OCO-2, the clouds move with the wind 305 

over this time period. We therefore added a wind correction on top of the parallax-corrected cloud 306 

fields obtained from MODIS (section 2.2.1). This was done with the 10 m wind speed data from 307 

L2MetND (see Appendix D2). For the same scene as shown in Figure 2, Figure 3 shows (a) COTIPA, 308 

(b) CER, and (c) CTH, all corrected for both parallax and wind effects (these corrections are shown 309 

in Figure A5 in Appendix D2). The parallax and wind corrections are imperfect as certain 310 

assumptions are involved. For example, they rely on the cloud top height from the MODIS cloud 311 

product. In addition, they process the whole scene with one single sensor viewing geometry. To 312 

minimize artifacts introduced by the assumptions, one can apply the simulation to a smaller region. 313 

 314 

 315 

     316 

(a) (b) 
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 317 
Figure 3. (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the IPA reflectance-to-COT 318 

mapping (Appendix C2), (b) cloud effective radius (units: 𝜇m), and (c) cloud top height (units: km) 319 
collocated from the MODIS L2 cloud product. The locations of the cloudy pixels were shifted to account 320 
for parallax and wind effects. The parallax correction ranged from near 0 for low clouds and 1 km for high 321 
clouds (10 km CTH). The wind correction was around 0.8 km, given the median wind speed of 2 m/s to the 322 
east. 323 

 324 

 The OCO-2 data (L2StdND) themselves only provide sparse surface BRDF (referred to as 325 

surface albedo from now on) for the footprints that are clear, while EaR3T requires surface albedo 326 

for the whole domain. Therefore, we used MCD43A3 as a starting point. However, since MODIS 327 

does not have a channel in the Oxygen A-Band, MODIS band 2 (860 nm) was used as a proxy for 328 

the 760 nm OCO-2 channel as follows: we collocated the OCO-2 retrieved 760 nm surface albedo 329 

𝛼!"!  within the corresponding 860 nm MODIS MCD43A3 data 𝛼#!$  as shown in Figure 4a 330 

(same domain as Figures 2 and 3) and calculated a scaling factor assuming a linear relationship 331 

between 𝛼!"!  and 𝛼#!$  ( 𝛼!"! = 𝑐 ⋅ 𝛼#!$ ). Figure 4b shows 𝛼!"!  versus 𝛼#!$  for all 332 

cloud-free OCO-2 footprints. The red line shows a linear regression (derived scale factor c=0.867). 333 

Optionally, the OCO-2-scaled MODIS-derived surface albedo fields can be replaced by the OCO-2 334 

surface albedo products for pixels where they are available. The replacement is done for App. 1. 335 

The scaled and replaced surface albedo is then treated as input to the RTM assuming a Lambertian 336 

surface. 337 

 338 

(c) 
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      339 
Figure 4. (a) Surface albedo from the OCO-2 L2 product in the Oxygen A-band (near 760 nm), overlaid on the surface 340 

albedo from the MODIS MCD43A3 product at 860 nm. (b) OCO-2 surface albedo at 760 nm versus MODIS 341 
surface albedo at 860 nm, along with linear regression (𝛼!"! = 𝑐 ⋅ 𝛼#!$) as indicated by the red line (slope 342 
c=0.867). 343 

 344 

2.2.3 Advanced Himawari Imager (AHI) 345 

The Advanced Himawari Imager (AHI, used for App. 3) is a payload on Himawari-8, a 346 

geostationary satellite operated by the Meteorological Satellite Center (MSC) of the Japanese 347 

Meteorological Agency. The AHI provides 16 channels of spectral radiance measurements from 348 

the shortwave (0.47µm) to the infrared (13.3µm). During CAMP2Ex, the NASA in-field 349 

operational team closely collaborated with the team from MSC to provide AHI satellite imagery 350 

at the highest resolution over the Philippine Sea. From the AHI imagery, the cloud product 351 

generation system - Clouds from AVHRR Extended System (CLAVR-x), was used to generate 352 

cloud products from the AHI imagery (Heidinger et al., 2014). The cloud products from CLAVR-x 353 

include cloud optical thickness, cloud effective radius, and cloud top height at 2 (at nadir) to 5 km 354 

spatial resolution. Since AHI provides continuous regional scans every 10 minutes the AHI cloud 355 

product has a temporal resolution of 10 minutes. 356 

 357 

2.2.4 Spectral Sunshine Pyranometer (SPN-S) 358 

The SPN-S is a prototype spectral version of the commercially available global-diffuse 359 

SPN1 pyranometer (Wood et al., 2017; Norgren et al., 2022). The radiometer uses a 7-detector 360 

design in combination with a fixed shadow mask that enables the simultaneous measurement of 361 

both diffuse and global irradiances, from which the direct component of the global irradiance is 362 

(a) (b) 
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calculated via subtraction. The detector measures spectral irradiance from 350 to 1000 nm, and the 363 

spectrum is sampled at 1 nm resolution with 1 Hz timing. 364 

During the CAMP2Ex mission, the SPN-S was mounted to the top of the NASA P-3 aircraft 365 

where it sampled downwelling solar irradiance. To ensure accurate measurements, pre- and 366 

post-mission laboratory-based calibrations were completed using tungsten “FEL” lamps that are 367 

traceable to a National Institute of Standards and Technology standard. Additionally, the direct 368 

and global irradiances were corrected for deviations of the SPN-S sensor plane from horizontal 369 

that are the result of changes in the aircraft’s pitch or roll. This attitude correction applied to the 370 

irradiance data is a modified version of the method outlined in Long et al. (2010). However, 371 

whereas Long et al. (2010) employ a “box” flight pattern to characterize the sensor offset angles, 372 

in this study an aggregation of flight data containing aircraft heading changes under clear-sky 373 

conditions are used as a substitute. The estimated uncertainty of the SPN-S system is 6 to 8%, with 374 

4 to 6% uncertainty stemming from the radiometric lamp calibration process, and up to another 2% 375 

resulting from insufficient knowledge of the sensor cosine response. The stability of the system 376 

under operating conditions is 0.5%. A thorough description of the SPN-S and its calibration and 377 

correction procedures is provided in Norgren et al. (2022). In this paper (App. 3) only the global 378 

downwelling irradiance sampled by the 745 nm channel is used.  379 

 380 

2.2.5 Airborne All-Sky Camera (ASC) 381 

The All-Sky Camera (used for App. 4) is a commercially available camera (ALCOR 382 

ALPHEA 6.0CW5) with fish-eye optics for hemispheric imaging. It has a Charge-Coupled Device 383 

(CCD) detector that measures radiances in red, green, and blue channels. Radiometric and 384 

geometric calibrations were performed at the Laboratory of Atmospheric and Space Physics at the 385 

University of Colorado Boulder. The three-color channels are centered at 493, 555, and 626 nm 386 

for blue, green, and red, respectively, with bandwidths of 50 – 100 nm. Only radiance data from 387 

the red channel are used in this paper. The spatial resolution of the ASC depends on the altitude of 388 

the aircraft and the viewing zenith angle. Across the hemispheric field of view of the camera, the 389 

resolution of the field angle is approximately constant, at about 0.09º. At a flight level of 5 km, 390 

 
5https://www.alcor-system.com/common/allSky/docs/ALPHEA_Camera%20ALL%20SKY%20CAMERA_Doc.pdf 
last accessed on April 24, 2022. 
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this translates to a spatial resolution of 8 m at nadir. However, due to accuracy limitations of the 391 

geometric calibration and the navigational data from Inertial Navigation System (INS), the nadir 392 

geolocation accuracy could only be verified to within ±50 m. During the CAMP2Ex flights, the 393 

camera exposure time was set manually to minimize saturation of the detector. The standard image 394 

frame rate is 1 Hz. The precision of the camera radiances is on the order of 1%, and the radiometric 395 

accuracy is 6 – 7%. 396 

 397 

3. EaR3T Procedures 398 

In the previous section, we described the input data for the EaR3T applications. In this 399 

section, we will focus on providing the complete workflow (shown in Figure 1) for the five 400 

applications. 401 

After the required data files have been automatically downloaded in the data acquisition 402 

step as described in previous section, EaR3T pre-processes them and generates the optical 403 

properties of atmospheric gases, clouds, aerosols, and the surface. In Figure 1, the mapping from 404 

input data to these properties is color-coded component-wise (brown for associated cloud property 405 

processing if available, blue for associated surface property processing if available, green for 406 

associated ground truth property). The EaR3T code base used in this paper (v0.1.1; Chen and 407 

Schmidt, 2022) only includes MCARaTS as the 3D RT solver, but others are planned for the future. 408 

MCARaTS is a radiative transfer solver that uses a Monte Carlo photon-tracing method (Iwabuchi, 409 

2006). It outputs radiation (radiance or irradiance) based on the inputs of radiative properties of 410 

surface and atmospheric constituents (e.g., gases, aerosols, clouds) such as single scattering albedo, 411 

scattering phase function or asymmetry parameter, along with solar and sensor viewing geometries. 412 

The setup of these input properties is implemented in EaR3T’s pre-processing steps, which 413 

translates atmospheric properties into solver-specific input with minimum user intervention. To 414 

achieve this, EaR3T is modular so that it can be extended as new solvers are added. Although the 415 

five specific applications in this paper do not include aerosol layers, the setup of aerosol fields is 416 

fully supported and has been used in other applications (e.g., Gristey et al., 2022). After pre-417 

processing, the optical properties are fed into the RT solver. Finally, the user obtains radiation 418 

output from EaR3T, either radiance or irradiance. The output is saved in HDF5 format and can be 419 

easily distributed and accessed by various programming languages. The data variables contained 420 

in the HDF5 output are provided in Table A2 in Appendix A1. 421 
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The processes of data acquisition, pre-processing, and RTM setup and execution (shown 422 

in Figure 1) are automated such that the 3D/1D-RT calculations can be performed for any region 423 

at any date and time using satellite or aircraft data or other data resources such as LES. A detailed 424 

code walk-through of App. 1 and 2 is provided in Appendix A2. Since EaR3T is developed as an 425 

educational and research 3D-RT tool collection by students, it is a living code base, intended to be 426 

updated over time. The master code modules for the five applications as listed in Figure 1 are 427 

included in the EaR3T package under the examples directory. In the current release (v0.1.1), 428 

only a limited documentation for the installation and usage, including example code for EaR3T, is 429 

provided. More effort will be dedicated for documentation in the near-future. 430 

In the following sections, we discuss results obtained from EaR3T, starting with those from 431 

examples/01_oco2_rad-sim.py and examples/02_modis_rad-sim.py (section 432 

4), examples/03_spns_flux-sim.py (section 5), and concluding with 433 

examples/04_cam_nadir_rad-sim.py (section 6). The usage of the EaR3T package 434 

including the technical input and output parameters and code walk-through is provided in 435 

Appendix A. 436 

 437 

4. EaR3T as a 3D Satellite Radiance Simulator 438 

This section demonstrates the automated 3D radiance simulation for satellite instruments 439 

by EaR3T for OCO-2 and MODIS measured radiance based on publicly available MODIS retrieval 440 

products. The OCO-2 application is an example of radiance consistency between two distinct 441 

satellite instruments where the measurements of one (here, OCO-2) are compared with the 442 

simulations based on data products from the other (here, MODIS). The MODIS application, on 443 

the other hand, is an example of radiance self-consistency. We will show how inconsistencies can 444 

be used for detecting cloud and surface property retrieval biases. 445 

4.1 OCO-2 (App. 1) 446 

The OCO-2 radiance measurements at 768.52 nm for our sample scene in the context of 447 

MODIS imagery were shown in Figure 2. For that track segment, Figure 5a shows the simulated 448 

radiance along with the measurements as a function of latitude. The radiance was averaged over 449 

every 0.01° latitude window from 37° N to 39° N (the standard deviation within the bin indicated 450 

by the shaded color). In clear-sky regions (e.g., around 38.2º N), the 3D simulations (red) are 451 

systematically higher than the measurements (black), even though the footprint-level OCO-2 452 
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surface albedo retrieval was used to replace and scale the MCD43 surface albedo field as described 453 

in section 2.2.2 (Figure 4). This is probably because, unlike the MCD43 algorithm which relies on 454 

multiple overpasses and multiple-days for cloud-clearing, the OCO-2 retrieval is done for any clear 455 

footprint. Clouds in the vicinity lead to enhanced diffuse illumination that is erroneously attributed 456 

to the surface albedo itself. The EaR3T IPA calculations of the clear-sky pixels (blue) essentially 457 

reverse the 3D effect and therefore match the observations better. The 3D calculations enhance the 458 

reflectance through the very same 3D cloud effects that led to the enhanced surface illumination 459 

in the first place. It is possible to correct this effect by down-scaling the surface albedo according 460 

to the ratio between clear-sky 3D and IPA calculations, but this process is currently not automated. 461 

 462 

                                                      463 

                                            464 
Figure 5. (a) Latitudinally averaged (0.01° spacing) radiance calculations from EaR3T (red: 3D, blue: IPA) and OCO-465 

2 measured radiance at 768.52 nm (black) The green shaded area indicates the inset shown in (b). (b) The 466 

(a) 

(b) 
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same as Figure 2 except OCO-2 measured radiance overlaid on IPA radiance simulations at 768.52 nm. The 467 
solar zenith angle (SZA) for the radiance simulation case is 34.3°. 468 

 469 

In the cloudy locations (radiance value greater than ~0.05), the IPA calculations match the 470 

OCO-2 observations on a footprint-by-footprint level (see Figure 5b), demonstrating that wind and 471 

parallax corrections were performed successfully. Of course, there is not always a perfect 472 

agreement because of morphological changes in the cloud field over the course of six minutes. It 473 

is, however, apparent that the 3D calculations agree to a much lesser extent with the observations 474 

than the IPA calculations. Just like the mismatch for the clear-sky pixels indicates a bias in the 475 

input surface albedo, the bias here means that the input cloud properties (most importantly COT) 476 

are inaccurate. For most of the reflectance peaks, the 3D simulations are too low, which means 477 

that the input COT is biased low. This is due to 3D cloud effects on the MODIS-based cloud 478 

retrieval. Since they are done with IPA, any net horizontal photon transport is not considered, 479 

which leads to an apparent surface brightening as noted above, at the expense of the cloud 480 

brightness. As a result, the COT from darker clouds is significantly underestimated. This 481 

commonly known problem (Barker and Liu, 1995), with several aspects discussed in the 482 

subsequent EaR3T applications, can be identified by radiance consistency checks such as the one 483 

shown in Figure 5, and mitigated by novel types of cloud retrievals that do take horizontal photon 484 

transport into account (section 6). 485 

 486 

4.2 MODIS (App. 2) 487 

 To go beyond the OCO-2 track and understand the bias between simulated and observed 488 

radiances from a domain perspective, we now consider the radiance simulations for the MODIS 489 

650 nm channel. The setup is exactly the same as for the OCO-2 simulations, except that 1) the 490 

viewing zenith angle is set to the average viewing zenith angle of MODIS within the shown domain 491 

(instead of OCO-2), and 2) the surface albedo (or WSA) from MCD43 is used directly, this time 492 

from the 650 nm channel without rescaling. Figure 6a shows the MODIS measured radiance field, 493 

while Figure 6b shows the EaR3T 3D simulations. Visually, the clouds from the EaR3T simulation 494 

are generally darker than the observed clouds, which is in line with our aforementioned explanation 495 

of net horizontal photon transport. They are also blurrier because radiative smoothing (Marshak et 496 

al., 1995) propagates into the retrieved COT fields, which are subsequently used as input to EaR3T. 497 
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The IPA RT calculations agree with the observations for clouds (see Figure A4a in Appendix C2), 498 

which is expected as the IPA calculations and retrievals go through the same RT process, and the 499 

darkening and smoothing effects (referred to as 3D effects) are due to horizontal photon transport. 500 

To look at the 3D effects more quantitatively, Figure 7 shows a heatmap plot of simulated radiance 501 

versus observed radiance. It shows that the radiance for cloud-covered pixels (labeled “cloudy”) 502 

from EaR3T are mostly low-biased while good agreement between simulations and observations 503 

was achieved for clear-sky radiance (labeled “clear-sky”). The good agreement over clear-sky 504 

regions is expected. As mentioned above, we use MCD43 as surface albedo input, which in 505 

contrast to the OCO-2 surface albedo product is appropriately cloud-screened and therefore does 506 

not have a reflectance high bias. There is, of course, a reflectance enhancement in the vicinity of 507 

clouds, but that is captured by the EaR3T calculations. The fact that the calculations agree with the 508 

observations even for clear-sky pixels in the vicinity of clouds, shows that the concept of radiance 509 

consistency works to ensure correct satellite retrievals even in the presence of clouds. It also 510 

corroborates our observation from section 4.1 that COTIPA is low biased. Since the MODIS 511 

reflectance is not self-consistent with respect to 3D RT calculations using COTIPA as shown for 512 

the cloudy pixels in Figure 7, we can identify a bias in the cloud properties even without knowing 513 

the ground truth of COT. On the other hand, successful closure in radiance (self-consistency) 514 

would provide an indication that the input fields including COT are accurate, although it is 515 

certainly a weaker metric than direct verification of the retrievals through aircraft-satellite retrieval 516 

validation using observations from in-situ instruments. 517 

 518 

     519 

(a) (b) 
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Figure 6. (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance at 650 nm from EaR3T. 520 
The solar zenith angle for the radiance simulation case is 34.94°. 521 

 522 
 523 

                                             524 
Figure 7. Heatmap plot of EaR3T simulated 3D radiance vs. MODIS measured radiance at 650 nm. 525 
 526 

Summarizing the two satellite radiance simulator applications, one can say that EaR3T 527 

enables a radiance consistency check for inhomogeneous cloud scenes. We demonstrated that a 528 

lack of simulation-observation consistency (MODIS versus OCO-2) and self-consistency (MODIS 529 

versus MODIS) can be traced back to biased surface albedo or cloud fields in the simulator input. 530 

This can become a diagnostic tool for the quality of retrieval products from future or current 531 

missions, even when the ground truth is not known. Although not shown, the errors in the 532 

simulated radiance associated with the fixed-SZA assumption (domain average) are negligible. 533 

However, the vertical extent of the clouds affects the simulated radiance – the larger the vertical 534 

extent, the larger the 3D effects (more horizontal photon transport). Since we make the assumption 535 

of 1) a cloud geometric thickness of 1 km for clouds with CTH less than 4 km, and 2) cloud base 536 

height of 3 km for clouds with CTH greater than 4km, the simulated radiance at the satellite sensor 537 

level is valid for that proxy cloud only. For clouds that are geometrically thicker than the assumed 538 

cloud geometrical thickness, the simulated radiance would be even lower due to enhanced 539 

horizontal photon transport. Either way, the comparison with the actual radiance measurements 540 

will reveal a lack of closure. Additionally, although the clouds introduce the lion’s share of the 3D 541 

bias that is identified by the radiance consistency check, additional discrepancies can be introduced 542 
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in different ways. For example, the topography (mountainous region in Colorado) is not considered 543 

by MCARaTS (it is considered by MYSTIC, but this solver has not been implemented yet).  544 

For the reference of simulation running time: The MODIS simulation (domain size of 545 

[Nx=846, Ny=846]) took about 15 minutes on a Linux workstation with 8 CPUs for three 3D RT 546 

runs with 108 photons. With a slightly modified setup and parallelization, the automation can be 547 

easily applied for entire satellite orbits, although more research is required to optimize the 548 

computation speed depending on the desired output accuracy. 549 

 550 

5. EaR3T as 3D Aircraft Irradiance Simulator (App. 3) 551 

In contrast to the previous applications that focused on satellite remote sensing, we will 552 

now be applying EaR3T to quantify 3D cloud retrieval biases through direct, systematic validation 553 

of imagery-derived irradiances against aircraft measurements, instead of using the indirect path 554 

of radiance consistency in section 4. Previous studies (e.g., Schmidt et al., 2007; Kindel et al., 555 

2010) conducted radiative closure between remote sensing derived and measured irradiance using 556 

isolated flight legs as case studies. Here, with the efficiency afforded by the automated nature of 557 

EaR3T, we are able to conduct radiative closure of irradiance through a statistical approach that 558 

employs campaign-scale amounts of measurement data. Specifically, we used EaR3T to perform 559 

large-scale downwelling irradiance simulations at 745 nm based on geostationary cloud retrievals 560 

from AHI for the CAMP2Ex campaign, and directly compare these simulations to the SPN-S 561 

measured irradiances onboard the P-3 aircraft. This is done for all below-cloud legs from the entire 562 

campaign with the aim to assess the degree to which satellite-derived near-surface irradiances 563 

reproduce the true conditions below clouds. 564 

The irradiance simulation process is similar to the previously described radiance simulation 565 

in section 4, with only a few modifications. First, we used cloud optical properties from the AHI 566 

cloud product (COT, CER and CTH) as direct inputs into EaR3T. Secondly, we used a constant 567 

ocean surface albedo value of 0.03. Such simplification in surface albedo is made under the 568 

assumption that 1) the ocean surface is calm with no whitecaps, and that 2) the Lambertian BRDF 569 

is sufficient (instead of directionally dependent BRDF) to represent surface albedo for the 570 

irradiance calculation. Since the ocean surface albedo can greatly differ from 0.03 when the Sun 571 

is extremely low (Li et al., 2006), we excluded data under low-Sun conditions where the SZA is 572 

greater than 45°. Lastly, since EaR3T can only perform 3D simulations for a domain at a single 573 
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specified solar geometry, we divided each CAMP2Ex research flight into small flight track 574 

segments where each segment contains 6 minutes of flight time. The size and shape of the flight 575 

track segments can vary significantly due to the aircraft maneuvers, aircraft direction, aircraft 576 

speed, etc. For each flight track segment, EaR3T performs irradiance simulations for a domain that 577 

extends half a degree at an averaged solar zenith angle. In contrast to the radiance simulation output, 578 

which is two-dimensional at a specified altitude and sensor geometry, the irradiance simulation 579 

output is three dimensional. In addition to x (longitude) and y (latitude) vectors, it has a vertical 580 

dimension along z (altitude). From the simulated three-dimensional irradiance field, the irradiance 581 

for the flight track segment is linearly interpolated to the x-y-z location (longitude, latitude, and 582 

altitude) of the aircraft. EaR3T automatically sub-divides the flight track into tiles encompassing 583 

track segments, and extracts the necessary information from the aircraft navigational data. Based 584 

on the aircraft time and position, EaR3T downloads the AHI cloud product that is closest in time 585 

and space to the domain containing the flight track segment. 586 

Figure 8 shows the simulated irradiance for a sample flight track below clouds on 20 587 

September, 2019. Figure 8a shows the flight track overlaid on AHI imagery. Figure 8b shows 3D 588 

(in red) and IPA (in blue) downwelling irradiance simulations for the highlighted flight track in 589 

Figure 8a, as well as measurements by the SPN-S (in black). Since the 3D and IPA simulations 590 

are performed separately at discrete solar and sensor geometries for each flight track segment based 591 

on potentially changing cloud fields from one geostationary satellite image to the next, 592 

discontinuities in the calculations (indicated by gray dashed lines) are expected. The diffuse 593 

irradiance (downwelling and upwelling) can also be simulated and compared with radiometer 594 

measurements (not shown here). Since the irradiance was simulated/measured below clouds, high 595 

values of downwelling irradiance indicate thin-cloud or cloud-free regions while low values of 596 

downwelling irradiance indicate thick-cloud regions. The simulations successfully captured this 597 

general behavior – clouds thickened from west to east until around 121.25° E, and thinned 598 

eastwards. However, the fine-scale variabilities in irradiance were not captured by the simulations 599 

due to the coarse resolution of COT in the AHI cloud product (3-5 km). Additionally, the 600 

simulations also missed the clear-sky regions in the very east and west of the flight track as 601 

indicated by high downwelling irradiance values measured by SPN-S. This is probably also due to 602 

the coarse resolution of the AHI COT product where small cloud gaps are not represented. Large 603 

discrepancies between simulations and observations occur in the mid-section of the flight track 604 
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where clouds are present (e.g., longitude range from 121.15° to 121.3°). Although the 3D 605 

calculations differ somewhat from the IPA results, they are both biased high, likely because the 606 

input COT (the IPA-retrieved AHI product) is biased low. This bias is caused by the same 607 

mechanism that was discussed earlier in the MODIS examples (section 4.2). This begs the question 608 

whether this is true for the entire field mission. To answer the question, we performed a systematic 609 

comparison of the cloud transmittance for all available below-cloud flight tracks from CAMP2Ex, 610 

using EaR3T’s automated processing pipeline. The output of this pipeline is visualized in time-611 

synchronized flight videos (Chen et al., 2022), which show the simulations and observations along 612 

all flight legs point by point. These videos give a glimpse of the general cloud environment during 613 

the field campaign from the geostationary satellite perspective. 614 

 615 

 616 

       617 
Figure 8. (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea on 20 September, 2019. 618 

The thin line shows the entire flight track within the domain. The thick line highlights the specific leg 619 
analyzed in (b). (b) Measured downwelling irradiance from SPN-S at 745 nm and calculated 3D and IPA 620 
irradiance from EaR3T for the highlighted flight track in (a). 621 

 622 

For this comparison, we use transmittance instead of irradiance. The transmittance is 623 

calculated by dividing the downwelling irradiance below clouds (𝐹↓
&'((')) by the downwelling 624 

irradiance at the top of the atmosphere extracted from the Kurucz solar spectra (𝐹↓
*!+; Kurucz, 625 

1992) at incident solar zenith angle (SZA), where 626 

(a) (b) 
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𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑎𝑛𝑐𝑒 =
𝐹↓
&'((')

𝐹↓
*!+ ⋅ cos(𝑆𝑍𝐴)

 627 

Thus the transmittance has less diurnal dependence than the irradiance. Figure 9 shows the 628 

histograms of the simulated and measured cloud transmittance from all below-cloud legs. The 629 

average values are indicated by dashed lines. Although the averaged values of IPA and 3D 630 

transmittance are close, their distributions are different. Only the 3D calculations and the measured 631 

transmittance reach values beyond 1. This occurs in clear-sky regions in the vicinity of clouds that 632 

receive photons scattered by the clouds as previously discussed for the OCO-2 application. 633 

 634 

                                 635 
Figure 9. Histogram of measured transmittance from SPN-S at 745 nm (dark gray filled) and calculated 3D (red solid 636 

line) and IPA (blue solid line) transmittance from EaR3T for all the below-cloud flight tracks during 637 
CAMP2Ex in 2019. The mean values are indicated by dashed lines. The yellow (green) shaded area 638 
represents the relatively low (high) transmittance region where the probability density of the observed 639 
transmittance (dark gray filled) is greater than the calculations.  640 

 641 

Both the distribution and the mean value of the simulations are different from the 642 

observations – the simulation histograms peak at around 0.9 while the observation histogram peaks 643 

at around 1. The histograms indicate that the RT simulations miss most of the clear-sky conditions 644 

because of the coarse resolution of the AHI cloud product. If clouds underfill a pixel, AHI 645 

interprets the pixel as cloudy in most cases. This leads to an underestimation of clear-sky regions 646 

since cumulus and high cirrus were ubiquitous during CAMP2Ex. The area on the left (highlighted 647 

in yellow) has low cloud transmittance associated with thick clouds. In this range, the histograms 648 

of the calculations are generally below the observations, and the PDF of the calculations is offset 649 
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to the right (indicated by the yellow arrow). This means that the transmittance is overestimated by 650 

both IPA and 3D RT, and thus that the COT of thick clouds is underestimated, consistent with 651 

what we found before (Figure 8b). The high-biased transmittance below-cloud is also consistent 652 

with the findings of low-biased reflectance (App. 1 and 2), both indicating COT of the optically 653 

thick clouds are low-biased. The high-transmittance end (highlighted in green) is associated with 654 

clear-sky and thin clouds. Here, the peak of the PDF is shifted to the left (green arrow), and the 655 

calculations are biased low. This is caused by a combination of 1) the overestimation in COT of 656 

thin clouds due a 3D bias in the AHI IPA retrieval, 2) the aforementioned resolution effect that 657 

underestimates the occurrence of clear-sky regions (or overestimation in cloud fraction), and 3) 658 

net horizontal photon transport from clouds into clear-sky pixels. Overall, the calculations 659 

underestimate the true transmittance by 10%. This might seem to contradict Figure 7, where the 660 

calculated reflected radiance was biased low due to the underestimation of COT in the heritage 661 

retrievals, which would correspond to an overestimation of the radiation transmitted by clouds. 662 

This effect is indeed apparent in the yellow-shaded area of Figure 9 (high COTs), but the means 663 

(dashed lines) show exactly the opposite. To understand that, one has to consider that the histogram 664 

depicts all-sky conditions, which include both cloudy and clear pixels. In this case, the direction 665 

of the overall (all-sky) bias follows the direction of the thin-cloud/clear bias, rather than the 666 

direction of the thick cloud bias. For different study regions of the globe with different cloud 667 

fractions, cloud size distributions, and possibly different imager resolutions, the direction and 668 

magnitude of the bias might be very different. 669 

Summarizing, this application demonstrates that the EaR3T’s automation feature allows 670 

systematic simulation-to-observation comparisons. If aircraft observations are available, then 671 

closure between satellite-derived irradiance and suborbital measurements is a more powerful 672 

verification of satellite cloud retrieval products than the radiance consistency from the earlier 673 

stand-alone satellite applications. Even more powerful is the new approach to process the data 674 

from an entire field mission for assessing the quality of cloud products in a region of interest (in 675 

this case, the CAMP2Ex area of operation). 676 

 677 

6. EaR3T for Mitigating 3D Cloud Retrieval Biases (App. 4) 678 

In this section, we will use high-resolution imagery from a radiometrically calibrated 679 

all-sky camera flown during the CAMP2Ex to isolate the 3D bias (sometimes referred to as IPA 680 
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bias) and explore its mitigation with a newly developed CNN cloud retrieval framework (Nataraja 681 

et al., 2022). The CNN, unlike IPA, takes pixel-to-pixel net horizontal photon transport into 682 

account. It exploits the spatial context of pixels in cloud radiance imagery, and extracts a higher-683 

dimensional, multi-scale representation of the radiance to retrieve COT fields as the output. It does 684 

so by learning on “training data”, which in this case was input radiance and COT pairs synthetically 685 

generated by EaR3T using LES data from the Sulu Sea. The best CNN model, trained on different 686 

coarsened resolutions of the data pairs, is included within the EaR3T repository. For App. 4, this 687 

CNN is applied to real imagery data for the first time, which in our case are near-nadir observations 688 

by the all-sky camera (section 2.2.5) that flew in CAMP2Ex. 689 

The CNN model was trained at a single (fixed) sun-sensor geometry (solar zenith angle, 690 

SZA=29.2°; solar azimuth angle, SAA=323.8°, viewing zenith angle, VZA=0º), at a spatial 691 

resolution of 100 m. We therefore chose a camera scene with a matching SZA (28.9°), and rotated 692 

the radiance imagery to match SAA=323.8°, and subsequently gridded the 8-12 m native 693 

resolution camera data to 100 m. Figure 10a shows the RGB imagery captured by the all-sky 694 

camera over the Philippine Sea at 02:10:06 UTC on 5 October 2019. The Sun is located at the 695 

southeast (as indicated by the yellow arrow) and can be easily identified from the sun glint. Note 696 

that this image has not yet been geolocated; it is depicted as acquired in the aircraft reference frame. 697 

Figure 10b shows the rotated scene of the red channel radiance for the region encircled in yellow 698 

in Figure 10a. The sun (as indicated by the yellow arrow) is now at SAA=323.8°. The selected 699 

study region is indicated by the red rectangle in Figure 10b (6.4x6.4 km2), where the raw radiance 700 

of the camera is gridded at 100 m resolution to match the spatial resolution of the training dataset 701 

of the CNN. 702 

 703 

 704 
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           705 
Figure 10. (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP2Ex for a cloud scene centered 706 

at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 UTC on 5 October, 2019. The arrows 707 
indicate the true north (green), flight direction (blue), and illumination (where the sunlight comes from, 708 
yellow). (b) Red channel radiance measured by the camera for the circular area indicated by the red circle 709 
in (a). Red squared region shows gridded radiance with a pixel size of 64x64 and spatial resolution of 100 710 
m. 711 

 712 

From the radiance field, we used both the traditional IPA (based on the IPA reflectance-to-713 

COT mapping) and the new CNN to retrieve COT fields. Figure 11 shows the COTIPA and COTCNN 714 

fields, which are visually quite different. For relatively thin clouds (e.g., at around {2, 1.8}), the 715 

CNN tends to retrieve larger COT values than COTIPA. Also, it returns more spatial structure than 716 

the IPA (e.g., around {2,-1}). To assess how either retrieval performs, we now apply the radiance 717 

self-consistency approach introduced with MODIS data in section 4.2. Using both the IPA and the 718 

CNN retrieval as input, we had EaR3T calculate the (synthetic) radiance that the camera should 719 

have observed if the retrieval were accurate. The clouds are assumed to be located at 1-2 km. Such 720 

an assumption is inferred from low-level aircraft observations of clouds on the same day. These 721 

radiance fields are shown in Figure 12a and 12b, and can be compared to Figure 12c. Seven edge 722 

pixels have been removed from the original domain because the CNN performs poorly at edge 723 

pixels, and because the 3D calculations use periodic boundary conditions. 724 

 725 

(a) 

(b) 
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           726 
Figure 11. Cloud optical thickness for the gridded radiance in Figure 10b (a) estimated by IPA method and (b) 727 

predicted by CNN. 728 
 729 

 730 

           731 

 732 

(a) (b) 

(a) (b) 

(c) 



 30 

Figure 12. 3D radiance calculations from EaR3T at 600 nm based on cloud optical thickness field (a) estimated by 733 
IPA, and (b) predicted by the CNN. The radiance measured by the all-sky camera (the same as Figure 734 
10b) is provided in the same format at (c) for comparison. The calculations were originally performed 735 
for the 64x64 domain. Then 7 pixels along each side of the domain (contoured in gray) were excluded, 736 
which resulted in a 50x50 domain. 737 

 738 

 739 

           740 
Figure 13. Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based on cloud optical thickness 741 

(a) estimated by IPA and (b) predicted by the CNN vs. measured red channel radiance from all-sky camera. 742 
 743 

As evident from the brightest pixels in Figures 12b and 12c, the radiances simulated on the 744 

basis of the COTCNN input are markedly lower than actually observed by the camera. This is 745 

because the CNN was trained on a LES dataset with limited COT range that excluded the largest 746 

COT that occurred in practice. This means that the observational data went beyond the original 747 

training envelope of the CNN, which highlights the importance of choosing the CNN training data 748 

carefully for a given region. In Figure 13, the simulations are directly compared with the original 749 

observations, confirming that indeed the CNN-generated data are below the observations on the 750 

high radiance end. Otherwise, the CNN-generated radiances agree with the observations. In 751 

contrast, the IPA-generated data are high biased for the optically very thin clouds (radiance below 752 

0.1) and systematically low-biased for the thick clouds (radiance above 0.2) when comparing with 753 

the observations, over the dynamic range of the COT, which is indicative of the 3D retrieval bias 754 

that we discussed earlier. A small high bias occurs in the COTCNN based radiance simulations for 755 

the optically thin clouds (radiance value below 0.2). This probably because the CNN training as 756 

(a) (b) 
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described by Nataraja et al. (2022) is 1) based on a surface albedo of 0 and 2) aerosol-free 757 

atmospheric environment (also aerosol-free setup for radiance simulations in Figure 13), where in 758 

reality the ocean is slightly brighter and atmosphere is mixed with aerosols. Here again, the 759 

radiance self-consistency approach proves useful despite the absence of ground truth data for the 760 

COT. This is valuable because in reality satellite remote sensing does not have the ground truth of 761 

COT, whereas radiance measurements are always available. For the CNN, the self-consistency of 762 

the radiance is remarkable for most of the clouds (radiance smaller than 0.4), which encompass 763 

86.8% of the total number of image pixels. 764 

Finally, we use EaR3T to propagate the 3D cloud retrieval bias into the associated bias in 765 

estimating the cloud radiative effect from passive imagery retrievals, which means that we are 766 

returning from a remote sensing to an energy perspective (irradiance) at the end of the paper. The 767 

calculated cloud radiative effects (CRE) of both below-clouds (at the surface) and above-clouds 768 

(at 2.5 km) are shown in Figure 14a and 14b. The most important histograms are those from 3D 769 

irradiance calculations based on the CNN retrievals (gray solid line), as this combination would 770 

be used in a next-generation framework for deriving CRE from passive remote sensing, and the 771 

other would be IPA irradiance calculations based on the IPA retrieval (red solid line), as done in 772 

the traditional (heritage) approach. The dashed lines are the other combinations. The mean values 773 

(red vs. gray) indicate that in our case the traditional approach would lead to a high bias of more 774 

than to 28% both at the surface and 20% above clouds due to low-biased COTIPA (consistent with 775 

findings of low-biased COTIPA-derived reflectance from App. 1&2 and high-biased COTIPA-776 

derived transmittance from App. 3). Here again, 3D biases do not cancel each other out in the 777 

domain average. If the CNN had better fidelity even for optically thick clouds, the real bias in CRE 778 

would be even larger. A minor, but interesting finding is that regardless of which COT retrieval is 779 

used, the mean CRE is similar for IPA and 3D irradiance calculations (e.g., 𝐶𝑅𝐸,-+(𝐶𝑂𝑇"..);;;;;;;;;;;;;;;;;;;;;; ≈780 

𝐶𝑅𝐸/$(𝐶𝑂𝑇"..);;;;;;;;;;;;;;;;;;;;;, blue vertical dashed line locates near to gray vertical solid line), even though 781 

the PDFs are different. By far the largest impact on accuracy comes from the retrieval technique, 782 

not from the subsequent CRE calculations. Here again, the self-consistency check turns out as a 783 

powerful metric to assess retrieval accuracy. Of course, we only used a single case in this part of 784 

the paper. For future evaluation of the CNN versus the IPA, one would need to process larger 785 

quantities of data in an automated fashion as done in the first part of the paper. This is beyond the 786 

scope of this introductory paper, and will be included in future releases of EaR3T and the CNN. 787 
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 788 

    789 
Figure 14. Histograms of cloud radiative effects derived from 1) 3D irradiance calculations based on COTCNN (solid 790 

gray), 2) IPA irradiance calculations based on COTIPA (solid red), 3) IPA irradiance calculations based on 791 
COTCNN (dashed blue), and 4) 3D irradiance calculations based on COTIPA (dashed green) both (a) at the 792 
surface and (b) above the clouds. The mean values are indicated by vertical lines. 793 

 794 

7. Summary and Conclusion 795 

In this paper, we introduced EaR3T, a toolbox that provides high-level interfaces to 796 

automate and facilitate 1D- and 3D-RT calculations. We presented applications that used EaR3T 797 

to: 798 

a) build a processing pipeline that can automatically simulate 3D radiance fields for satellite 799 

instruments (currently OCO-2 and MODIS) from publicly available satellite surface and 800 

cloud products at any given time over any specific region; 801 

b) build a processing pipeline that can automatically simulate irradiance along all flight legs 802 

of aircraft missions, based on geostationary cloud products; 803 

c) simulate radiance and irradiance for high-resolution COT fields retrieved from an airborne 804 

camera, using both a traditional 1D-RT (IPA) approach, and a newly developed 3D-RT 805 

(CNN) approach that considers the spatial context of a pixel. 806 

Unlike other satellite simulators that employ 1D-RT, EaR3T is capable of performing the radiance 807 

and irradiance calculations in 3D-RT mode. Optionally, it can be turned off to link back to 808 

traditional 1D-RT codes, and to calculate 3D perturbations by considering the changes of 3D-RT 809 

fields relative to the 1D-RT baseline. 810 

(a) (b) 
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With the processing pipeline under a) (App. 1 and App. 2, section 4), we prototyped a 811 

3D-RT powered radiance loop (we call it “radiance self-consistency”) that is envisioned for 812 

upcoming satellite missions such as EarthCARE and AOS. Retrieved cloud fields (in our case, 813 

from MODIS and from an airborne camera) are fed back into a 3D-RT simulation engine to 814 

calculate at-sensor radiances, which are then compared with the original measurements. Beyond 815 

currently included sensors, others can be added easily, taking advantage of the modular design of 816 

EaR3T. This radiance closure loop facilitates the evaluation of passive imagery products, 817 

especially under spatially inhomogeneous cloud conditions. The automation of EaR3T permits 818 

calculations at any time and over any given region, and statistics can be built by looping over entire 819 

orbits as necessary. The concept of radiance self-consistency could be valuable even for existing 820 

imagery datasets because it allows the automated quantification of 3D-RT biases even without 821 

ground truth such as airborne irradiance from suborbital activities. Also, it can be easily extended 822 

to spectral or multi-angle observations as available from MODIS and MISR (Multi-Angle Imaging 823 

Spectroradiometer), and thus providing more powerful constraints to the remote sensing products. 824 

In the future it should be possible to include a 3D-RT pipeline such as EaR3T into operational 825 

processing of satellite derived data products. 826 

 Benefitting from the automation of EaR3T in b) (App. 3, section 5), we performed 3D-RT 827 

irradiance calculations for the entire CAMP2Ex field campaign, moving well beyond radiation 828 

closure case studies, and instead systematically evaluating satellite-derived radiation fields with 829 

aircraft data for an entire region. From the comparison based on all below-cloud flight tracks 830 

during the entire campaign, we found that the satellite-derived cloud transmittance was biased low 831 

by 10% compared to the observations when relying on the heritage satellite cloud product. 832 

From the statistical results of the CAMP2Ex irradiance closure in b), we concluded that the 833 

bias between satellite-derived irradiances and the ground truth from aircraft measurements was 834 

due to a combination of the coarse spatial resolution of the geostationary imagery products and 835 

3D-RT effects. To minimize the coarse-resolution part of the bias and thus to isolate the 3D-RT 836 

bias, we used high-resolution airborne camera imagery in c) (App. 4, section 6), and found that 837 

even with increased imager resolution, biases persisted. The at-sensor radiance derived from 838 

COTIPA was inconsistent with the original measurements. For cloudy pixels, the calculated 839 

radiance was well below the observations, confirming an overall low bias in COTIPA. This low bias 840 

could be largely mitigated with the context-aware CNN developed separately in Nataraja et al. 841 
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(2022) and included in EaR3T. Of course, this novel technique has limitations. For example, the 842 

camera reflectance data went beyond the CNN training envelope, which would need to be extended 843 

to larger COT in the future. In addition, the CNN only reproduces two-dimensional clouds fields 844 

and does not provide access to the vertical dimension, which will be the next frontier to tackle. 845 

Still, the greatly improved radiance consistency from COTIPA to COTCNN indicates that the EaR3T-846 

LES-CNN approach shows great promise for the mitigation of 3D-RT biases associated with 847 

heritage cloud retrievals. We also discovered that for this particular case, the CRE calculated from 848 

traditional 1D cloud products can introduce a warm bias of at least 28% at the surface and 20% 849 

above clouds. 850 

EaR3T has proven to be capable of facilitating 3D-RT calculations for both remote sensing 851 

and radiative energy studies. Beyond the applications described in this paper, EaR3T has already 852 

been extensively used by a series of on-going research projects such as producing massive 3D-RT 853 

calculations as training data for a new generation of CNN models (Nataraja et al., 2022), evaluating 854 

3D cloud radiative effects associated with aerosols (Gristey et al., 2022), creating flight track and 855 

satellite track simulations for mission planning etc. More importantly, the strategies provided in 856 

this paper put novel machine learning algorithms on a physical footing, opening the door for the 857 

mitigation of complexity-induced biases in the near-future. More development effort will be 858 

invested into EaR3T in the future, with the goals of minimizing the barriers to using 3D-RT 859 

calculations, and to promote 3D cloud studies. EaR3T will continue to be an educational tool driven 860 

by graduate students. In the future, we plan to add support for additional publicly available 3D RT 861 

solvers, e.g., SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and 862 

Evans, 2009), as well as built-in support for HITRAN and associated correlated-k methods 863 

(currently, we are implementing such an approach for the longwave wavelength range). From a 864 

research perspective, we anticipate that EaR3T will enable the systematic quantification and 865 

mitigation of 3D-RT biases of imagery-derived cloud-aerosol radiative effects, and may be the 866 

starting point for operational use of 3D-RT for future satellite missions.  867 

  868 
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Appendix A 869 

A1 - Technical Input and Output Parameters of EaR3T 870 

EaR3T provides various functions that can be combined to tailored pipelines for automatic 871 

3D radiative transfer (3D-RT) calculations as described in this paper (App. 1 – 5), as well as for 872 

complex research projects beyond. Since EaR3T is written in Python, the modules and functions 873 

can be integrated into existing functions developed by the users themselves. Parallelization is 874 

enabled in EaR3T by default through multi-processing to accelerate computations. If multiple 875 

CPUs are available, EaR3T will distribute jobs for the 3D RT calculations. By default, the 876 

maximum number of CPUs will be used. Since EaR3T is designed to make the process of setting 877 

up and running 3D-RT calculations simple, some parameters that are unavailable from the input 878 

data but are required by the RT solvers are populated via default values and assumptions. However, 879 

this does not mean that by using EaR3T, one must use these assumptions; they can be easily 880 

superseded by user-provided settings. To facilitate this process, Table A1 provides a detailed list 881 

of parameters (subject to change in future updates) that can be controlled and modified by the user. 882 

In examples/02_modis_rad-sim.py, we defined these user-controllable parameters as 883 

global variables for providing easy access to user. In the future, most of the parameters will be 884 

controllable through a dedicated configuration file for optimal transparency. These parameters can 885 

be changed within the code. For instance, by changing the parameters of 'date' (Line 67 in 886 

examples/02_modis_rad-sim.py) and 'region' (Line 68 in 887 

examples/02_modis_rad-sim.py) within params into the following: 888 

params['date']   = datetime.datetime(2022, 2, 10) 889 

params['region'] = [-6.8, -2.8, 17.0, 21.0] 890 

one can perform similar RT calculations (as demonstrated in App. 2) for another date and region 891 

of interest (here, west Sahara Desert on 10 February, 2022). Note that the code is under active 892 

development, the line numbers are only valid in the version release of v0.1.1 and might change in 893 

the future. Given the input parameters, EaR3T will calculate radiance or irradiance and save the 894 

calculations into a HDF5 (Hierarchical Data Format version 5) file. The output data variables are 895 

provided in Table A2. 896 

In addition to the example code, intuitive and simple examples are provided in 897 

examples/00_er3t_mca.py and examples/00_er3t_lrt.py for users who are 898 

interested in learning the basics of setting up EaR3T for calculations. At the current stage, only 899 
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limited documentation is provided. However, community support is available from the author of 900 

this paper through Discord6. In the near-future, more effort will be invested into documentation to 901 

give the user more autonomy in creating new applications that cannot be derived from those 902 

provided in our paper. 903 
 904 

Parameters 
App. 1 
 
examples/01_oc
o2_rad-sim.py 

App. 2 
 
examples/02_mo
dis_rad-sim.py 

App. 3 
 
examples/03_sp
ns_flux-sim.py 

App. 4 
 
examples/04_ca
m_nadir_rad-
sim.py 

App. 5 
 
examples/05_cn
n-les_rad-
sim.py 

Date 

September 2, 2019 
 
Specified at Line 66: 
params['date'] 
And Line 1569: 
date 

September 2, 2019 
 
Specified at Line 68: 
params['date'] 
And Line 1311: 
date 

September 20, 2019 
 
Specified at Line 
439: date 
And Line 238: date 

October 5, 2019 
 
Specified at Line 59: 
params['date'] 
And Line 215: date 

October 5, 2019 
 
Specified at Line 58: 
params['date'] 
And Line 126: date 

Geographical 
Region 

Specified at Line 69: 
params['region
'] 

Specified at Line 69: 
params['region
'] 

Variable (depends 
on aircraft location) N/A N/A 

Z Grid 
(Number of 
Grids/Resolut
ion) 

40 / 0.5 km 
 
Specified at Line 
1476: levels 

40 / 0.5 km 
 
Specified at Line 
1220: levels 

20 / 1 km 
 
Specified at Line 
180: levels 

40 / 0.5 km 
 
Specified at Line 
174: levels 

50 / 0.4km 
 
Specified at Line 92: 
levels 

Wavelength 

768.52 nm 
 
Specified at Line 67: 
params['wavele
ngth'] 

650 nm 
 
Specified at Line 67: 
params['wavele
ngth'] 

745 nm 
 
Specified at Line 
440: wavelength 

600 nm 
 
Specified at Line 58: 
params['wavele
ngth'] 

600 nm 
 
Specified at Line 57: 
params['wavele
ngth'] 

Atmospheric 
Gas Profile 

US standard 
atmosphere 
 
Specified at Line 
1479: atm0 

US standard 
atmosphere 
 
Specified at Line 
1223: atm0 

US standard 
atmosphere 
 
Specified at Line 
183: atm0 

US standard 
atmosphere 
 
Specified at Line 
177: atm0 

US standard 
atmosphere 
 
Specified at Line 68: 
params['atmosp
heric_profile'
] 
And Line 94: atm0  

Atmospheric 
Gas 
Absorption 

Case specific  
 
Specified at Line 
1487: abs0 

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
1230: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
189: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 
184: abs0  

Default Absorption 
Database 
(Coddington et al., 
2008) 
 
Specified at Line 97: 
abs0  

Cloud Top 
Height (CTH) 

From MODIS L2 
cloud product 
 
Specified at Line 
1520: 
data['cth_2d'] 
And Line 1530: 
cld0  

From MODIS L2 
cloud product 
 
Specified at Line 
1263: 
data['cth_2d'] 
And Line 1273: 
cld0  

From AHI L2 cloud 
product 
 
Specified at Line 
208: cth_2d 
And Lines 212: 
cld0  

2 km 
 
Specified at Line 63: 
params['cloud_
top_height'] 
And Lines 199: 
cld0 

From LES 
 
Specified at Line 
103: cld0 

Cloud 
Geometrical 
Thickness 

1 km for CTH < 4 
km; 
Variable that cloud 
base height is at 3 
km for CTH > 4 km 
 
Specified at Line 
1527: cgt  

1 km for CTH < 4 
km; 
Variable that cloud 
base height is at 3 
km for CTH > 4 km 
 
And Line 1270: cgt 

1 km 
 
Specified at Line 
212: cgt 

1 km 
 
Specified at Line 64: 
params['cloud_
geometrical_th
ickness'] 

From LES 
 
Specified at Line 
103: cld0 

 
6 https://discord.gg/ntqsguwaWv 
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Cloud Optical 
Thickness 

Used IPA 
reflectance-to-COT 
mapping for MODIS 
L1B Reflectance at 
250 m resolution 
 
Specified at Line 
1518: 
data['cot_2d'] 
And Line 1530: 
cld0  

Used IPA 
reflectance-to-COT 
mapping for MODIS 
L1B Reflectance at 
250 m resolution 
 
Specified at Line 
1261: 
data['cot_2d'] 
And Line 1273: 
cld0 

From AHI L2 cloud 
product 
 
Specified at Line 
198: cot_2d 
And Lines 212: 
cld0 

Used IPA 
reflectance-to-COT 
mapping and CNN 
for camera red 
channel 
radiance/reflectance 
at 100 m resolution 
 
Specified at Lines 
474 and 493: 
cot_2d 
And Lines 199: 
cld0  

From LES 
 
Specified at Line 
103: cld0 

Cloud 
Effective 
Radius 

From MODIS L2 
Cloud Product 
 
Specified at Line 
1519: 
data['cer_2d'] 
And Line 1530: 
cld0 

From MODIS L2 
Cloud Product 
 
Specified at Line 
1262: 
data['cer_2d'] 
And Line 1273: 
cld0 

From AHI L2 cloud 
product 
 
Specified at Line 
199: cer_2d 
And Lines 212: 
cld0 

12 micron 
 
Specified at Lines 
475 and 494: 
cer_2d 
And Lines 199: 
cld0 

From LES 
 
Specified at Line 
103: cld0 

Scattering 
Phase 
Function 

Mie (water cloud) 
 
Specified at Line 
1536: pha0 
And Line 1573: sca 

Mie (water cloud) 
 
Specified at Line 
1279: pha0 
And Line 1315: sca 

Mie (water cloud) 
 
Specified at Line 
219: pha0 
And Line 237: sca  

Mie (water cloud) 
 
Specified at Line 
190: 
pha0 
And Line 219: sca  

Mie (water cloud) 
 
Specified at Line 
111: 
pha0 
And Line 130: sca 

Surface 
Albedo 

From MODIS 
surface albedo 
product and scaled 
by OCO-2 
 
Specified at Line 
1501: mod43 
And Line 1503: 
sfc_2d 

From MODIS 
surface albedo 
product 
 
Specified at Line 
1244: mod43 
And Line 1246: 
sfc_2d 

0.03 
 
Implicitly specified 
by default at Line 
234: 
mcarats_ng 

0.03 
 
Specified at Line 61: 
params['surfac
e_albedo'] 
And Line 218: 
surface_albedo 

0.03 
 
Specified at Line 59: 
params['surfac
e_albedo'] 
And Line 133: 
surface_albedo 
  

Solar Zenith 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
1554: sza 
And Line 1576: 
solar_zenith_a
ngle 

From MODIS 
geolocation file 
 
Specified at Line 
1296: sza 
And Line 1318: 
solar_zenith_a
ngle 

Variable (depends 
on aircraft location 
and date and time) 

28.90° 
 
Specified at Line 
464: 
geometry['sza'
] 
And Line 222: 
solar_zenith_a
ngle 

29.16° 
 
Specified at Line 60: 
params['solar_
zenith_angle'] 
And Line 134: 
solar_zenith_a
ngle 

Solar 
Azimuth 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
1555: saa 
And Line 1577: 
solar_azimuth_
angle 

From MODIS 
geolocation file 
 
Specified at Line 
1297: saa 
And Line 1319: 
solar_azimuth_
angle 

Variable (depends 
on aircraft location 
and date and time) 

296.83° 
 
Specified at Line 
465: 
geometry['saa'
] 
And Line 223: 
solar_azimuth_
angle 

296.83° 
 
Specified at Line 61: 
params['solar_
azimuth_angle'
] 
And Line 135: 
solar_azimuth_
angle 

Sensor 
Altitude 

705 km (satellite 
altitude) 
 
Implicitly specified 
by default at Line 
1568: 
mcarats_ng  

705 km (satellite 
altitude) 
 
Implicitly specified 
by default at Line 
1310: 
mcarats_ng 

N/A, three-
dimensional 
irradiance outputs at 
user-defined Z grid 

5.48 km (flight 
altitude) 
 
Specified at Line 
466: 
geometry['alt'
] 
And Line 224: 
sensor_altitud
e 

705 km (satellite 
altitude) 
 
Specified at Line 64: 
params['sensor
_altitude] 
And Line 138: 
sensor_altitud
e 

Sensor Zenith 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
1557: vza 

From MODIS 
geolocation file 
 
Specified at Line 
1302: vza 

0° (nadir) 
 
Implicitly specified 
by default at Line 
234: 
mcarats_ng  

0° (nadir) 
 
Implicitly specified 
by default at Line 
214: 
mcarats_ng 

0° (nadir) 
 
Specified at Line 62: 
params['sensor
_zenith_angle'
] 
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And Line 1578: 
sensor_zenith_
angle 

And Line 1320: 
sensor_zenith_
angle  

And Line 136: 
sensor_zenith_
angle 

Sensor 
Azimuth 
Angle 

From OCO-2 
geolocation file 
 
Specified at Line 
1558: vaa 
And Line 1579: 
sensor_azimuth
_angle 

From MODIS 
geolocation file 
 
Specified at Line 
1303: vaa 
And Line 1321: 
sensor_azimuth
_angle 

0° (insignificant for 
nadir) 
 
Implicitly specified 
by default at Line 
234: 
mcarats_ng 

0° (insignificant for 
nadir) 
 
Implicitly specified 
by default at Line 
214: 
mcarats_ng 

0° (insignificant for 
nadir) 
 
Specified at Line 63: 
params['sensor
_azimuth_angle
'] 
And Line 137: 
sensor_azimuth
_angle 

Number of 
Photons 

1×108 per run 
 
Specified at Line 70: 
params['photon
'] 
And Line 1583: 
photons 

1×108 per run 
 
Specified at Line 70: 
params['photon
'] 
And Line 1325: 
photons 

1×107 per run 
 
Specified at Line 50: 
params['photon
'] 
And Line 243: 
photons 

1×107 per run 
 
Specified at Line 60: 
params['photon
'] 
And Line 228: 
photons 

1×108 per run 
 
Specified at Line 65: 
params['photon
'] 
And Line 141: 
photons 

Number of 
Runs 

3 
 
Specified at Line 
1581: Nrun 

3 
 
Specified at Line 
1323: Nrun 

3 
 
Specified at Line 
242: Nrun 

3 
 
Specified at Line 
226: Nrun 

3 
 
Specified at Line 
140: Nrun 

Mode (3D or 
IPA) 

3D and IPA 
 
Specified at Line 
1704 and 1705: 
solver 
And Line 1584: 
solver 

3D or IPA 
 
Specified at Line 
1418: solver 
And Line 1326: 
solver 

3D and IPA 
 
Specified at Lines 
377 and 378: 
solver 
And Line 244: 
solver 

3D 
 
Specified at Lines 
507 and 508: 
solver 
And Line 229: 
solver 

3D 
 
Specified at Line 
143: solver 

Parallelizatio
n Mode 

Python multi-
processing 
 
Specified at Line 
1586: mp_mode 

Python multi-
processing 
 
Specified at Line 
1328: mp_mode 

Python multi-
processing 
 
Specified at Line 
247: mp_mode 

Python multi-
processing 
 
Specified at Line 
231: mp_mode 

Python multi-
processing 
 
Specified at Line 
145: mp_mode 

Number of 
CPUs 

12 
 
Specified at Line 71: 
params['Ncpu'] 
And Line 1585: 
Ncpu 

12 
 
Specified at Line 71: 
params['Ncpu'] 
And Line 1327: 
Ncpu  

12 
 
Specified at Line 
311: Ncpu 
And Line 246: Ncpu 

12 
 
Specified at Line 
230: Ncpu 

24 on clusters 
 
Specified at Line 
144: Ncpu 

 905 
Table A1: List of parameters used in the five applications. The line numbers used in the table are referring to the code 906 

script of each application. If two line numbers are provided, the first one indicates where the parameter is 907 
defined and the second one indicates where the parameter is passed into the radiative transfer setup. Users 908 
can change either one for customization purposes. 909 

 910 
 911 

Metadata 

Variable Name Description Data Type Dimension 

mean/N_photon Number of photons per 
run Array N_g 

mean/N_run Number of runs Integer value N/A 
mean/toa TOA downwelling flux Float value N/A 

Radiance 

Variable Name Description Data Type Dimension 
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mean/rad 

Radiance field at user 
specified altitude 

averaged over different 
runs 

Array (N_x, N_y) 

mean/rad_std 
Standard deviation of 

the radiance fields from 
different runs 

Array (N_x, N_y) 

Irradiance 

Variable Name Description Data Type Dimension 

mean/f_down 
Downwelling irradiance 
averaged over different 

runs 
Array (N_x, N_y, N_z) 

mean/f_down_std 

Standard deviation of 
the downwelling 

irradiance from different 
runs 

Array (N_x, N_y, N_z) 

mean/f_down_diffuse 
Diffuse downwelling 

irradiance averaged over 
different runs 

Array (N_x, N_y, N_z) 

mean/f_down_diffuse_std 

Standard deviation of 
the diffuse downwelling 
irradiance from different 

runs 

Array (N_x, N_y, N_z) 

mean/f_down_direct 
Direct downwelling 

irradiance averaged over 
different runs 

Array (N_x, N_y, N_z) 

mean/f_down_direct_std 

Standard deviation of 
the direct downwelling 

irradiance from different 
runs 

Array (N_x, N_y, N_z) 

mean/f_up 
Upwelling irradiance 

averaged over different 
runs 

Array (N_x, N_y, N_z) 

mean/f_up_std 
Standard deviation of 

the upwelling irradiance 
from different runs 

Array (N_x, N_y, N_z) 

 912 
Table A2: Data variables contained in the output HDF5 file from EaR3T for radiance and irradiance calculations. The 913 

radiance is simulated with a user-specified sensor geometry at a given altitude using forward photon tracing. 914 
The data variables listed under Metadata are included for both radiance and irradiance calculations. N_x, 915 
N_y, and N_z are the number of pixels along x, y, and z direction, respectively. N_g is the number of g, 916 
explained in Appendix A2 – Correlated-k. 917 

 918 

A2 – EaR3T Code Walk-through 919 

We will provide a code walk-through of the OCO-2 and MODIS simulator applications 920 

with the codes examples/01_oco2_rad-sim.py (App. 1) and 921 

examples/02_modis_rad-sim.py (App. 2). The data acquisition (first step in Figure 1) 922 
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uses functions in er3t/util. App. 1 and App. 2 use the functions in er3t/util/modis.py 923 

and er3t/util/oco2.py for downloading the MODIS and OCO-2 data files from the 924 

respective NASA data archives and for processing the data (e.g., geo-mapping, gridding etc.). The 925 

user supplies minimum input (date and time, as well as latitudes and longitudes of the region of 926 

interest), which need to be specified in satellite_download (within the application codes). 927 

For example, for App. 1 and App. 2, the only user inputs are the date and time and the region of 928 

interest – in this case September 2, 2019, with the westernmost, easternmost, southernmost, and 929 

northernmost longitudes and latitudes of 109°W, 107°W, 37°N, and 39°N. In order for EaR3T to 930 

access any data archives such as NASA Earthdata, the user needs to create an account with them 931 

and store the credentials locally (detailed instructions are provided separately along with the EaR3T 932 

distribution). 933 

After the data acquisition step, the satellite data are fed into the pre-processing step for 1) 934 

atmospheric gases (er3t/pre/atm), 2) clouds (er3t/pre/cld), 3) surface 935 

(er3t/pre/sfc) as shown in Figure 1. In the default configuration of the App. 1, the standard 936 

US atmosphere (Anderson et al., 1986; included in the EaR3T repository) is used within atm. 937 

EaR3T supports the input of user-specified atmospheric profiles, e.g., atmospheric profiles from 938 

reanalysis data for App. 2, by making changes in atm_atmmod (from er3t/pre/atm). 939 

Subsequently, molecular scattering coefficients are calculated by cal_mol_ext (from 940 

er3t/util), and absorption coefficients for atmospheric gases are generated by 941 

(er3t/pre/abs). At the current development stage, two options are available: 942 

1. Line-by-line (used by App. 1): The repository includes a sample file of absorption coefficient 943 

profiles for a subset of wavelengths within OCO-2’s Oxygen A-Band channel, corresponding 944 

to a range of atmospheric transmittance values from low (opaque) to high (so-945 

called “continuum” wavelength). They were generated by an external code based on OCO-946 

2’s line-by-line absorption coefficient database (ABSCO, Payne et al., 2020). They are 947 

calculated for a fixed mixing ratio of 400 ppm. In a subsequent paper, an OCO-2 specific 948 

EaR3T code will be published where the actual mixing ratio is used. For each OCO-2 949 

spectrometer wavelength within a given channel, hundreds of individual absorption 950 

coefficient profiles at the native resolution of ABSCO need to be considered across the 951 

instrument line shape (ILS, also known as the slit function) of the spectrometer. The ILS, as 952 

well as the incident solar irradiance, are also included in the file. In subsequent steps, EaR3T 953 
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performs RT calculations at the native spectral resolution of ABSCO, but then combines the 954 

output by convolving with the ILS and outputs OCO-2 radiances or reflectances at the subset 955 

of wavelengths. For probabilistic (Monte Carlo) RT solvers such as MCARaTS, the number 956 

of photons can be kept relatively low (e.g., 106 photons), and can be adjusted according to 957 

the values of the ILS at a particular ABSCO wavelength. Any uncertainty at the ABSCO 958 

spectral resolution due to photon noise is greatly reduced by convolving with the ILS for the 959 

final output. 960 

2. Correlated-k (used by App. 2): This approach (Mlawer et al., 1997) is appropriate for 961 

instruments such as MODIS with much coarser spectral resolution than OCO-2, as well as 962 

for broadband calculations. In contrast to the line-by-line approach, RT calculations are not 963 

performed at the native resolution of the absorption database, but at Gaussian quadrature 964 

points (called “g’s”) that represent the full range of sorted absorption coefficients, and then 965 

combined using Gaussian quadrature weights. The repository includes an absorption 966 

database from Coddington et al. (2008), developed specifically for a radiometer with 967 

moderate spectral resolution on the basis of HITRAN (high-resolution transmission 968 

molecular absorption database) 2004 (Rothman et al., 2005). It was created for the ILS of 969 

the airborne Solar Spectral Flux Radiometer (SSFR, Pilewskie et al., 2003), but is applied to 970 

MODIS here, which has a moderate spectral resolution of 8-12 nm with 20-50 nm 971 

bandwidths. It uses 16 absorption coefficient bins (g’s) per target wavelength (this could 972 

either be an individual SSFR or a MODIS channel), which are calculated by EaR3T with the 973 

Coddington et al. (2008) database using the mixing ratios of atmospheric gases in the 974 

previously ingested profile. In future implementations, the code will be updated to enable 975 

flexible ILS and broadband calculations. 976 

The er3t/pre/cld module calculates extinction, thermodynamic phase, and effective 977 

droplet radius of clouds from the input data. The er3t/pre/pha module creates the required 978 

single scattering albedo and scattering phase function. The default is a Henyey-Greenstein phase 979 

function with a fixed asymmetry parameter of 0.85. Along with the current distribution (v0.1.1) of 980 

EaR3T, the Mie phase functions based on thermodynamic phase, effective droplet radius, and 981 

wavelength are supported. In this study, App. 1 and App. 2 use Mie phase functions calculated 982 

from Legendre polynomial coefficients (originally distributed along with libRadtran) based on the 983 

wavelength and cloud droplet effective radius. In the future, EaR3T will include stand-alone phase 984 
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functions, which can be chosen on the basis of droplet size distributions in addition to effective 985 

radius. It is also possible to include aerosols in a similar fashion as clouds. This is done with the 986 

er3t/pre/aer module. In the case of aerosols, spectral single scattering albedo and asymmetry 987 

parameter are required as inputs in addition to the extinction fields. 988 

After the optical properties are calculated, they are passed into the 3D-RT step 989 

(er3t/rtm/mca). This step performs the setup of RT solver-specified input parameters and data 990 

files, distributing runs over multiple Central Processing Units (CPUs), and post-processing RT 991 

output files into a single, user-friendly HDF5 file. For example, when radiance is specified as 992 

output (default in App. 1 and App. 2), key information such as the radiance field and its standard 993 

deviation are stored in the final HDF5 file (details see Table 1). 994 

While the EaR3T repository comes with various applications such as App. 1 and App. 2, 995 

described above, the functions used by these master or ‘wrapper’ programs can be organized in 996 

different ways, where the existing applications serve as templates for a quick start when developing 997 

new applications. The functions used by the master code pass information through the various 998 

steps as Python objects. For example, in examples/01_oco2_rad-sim.py, the downloaded 999 

and processed satellite data are stored into the sat object. Later, the sat object is passed into an 1000 

EaR3T function to create the cld object that contains cloud optical properties. Similarly, EaR3T 1001 

provides functions to create the atm, and sfc objects with optical properties for atmospheric 1002 

gases and the surface. These objects (atm, cld, sfc) are in turn passed on to solver-specific 1003 

modules for performing RT calculations. The user can choose to save the data of the intermediate 1004 

objects into Python pickle files after the first run. In this way, multiple calls with identical input 1005 

can re-use existing data, which accelerates the processing time of EaR3T. Unless the user specifies 1006 

the overwrite keyword argument in the object call to reject saving pickle files, these shortcuts 1007 

save significant time. 1008 

 1009 

Appendix B – App. 5 Radiance calculations based on the Large Eddy Simulation 1010 

The CNN COT retrieval framework was developed by Nataraja et al. (2022). It adapts a 1011 

U-Net (Ronneberger et al., 2015) architecture and treats the retrieval of COT from radiance as a 1012 

segmentation problem – probabilities of 36 COT classes (ranging from COT of 0 to 100) are 1013 

returned as the final COT retrieved for a given cloud radiance field. It accounts for horizontal 1014 

photon transport, which is neglected in traditional cloud retrieval algorithms; in other words, for 1015 
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the spatial context of cloudy pixels. It was trained on synthetic cloud fields generated by a Large 1016 

Eddy Simulation (LES) model, which provides the ground truth of COT. Subequently, EaR3T was 1017 

used to calculate 3D-RT radiances at 600 nm for LES cloud fields to establish a mapping between 1018 

radiance to COT. Only six LES cases were used to represent the variability of the cloud 1019 

morphology. Each of these fields are 480x480 pixels across (spatial resolution of 100 m). These 1020 

large fields were mapped onto thousands of 64x64 mini tiles with spatial resolution of 100 m as 1021 

described in Nataraja et al., 2022. To keep the training data set small, mini tiles selectively sampled 1022 

according to their mean COT and standard deviation. This ensured an even representation of the 1023 

dynamic range of COT and its variability, which was termed homogenization of the training data 1024 

set. Figure A1 shows a collection of samples from the training data as an illustration. All the 1025 

aforementioned simulation setup and techniques in data process are included in the App. 5 example 1026 

code, which can be applied to the LES data (a different scene from the 6 scenes) distributed along 1027 

with EaR3T. 1028 

 1029 

                                         1030 

                                        1031 

(a) 

(b) 
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Figure A1. Illustrations of 64x64 tiles of (a) cloud optical thickness from LES data and (b) calculated 3D radiance at 1032 
600 nm from EaR3T for CNN training. 1033 

 1034 

Appendix C 1035 

C1. Cloud Detection/Identification 1036 

Cloudy pixels are identified through a thresholding method based on the red, green, and 1037 

blue channels of MODIS. When the radiance values of the red, green, and blue channels of a pixel 1038 

are all greater than a pre-calculated threshold value, the pixel is considered as cloudy, as illustrated 1039 

by the following equation 1040 

𝐈𝐟			
𝑅𝑒𝑑 > 𝑎0 ⋅ 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝑅𝑒𝑑, 𝑞1)	&
𝐵𝑙𝑢𝑒 > 𝑎2 ⋅ 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐵𝑙𝑢𝑒, 𝑞1)	&
𝐺𝑟𝑒𝑒𝑛 > 𝑎3 ⋅ 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒(𝐺𝑟𝑒𝑒𝑛, 𝑞1)

		J 𝐘𝐞𝐬:	cloudy𝐍𝐨:	clear	sky																																																																	(A1) 1041 

where 𝑎0, 𝑎2, and 𝑎3  are scale factors with a default value of 1.0, and 𝑄𝑢𝑎𝑛𝑡𝑖𝑙𝑒 returns the 𝑞1 1042 

percentile of the sorted reflectance data (ascending order; 𝑞1 = 0.5 is equivalent to the median). 1043 

The scale factors can be adjusted separately to perform fine tuning for different surface types. For 1044 

example, adjusting 𝑎3  will be more effective for separating clouds from greenish vegetation 1045 

surface than the other two factors. For simplicity, they are all set to 1.0 for the case shown in App. 1046 

1 and 2. The 𝑞1 is determined by the following equation, 1047 

𝑞1 = max	(0,				1 − 𝑓𝑟𝑎𝑐456 ⋅ 1.2)																																																																																																								(A2) 1048 

where 𝑓𝑟𝑎𝑐456 is cloud fraction obtained from the MODIS L2 cloud product (number of cloudy 1049 

pixels divided by the number of total pixels). Through the definition of 𝑞1, the threshold-based 1050 

cloud detection method is pegged to the MODIS product at the domain scale. Because of the coarse 1051 

resolution of the MODIS-based cloud mask, it cannot be used directly for our application. 1052 

However, it uses many more channels than available at high spatial resolution, and is therefore 1053 

more accurate. The factor of 1.2 can be adjusted. A value of higher than 1 allows for clouds that 1054 

are not detected by MODIS (for various reasons, for example because of their spatial scale) to be 1055 

picked up. At the same time, this leads to over-detection (false positives, i.e. clear-sky pixels 1056 

identified as cloudy), and therefore the thresholding is only the first step (primary thresholding), 1057 

followed by the next (secondary) step where false positives are removed. 1058 

The secondary step is based on MODIS L2 cloud products: COT (cloud optical thickness), 1059 

CER (cloud effective radius), and CTH (cloud top height). For the pixels that are identified as 1060 

cloudy in the primary thresholding, especially at the lower end of the reflectance (Ref.), we rely 1061 
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on the clear-sky identifiers from MODIS L2 cloud product (where no cloud products are retrieved), 1062 

as illustrated by the following equation 1063 

𝐈𝐟				 𝑅𝑒𝑓. < 𝑀𝑒𝑑𝑖𝑎𝑛(𝑅𝑒𝑓. )	&
𝐶𝑂𝑇, 𝐶𝐸𝑅, 𝑎𝑛𝑑	𝐶𝑇𝐻	𝑎𝑟𝑒	𝑁𝑎𝑁					J

𝐘𝐞𝐬:	clear	sky
𝐍𝐨:	cloudy 																																																																			(A3) 1064 

Figure A2 shows the cloud mask from primary thresholding (Equation A1, red and purple), and 1065 

the pixels that are reverted to clear-sky by the secondary filter (Equation A2, red). 1066 

 1067 

                                       1068 
Figure A2. Cloud mask for the scene shown in Figure 2. Red and purple indicate pixels identified as cloudy through 1069 

the primary thresholding (Equation A1) and purple indicates pixels finally identified as cloudy after applying 1070 
secondary filter (Equation A3). 1071 

 1072 

C2. IPA Reflectance-to-COT Mapping 1073 

In order to retrieve COT (cloud optical thickness) from cloud reflectance as measured by 1074 

various instruments, we use the EaR3T built-in solver MCARaTS in IPA mode to calculate a 1075 

lookup table of reflectance as a function of COT. The function for generating these lookup tables 1076 

is included in EaR3T as er3t.rtm.mca.func_ref_vs_cot. Two mappings are generated 1077 

for App. 1&2 to account for geometrically thin (cloud top height less than 4 km) and thick (cloud 1078 

top height greater than 4 km) clouds separately while a single mapping is generated for App. 4. 1079 

Specifically, for a range of COT (0 to 200), reflectance is calculated from EaR3T with the same 1080 

input parameters (wavelength, viewing and solar geometries, and surface albedo) listed in Table 1081 

A1 for each application except for a few simplifications described in the following table (Table 1082 

A3): 1083 
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 1084 
 App. 1 & 2 App. 4 

Cloud Type 
Geometrically Thin 

Clouds 

Geometrically Thick 

Clouds 
All 

Cloud Effective Radius 10 𝜇𝑚 20 𝜇𝑚 10 𝜇𝑚 

Cloud Top Height 3 km 10 km 2 km 

Cloud Geometrical 

Thickness 
1 km 7 km 1 km 

Surface Albedo 
0.08 (domain average of 

the MCD43 WSA) 

0.08 (domain average of 

the MCD43 WSA) 
0.03 

 1085 
Table A3: List of parameters for deriving IPA reflectance-to-COT (cloud optical thickness) mappings for App. 1&2 1086 

and App. 4 in addition to Table A1. 1087 
 1088 

The clouds are assumed horizontally homogeneous over a 2 × 2  pixel domain. For each 1089 

calculation, 107 photons are used for running EaR3T in IPA mode. After calculating 𝑅(𝐶𝑂𝑇), the 1090 

inverse relationship of 𝐶𝑂𝑇(𝑅) is then used for estimating 𝐶𝑂𝑇 at any given 𝑅 for the cloudy 1091 

pixels. Figure A3 shows the IPA reflectance-to-COT mappings created for App. 1&2, and App 4. 1092 

Note that the difference between the App. 1&2 thin clouds (blue) and App. 4 (green) is due to 1093 

different surface albedos (when COT less than 20) and sensor viewing geometries (when COT 1094 

greater than 20, specified in Table A1). Note that this approach will ensure IPA 1095 

radiance/reflectance consistency (retrieved IPA COT will reproduce the exact IPA cloud 1096 

reflectance, see Figure A4) because the radiative transfer processes of 𝑅(𝐶𝑂𝑇) and 𝐶𝑂𝑇(𝑅) are 1097 

the same. However, since it makes some simplifications as mentioned above, uncertainties are 1098 

expected for a complicated atmospheric environment (varying cloud thermodynamic phase, 1099 

effective radius, cloud top height, geometrical thickness, vertical profile; variable surface albedo 1100 

and topography), which are shown up as spread (deviations from identity line) in Figure A4.  1101 

 1102 
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                              1103 
Figure A3. The IPA reflectance-to-COT mappings used for App. 1&2 (red and blue) and App. 4 (green). The 1104 

reflectance is normalized by the cosine of solar zenith angle (referred to as solar noon reflectance). The 1105 
uncertainties associated with photon statistics are indicated by the shaded area. 1106 

 1107 

         1108 
Figure A4. (a) and (b) are the same as Figure 7 and Figure 13b except for the IPA radiance calculations. 1109 
 1110 

 1111 

Appendix D 1112 

D1. Parallax Correction 1113 

From the satellite's view, the clouds (especially high clouds) will be placed at inaccurate 1114 

locations on the surface, which have shifted from their actual locations due to the parallax effect. 1115 

We followed simple trigonometry to correct for it, as follows: 1116 

Longitude correction (positive from west to east): 1117 

(a) (b) 
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𝛿𝑙𝑜𝑛 =
k𝑧456 − 𝑧894m ⋅ tan(𝜃) ⋅ sin	(𝜙)

𝜋 ⋅ 𝑅:;<(=
× 180°																																																																														(A4) 1118 

Latitude correction (positive from south to north): 1119 

𝛿𝑙𝑎𝑡 =
k𝑧456 − 𝑧894m ⋅ tan(𝜃) ⋅ cos	(𝜙)

𝜋 ⋅ 𝑅:;<(=
× 180°																																																																														(A5) 1120 

where (𝑙𝑜𝑛8;( , 𝑙𝑎𝑡8;( , 𝑧8;() is the satellite location and 𝜃 and 𝜙 (0º at north, positive clockwise) 1121 

are the sensor viewing zenith and azimuth angles. 𝑧456 and 𝑧894 are the cloud top height and the 1122 

surface height. 𝑅:;<(= is the radius of the Earth. Figure A2 shows an illustration of the parallax 1123 

correction for the cloud field in the inset in Figure 2. Note that discontinuities in the latitude and 1124 

longitude fields arising from different combinations of sensor viewing geometries and cloud top 1125 

and surface heights may lead to gaps in the cloud fields. These gaps are identified and filled in 1126 

with the average of data from adjacent pixels (plus minus two pixels along x and y) through the 1127 

following process: 1128 

𝐈𝐟			
𝑝𝑖𝑥𝑒𝑙>?

;9(	𝑖𝑠	𝑐𝑙𝑒𝑎𝑟	&	𝑝𝑖𝑥𝑒𝑙>?
&@9	𝑖𝑠	𝑐𝑙𝑜𝑢𝑑𝑦		&

𝑐𝑙𝑑𝑓𝑟𝑎𝑐(𝑝𝑖𝑥𝑒𝑙&@9[𝑖 − 2: 𝑖 + 2, 𝑗 − 2: 𝑗 + 2]) > 𝑓𝑟𝑎𝑐;&
𝑐𝑙𝑑𝑓𝑟𝑎𝑐(𝑝𝑖𝑥𝑒𝑙;9([𝑖 − 2: 𝑖 + 2, 𝑗 − 2: 𝑗 + 2]) > 𝑓𝑟𝑎𝑐&&

		~
𝐘𝐞𝐬:	fill	𝑝𝑖𝑥𝑒𝑙>?

;9(	with	the	average	of
𝑐𝑙𝑑(𝑝𝑖𝑥𝑒𝑙;9([𝑖 − 2: 𝑖 + 2, 𝑗 − 2: 𝑗 + 2])

 1129 

where 𝑝𝑖𝑥𝑒𝑙>? indicates the pixel at 𝑖 along x and 𝑗 along y, 𝑏𝑒𝑓  and 𝑎𝑓𝑡 refer to before and after 1130 

parallax correction respectively, 𝑐𝑙𝑑𝑓𝑟𝑎𝑐  calculates cloud fraction (number of cloudy pixels 1131 

divided by total pixel number), and 𝑐𝑙𝑑 selects data where pixels are identified as cloudy. The 1132 

𝑓𝑟𝑎𝑐; and 𝑓𝑟𝑎𝑐& are set to 0.7 for the cases demonstrated in the paper. Lower 𝑓𝑟𝑎𝑐; tends to over 1133 

select clear-sky pixels at the cloud edge and lower 𝑓𝑟𝑎𝑐& tends to over correct clear-sky pixels 1134 

within clouds that are not clear-sky due to parallax artifacts. While increase 𝑓𝑟𝑎𝑐;  and 𝑓𝑟𝑎𝑐& 1135 

tends to under correct parallax artifacts. 1136 

 1137 

D2. Wind Correction 1138 

The wind correction aims at correcting the movement of clouds when advected by the wind 1139 

between two different satellites’ overpasses. 1140 

Longitude correction (positive from west to east): 1141 

𝛿𝑙𝑜𝑛 =
𝑢; ⋅ 𝛿𝑡

𝜋 ⋅ 𝑅:;<(=
× 180°																																																																																																																			(A6) 1142 

Latitude correction (positive from south to north): 1143 
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𝛿𝑙𝑎𝑡 =
𝑣̅ ⋅ 𝛿𝑡

𝜋 ⋅ 𝑅:;<(=
× 180°																																																																																																																				(A7) 1144 

where 𝑢; and 𝑣̅ are the domain-averaged 10 m zonal and meridional wind speeds, and 𝛿𝑡 is the time 1145 

difference between two different satellites that fly on the same orbit. Figure A2 shows the cloud 1146 

location after applying the parallax (Appendix D1) and wind correction for the cloud field in the 1147 

inset from Figure 2. 1148 

 1149 

 1150 

 1151 

                                          1152 
Figure A5. An illustration of correcting cloud location (red) for parallax effect (blue) and wind effect (green) for the 1153 

cloud field of the inset in Figure 2. Filled cloud gaps as described in Appendix D1 are indicated by black 1154 
circles. 1155 
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