

1 **The Education and Research 3D Radiative Transfer Toolbox (EaR³T) – Towards the**
2 **Mitigation of 3D Bias in Airborne and Spaceborne Passive Imagery Cloud Retrievals**

3
4 Hong Chen^{1,2}, K. Sebastian Schmidt^{1,2}, Steven T. Massie², Vikas Nataraja², Matthew S. Norgren²,
5 Jake J. Gristey^{3,4}, Graham Feingold⁴, Robert E. Holz⁵, Hironobu Iwabuchi⁶

6
7
8 ¹Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, CO, USA
9 ²Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO, USA
10 ³Cooperative Institute for Research in Environmental Sciences, University of Colorado,
11 Boulder, CO, USA
12 ⁴NOAA Chemical Sciences Laboratory, Boulder, CO, USA
13 ⁵Space Science and Engineering Center, University of Wisconsin–Madison, Madison, WI, USA
14 ⁶Center for Atmospheric and Oceanic Studies, Tohoku University, Sendai, Miyagi, Japan

15
16
17
18
19 *Correspondence to:* Hong Chen (hong.chen-1@colorado.edu)

20 **Abstract**

21 We introduce the Education and Research 3D Radiative Transfer Toolbox (EaR³T, pronounced
22 [ɛ:t]) for quantifying and mitigating artifacts in atmospheric radiation science algorithms due to spatially
23 inhomogeneous clouds and surfaces, and show the benefits of automated, realistic radiance and irradiance
24 generation along extended satellite orbits, flight tracks from entire aircraft field missions, and synthetic data
25 generation from model data. EaR³T is a modularized Python package that provides high-level interfaces to
26 automate the process of 3D radiative transfer (RT) calculations. After introducing the package, we present
27 initial findings from four applications, which are intended as blueprints to future in-depth scientific studies.
28 The first two applications use EaR³T as a satellite radiance simulator for the NASA Orbiting Carbon
29 Observatory 2 (OCO-2) and Moderate Resolution Imaging Spectroradiometer (MODIS) missions, which
30 generate synthetic satellite observations with 3D-RT on the basis of cloud field properties from
31 imagery-based retrievals and other input data. In the case of inhomogeneous cloud fields, we show that the
32 synthetic radiances are often inconsistent with the original radiance measurements. This lack of radiance
33 consistency points to biases in heritage imagery cloud retrievals due to sub-pixel resolution clouds and
34 3D-RT effects. They come to light because the simulator's 3D-RT engine replicates processes in nature that
35 conventional 1D-RT retrievals do not capture. We argue that 3D radiance consistency (closure) can serve
36 as a metric for assessing the performance of a cloud retrieval in presence of spatial cloud inhomogeneity
37 even with limited independent validation data. The other two applications show how airborne measured
38 irradiance data can be used to independently validate imagery-derived cloud products via radiative closure
39 in irradiance. This is accomplished by simulating downwelling irradiance from geostationary cloud
40 retrievals of Advanced Himawari Imager (AHI) along all the below-cloud aircraft flight tracks of the Cloud,
41 Aerosol and Monsoon Processes Philippines Experiment (CAMP²Ex, NASA 2019), and comparing the
42 irradiances with the collocated airborne measurements. In contrast to case studies in the past, EaR³T
43 facilitates the use of observations from entire field campaigns for the statistical validation of
44 satellite-derived irradiance. From the CAMP²Ex mission, we find a low bias of 10% in the satellite-derived
45 cloud transmittance, which we are able to attribute to a combination of the coarse resolution of the
46 geostationary imager and 3D-RT biases. Finally, we apply a recently developed context-aware
47 Convolutional Neural Network (CNN) cloud retrieval framework to high-resolution airborne imagery from
48 CAMP²Ex and show that the retrieved cloud optical thickness fields lead to better 3D radiance consistency
49 than the heritage independent pixel algorithm, opening the door to future mitigation of 3D-RT cloud
50 retrieval biases.

51 **1. Introduction**

52 Three-dimensional cloud effects in imagery-derived cloud properties have long been
53 considered an unavoidable error source when estimating the radiative effect of clouds and aerosols.
54 Consequently, research efforts involving satellite, aircraft, and surface observations in conjunction
55 with modeled clouds and radiative transfer calculations have focused on systematic bias
56 quantification under different atmospheric conditions. Barker and Liu (1995) studied the so-called
57 independent pixel approximation (IPA) bias in cloud optical thickness (COT) retrievals from
58 shortwave cloud reflectance. The bias arises when approximating the radiative transfer relating to
59 COT and measured reflectance at the pixel or cloud column level through one-dimensional (1D)
60 radiative transfer (RT) calculations, while ignoring its radiative context. However, net horizontal
61 photon transport and other effects such as shading engender column-to-column radiative
62 interactions that can only be captured in a three-dimensional (3D) framework, and can be regarded
63 as a 3D perturbation or bias relative to the 1D-RT (IPA) baseline. 3D biases affect not only cloud
64 remote sensing but they also propagate into the derived irradiance fields and cloud radiative effects
65 (CRE). Since the derivation of regional and global CRE relies heavily on satellite imagery, any
66 systematic 3D bias impacts the accuracy of the Earth's radiative budget. Likewise, imagery-based
67 aerosol remote sensing in the vicinity of clouds can be biased by net horizontal photon transport
68 (Marshak et al., 2008). Additionally, satellite shortwave spectroscopy retrievals of CO₂ mixing
69 ratio are affected by nearby clouds (Massie et al., 2017), albeit through a different physical
70 mechanism than in aerosol and cloud remote sensing.

71 Given the importance of 3D perturbations for atmospheric remote sensing, ongoing
72 research seeks to mitigate the 3D effects. Cloud tomography, for example, inverts multi-angle
73 radiances to infer the 3D cloud extinction distribution (Levis et al., 2020). This is achieved through
74 iterative adjustments to the cloud field until the calculated radiances match the observations.
75 Convolutional neural networks (CNNs, Masuda et al., 2019; Nataraja et al., 2022) account for
76 3D-RT perturbations in COT retrievals through pattern-based machine learning that operates on
77 collections of imagery pixels, rather than treating them in isolation like IPA. Unlike tomography,
78 CNNs require training based on extensive cloud-type specific synthetic data with the ground truth
79 of cloud optical properties and their associated radiances from 3D-RT calculations. Once the
80 CNNs are trained, they do not require real-time 3D-RT calculations and can therefore be useful in
81 an operational setting. Whatever the future may hold for context-aware multi-pixel or multi-sensor

82 cloud retrievals, there is a paradigm shift on the horizon that started when the radiation concept
83 for the Earth Clouds, Aerosol and Radiation Explorer (EarthCARE, Illingworth et al., 2015) was
84 first proposed (Barker et al., 2012). It foresees a closure loop where broadband radiances, along
85 with irradiance, are calculated in a 3D-RT framework from multi-sensor input fields (Barker et al.,
86 2011), and subsequently compared to independent observations by radiometers pointing in three
87 directions (nadir, forward-, and backward-viewing along the orbit). This built-in radiance closure
88 can serve as an accuracy metric for any downstream radiation products such as heating rates and
89 CRE. Any inconsistencies can be used to nudge the input fields towards the truth in subsequent
90 loop iterations akin to optimal estimation, or propagated into uncertainties of the cloud and
91 radiation products.

92 This general approach to radiative closure is also being considered for the National
93 Aeronautics and Space Administration (NASA) Atmospheric Observation System (AOS,
94 developed under the A-CCP, Aerosol and Cloud, Convection and Precipitation study), a mission
95 that is currently in its early implementation stages. Owing to its focus on studying
96 aerosol-cloud-precipitation-radiation interactions at the process level, it requires radiation
97 observables at a finer spatial resolution than achieved with missions to date. At target scales close
98 to 1 km, 3D-RT effects are much more pronounced than at the traditional 20 km scale of NASA
99 radiation products (O’Hirok and Gautier, 2005; Ham et al., 2014; Song et al., 2016; Gristey et al.,
100 2020a). Since this leads to biases beyond the desired accuracy of the radiation products, mitigation
101 of 3D-RT cloud remote sensing biases needs to be actively pursued over the next few years.

102 Transitioning to an explicit treatment of 3D-RT in operational approaches entails a new
103 generation of code architectures that can be easily configured for various instrument constellations,
104 interlink remote sensing parameters with irradiances, heating rates, and other radiative effects, and
105 can be used for automated processing of large data quantities. A number of 3D solvers are available
106 for different purposes, for example, the I3RC (International Intercomparison of 3D Radiation
107 Codes: Cahalan et al., 2005) community Monte Carlo code¹, which now also includes an online
108 simulator² that was described in Várnai et al. (2022) and used in Gatebe et al. (2021); MCARaTS
109 (Monte Carlo Atmospheric Radiative Transfer Simulator³: Iwabuchi, 2006); MYSTIC (Monte

¹ <https://earth.gsfc.nasa.gov/climate/model/i3rc>, last accessed on 26 November, 2022.

² <http://i3rcsimulator.umbc.edu>, last accessed on 26 November, 2022.

³ <https://sites.google.com/site/mcarats/monte-carlo-atmospheric-radiative-transfer-simulator-mcarats>, last accessed on 26 November, 2022.

110 Carlo code for the physically correct tracing of photons in cloudy atmospheres: Mayer, 2009),
111 which is embedded in libRadtran (library for radiative transfer, Mayer and Kylling, 2005);
112 McSCIA (Monte Carlo [RT] for SCIAmacy: Spada et al., 2006), which is optimized for satellite
113 radiance simulations (including limb-viewing) in a spherical atmosphere; McARTIM
114 (Deutschmann et al., 2011), with several hyperspectral polarimetric applications such as
115 differential optical absorption spectroscopy; and SHDOM (Spherical Harmonic Discrete Ordinate
116 Method⁴: Evans, 1998), which, unlike the other methods, is a deterministic solver with polarimetric
117 capabilities (Doicu et al., 2013; Emde et al., 2015) that is differentiable and can therefore be used
118 for tomography (Loveridge et al., 2022).

119 For the future operational application of 3D-RT, it is, however, desirable to run various
120 different solvers in one common architecture that automates the processing of various formats of
121 3D atmospheric input fields (including satellite data), allows the user to choose from various
122 options for atmospheric absorption and scattering, and simulates radiance and irradiance data for
123 real-world scenes. Here, we introduce one such tool that could serve as the seed for this architecture:
124 the Education and Research 3D Radiative Transfer Toolbox (EaR³T, pronounced [3:t]). It has been
125 developed over the past few years at the University of Colorado to automate 3D-RT calculations
126 based on imagery or model cloud fields. It can be operated in two ways— 1) with minimal user
127 input, where certain RT parameters are bypassed through default settings, for quick radiation
128 conceptual analysis; 2) with detailed RT parameters setup by user for radiation closure purpose.
129 EaR³T is maintained and extended by graduate students as part of their education, and applied to
130 various different research projects including machine learning for atmospheric radiation and
131 remote sensing (Gristey et al., 2020b; 2022; Nataraja et al., 2022), as well as radiative closure and
132 satellite simulators. It is implemented as a modularized Python package with various application
133 codes that combine the functionality in different ways, which, once set up, autonomously process
134 large amounts of data required by airborne and satellite remote sensing and for machine learning
135 applications.

136 The goal of the paper is to introduce EaR³T as a versatile tool for systematically quantifying
137 and mitigating 3D cloud effects in radiation science as foreseen in future missions. To do so, we
138 will first showcase EaR³T as an automated radiance simulator for two satellite instruments, the
139 Orbiting Carbon Observatory-2 (OCO-2, application code 1, App. 1) and the Moderate Resolution

⁴ <https://coloradolinux.com/shdom>, last accessed on 26 November, 2022.

140 Imaging Spectroradiometer (MODIS, application code 2, App. 2) from publicly available satellite
141 retrieval products. In the spirit of radiance closure, the intended use is the comparison of modeled
142 radiances with the original measurements to assess the accuracy of the input data, as follows:
143 operational IPA COT products are made using 1D-RT, and thus the accompanying radiances are
144 consistent with the original measurements under that 1D-RT assumption only. That is,
145 self-consistency is assured if 1D-RT is used in both the inversion and radiance simulation.
146 However, since nature creates 3D-RT radiation fields, we break this traditional symmetry in this
147 manuscript and introduce the concept of 3D radiance consistency where closure is only achieved
148 if the original measurements are consistent with the 3D-RT (rather than the 1D-RT) simulations.
149 The level of inconsistency is then used as a metric for the magnitude of 3D-RT retrieval artifacts
150 as envisioned by the architects of the EarthCARE radiation concept (Barker et al., 2012).

151 Subsequently, we discuss applications where EaR³T performs radiative closure in the
152 traditional sense, i.e., between irradiances derived from satellite products and collocated airborne
153 or ground-based observations. The aircraft Cloud, Aerosol and Monsoon Processes Philippines
154 Experiment (CAMP²Ex, Reid et al., 2023), conducted by NASA in the Philippines in 2019, serves
155 as a testbed of this approach. Here, we use EaR³T's automated processing capabilities to derive
156 irradiance from geostationary imagery cloud products and then compare these to cumulative
157 measurements made along all flight legs of the campaign (application code 3, App. 3). In contrast
158 to previous studies that often rely on a number of cases (e.g., Schmidt et al., 2010; Kindel et al.,
159 2010), we perform closure systematically for the entire data set, enabling us to identify 3D-RT
160 biases in a statistically significant manner. Finally, we apply a regionally and cloud type specific
161 CNN, introduced by Nataraja et al. (2022) that is included with the EaR³T distribution, to
162 high-resolution camera imagery from CAMP²Ex. This last example demonstrates mitigation of
163 3D-RT biases in cloud retrievals using the concept of radiance closure to quantify its performance
164 against the baseline IPA (application code 4, App. 4).

165 The general concept of EaR³T with an overview of the applications, along with the data
166 used for both parts of the paper is presented in section 2, followed by a description of the
167 procedures of EaR³T in section 3. Results for the OCO-2 and MODIS satellite simulators (part 1)
168 are shown in section 4, followed by the quantification and mitigation of 3D-RT biases with
169 CAMP²Ex data in section 5 and section 6 (part 2). A summary and conclusion are provided in

170 section 7. The code, along with the applications presented in this paper, can be downloaded from
 171 the GitHub repository: <https://github.com/hong-chen/er3t>.

172

173 2. Functionality and Data Flow within EaR³T

174 2.1 Overview

175 To introduce EaR³T as a satellite radiance simulator tool and to demonstrate its use for the
 176 quantification and mitigation of 3D cloud remote sensing biases, five applications (Figure 1) are
 177 included in the GitHub software release:

178

179

180 **Figure 1.** Flow charts of EaR³T applications for (a) OCO-2 radiance simulation at 768.52 nm (data described in section
181 2.2.1 and 2.2.2, results discussed in section 4.1), (b) MODIS radiance simulation at 650 nm (data described
182 in section 2.2.1, results discussed in section 4.2), (c) SPN-S irradiance simulation at 745 nm (data described
183 in section 2.2.3 and 2.2.4, results discussed in section 5), (d) all-sky camera radiance simulation at 600 nm
184 (data described in section 2.2.5, results discussed in section 6), and (e) radiance simulation at 600 nm based
185 on LES data for CNN training (Appendix B). The data products and their abbreviations are described in
186 section 2.2.

187

- 188 1. App. 1, section 4.1 (`examples/01_oc02_rad-sim.py`): Radiance simulations along
189 the track of OCO-2, based on data products from MODIS and others – to assess consistency
190 (closure) between simulated and measured radiance;
- 191 2. App. 2, section 4.2 (`examples/02_modis_rad-sim.py`): MODIS radiance
192 simulations – to assess self-consistency of MODIS level-2 (L2) products with the
193 associated radiance fields (L1B product) under spatially inhomogeneous conditions;
- 194 3. App. 3, section 5 (`examples/03_spns_flux-sim.py`): Irradiance simulations along
195 aircraft flight tracks, utilizing the L2 cloud products of the AHI, and comparison with
196 aircraft measurements – to quantify retrieval biases due to 3D cloud structure based with
197 data from an entire aircraft field campaign;
- 198 4. App. 4, section 6 (`examples/04_cam_nadir_rad-sim.py`): Mitigation of 3D
199 cloud biases in passive imagery COT retrievals from an airborne camera, application of a
200 convolutional neural network (CNN) and subsequent comparison of CNN-derived
201 radiances with the original measurements – to illustrate how the radiance self-consistency
202 concept assesses the fidelity of cloud retrievals.
- 203 5. App. 5, Appendix B (`examples/05_cnn-les_rad-sim.py`): Generation of training
204 data for the CNN (App. 4) based on LES inputs. The training datasets contains 1) the
205 ground truth of COT from the LES data; 2) realistic radiance simulated by EaR³T based on
206 the LES cloud fields.

207 Figure 1 shows the high-level workflow of the applications. The first four share the general
208 concept of evaluating simulations (the output from the EaR³T, indicated in red at the bottom of
209 each column) with observations (indicated in green at the bottom) from various satellite and
210 aircraft instruments. The workflow of each application consists of three parts – 1) data acquisition,
211 2) pre-processing, and 3) RTM setup and execution. EaR³T includes functions to ingest data from

212 various different sources, e.g., satellite data from publicly available data archives, which can be
213 combined in different ways to accommodate input data depending on the application specifics. For
214 example, in App. 1, EaR³T is used to automatically download and process MODIS and OCO-2
215 data files based on the user-specified region, date and time. Building on the templates provided in
216 the current code distribution, the functionality can be extended to new spaceborne or airborne
217 instruments. Panel (e) of Figure 1 shows a fifth application that was developed for earlier papers
218 (Gristey et al., 2020a and 2020b; Nataraja et al., 2022; Gristey et al., 2022). In contrast to the first
219 four, which use imagery products as input, the fifth application ingests model output from a Large
220 Eddy Simulation (LES) and produces irradiance data for surface energy budget applications, or
221 synthetic radiance fields for training a CNN. Details and results are described in the respective
222 papers. The remainder of Section 2 introduces the data used in this paper, as well as the input for
223 EaR³T. Subsequently, Section 3 describes the EaR³T procedures.

224

225 **2.2 Data**

226 The radiance simulations in App. 1 and App. 2 use data from the OCO-2 and MODIS-Aqua
227 instruments, both of which are in a sun-synchronous polar orbit with an early-afternoon equator
228 crossing time within NASA’s A-Train satellite constellation. Figure 2 visualizes radiance
229 measurements by OCO-2 in the context of MODIS Aqua imagery over a partially vegetated and
230 partially cloud-covered land, illustrating that MODIS provides imagery and scene context for
231 OCO-2, which in turn observes radiances from a narrow swath. The region is located in southwest
232 Colorado in the United States of America. We selected this case because both the surface and
233 clouds are varied along with diverse surface types. The surface features green forest and brown
234 soil, whereas clouds include small cumulus and large cumulonimbus. In addition, this scene
235 contains relatively homogeneous cloud fields in the north and inhomogeneous cloud fields in the
236 south, which allows us to evaluate the simulations from various aspects of cloud morphology. To
237 simulate the radiances of both instruments we use data products from OCO-2 and MODIS, as well
238 as reanalysis products from NASA’s Global Modeling and Assimilation Office (GMAO) sampled
239 at OCO-2 footprints and distributed along with OCO-2 data (section 2.2.2).

240

241

242 **Figure 2.** OCO-2 measured radiance (units: $\text{Wm}^{-2}\text{nm}^{-1}\text{sr}^{-1}$) at 768.52 nm, overlaid on MODIS Aqua RGB imagery
 243 over southwestern Colorado (USA) on 2 September, 2019. The inset shows an enlarged portion along the
 244 track, illustrating that OCO-2 radiances co-vary with MODIS-Aqua radiance observations (the circles are
 245 used to indicate the geolocation of OCO-2 footprints).

246

247 For App. 3 (irradiance simulations and 3D cloud bias quantification), we use geostationary
 248 imagery from the Japanese Space Agency's Advanced Himawari Imager to provide cloud
 249 information in the area of the flight path of the NASA CAMP²Ex aircraft (Reid et al., 2023). The
 250 AHI data are used in conjunction with aircraft measurements of shortwave spectral radiation
 251 (section 2.2.4). Subsequently (App. 4: 3D cloud bias mitigation), we demonstrate the concept of
 252 radiance closure under partially cloudy conditions with airborne camera imagery (section 2.2.5).
 253 The underlying cloud retrieval is based on a convolutional neural network (CNN), which is
 254 described in a related paper (Nataraja et al., 2022) in this special issue and relies on
 255 EaR³T-generated synthetic radiance data based on Large Eddy Simulations (LES).

256

257 **2.2.1 Moderate Resolution Imaging Spectroradiometer (MODIS)**

258 The MODIS instruments are multi-use multispectral radiometers onboard NASA's Terra
 259 and Aqua satellites, which were launched in 1999 and 2002 respectively. MODIS was conceived
 260 as a central element of the Earth Observing System (EOS, King and Platnick, 2018). For App. 1
 261 and App. 2, EaR³T ingests MODIS level 1B radiance products at the quarter kilometer scale
 262 (channels 1 and 2, bands centered at 650 and 860 nm), MxD02QKM, where 'x' stands for 'O' in
 263 the case of MODIS on Terra, and 'Y' in the case of Aqua data), the geolocation product (MxD03),
 264 the level 2 cloud product (MxD06), and the surface BRDF (bidirectional reflectance distribution

265 function) product (MCD43A3). For this paper, we mainly use Aqua data (MYD) from data
266 collection 6.1.

267 For cloud properties in App. 2, we use the MODIS cloud product (MxD06L2, collection
268 6.1). It provides cloud properties such as cloud optical thickness (COT), cloud effective radius
269 (CER), cloud thermodynamic phase, cloud top height (CTH), etc. (Nakajima and King, 1990;
270 Platnick et al., 2003). Since 3D cloud effects such as horizontal photon transport are most
271 significant at small spatial scales (e.g., Song et al., 2016), we use the high-resolution red (650 nm)
272 channel 1 (250 m), and derive COT directly from the reflectance in the Level-1B data
273 (MYD02QKM) instead of using the coarser-scale operational product from MYD06. CER and
274 CTH are sourced from MYD06 and re-gridded to 250 m. The EaR³T strategy for MODIS data is
275 similar, in principle, to the more advanced method by Deneke et al. (2021), which uses a
276 high-resolution wide-band visible channel from geostationary imagery to up-sample narrow-band
277 coarse-resolution channels. However, we simplified cloud detection and COT retrieval (referred
278 to as COT_{IPA}) from reflectance data for the purpose of our paper by using a threshold method
279 (Appendix C1) and an IPA reflectance-to-COT mapping (Appendix C2). In future versions of
280 EaR³T this will be upgraded to more sophisticated algorithms. A simple algorithm (Appendix D1)
281 is used to correct for the parallax shift based on the sensor geometries and cloud heights. The cloud
282 top height data is provided by the MODIS L2 cloud product and assuming cloud base is the same.

283 For the surface albedo required by the RTM, we used MCD43A3, which provides BRDF
284 calculated from a combination of Aqua and Terra MODIS and MISR (Multi-Angle Imaging
285 Spectroradiometer) clear-sky observations aggregated over a 16-day period (Strahler et al., 1999).
286 This product contains white sky albedo (WSA, also known as bihemispherical reflectance), which
287 is obtained by integrating the BRDF over all viewing angles (Strahler et al., 1999). The WSA is
288 available on a sinusoidal grid with a spatial resolution of 500 m for MODIS band 2, and includes
289 atmospheric correction for gas and aerosol scattering and absorption. Assuming a Lambertian
290 surface in this first release of EaR³T, we used the WSA (referred to as surface albedo from now
291 on) as surface albedo input to the RTM.

293 **2.2.2 Orbiting Carbon Observatory 2 (OCO-2)**

294 The OCO-2 satellite was inserted into NASA’s A-Train constellation in 2014 and flies
295 about 6 minutes ahead of Aqua. OCO-2 provides the column-averaged carbon dioxide (CO₂)

296 dry-air mole fraction (XCO_2) through passive spectroscopy based on hyperspectral radiance
 297 observations in three narrow wavelength regions, the Oxygen A-Band (~ 0.76 micron), the weak
 298 CO_2 band (~ 1.60 micron), and the strong CO_2 band (~ 2.06 micron). As shown in the inset of Figure
 299 2, it takes measurements in eight footprints across a narrow swath. Each of the footprints has a
 300 size around 1-2 km, and the spectra for the three bands are provided by separate, co-registered
 301 spectrometers (Crisp et al., 2015).

302 The used OCO-2 data products are 1) Level 1B calibrated and geolocated science radiance
 303 spectra (L1bScND), 2) standard Level 2 geolocated XCO_2 retrievals results (L2StdND), 3)
 304 meteorological parameters interpolated from GMAO (L2MetND) at OCO-2 footprint location.
 305 Since MODIS on Aqua overflies a scene 6 minutes after OCO-2, the clouds move with the wind
 306 over this time period. We therefore added a wind correction on top of the parallax-corrected cloud
 307 fields obtained from MODIS (section 2.2.1). This was done with the 10 m wind speed data from
 308 L2MetND (see Appendix D2). For the same scene as shown in Figure 2, Figure 3 shows (a) COT_{IPA} ,
 309 (b) CER, and (c) CTH, all corrected for both parallax and wind effects (these corrections are shown
 310 in Figure A5 in Appendix D2). The parallax and wind corrections are imperfect as certain
 311 assumptions are involved. For example, they rely on the cloud top height from the MODIS cloud
 312 product. In addition, they process the whole scene with one single sensor viewing geometry. To
 313 minimize artifacts introduced by the assumptions, one can apply the simulation to a smaller region.
 314

317

318 **Figure 3.** (a) Cloud optical thickness derived from MODIS L1B radiance at 650 nm by the IPA reflectance-to-COT
 319 mapping (Appendix C2), (b) cloud effective radius (units: μm), and (c) cloud top height (units: km)
 320 collocated from the MODIS L2 cloud product. The locations of the cloudy pixels were shifted to account
 321 for parallax and wind effects. The parallax correction ranged from near 0 for low clouds and 1 km for high
 322 clouds (10 km CTH). The wind correction was around 0.8 km, given the median wind speed of 2 m/s to the
 323 east.

324

325 The OCO-2 data (L2StdND) themselves only provide sparse surface BRDF (referred to as
 326 surface albedo from now on) for the footprints that are clear, while EaR³T requires surface albedo
 327 for the whole domain. Therefore, we used MCD43A3 as a starting point. However, since MODIS
 328 does not have a channel in the Oxygen A-Band, MODIS band 2 (860 nm) was used as a proxy for
 329 the 760 nm OCO-2 channel as follows: we collocated the OCO-2 retrieved 760 nm surface albedo
 330 α_{OCO} within the corresponding 860 nm MODIS MCD43A3 data α_{MOD} as shown in Figure 4a
 331 (same domain as Figures 2 and 3) and calculated a scaling factor assuming a linear relationship
 332 between α_{OCO} and α_{MOD} ($\alpha_{OCO} = c \cdot \alpha_{MOD}$). Figure 4b shows α_{OCO} versus α_{MOD} for all
 333 cloud-free OCO-2 footprints. The red line shows a linear regression (derived scale factor $c=0.867$).
 334 Optionally, the OCO-2-scaled MODIS-derived surface albedo fields can be replaced by the OCO-2
 335 surface albedo products for pixels where they are available. The replacement is done for App. 1.
 336 The scaled and replaced surface albedo is then treated as input to the RTM assuming a Lambertian
 337 surface.

338

339 **Figure 4. (a)** Surface albedo from the OCO-2 L2 product in the Oxygen A-band (near 760 nm), overlaid on the surface
 340 albedo from the MODIS MCD43A3 product at 860 nm. **(b)** OCO-2 surface albedo at 760 nm versus MODIS
 341 surface albedo at 860 nm, along with linear regression ($\alpha_{OCO} = c \cdot \alpha_{MOD}$) as indicated by the red line (slope
 342 $c=0.867$).
 343

344

345 **2.2.3 Advanced Himawari Imager (AHI)**

346 The Advanced Himawari Imager (AHI, used for App. 3) is a payload on Himawari-8, a
 347 geostationary satellite operated by the Meteorological Satellite Center (MSC) of the Japanese
 348 Meteorological Agency. The AHI provides 16 channels of spectral radiance measurements from
 349 the shortwave ($0.47\mu\text{m}$) to the infrared ($13.3\mu\text{m}$). During CAMP²Ex, the NASA in-field
 350 operational team closely collaborated with the team from MSC to provide AHI satellite imagery
 351 at the highest resolution over the Philippine Sea. From the AHI imagery, the cloud product
 352 generation system - Clouds from AVHRR Extended System (CLAVR-x), was used to generate
 353 cloud products from the AHI imagery (Heidinger et al., 2014). The cloud products from CLAVR-x
 354 include cloud optical thickness, cloud effective radius, and cloud top height at 2 (at nadir) to 5 km
 355 spatial resolution. Since AHI provides continuous regional scans every 10 minutes the AHI cloud
 356 product has a temporal resolution of 10 minutes.
 357

358 **2.2.4 Spectral Sunshine Pyranometer (SPN-S)**

359 The SPN-S is a prototype spectral version of the commercially available global-diffuse
 360 SPN1 pyranometer (Wood et al., 2017; Norgren et al., 2022). The radiometer uses a 7-detector
 361 design in combination with a fixed shadow mask that enables the simultaneous measurement of
 362 both diffuse and global irradiances, from which the direct component of the global irradiance is

363 calculated via subtraction. The detector measures spectral irradiance from 350 to 1000 nm, and the
364 spectrum is sampled at 1 nm resolution with 1 Hz timing.

365 During the CAMP²Ex mission, the SPN-S was mounted to the top of the NASA P-3 aircraft
366 where it sampled downwelling solar irradiance. To ensure accurate measurements, pre- and
367 post-mission laboratory-based calibrations were completed using tungsten “FEL” lamps that are
368 traceable to a National Institute of Standards and Technology standard. Additionally, the direct
369 and global irradiances were corrected for deviations of the SPN-S sensor plane from horizontal
370 that are the result of changes in the aircraft’s pitch or roll. This attitude correction applied to the
371 irradiance data is a modified version of the method outlined in Long et al. (2010). However,
372 whereas Long et al. (2010) employ a “box” flight pattern to characterize the sensor offset angles,
373 in this study an aggregation of flight data containing aircraft heading changes under clear-sky
374 conditions are used as a substitute. The estimated uncertainty of the SPN-S system is 6 to 8%, with
375 4 to 6% uncertainty stemming from the radiometric lamp calibration process, and up to another 2%
376 resulting from insufficient knowledge of the sensor cosine response. The stability of the system
377 under operating conditions is 0.5%. A thorough description of the SPN-S and its calibration and
378 correction procedures is provided in Norgren et al. (2022). In this paper (App. 3) only the global
379 downwelling irradiance sampled by the 745 nm channel is used.

380

381 **2.2.5 Airborne All-Sky Camera (ASC)**

382 The All-Sky Camera (used for App. 4) is a commercially available camera (ALCOR
383 ALPHEA 6.0CW⁵) with fish-eye optics for hemispheric imaging. It has a Charge-Coupled Device
384 (CCD) detector that measures radiances in red, green, and blue channels. Radiometric and
385 geometric calibrations were performed at the Laboratory of Atmospheric and Space Physics at the
386 University of Colorado Boulder. The three-color channels are centered at 493, 555, and 626 nm
387 for blue, green, and red, respectively, with bandwidths of 50 – 100 nm. Only radiance data from
388 the red channel are used in this paper. The spatial resolution of the ASC depends on the altitude of
389 the aircraft and the viewing zenith angle. Across the hemispheric field of view of the camera, the
390 resolution of the field angle is approximately constant, at about 0.09°. At a flight level of 5 km,

⁵https://www.alcor-system.com/common/allSky/docs/ALPHEA_Camera%20ALL%20SKY%20CAMERA_Doc.pdf
last accessed on April 24, 2022.

391 this translates to a spatial resolution of 8 m at nadir. However, due to accuracy limitations of the
392 geometric calibration and the navigational data from Inertial Navigation System (INS), the nadir
393 geolocation accuracy could only be verified to within ± 50 m. During the CAMP²Ex flights, the
394 camera exposure time was set manually to minimize saturation of the detector. The standard image
395 frame rate is 1 Hz. The precision of the camera radiances is on the order of 1%, and the radiometric
396 accuracy is 6 – 7%.

397

398 **3. EaR³T Procedures**

399 In the previous section, we described the input data for the EaR³T applications. In this
400 section, we will focus on providing the complete workflow (shown in Figure 1) for the five
401 applications.

402 After the required data files have been automatically downloaded in the data acquisition
403 step as described in previous section, EaR³T pre-processes them and generates the optical
404 properties of atmospheric gases, clouds, aerosols, and the surface. In Figure 1, the mapping from
405 input data to these properties is color-coded component-wise (brown for associated cloud property
406 processing if available, blue for associated surface property processing if available, green for
407 associated ground truth property). The EaR³T code base used in this paper (v0.1.1; Chen and
408 Schmidt, 2022) only includes MCARaTS as the 3D RT solver, but others are planned for the future.
409 MCARaTS is a radiative transfer solver that uses a Monte Carlo photon-tracing method (Iwabuchi,
410 2006). It outputs radiation (radiance or irradiance) based on the inputs of radiative properties of
411 surface and atmospheric constituents (e.g., gases, aerosols, clouds) such as single scattering albedo,
412 scattering phase function or asymmetry parameter, along with solar and sensor viewing geometries.
413 The setup of these input properties is implemented in EaR³T’s pre-processing steps, which
414 translates atmospheric properties into solver-specific input with minimum user intervention. To
415 achieve this, EaR³T is modular so that it can be extended as new solvers are added. Although the
416 five specific applications in this paper do not include aerosol layers, the setup of aerosol fields is
417 fully supported and has been used in other applications (e.g., Gristey et al., 2022). After pre-
418 processing, the optical properties are fed into the RT solver. Finally, the user obtains radiation
419 output from EaR³T, either radiance or irradiance. The output is saved in HDF5 format and can be
420 easily distributed and accessed by various programming languages. The data variables contained
421 in the HDF5 output are provided in Table A2 in Appendix A1.

422 The processes of data acquisition, pre-processing, and RTM setup and execution (shown
423 in Figure 1) are automated such that the 3D/1D-RT calculations can be performed for any region
424 at any date and time using satellite or aircraft data or other data resources such as LES. A detailed
425 code walk-through of App. 1 and 2 is provided in Appendix A2. Since EaR³T is developed as an
426 educational and research 3D-RT tool collection by students, it is a living code base, intended to be
427 updated over time. The master code modules for the five applications as listed in Figure 1 are
428 included in the EaR³T package under the `examples` directory. In the current release (v0.1.1),
429 only a limited documentation for the installation and usage, including example code for EaR³T, is
430 provided. More effort will be dedicated for documentation in the near-future.

431 In the following sections, we discuss results obtained from EaR³T, starting with those from
432 `examples/01_oc02_rad-sim.py` and `examples/02_modis_rad-sim.py` (section
433 4), `examples/03_spns_flux-sim.py` (section 5), and concluding with
434 `examples/04_cam_nadir_rad-sim.py` (section 6). The usage of the EaR³T package
435 including the technical input and output parameters and code walk-through is provided in
436 Appendix A.

437

438 **4. EaR³T as a 3D Satellite Radiance Simulator**

439 This section demonstrates the automated 3D radiance simulation for satellite instruments
440 by EaR³T for OCO-2 and MODIS measured radiance based on publicly available MODIS retrieval
441 products. The OCO-2 application is an example of radiance consistency between two distinct
442 satellite instruments where the measurements of one (here, OCO-2) are compared with the
443 simulations based on data products from the other (here, MODIS). The MODIS application, on
444 the other hand, is an example of radiance self-consistency. We will show how inconsistencies can
445 be used for detecting cloud and surface property retrieval biases.

446 **4.1 OCO-2 (App. 1)**

447 The OCO-2 radiance measurements at 768.52 nm for our sample scene in the context of
448 MODIS imagery were shown in Figure 2. For that track segment, Figure 5a shows the simulated
449 radiance along with the measurements as a function of latitude. The radiance was averaged over
450 every 0.01° latitude window from 37° N to 39° N (the standard deviation within the bin indicated
451 by the shaded color). In clear-sky regions (e.g., around 38.2° N), the 3D simulations (red) are
452 systematically higher than the measurements (black), even though the footprint-level OCO-2

453 surface albedo retrieval was used to replace and scale the MCD43 surface albedo field as described
 454 in section 2.2.2 (Figure 4). This is probably because, unlike the MCD43 algorithm which relies on
 455 multiple overpasses and multiple-days for cloud-clearing, the OCO-2 retrieval is done for any clear
 456 footprint. Clouds in the vicinity lead to enhanced diffuse illumination that is erroneously attributed
 457 to the surface albedo itself. The EaR³T IPA calculations of the clear-sky pixels (blue) essentially
 458 reverse the 3D effect and therefore match the observations better. The 3D calculations enhance the
 459 reflectance through the very same 3D cloud effects that led to the enhanced surface illumination
 460 in the first place. It is possible to correct this effect by down-scaling the surface albedo according
 461 to the ratio between clear-sky 3D and IPA calculations, but this process is currently not automated.

462

463

464

465 **Figure 5.** (a) Latitudinally averaged (0.01° spacing) radiance calculations from EaR³T (red: 3D, blue: IPA) and OCO-
 466 2 measured radiance at 768.52 nm (black) The green shaded area indicates the inset shown in (b). (b) The

467 same as Figure 2 except OCO-2 measured radiance overlaid on IPA radiance simulations at 768.52 nm. The
468 solar zenith angle (SZA) for the radiance simulation case is 34.3°.

469
470 In the cloudy locations (radiance value greater than ~0.05), the IPA calculations match the
471 OCO-2 observations on a footprint-by-footprint level (see Figure 5b), demonstrating that wind and
472 parallax corrections were performed successfully. Of course, there is not always a perfect
473 agreement because of morphological changes in the cloud field over the course of six minutes. It
474 is, however, apparent that the 3D calculations agree to a much lesser extent with the observations
475 than the IPA calculations. Just like the mismatch for the clear-sky pixels indicates a bias in the
476 input surface albedo, the bias here means that the input cloud properties (most importantly COT)
477 are inaccurate. For most of the reflectance peaks, the 3D simulations are too low, which means
478 that the input COT is biased low. This is due to 3D cloud effects on the MODIS-based cloud
479 retrieval. Since they are done with IPA, any net horizontal photon transport is not considered,
480 which leads to an apparent surface brightening as noted above, at the expense of the cloud
481 brightness. As a result, the COT from darker clouds is significantly underestimated. This
482 commonly known problem (Barker and Liu, 1995), with several aspects discussed in the
483 subsequent EaR³T applications, can be identified by radiance consistency checks such as the one
484 shown in Figure 5, and mitigated by novel types of cloud retrievals that do take horizontal photon
485 transport into account (section 6).

486
487 **4.2 MODIS (App. 2)**

488 To go beyond the OCO-2 track and understand the bias between simulated and observed
489 radiances from a domain perspective, we now consider the radiance simulations for the MODIS
490 650 nm channel. The setup is exactly the same as for the OCO-2 simulations, except that 1) the
491 viewing zenith angle is set to the average viewing zenith angle of MODIS within the shown domain
492 (instead of OCO-2), and 2) the surface albedo (or WSA) from MCD43 is used directly, this time
493 from the 650 nm channel without rescaling. Figure 6a shows the MODIS measured radiance field,
494 while Figure 6b shows the EaR³T 3D simulations. Visually, the clouds from the EaR³T simulation
495 are generally darker than the observed clouds, which is in line with our aforementioned explanation
496 of net horizontal photon transport. They are also blurrier because radiative smoothing (Marshak et
497 al., 1995) propagates into the retrieved COT fields, which are subsequently used as input to EaR³T.

498 The IPA RT calculations agree with the observations for clouds (see Figure A4a in Appendix C2),
 499 which is expected as the IPA calculations and retrievals go through the same RT process, and the
 500 darkening and smoothing effects (referred to as 3D effects) are due to horizontal photon transport.
 501 To look at the 3D effects more quantitatively, Figure 7 shows a heatmap plot of simulated radiance
 502 versus observed radiance. It shows that the radiance for cloud-covered pixels (labeled “cloudy”)
 503 from EaR³T are mostly low-biased while good agreement between simulations and observations
 504 was achieved for clear-sky radiance (labeled “clear-sky”). The good agreement over clear-sky
 505 regions is expected. As mentioned above, we use MCD43 as surface albedo input, which in
 506 contrast to the OCO-2 surface albedo product is appropriately cloud-screened and therefore does
 507 not have a reflectance high bias. There is, of course, a reflectance enhancement in the vicinity of
 508 clouds, but that is captured by the EaR³T calculations. The fact that the calculations agree with the
 509 observations even for clear-sky pixels in the vicinity of clouds, shows that the concept of radiance
 510 consistency works to ensure correct satellite retrievals even in the presence of clouds. It also
 511 corroborates our observation from section 4.1 that COT_{IPA} is low biased. Since the MODIS
 512 reflectance is *not* self-consistent with respect to 3D RT calculations using COT_{IPA} as shown for
 513 the *cloudy* pixels in Figure 7, we can identify a bias in the cloud properties even without knowing
 514 the ground truth of COT. On the other hand, successful closure in radiance (self-consistency)
 515 would provide an indication that the input fields including COT are accurate, although it is
 516 certainly a weaker metric than direct verification of the retrievals through aircraft-satellite retrieval
 517 validation using observations from in-situ instruments.

520 **Figure 6.** (a) MODIS measured radiance in channel 1 (650 nm). (b) Simulated 3D radiance at 650 nm from EaR³T.
 521 The solar zenith angle for the radiance simulation case is 34.94°.
 522
 523

524
 525 **Figure 7.** Heatmap plot of EaR³T simulated 3D radiance vs. MODIS measured radiance at 650 nm.
 526

527 Summarizing the two satellite radiance simulator applications, one can say that EaR³T
 528 enables a radiance consistency check for inhomogeneous cloud scenes. We demonstrated that a
 529 lack of simulation-observation consistency (MODIS versus OCO-2) and self-consistency (MODIS
 530 versus MODIS) can be traced back to biased surface albedo or cloud fields in the simulator input.
 531 This can become a diagnostic tool for the quality of retrieval products from future or current
 532 missions, even when the ground truth is not known. Although not shown, the errors in the
 533 simulated radiance associated with the fixed-SZA assumption (domain average) are negligible.
 534 However, the vertical extent of the clouds affects the simulated radiance – the larger the vertical
 535 extent, the larger the 3D effects (more horizontal photon transport). Since we make the assumption
 536 of 1) a cloud geometric thickness of 1 km for clouds with CTH less than 4 km, and 2) cloud base
 537 height of 3 km for clouds with CTH greater than 4 km, the simulated radiance at the satellite sensor
 538 level is valid for that proxy cloud only. For clouds that are geometrically thicker than the assumed
 539 cloud geometrical thickness, the simulated radiance would be even lower due to enhanced
 540 horizontal photon transport. Either way, the comparison with the actual radiance measurements
 541 will reveal a lack of closure. Additionally, although the clouds introduce the lion's share of the 3D
 542 bias that is identified by the radiance consistency check, additional discrepancies can be introduced

543 in different ways. For example, the topography (mountainous region in Colorado) is not considered
544 by MCARaTS (it is considered by MYSTIC, but this solver has not been implemented yet).

545 For the reference of simulation running time: The MODIS simulation (domain size of
546 [$N_x=846$, $N_y=846$]) took about 15 minutes on a Linux workstation with 8 CPUs for three 3D RT
547 runs with 10^8 photons. With a slightly modified setup and parallelization, the automation can be
548 easily applied for entire satellite orbits, although more research is required to optimize the
549 computation speed depending on the desired output accuracy.

550

551 **5. EaR³T as 3D Aircraft Irradiance Simulator (App. 3)**

552 In contrast to the previous applications that focused on satellite remote sensing, we will
553 now be applying EaR³T to quantify 3D cloud retrieval biases through direct, systematic validation
554 of imagery-derived *irradiances* against aircraft measurements, instead of using the indirect path
555 of radiance consistency in section 4. Previous studies (e.g., Schmidt et al., 2007; Kindel et al.,
556 2010) conducted radiative closure between remote sensing derived and measured irradiance using
557 isolated flight legs as case studies. Here, with the efficiency afforded by the automated nature of
558 EaR³T, we are able to conduct radiative closure of irradiance through a statistical approach that
559 employs campaign-scale amounts of measurement data. Specifically, we used EaR³T to perform
560 large-scale downwelling irradiance simulations at 745 nm based on geostationary cloud retrievals
561 from AHI for the CAMP²Ex campaign, and directly compare these simulations to the SPN-S
562 measured irradiances onboard the P-3 aircraft. This is done for all below-cloud legs from the entire
563 campaign with the aim to assess the degree to which satellite-derived near-surface irradiances
564 reproduce the true conditions below clouds.

565 The irradiance simulation process is similar to the previously described radiance simulation
566 in section 4, with only a few modifications. First, we used cloud optical properties from the AHI
567 cloud product (COT, CER and CTH) as direct inputs into EaR³T. Secondly, we used a constant
568 ocean surface albedo value of 0.03. Such simplification in surface albedo is made under the
569 assumption that 1) the ocean surface is calm with no whitecaps, and that 2) the Lambertian BRDF
570 is sufficient (instead of directionally dependent BRDF) to represent surface albedo for the
571 irradiance calculation. Since the ocean surface albedo can greatly differ from 0.03 when the Sun
572 is extremely low (Li et al., 2006), we excluded data under low-Sun conditions where the SZA is
573 greater than 45°. Lastly, since EaR³T can only perform 3D simulations for a domain at a single

574 specified solar geometry, we divided each CAMP²Ex research flight into small flight track
575 segments where each segment contains 6 minutes of flight time. The size and shape of the flight
576 track segments can vary significantly due to the aircraft maneuvers, aircraft direction, aircraft
577 speed, etc. For each flight track segment, EaR³T performs irradiance simulations for a domain that
578 extends half a degree at an averaged solar zenith angle. In contrast to the radiance simulation output,
579 which is two-dimensional at a specified altitude and sensor geometry, the irradiance simulation
580 output is three dimensional. In addition to x (longitude) and y (latitude) vectors, it has a vertical
581 dimension along z (altitude). From the simulated three-dimensional irradiance field, the irradiance
582 for the flight track segment is linearly interpolated to the x-y-z location (longitude, latitude, and
583 altitude) of the aircraft. EaR³T automatically sub-divides the flight track into tiles encompassing
584 track segments, and extracts the necessary information from the aircraft navigational data. Based
585 on the aircraft time and position, EaR³T downloads the AHI cloud product that is closest in time
586 and space to the domain containing the flight track segment.

587 Figure 8 shows the simulated irradiance for a sample flight track below clouds on 20
588 September, 2019. Figure 8a shows the flight track overlaid on AHI imagery. Figure 8b shows 3D
589 (in red) and IPA (in blue) downwelling irradiance simulations for the highlighted flight track in
590 Figure 8a, as well as measurements by the SPN-S (in black). Since the 3D and IPA simulations
591 are performed separately at discrete solar and sensor geometries for each flight track segment based
592 on potentially changing cloud fields from one geostationary satellite image to the next, discontinuities
593 in the calculations (indicated by gray dashed lines) are expected. The diffuse
594 irradiance (downwelling and upwelling) can also be simulated and compared with radiometer
595 measurements (not shown here). Since the irradiance was simulated/measured below clouds, high
596 values of downwelling irradiance indicate thin-cloud or cloud-free regions while low values of
597 downwelling irradiance indicate thick-cloud regions. The simulations successfully captured this
598 general behavior – clouds thickened from west to east until around 121.25° E, and thinned
599 eastwards. However, the fine-scale variabilities in irradiance were not captured by the simulations
600 due to the coarse resolution of COT in the AHI cloud product (3-5 km). Additionally, the
601 simulations also missed the clear-sky regions in the very east and west of the flight track as
602 indicated by high downwelling irradiance values measured by SPN-S. This is probably also due to
603 the coarse resolution of the AHI COT product where small cloud gaps are not represented. Large
604 discrepancies between simulations and observations occur in the mid-section of the flight track

605 where clouds are present (e.g., longitude range from 121.15° to 121.3°). Although the 3D
 606 calculations differ somewhat from the IPA results, they are both biased high, likely because the
 607 input COT (the IPA-retrieved AHI product) is biased low. This bias is caused by the same
 608 mechanism that was discussed earlier in the MODIS examples (section 4.2). This begs the question
 609 whether this is true for the entire field mission. To answer the question, we performed a *systematic*
 610 comparison of the cloud transmittance for *all* available below-cloud flight tracks from CAMP²Ex,
 611 using EaR³T's automated processing pipeline. The output of this pipeline is visualized in time-
 612 synchronized flight videos (Chen et al., 2022), which show the simulations and observations along
 613 all flight legs point by point. These videos give a glimpse of the general cloud environment during
 614 the field campaign from the geostationary satellite perspective.

615

616

617

618 **Figure 8.** (a) Flight track overlay HIMAWARI AHI RGB imagery over the Philippine Sea on 20 September, 2019.

619

620 The thin line shows the entire flight track within the domain. The thick line highlights the specific leg
 621 analyzed in (b). (b) Measured downwelling irradiance from SPN-S at 745 nm and calculated 3D and IPA
 622 irradiance from EaR³T for the highlighted flight track in (a).

623

624

625 For this comparison, we use transmittance instead of irradiance. The transmittance is
 626 calculated by dividing the downwelling irradiance below clouds (F_{\downarrow}^{bottom}) by the downwelling
 627 irradiance at the top of the atmosphere extracted from the Kurucz solar spectra (F_{\downarrow}^{TOA} ; Kurucz,
 628 1992) at incident solar zenith angle (SZA), where

627
$$Transmittance = \frac{F_{\downarrow}^{bottom}}{F_{\downarrow}^{TOA} \cdot \cos(SZA)}$$

628 Thus the transmittance has less diurnal dependence than the irradiance. Figure 9 shows the
 629 histograms of the simulated and measured cloud transmittance from all below-cloud legs. The
 630 average values are indicated by dashed lines. Although the averaged values of IPA and 3D
 631 transmittance are close, their distributions are different. Only the 3D calculations and the measured
 632 transmittance reach values beyond 1. This occurs in clear-sky regions in the vicinity of clouds that
 633 receive photons scattered by the clouds as previously discussed for the OCO-2 application.

634

635
 636 **Figure 9.** Histogram of measured transmittance from SPN-S at 745 nm (dark gray filled) and calculated 3D (red solid
 637 line) and IPA (blue solid line) transmittance from EaR³T for all the below-cloud flight tracks during
 638 CAMP²Ex in 2019. The mean values are indicated by dashed lines. The yellow (green) shaded area
 639 represents the relatively low (high) transmittance region where the probability density of the observed
 640 transmittance (dark gray filled) is greater than the calculations.

641

642 Both the distribution and the mean value of the simulations are different from the
 643 observations – the simulation histograms peak at around 0.9 while the observation histogram peaks
 644 at around 1. The histograms indicate that the RT simulations miss most of the clear-sky conditions
 645 because of the coarse resolution of the AHI cloud product. If clouds underfill a pixel, AHI
 646 interprets the pixel as cloudy in most cases. This leads to an underestimation of clear-sky regions
 647 since cumulus and high cirrus were ubiquitous during CAMP²Ex. The area on the left (highlighted
 648 in yellow) has low cloud transmittance associated with thick clouds. In this range, the histograms
 649 of the calculations are generally below the observations, and the PDF of the calculations is offset

650 to the right (indicated by the yellow arrow). This means that the transmittance is overestimated by
651 both IPA and 3D RT, and thus that the COT of thick clouds is underestimated, consistent with
652 what we found before (Figure 8b). The high-biased transmittance below-cloud is also consistent
653 with the findings of low-biased reflectance (App. 1 and 2), both indicating COT of the optically
654 thick clouds are low-biased. The high-transmittance end (highlighted in green) is associated with
655 clear-sky and thin clouds. Here, the peak of the PDF is shifted to the left (green arrow), and the
656 calculations are biased low. This is caused by a combination of 1) the overestimation in COT of
657 thin clouds due a 3D bias in the AHI IPA retrieval, 2) the aforementioned resolution effect that
658 underestimates the occurrence of clear-sky regions (or overestimation in cloud fraction), and 3)
659 net horizontal photon transport from clouds into clear-sky pixels. Overall, the calculations
660 underestimate the true transmittance by 10%. This might seem to contradict Figure 7, where the
661 calculated reflected radiance was biased low due to the *underestimation* of COT in the heritage
662 retrievals, which would correspond to an *overestimation* of the radiation transmitted by clouds.
663 This effect is indeed apparent in the yellow-shaded area of Figure 9 (high COTs), but the means
664 (dashed lines) show exactly the opposite. To understand that, one has to consider that the histogram
665 depicts all-sky conditions, which include both cloudy and clear pixels. In this case, the direction
666 of the overall (all-sky) bias follows the direction of the thin-cloud/clear bias, rather than the
667 direction of the thick cloud bias. For different study regions of the globe with different cloud
668 fractions, cloud size distributions, and possibly different imager resolutions, the direction and
669 magnitude of the bias might be very different.

670 Summarizing, this application demonstrates that the EaR³T's automation feature allows
671 systematic simulation-to-observation comparisons. If aircraft observations are available, then
672 closure between satellite-derived irradiance and suborbital measurements is a more powerful
673 verification of satellite cloud retrieval products than the radiance consistency from the earlier
674 stand-alone satellite applications. Even more powerful is the new approach to process the data
675 from an entire field mission for assessing the quality of cloud products in a region of interest (in
676 this case, the CAMP²Ex area of operation).

677

678 **6. EaR³T for Mitigating 3D Cloud Retrieval Biases (App. 4)**

679 In this section, we will use high-resolution imagery from a radiometrically calibrated
680 all-sky camera flown during the CAMP²Ex to isolate the 3D bias (sometimes referred to as IPA

681 bias) and explore its mitigation with a newly developed CNN cloud retrieval framework (Nataraja
682 et al., 2022). The CNN, unlike IPA, takes pixel-to-pixel net horizontal photon transport into
683 account. It exploits the spatial context of pixels in cloud radiance imagery, and extracts a higher-
684 dimensional, multi-scale representation of the radiance to retrieve COT fields as the output. It does
685 so by learning on “training data”, which in this case was input radiance and COT pairs synthetically
686 generated by EaR³T using LES data from the Sulu Sea. The best CNN model, trained on different
687 coarsened resolutions of the data pairs, is included within the EaR³T repository. For App. 4, this
688 CNN is applied to real imagery data for the first time, which in our case are near-nadir observations
689 by the all-sky camera (section 2.2.5) that flew in CAMP²Ex.

690 The CNN model was trained at a single (fixed) sun-sensor geometry (solar zenith angle,
691 SZA=29.2°; solar azimuth angle, SAA=323.8°, viewing zenith angle, VZA=0°), at a spatial
692 resolution of 100 m. We therefore chose a camera scene with a matching SZA (28.9°), and rotated
693 the radiance imagery to match SAA=323.8°, and subsequently gridded the 8-12 m native
694 resolution camera data to 100 m. Figure 10a shows the RGB imagery captured by the all-sky
695 camera over the Philippine Sea at 02:10:06 UTC on 5 October 2019. The Sun is located at the
696 southeast (as indicated by the yellow arrow) and can be easily identified from the sun glint. Note
697 that this image has not yet been geolocated; it is depicted as acquired in the aircraft reference frame.
698 Figure 10b shows the rotated scene of the red channel radiance for the region encircled in yellow
699 in Figure 10a. The sun (as indicated by the yellow arrow) is now at SAA=323.8°. The selected
700 study region is indicated by the red rectangle in Figure 10b (6.4x6.4 km²), where the raw radiance
701 of the camera is gridded at 100 m resolution to match the spatial resolution of the training dataset
702 of the CNN.

703

704

705
 706 **Figure 10.** (a) RGB imagery of nadir-viewing all-sky camera deployed during CAMP²Ex for a cloud scene centered
 707 at [123.392°E, 15.2744°N] over the Philippine Sea at 02:10:06 UTC on 5 October, 2019. The arrows
 708 indicate the true north (green), flight direction (blue), and illumination (where the sunlight comes from,
 709 yellow). (b) Red channel radiance measured by the camera for the circular area indicated by the red circle
 710 in (a). Red squared region shows gridded radiance with a pixel size of 64x64 and spatial resolution of 100
 711 m.

712

713 From the radiance field, we used both the traditional IPA (based on the IPA reflectance-to-
 714 COT mapping) and the new CNN to retrieve COT fields. Figure 11 shows the COT_{IPA} and COT_{CNN}
 715 fields, which are visually quite different. For relatively thin clouds (e.g., at around {2, 1.8}), the
 716 CNN tends to retrieve larger COT values than COT_{IPA} . Also, it returns more spatial structure than
 717 the IPA (e.g., around {2,-1}). To assess how either retrieval performs, we now apply the radiance
 718 self-consistency approach introduced with MODIS data in section 4.2. Using both the IPA and the
 719 CNN retrieval as input, we had EaR³T calculate the (synthetic) radiance that the camera should
 720 have observed if the retrieval were accurate. The clouds are assumed to be located at 1-2 km. Such
 721 an assumption is inferred from low-level aircraft observations of clouds on the same day. These
 722 radiance fields are shown in Figure 12a and 12b, and can be compared to Figure 12c. Seven edge
 723 pixels have been removed from the original domain because the CNN performs poorly at edge
 724 pixels, and because the 3D calculations use periodic boundary conditions.

725

726

727 **Figure 11.** Cloud optical thickness for the gridded radiance in Figure 10b **(a)** estimated by IPA method and **(b)**
 728 predicted by CNN.

729

730

731

732

733 **Figure 12.** 3D radiance calculations from EaR³T at 600 nm based on cloud optical thickness field **(a)** estimated by
 734 IPA, and **(b)** predicted by the CNN. The radiance measured by the all-sky camera (the same as Figure
 735 10b) is provided in the same format at **(c)** for comparison. The calculations were originally performed
 736 for the 64x64 domain. Then 7 pixels along each side of the domain (contoured in gray) were excluded,
 737 which resulted in a 50x50 domain.

738
 739

740 **Figure 13.** Scatter plot overlays 2D histogram of 3D radiance calculations at 600 nm based on cloud optical thickness
 741 **(a)** estimated by IPA and **(b)** predicted by the CNN vs. measured red channel radiance from all-sky camera.
 742
 743

744 As evident from the brightest pixels in Figures 12b and 12c, the radiances simulated on the
 745 basis of the COT_{CNN} input are markedly lower than actually observed by the camera. This is
 746 because the CNN was trained on a LES dataset with limited COT range that excluded the largest
 747 COT that occurred in practice. This means that the observational data went beyond the original
 748 training envelope of the CNN, which highlights the importance of choosing the CNN training data
 749 carefully for a given region. In Figure 13, the simulations are directly compared with the original
 750 observations, confirming that indeed the CNN-generated data are below the observations on the
 751 high radiance end. Otherwise, the CNN-generated radiances agree with the observations. In
 752 contrast, the IPA-generated data are high biased for the optically very thin clouds (radiance below
 753 0.1) and systematically low-biased for the thick clouds (radiance above 0.2) when comparing with
 754 the observations, over the dynamic range of the COT, which is indicative of the 3D retrieval bias
 755 that we discussed earlier. A small high bias occurs in the COT_{CNN} based radiance simulations for
 756 the optically thin clouds (radiance value below 0.2). This probably because the CNN training as

described by Nataraja et al. (2022) is 1) based on a surface albedo of 0 and 2) aerosol-free atmospheric environment (also aerosol-free setup for radiance simulations in Figure 13), where in reality the ocean is slightly brighter and atmosphere is mixed with aerosols. Here again, the radiance self-consistency approach proves useful despite the absence of ground truth data for the COT. This is valuable because in reality satellite remote sensing does not have the ground truth of COT, whereas radiance measurements are always available. For the CNN, the self-consistency of the radiance is remarkable for most of the clouds (radiance smaller than 0.4), which encompass 86.8% of the total number of image pixels.

Finally, we use EaR³T to propagate the 3D cloud retrieval bias into the associated bias in estimating the cloud radiative effect from passive imagery retrievals, which means that we are returning from a remote sensing to an energy perspective (irradiance) at the end of the paper. The calculated cloud radiative effects (CRE) of both below-clouds (at the surface) and above-clouds (at 2.5 km) are shown in Figure 14a and 14b. The most important histograms are those from 3D irradiance calculations based on the CNN retrievals (gray solid line), as this combination would be used in a next-generation framework for deriving CRE from passive remote sensing, and the other would be IPA irradiance calculations based on the IPA retrieval (red solid line), as done in the traditional (heritage) approach. The dashed lines are the other combinations. The mean values (red vs. gray) indicate that in our case the traditional approach would lead to a high bias of more than 28% both at the surface and 20% above clouds due to low-biased COT_{IPA} (consistent with findings of low-biased COT_{IPA}-derived reflectance from App. 1&2 and high-biased COT_{IPA}-derived transmittance from App. 3). Here again, 3D biases do not cancel each other out in the domain average. If the CNN had better fidelity even for optically thick clouds, the real bias in CRE would be even larger. A minor, but interesting finding is that regardless of which COT retrieval is used, the mean CRE is similar for IPA and 3D irradiance calculations (e.g., $\overline{CRE}_{IPA}(COT_{CNN}) \approx \overline{CRE}_{3D}(COT_{CNN})$, blue vertical dashed line locates near to gray vertical solid line), even though the PDFs are different. By far the largest impact on accuracy comes from the retrieval technique, not from the subsequent CRE calculations. Here again, the self-consistency check turns out as a powerful metric to assess retrieval accuracy. Of course, we only used a single case in this part of the paper. For future evaluation of the CNN versus the IPA, one would need to process larger quantities of data in an automated fashion as done in the first part of the paper. This is beyond the scope of this introductory paper, and will be included in future releases of EaR³T and the CNN.

790 **Figure 14.** Histograms of cloud radiative effects derived from 1) 3D irradiance calculations based on COT_{CNN} (solid
 791 gray), 2) IPA irradiance calculations based on COT_{IPA} (solid red), 3) IPA irradiance calculations based on
 792 COT_{CNN} (dashed blue), and 4) 3D irradiance calculations based on COT_{IPA} (dashed green) both **(a)** at the
 793 surface and **(b)** above the clouds. The mean values are indicated by vertical lines.

795 7. Summary and Conclusion

796 In this paper, we introduced EaR^3T , a toolbox that provides high-level interfaces to
 797 automate and facilitate 1D- and 3D-RT calculations. We presented applications that used EaR^3T
 798 to:

- 799 a) build a processing pipeline that can automatically simulate 3D radiance fields for satellite
 800 instruments (currently OCO-2 and MODIS) from publicly available satellite surface and
 801 cloud products at any given time over any specific region;
- 802 b) build a processing pipeline that can automatically simulate irradiance along all flight legs
 803 of aircraft missions, based on geostationary cloud products;
- 804 c) simulate radiance and irradiance for high-resolution COT fields retrieved from an airborne
 805 camera, using both a traditional 1D-RT (IPA) approach, and a newly developed 3D-RT
 806 (CNN) approach that considers the spatial context of a pixel.

807 Unlike other satellite simulators that employ 1D-RT, EaR^3T is capable of performing the radiance
 808 and irradiance calculations in 3D-RT mode. Optionally, it can be turned off to link back to
 809 traditional 1D-RT codes, and to calculate 3D perturbations by considering the changes of 3D-RT
 810 fields relative to the 1D-RT baseline.

With the processing pipeline under a) (App. 1 and App. 2, section 4), we prototyped a 3D-RT powered radiance loop (we call it “radiance self-consistency”) that is envisioned for upcoming satellite missions such as EarthCARE and AOS. Retrieved cloud fields (in our case, from MODIS and from an airborne camera) are fed back into a 3D-RT simulation engine to calculate at-sensor radiances, which are then compared with the original measurements. Beyond currently included sensors, others can be added easily, taking advantage of the modular design of EaR³T. This radiance closure loop facilitates the evaluation of passive imagery products, especially under spatially inhomogeneous cloud conditions. The automation of EaR³T permits calculations at any time and over any given region, and statistics can be built by looping over entire orbits as necessary. The concept of radiance self-consistency could be valuable even for existing imagery datasets because it allows the automated quantification of 3D-RT biases even without ground truth such as airborne irradiance from suborbital activities. Also, it can be easily extended to spectral or multi-angle observations as available from MODIS and MISR (Multi-Angle Imaging Spectroradiometer), and thus providing more powerful constraints to the remote sensing products. In the future it should be possible to include a 3D-RT pipeline such as EaR³T into operational processing of satellite derived data products.

Benefitting from the automation of EaR³T in b) (App. 3, section 5), we performed 3D-RT irradiance calculations for the entire CAMP²Ex field campaign, moving well beyond radiation closure case studies, and instead systematically evaluating satellite-derived radiation fields with aircraft data for an entire region. From the comparison based on all below-cloud flight tracks during the entire campaign, we found that the satellite-derived cloud transmittance was biased low by 10% compared to the observations when relying on the heritage satellite cloud product.

From the statistical results of the CAMP²Ex irradiance closure in b), we concluded that the bias between satellite-derived irradiances and the ground truth from aircraft measurements was due to a combination of the coarse spatial resolution of the geostationary imagery products and 3D-RT effects. To minimize the coarse-resolution part of the bias and thus to isolate the 3D-RT bias, we used high-resolution airborne camera imagery in c) (App. 4, section 6), and found that even with increased imager resolution, biases persisted. The at-sensor radiance derived from COT_{IPA} was inconsistent with the original measurements. For cloudy pixels, the calculated radiance was well below the observations, confirming an overall low bias in COT_{IPA}. This low bias could be largely mitigated with the context-aware CNN developed separately in Nataraja et al.

842 (2022) and included in EaR³T. Of course, this novel technique has limitations. For example, the
843 camera reflectance data went beyond the CNN training envelope, which would need to be extended
844 to larger COT in the future. In addition, the CNN only reproduces two-dimensional clouds fields
845 and does not provide access to the vertical dimension, which will be the next frontier to tackle.
846 Still, the greatly improved radiance consistency from COT_{IPA} to COT_{CNN} indicates that the EaR³T-
847 LES-CNN approach shows great promise for the mitigation of 3D-RT biases associated with
848 heritage cloud retrievals. We also discovered that for this particular case, the CRE calculated from
849 traditional 1D cloud products can introduce a warm bias of at least 28% at the surface and 20%
850 above clouds.

851 EaR³T has proven to be capable of facilitating 3D-RT calculations for both remote sensing
852 and radiative energy studies. Beyond the applications described in this paper, EaR³T has already
853 been extensively used by a series of on-going research projects such as producing massive 3D-RT
854 calculations as training data for a new generation of CNN models (Nataraja et al., 2022), evaluating
855 3D cloud radiative effects associated with aerosols (Gristey et al., 2022), creating flight track and
856 satellite track simulations for mission planning etc. More importantly, the strategies provided in
857 this paper put novel machine learning algorithms on a physical footing, opening the door for the
858 mitigation of complexity-induced biases in the near-future. More development effort will be
859 invested into EaR³T in the future, with the goals of minimizing the barriers to using 3D-RT
860 calculations, and to promote 3D cloud studies. EaR³T will continue to be an educational tool driven
861 by graduate students. In the future, we plan to add support for additional publicly available 3D RT
862 solvers, e.g., SHDOM (Spherical Harmonic Discrete Ordinate Method, Evans, 1998; Pincus and
863 Evans, 2009), as well as built-in support for HITRAN and associated correlated-k methods
864 (currently, we are implementing such an approach for the longwave wavelength range). From a
865 research perspective, we anticipate that EaR³T will enable the systematic quantification and
866 mitigation of 3D-RT biases of imagery-derived cloud-aerosol radiative effects, and may be the
867 starting point for operational use of 3D-RT for future satellite missions.

868

869 **Appendix A**870 **A1 - Technical Input and Output Parameters of EaR³T**

871 EaR³T provides various functions that can be combined to tailored pipelines for automatic
872 3D radiative transfer (3D-RT) calculations as described in this paper (App. 1 – 5), as well as for
873 complex research projects beyond. Since EaR³T is written in Python, the modules and functions
874 can be integrated into existing functions developed by the users themselves. Parallelization is
875 enabled in EaR³T by default through multi-processing to accelerate computations. If multiple
876 CPUs are available, EaR³T will distribute jobs for the 3D RT calculations. By default, the
877 maximum number of CPUs will be used. Since EaR³T is designed to make the process of setting
878 up and running 3D-RT calculations simple, some parameters that are unavailable from the input
879 data but are required by the RT solvers are populated via default values and assumptions. However,
880 this does not mean that by using EaR³T, one must use these assumptions; they can be easily
881 superseded by user-provided settings. To facilitate this process, Table A1 provides a detailed list
882 of parameters (subject to change in future updates) that can be controlled and modified by the user.
883 In `examples/02_modis_rad-sim.py`, we defined these user-controllable parameters as
884 global variables for providing easy access to user. In the future, most of the parameters will be
885 controllable through a dedicated configuration file for optimal transparency. These parameters can
886 be changed within the code. For instance, by changing the parameters of '`date`' (Line 67 in
887 `examples/02_modis_rad-sim.py`) and '`region`' (Line 68 in
888 `examples/02_modis_rad-sim.py`) within `params` into the following:
889

```
params['date'] = datetime.datetime(2022, 2, 10)
params['region'] = [-6.8, -2.8, 17.0, 21.0]
```


890 one can perform similar RT calculations (as demonstrated in App. 2) for another date and region
891 of interest (here, west Sahara Desert on 10 February, 2022). Note that the code is under active
892 development, the line numbers are only valid in the version release of v0.1.1 and might change in
893 the future. Given the input parameters, EaR³T will calculate radiance or irradiance and save the
894 calculations into a HDF5 (Hierarchical Data Format version 5) file. The output data variables are
895 provided in Table A2.

896 In addition to the example code, intuitive and simple examples are provided in
897 `examples/00_er3t_mca.py` and `examples/00_er3t_lrt.py` for users who are
898 interested in learning the basics of setting up EaR³T for calculations. At the current stage, only

900 limited documentation is provided. However, community support is available from the author of
 901 this paper through Discord⁶. In the near-future, more effort will be invested into documentation to
 902 give the user more autonomy in creating new applications that cannot be derived from those
 903 provided in our paper.

904

Parameters	App. 1 examples/01_oc o2_rad-sim.py	App. 2 examples/02_mo dis_rad-sim.py	App. 3 examples/03_sp ns_flux-sim.py	App. 4 examples/04_ca m_nadir_rad- sim.py	App. 5 examples/05_cn n-les_rad- sim.py
Date	September 2, 2019 Specified at Line 66: <code>params['date']</code> And Line 1569: <code>date</code>	September 2, 2019 Specified at Line 68: <code>params['date']</code> And Line 1311: <code>date</code>	September 20, 2019 Specified at Line 439: <code>date</code> And Line 238: <code>date</code>	October 5, 2019 Specified at Line 59: <code>params['date']</code> And Line 215: <code>date</code>	October 5, 2019 Specified at Line 58: <code>params['date']</code> And Line 126: <code>date</code>
Geographical Region	Specified at Line 69: <code>params['region']</code>	Specified at Line 69: <code>params['region']</code>	Variable (depends on aircraft location)	N/A	N/A
Z Grid (Number of Grids/Resolution)	40 / 0.5 km Specified at Line 1476: <code>levels</code>	40 / 0.5 km Specified at Line 1220: <code>levels</code>	20 / 1 km Specified at Line 180: <code>levels</code>	40 / 0.5 km Specified at Line 174: <code>levels</code>	50 / 0.4km Specified at Line 92: <code>levels</code>
Wavelength	768.52 nm Specified at Line 67: <code>params['wavelen gth']</code>	650 nm Specified at Line 67: <code>params['wavelen gth']</code>	745 nm Specified at Line 440: <code>wavelength</code>	600 nm Specified at Line 58: <code>params['wavelen gth']</code>	600 nm Specified at Line 57: <code>params['wavelen gth']</code>
Atmospheric Gas Profile	US standard atmosphere Specified at Line 1479: <code>atm0</code>	US standard atmosphere Specified at Line 1223: <code>atm0</code>	US standard atmosphere Specified at Line 183: <code>atm0</code>	US standard atmosphere Specified at Line 177: <code>atm0</code>	US standard atmosphere Specified at Line 68: <code>params['atmosp heric_profile']</code> And Line 94: <code>atm0</code>
Atmospheric Gas Absorption	Case specific Specified at Line 1487: <code>abs0</code>	Default Absorption Database (Coddington et al., 2008) Specified at Line 1230: <code>abs0</code>	Default Absorption Database (Coddington et al., 2008) Specified at Line 189: <code>abs0</code>	Default Absorption Database (Coddington et al., 2008) Specified at Line 184: <code>abs0</code>	Default Absorption Database (Coddington et al., 2008) Specified at Line 97: <code>abs0</code>
Cloud Top Height (CTH)	From MODIS L2 cloud product Specified at Line 1520: <code>data['cth_2d']</code> And Line 1530: <code>cld0</code>	From MODIS L2 cloud product Specified at Line 1263: <code>data['cth_2d']</code> And Line 1273: <code>cld0</code>	From AHI L2 cloud product Specified at Line 208: <code>cth_2d</code> And Lines 212: <code>cld0</code>	2 km Specified at Line 63: <code>params['cloud_ top_height']</code> And Lines 199: <code>cld0</code>	From LES Specified at Line 103: <code>cld0</code>
Cloud Geometrical Thickness	1 km for CTH < 4 km; Variable that cloud base height is at 3 km for CTH > 4 km Specified at Line 1527: <code>cgt</code>	1 km for CTH < 4 km; Variable that cloud base height is at 3 km for CTH > 4 km And Line 1270: <code>cgt</code>	1 km Specified at Line 212: <code>cgt</code>	1 km Specified at Line 64: <code>params['cloud_ geometrical_th ickness']</code>	From LES Specified at Line 103: <code>cld0</code>

⁶ <https://discord.gg/ntqsguwaWv>

Cloud Optical Thickness	Used IPA reflectance-to-COT mapping for MODIS L1B Reflectance at 250 m resolution Specified at Line 1518: data['cot_2d'] And Line 1530: cld0	Used IPA reflectance-to-COT mapping for MODIS L1B Reflectance at 250 m resolution Specified at Line 1261: data['cot_2d'] And Line 1273: cld0	From AHI L2 cloud product Specified at Line 198: cot_2d And Lines 212: cld0	Used IPA reflectance-to-COT mapping and CNN for camera red channel radiance/reflectance at 100 m resolution Specified at Lines 474 and 493: cot_2d And Lines 199: cld0	From LES Specified at Line 103: cld0
Cloud Effective Radius	From MODIS L2 Cloud Product Specified at Line 1519: data['cer_2d'] And Line 1530: cld0	From MODIS L2 Cloud Product Specified at Line 1262: data['cer_2d'] And Line 1273: cld0	From AHI L2 cloud product Specified at Line 199: cer_2d And Lines 212: cld0	12 micron Specified at Lines 475 and 494: cer_2d And Lines 199: cld0	From LES Specified at Line 103: cld0
Scattering Phase Function	Mie (water cloud) Specified at Line 1536: pha0 And Line 1573: sca	Mie (water cloud) Specified at Line 1279: pha0 And Line 1315: sca	Mie (water cloud) Specified at Line 219: pha0 And Line 237: sca	Mie (water cloud) Specified at Line 190: pha0 And Line 219: sca	Mie (water cloud) Specified at Line 111: pha0 And Line 130: sca
Surface Albedo	From MODIS surface albedo product and scaled by OCO-2 Specified at Line 1501: mod43 And Line 1503: sfc_2d	From MODIS surface albedo product Specified at Line 1244: mod43 And Line 1246: sfc_2d	0.03 Implicitly specified by default at Line 234: mcarats_ng	0.03 Specified at Line 61: params['surface_albedo'] And Line 218: surface_albedo	0.03 Specified at Line 59: params['surface_albedo'] And Line 133: surface_albedo
Solar Zenith Angle	From OCO-2 geolocation file Specified at Line 1554: sza And Line 1576: solar zenith angle	From MODIS geolocation file Specified at Line 1296: sza And Line 1318: solar zenith angle	Variable (depends on aircraft location and date and time)	28.90° Specified at Line 464: geometry['sza'] And Line 222: solar zenith angle	29.16° Specified at Line 60: params['solar zenith angle'] And Line 134: solar zenith angle
Solar Azimuth Angle	From OCO-2 geolocation file Specified at Line 1555: saa And Line 1577: solar azimuth angle	From MODIS geolocation file Specified at Line 1297: saa And Line 1319: solar azimuth angle	Variable (depends on aircraft location and date and time)	296.83° Specified at Line 465: geometry['saa'] And Line 223: solar azimuth angle	296.83° Specified at Line 61: params['solar azimuth angle'] And Line 135: solar azimuth angle
Sensor Altitude	705 km (satellite altitude) Implicitly specified by default at Line 1568: mcarats_ng	705 km (satellite altitude) Implicitly specified by default at Line 1310: mcarats_ng	N/A, three-dimensional irradiance outputs at user-defined Z grid	5.48 km (flight altitude) Specified at Line 466: geometry['alt'] And Line 224: sensor_altitude	705 km (satellite altitude) Specified at Line 64: params['sensor altitude'] And Line 138: sensor_altitude
Sensor Zenith Angle	From OCO-2 geolocation file Specified at Line 1557: vza	From MODIS geolocation file Specified at Line 1302: vza	0° (nadir) Implicitly specified by default at Line 234: mcarats_ng	0° (nadir) Implicitly specified by default at Line 214: mcarats_ng	0° (nadir) Specified at Line 62: params['sensor zenith angle']

	And Line 1578: sensor zenith angle	And Line 1320: sensor zenith angle			And Line 136: sensor zenith angle
Sensor Azimuth Angle	From OCO-2 geolocation file Specified at Line 1558: vaa And Line 1579: sensor azimuth angle	From MODIS geolocation file Specified at Line 1303: vaa And Line 1321: sensor azimuth angle	0° (insignificant for nadir) Implicitly specified by default at Line 234: mcarats_ng	0° (insignificant for nadir) Implicitly specified by default at Line 214: mcarats_ng	0° (insignificant for nadir) Specified at Line 63: params['sensor azimuth angle'] And Line 137: sensor azimuth angle
Number of Photons	1×10^8 per run Specified at Line 70: params['photon'] And Line 1583: photons	1×10^8 per run Specified at Line 70: params['photon'] And Line 1325: photons	1×10^7 per run Specified at Line 50: params['photon'] And Line 243: photons	1×10^7 per run Specified at Line 60: params['photon'] And Line 228: photons	1×10^8 per run Specified at Line 65: params['photon'] And Line 141: photons
Number of Runs	3 Specified at Line 1581: Nrun	3 Specified at Line 1323: Nrun	3 Specified at Line 242: Nrun	3 Specified at Line 226: Nrun	3 Specified at Line 140: Nrun
Mode (3D or IPA)	3D and IPA Specified at Line 1704 and 1705: solver And Line 1584: solver	3D or IPA Specified at Line 1418: solver And Line 1326: solver	3D and IPA Specified at Lines 377 and 378: solver And Line 244: solver	3D Specified at Lines 507 and 508: solver And Line 229: solver	3D Specified at Line 143: solver
Parallelization Mode	Python multi-processing Specified at Line 1586: mp mode	Python multi-processing Specified at Line 1328: mp mode	Python multi-processing Specified at Line 247: mp mode	Python multi-processing Specified at Line 231: mp mode	Python multi-processing Specified at Line 145: mp mode
Number of CPUs	12 Specified at Line 71: params['Ncpu'] And Line 1585: Ncpu	12 Specified at Line 71: params['Ncpu'] And Line 1327: Ncpu	12 Specified at Line 311: Ncpu And Line 246: Ncpu	12 Specified at Line 230: Ncpu	24 on clusters Specified at Line 144: Ncpu

905
906
907
908
909
910
911

Table A1: List of parameters used in the five applications. The line numbers used in the table are referring to the code script of each application. If two line numbers are provided, the first one indicates where the parameter is defined and the second one indicates where the parameter is passed into the radiative transfer setup. Users can change either one for customization purposes.

Metadata			
Variable Name	Description	Data Type	Dimension
mean/N_photon	Number of photons per run	Array	N_g
mean/N_run	Number of runs	Integer value	N/A
mean/toa	TOA downwelling flux	Float value	N/A
Radiance			
Variable Name	Description	Data Type	Dimension

mean/rad	Radiance field at user specified altitude averaged over different runs	Array	(N_x, N_y)
mean/rad_std	Standard deviation of the radiance fields from different runs	Array	(N_x, N_y)
Irradiance			
Variable Name	Description	Data Type	Dimension
mean/f_down	Downwelling irradiance averaged over different runs	Array	(N_x, N_y, N_z)
mean/f_down_std	Standard deviation of the downwelling irradiance from different runs	Array	(N_x, N_y, N_z)
mean/f_down_diffuse	Diffuse downwelling irradiance averaged over different runs	Array	(N_x, N_y, N_z)
mean/f_down_diffuse_std	Standard deviation of the diffuse downwelling irradiance from different runs	Array	(N_x, N_y, N_z)
mean/f_down_direct	Direct downwelling irradiance averaged over different runs	Array	(N_x, N_y, N_z)
mean/f_down_direct_std	Standard deviation of the direct downwelling irradiance from different runs	Array	(N_x, N_y, N_z)
mean/f_up	Upwelling irradiance averaged over different runs	Array	(N_x, N_y, N_z)
mean/f_up_std	Standard deviation of the upwelling irradiance from different runs	Array	(N_x, N_y, N_z)

912

913 **Table A2:** Data variables contained in the output HDF5 file from EaR³T for radiance and irradiance calculations. The
 914 radiance is simulated with a user-specified sensor geometry at a given altitude using forward photon tracing.
 915 The data variables listed under Metadata are included for both radiance and irradiance calculations. N_x,
 916 N_y, and N_z are the number of pixels along x, y, and z direction, respectively. N_g is the number of g,
 917 explained in Appendix A2 – Correlated-k.

918

919 **A2 – EaR³T Code Walk-through**

920 We will provide a code walk-through of the OCO-2 and MODIS simulator applications
 921 with the codes `examples/01_oc02_rad-sim.py` (App. 1) and
 922 `examples/02_modis_rad-sim.py` (App. 2). The data acquisition (first step in Figure 1)

923 uses functions in `er3t/util`. App. 1 and App. 2 use the functions in `er3t/util/modis.py`
924 and `er3t/util/oco2.py` for downloading the MODIS and OCO-2 data files from the
925 respective NASA data archives and for processing the data (e.g., geo-mapping, gridding etc.). The
926 user supplies minimum input (date and time, as well as latitudes and longitudes of the region of
927 interest), which need to be specified in `satellite_download` (within the application codes).
928 For example, for App. 1 and App. 2, the only user inputs are the date and time and the region of
929 interest – in this case September 2, 2019, with the westernmost, easternmost, southernmost, and
930 northernmost longitudes and latitudes of 109°W, 107°W, 37°N, and 39°N. In order for EaR³T to
931 access any data archives such as NASA Earthdata, the user needs to create an account with them
932 and store the credentials locally (detailed instructions are provided separately along with the EaR³T
933 distribution).

934 After the data acquisition step, the satellite data are fed into the pre-processing step for 1)
935 atmospheric gases (`er3t/pre/atm`), 2) clouds (`er3t/pre/cld`), 3) surface
936 (`er3t/pre/sfc`) as shown in Figure 1. In the default configuration of the App. 1, the standard
937 US atmosphere (Anderson et al., 1986; included in the EaR³T repository) is used within `atm`.
938 EaR³T supports the input of user-specified atmospheric profiles, e.g., atmospheric profiles from
939 reanalysis data for App. 2, by making changes in `atm_atmmod` (from `er3t/pre/atm`).
940 Subsequently, molecular scattering coefficients are calculated by `cal_mol_ext` (from
941 `er3t/util`), and absorption coefficients for atmospheric gases are generated by
942 (`er3t/pre/abs`). At the current development stage, two options are available:

943 1. Line-by-line (used by App. 1): The repository includes a sample file of absorption coefficient
944 profiles for a subset of wavelengths within OCO-2’s Oxygen A-Band channel, corresponding
945 to a range of atmospheric transmittance values from low (opaque) to high (so-
946 called “continuum” wavelength). They were generated by an external code based on OCO-
947 2’s line-by-line absorption coefficient database (ABSCO, Payne et al., 2020). They are
948 calculated for a fixed mixing ratio of 400 ppm. In a subsequent paper, an OCO-2 specific
949 EaR³T code will be published where the actual mixing ratio is used. For each OCO-2
950 spectrometer wavelength within a given channel, hundreds of individual absorption
951 coefficient profiles at the native resolution of ABSKO need to be considered across the
952 instrument line shape (ILS, also known as the slit function) of the spectrometer. The ILS, as
953 well as the incident solar irradiance, are also included in the file. In subsequent steps, EaR³T

954 performs RT calculations at the native spectral resolution of ABSCO, but then combines the
955 output by convolving with the ILS and outputs OCO-2 radiances or reflectances at the subset
956 of wavelengths. For probabilistic (Monte Carlo) RT solvers such as MCARaTS, the number
957 of photons can be kept relatively low (e.g., 10^6 photons), and can be adjusted according to
958 the values of the ILS at a particular ABSCO wavelength. Any uncertainty at the ABSCO
959 spectral resolution due to photon noise is greatly reduced by convolving with the ILS for the
960 final output.

961 2. Correlated-k (used by App. 2): This approach (Mlawer et al., 1997) is appropriate for
962 instruments such as MODIS with much coarser spectral resolution than OCO-2, as well as
963 for broadband calculations. In contrast to the line-by-line approach, RT calculations are not
964 performed at the native resolution of the absorption database, but at Gaussian quadrature
965 points (called “g’s”) that represent the full range of sorted absorption coefficients, and then
966 combined using Gaussian quadrature weights. The repository includes an absorption
967 database from Coddington et al. (2008), developed specifically for a radiometer with
968 moderate spectral resolution on the basis of HITRAN (high-resolution transmission
969 molecular absorption database) 2004 (Rothman et al., 2005). It was created for the ILS of
970 the airborne Solar Spectral Flux Radiometer (SSFR, Pilewskie et al., 2003), but is applied to
971 MODIS here, which has a moderate spectral resolution of 8-12 nm with 20-50 nm
972 bandwidths. It uses 16 absorption coefficient bins (g’s) per target wavelength (this could
973 either be an individual SSFR or a MODIS channel), which are calculated by EaR³T with the
974 Coddington et al. (2008) database using the mixing ratios of atmospheric gases in the
975 previously ingested profile. In future implementations, the code will be updated to enable
976 flexible ILS and broadband calculations.

977 The `er3t/pre/cld` module calculates extinction, thermodynamic phase, and effective
978 droplet radius of clouds from the input data. The `er3t/pre/pha` module creates the required
979 single scattering albedo and scattering phase function. The default is a Henyey-Greenstein phase
980 function with a fixed asymmetry parameter of 0.85. Along with the current distribution (v0.1.1) of
981 EaR³T, the Mie phase functions based on thermodynamic phase, effective droplet radius, and
982 wavelength are supported. In this study, App. 1 and App. 2 use Mie phase functions calculated
983 from Legendre polynomial coefficients (originally distributed along with libRadtran) based on the
984 wavelength and cloud droplet effective radius. In the future, EaR³T will include stand-alone phase

985 functions, which can be chosen on the basis of droplet size distributions in addition to effective
986 radius. It is also possible to include aerosols in a similar fashion as clouds. This is done with the
987 `er3t/pre/aer` module. In the case of aerosols, spectral single scattering albedo and asymmetry
988 parameter are required as inputs in addition to the extinction fields.

989 After the optical properties are calculated, they are passed into the 3D-RT step
990 (`er3t/rtm/mca`). This step performs the setup of RT solver-specified input parameters and data
991 files, distributing runs over multiple Central Processing Units (CPUs), and post-processing RT
992 output files into a single, user-friendly HDF5 file. For example, when radiance is specified as
993 output (default in App. 1 and App. 2), key information such as the radiance field and its standard
994 deviation are stored in the final HDF5 file (details see Table 1).

995 While the EaR³T repository comes with various applications such as App. 1 and App. 2,
996 described above, the functions used by these master or ‘wrapper’ programs can be organized in
997 different ways, where the existing applications serve as templates for a quick start when developing
998 new applications. The functions used by the master code pass information through the various
999 steps as Python objects. For example, in `examples/01_oco2_rad-sim.py`, the downloaded
1000 and processed satellite data are stored into the `sat` object. Later, the `sat` object is passed into an
1001 EaR³T function to create the `cld` object that contains cloud optical properties. Similarly, EaR³T
1002 provides functions to create the `atm`, and `sfc` objects with optical properties for atmospheric
1003 gases and the surface. These objects (`atm`, `cld`, `sfc`) are in turn passed on to solver-specific
1004 modules for performing RT calculations. The user can choose to save the data of the intermediate
1005 objects into Python pickle files after the first run. In this way, multiple calls with identical input
1006 can re-use existing data, which accelerates the processing time of EaR³T. Unless the user specifies
1007 the `overwrite` keyword argument in the object call to reject saving pickle files, these shortcuts
1008 save significant time.

1009

1010 **Appendix B – App. 5 Radiance calculations based on the Large Eddy Simulation**

1011 The CNN COT retrieval framework was developed by Nataraja et al. (2022). It adapts a
1012 U-Net (Ronneberger et al., 2015) architecture and treats the retrieval of COT from radiance as a
1013 segmentation problem – probabilities of 36 COT classes (ranging from COT of 0 to 100) are
1014 returned as the final COT retrieved for a given cloud radiance field. It accounts for horizontal
1015 photon transport, which is neglected in traditional cloud retrieval algorithms; in other words, for

1016 the spatial context of cloudy pixels. It was trained on synthetic cloud fields generated by a Large
 1017 Eddy Simulation (LES) model, which provides the ground truth of COT. Subsequently, EaR³T was
 1018 used to calculate 3D-RT radiances at 600 nm for LES cloud fields to establish a mapping between
 1019 radiance to COT. Only six LES cases were used to represent the variability of the cloud
 1020 morphology. Each of these fields are 480x480 pixels across (spatial resolution of 100 m). These
 1021 large fields were mapped onto thousands of 64x64 mini tiles with spatial resolution of 100 m as
 1022 described in Nataraja et al., 2022. To keep the training data set small, mini tiles selectively sampled
 1023 according to their mean COT and standard deviation. This ensured an even representation of the
 1024 dynamic range of COT and its variability, which was termed homogenization of the training data
 1025 set. Figure A1 shows a collection of samples from the training data as an illustration. All the
 1026 aforementioned simulation setup and techniques in data process are included in the App. 5 example
 1027 code, which can be applied to the LES data (a different scene from the 6 scenes) distributed along
 1028 with EaR³T.

1029

1030

1031

1032 **Figure A1.** Illustrations of 64x64 tiles of **(a)** cloud optical thickness from LES data and **(b)** calculated 3D radiance at
1033 600 nm from EaR³T for CNN training.

1034

1035 **Appendix C**

1036 **C1. Cloud Detection/Identification**

1037 Cloudy pixels are identified through a thresholding method based on the red, green, and
1038 blue channels of MODIS. When the radiance values of the red, green, and blue channels of a pixel
1039 are all greater than a pre-calculated threshold value, the pixel is considered as cloudy, as illustrated
1040 by the following equation

$$1041 \text{If } \begin{aligned} & \text{Red} > a_R \cdot \text{Quantile}(\text{Red}, q_0) \& \\ & \text{Blue} > a_B \cdot \text{Quantile}(\text{Blue}, q_0) \& \\ & \text{Green} > a_G \cdot \text{Quantile}(\text{Green}, q_0) \end{aligned} \quad \left\{ \begin{array}{l} \text{Yes: cloudy} \\ \text{No: clear sky} \end{array} \right. \quad (\text{A1})$$

1042 where a_R , a_B , and a_G are scale factors with a default value of 1.0, and *Quantile* returns the q_0
1043 percentile of the sorted reflectance data (ascending order; $q_0 = 0.5$ is equivalent to the median).
1044 The scale factors can be adjusted separately to perform fine tuning for different surface types. For
1045 example, adjusting a_G will be more effective for separating clouds from greenish vegetation
1046 surface than the other two factors. For simplicity, they are all set to 1.0 for the case shown in App.
1047 1 and 2. The q_0 is determined by the following equation,

$$1048 q_0 = \max(0, 1 - \text{frac}_{\text{cld}} \cdot 1.2) \quad (\text{A2})$$

1049 where frac_{cld} is cloud fraction obtained from the MODIS L2 cloud product (number of cloudy
1050 pixels divided by the number of total pixels). Through the definition of q_0 , the threshold-based
1051 cloud detection method is pegged to the MODIS product at the domain scale. Because of the coarse
1052 resolution of the MODIS-based cloud mask, it cannot be used directly for our application.
1053 However, it uses many more channels than available at high spatial resolution, and is therefore
1054 more accurate. The factor of 1.2 can be adjusted. A value of higher than 1 allows for clouds that
1055 are not detected by MODIS (for various reasons, for example because of their spatial scale) to be
1056 picked up. At the same time, this leads to over-detection (false positives, i.e. clear-sky pixels
1057 identified as cloudy), and therefore the thresholding is only the first step (primary thresholding),
1058 followed by the next (secondary) step where false positives are removed.

1059 The secondary step is based on MODIS L2 cloud products: *COT* (cloud optical thickness),
1060 *CER* (cloud effective radius), and *CTH* (cloud top height). For the pixels that are identified as
1061 cloudy in the primary thresholding, especially at the lower end of the reflectance (*Ref.*), we rely

1062 on the clear-sky identifiers from MODIS L2 cloud product (where no cloud products are retrieved),
1063 as illustrated by the following equation

1064 **If** $Ref. < Median(Ref.) \& COT, CER, \text{ and } CTH \text{ are } NaN$ **{** Yes: clear sky
1065 **No:** cloudy **}** (A3)

1066 Figure A2 shows the cloud mask from primary thresholding (Equation A1, red and purple), and
1067 the pixels that are reverted to clear-sky by the secondary filter (Equation A2, red).

1068
1069 **Figure A2.** Cloud mask for the scene shown in Figure 2. Red and purple indicate pixels identified as cloudy through
1070 the primary thresholding (Equation A1) and purple indicates pixels finally identified as cloudy after applying
1071 secondary filter (Equation A3).

1072

1073 C2. IPA Reflectance-to-COT Mapping

1074 In order to retrieve COT (cloud optical thickness) from cloud reflectance as measured by
1075 various instruments, we use the EaR³T built-in solver MCARaTS in IPA mode to calculate a
1076 lookup table of reflectance as a function of COT. The function for generating these lookup tables
1077 is included in EaR³T as `er3t.rtm.mca.func_ref_vs_cot`. Two mappings are generated
1078 for App. 1&2 to account for geometrically thin (cloud top height less than 4 km) and thick (cloud
1079 top height greater than 4 km) clouds separately while a single mapping is generated for App. 4.
1080 Specifically, for a range of COT (0 to 200), reflectance is calculated from EaR³T with the same
1081 input parameters (wavelength, viewing and solar geometries, and surface albedo) listed in Table
1082 A1 for each application except for a few simplifications described in the following table (Table
1083 A3):

1084

	App. 1 & 2		App. 4
Cloud Type	Geometrically Thin Clouds	Geometrically Thick Clouds	All
Cloud Effective Radius	$10 \mu m$	$20 \mu m$	$10 \mu m$
Cloud Top Height	3 km	10 km	2 km
Cloud Geometrical Thickness	1 km	7 km	1 km
Surface Albedo	0.08 (domain average of the MCD43 WSA)	0.08 (domain average of the MCD43 WSA)	0.03

1085

1086 **Table A3:** List of parameters for deriving IPA reflectance-to-COT (cloud optical thickness) mappings for App. 1&2
 1087 and App. 4 in addition to Table A1.

1088

1089 The clouds are assumed horizontally homogeneous over a 2×2 pixel domain. For each
 1090 calculation, 10^8 photons are used for running EaR³T in IPA mode. After calculating $R(COT)$, the
 1091 inverse relationship of $COT(R)$ is then used for estimating COT at any given R for the cloudy
 1092 pixels. Figure A3 shows the IPA reflectance-to-COT mappings created for App. 1&2, and App 4.
 1093 Note that the difference between the App. 1&2 thin clouds (blue) and App. 4 (green) is due to
 1094 different surface albedos (when COT less than 20) and sensor viewing geometries (when COT
 1095 greater than 20, specified in Table A1). Note that this approach will ensure IPA
 1096 radiance/reflectance consistency (retrieved IPA COT will reproduce the exact IPA cloud
 1097 reflectance, see Figure A4) because the radiative transfer processes of $R(COT)$ and $COT(R)$ are
 1098 the same. However, since it makes some simplifications as mentioned above, uncertainties are
 1099 expected for a complicated atmospheric environment (varying cloud thermodynamic phase,
 1100 effective radius, cloud top height, geometrical thickness, vertical profile; variable surface albedo
 1101 and topography), which are shown up as spread (deviations from identity line) in Figure A4.

1102

Figure A3. The IPA reflectance-to-COT mappings used for App. 1&2 (red and blue) and App. 4 (green). The reflectance is normalized by the cosine of solar zenith angle (referred to as solar noon reflectance). The uncertainties associated with photon statistics are indicated by the shaded area.

Figure A4. (a) and (b) are the same as Figure 7 and Figure 13b except for the IPA radiance calculations.

Appendix D

D1. Parallax Correction

From the satellite's view, the clouds (especially high clouds) will be placed at inaccurate locations on the surface, which have shifted from their actual locations due to the parallax effect. We followed simple trigonometry to correct for it, as follows:

Longitude correction (positive from west to east):

1118
$$\delta lon = \frac{(z_{cld} - z_{sfc}) \cdot \tan(\theta) \cdot \sin(\phi)}{\pi \cdot R_{Earth}} \times 180^\circ \quad (A4)$$

1119 Latitude correction (positive from south to north):

1120
$$\delta lat = \frac{(z_{cld} - z_{sfc}) \cdot \tan(\theta) \cdot \cos(\phi)}{\pi \cdot R_{Earth}} \times 180^\circ \quad (A5)$$

1121 where $(lon_{sat}, lat_{sat}, z_{sat})$ is the satellite location and θ and ϕ (0° at north, positive clockwise)
 1122 are the sensor viewing zenith and azimuth angles. z_{cld} and z_{sfc} are the cloud top height and the
 1123 surface height. R_{Earth} is the radius of the Earth. Figure A2 shows an illustration of the parallax
 1124 correction for the cloud field in the inset in Figure 2. Note that discontinuities in the latitude and
 1125 longitude fields arising from different combinations of sensor viewing geometries and cloud top
 1126 and surface heights may lead to gaps in the cloud fields. These gaps are identified and filled in
 1127 with the average of data from adjacent pixels (plus minus two pixels along x and y) through the
 1128 following process:

1129
$$\text{If } cldfrac(pixel_{ij}^{bef}[i-2:i+2, j-2:j+2]) > frac_a \& \begin{cases} \text{Yes: fill } pixel_{ij}^{aft} \text{ with the average of} \\ cld(pixel_{ij}^{aft}[i-2:i+2, j-2:j+2]) > frac_b \& \end{cases}$$

 1130 where $pixel_{ij}$ indicates the pixel at i along x and j along y, *bef* and *aft* refer to before and after
 1131 parallax correction respectively, *cldfrac* calculates cloud fraction (number of cloudy pixels
 1132 divided by total pixel number), and *cld* selects data where pixels are identified as cloudy. The
 1133 $frac_a$ and $frac_b$ are set to 0.7 for the cases demonstrated in the paper. Lower $frac_a$ tends to over
 1134 select clear-sky pixels at the cloud edge and lower $frac_b$ tends to over correct clear-sky pixels
 1135 within clouds that are not clear-sky due to parallax artifacts. While increase $frac_a$ and $frac_b$
 1136 tends to under correct parallax artifacts.

1137

1138 **D2. Wind Correction**

1139 The wind correction aims at correcting the movement of clouds when advected by the wind
 1140 between two different satellites' overpasses.

1141 Longitude correction (positive from west to east):

1142
$$\delta lon = \frac{\bar{u} \cdot \delta t}{\pi \cdot R_{Earth}} \times 180^\circ \quad (A6)$$

1143 Latitude correction (positive from south to north):

1144
$$\delta lat = \frac{\bar{v} \cdot \delta t}{\pi \cdot R_{Earth}} \times 180^\circ \quad (A7)$$

1145 where \bar{u} and \bar{v} are the domain-averaged 10 m zonal and meridional wind speeds, and δt is the time
 1146 difference between two different satellites that fly on the same orbit. Figure A2 shows the cloud
 1147 location after applying the parallax (Appendix D1) and wind correction for the cloud field in the
 1148 inset from Figure 2.

1149

1150

1151

1152 **Figure A5.** An illustration of correcting cloud location (red) for parallax effect (blue) and wind effect (green) for the
 1153 cloud field of the inset in Figure 2. Filled cloud gaps as described in Appendix D1 are indicated by black
 1154 circles.
 1155

1156

1157 **Acknowledgement**

1158 The aircraft all-sky camera was radiometrically calibrated by the U.S. Naval Research Laboratory.
1159 We thank Jens Redemann for insightful discussions on Figure 9 (App. 3) about the apparent
1160 contradiction of the direction of the COT, reflectance, and transmittance biases.

1161

1162 **Data availability**

1163 For App. 1 and App. 2, the OCO-2 data were provided by the NASA Goddard Earth Sciences Data
1164 and Information Services Center (GES DISC, <https://oco2.gesdisc.eosdis.nasa.gov/data>) and the
1165 MODIS data were provided by the NASA Goddard Space Flight Center's Level-1 and Atmosphere
1166 Archive and Distribution System (LAADS, <https://ladsweb.modaps.eosdis.nasa.gov/archive>),
1167 which are all publicly available and can be downloaded by EaR³T through the application code.
1168 For App. 3, the AHI data were processed by Holz's (coauthor of this paper) team. The SPN-S data
1169 were provided by Schmidt and Norgren (coauthors of this paper). Both the AHI and SPN-S data
1170 are publicly available at NASA Airborne Science Data for Atmospheric Composition
1171 (<https://www-air.larc.nasa.gov/missions/camp2ex/index.html>). The AHI data and the SPN-S data
1172 for the flight track indicated in Figure 8 of the paper are distributed along with EaR³T for
1173 demonstration purpose. For App. 4, all sky camera imagery and CNN model are distributed along
1174 with EaR³T. EaR³T is publicly available and can be accessed and downloaded at
1175 <https://github.com/hong-chen/er3t> (or <https://doi.org/10.5281/zenodo.7734965> for v0.1.1 used in
1176 this paper; Chen and Schmidt, 2022).

1177

1178 **Author contributions**

1179 All the authors helped with editing the paper. HC developed the EaR³T package in Python
1180 including the application code, performed the analysis, and wrote the majority of the paper with
1181 input from the other authors. KSS provided an initial MCARaTS simulation wrapper code in
1182 Interactive Data Language (IDL); helped with the structure design of EaR³T; and helped with
1183 interpreting the results and writing the paper. SM helped with the OCO-2 data interpretation. VN
1184 trained and provided the CNN model. MN helped with the SPN-S instrument calibration and data
1185 processing. JG and GF helped with testing EaR³T and the LES data interpretation. RH provided
1186 the AHI data and helped with the data interpretation. HI helped with the implementation of
1187 MCARaTS in EaR³T.

1188 **Competing Interests**

1189 K. Sebastian Schmidt is a member of the editorial board of Atmospheric Measurement Techniques.

1190 **References**

1191 Anderson, G. P., Clough, S. A., Kneizys, F. X., Chetwynd, J. H., and Shettle, E. P.: AFGL
1192 atmospheric constituent profiles (0–120 km), Tech. Rep. AFGL-TR-86-0110, Air Force
1193 Geophys. Lab., Hanscom Air Force Base, Bedford, Massachusetts, U.S.A., 1986.

1194 Barker, H. and Liu, D.: Inferring optical depth of broken clouds from Landsat data, *J. Climate*, 8,
1195 2620–2630, 1995.

1196 Barker, H. W., Jerg, M. P., Wehr, T., Kato, S., Donovan, D. P., and Hogan, R. J.: A 3D cloud
1197 construction algorithm for the EarthCARE satellite mission, *Q. J. Roy. Meteor. Soc.*, 137,
1198 1042–1058, <https://doi.org/10.1002/qj.824>, 2011.

1199 Barker, H. W., Kato, S., and Wehr, T.: Computation of solar radiative fluxes by 1-D and 3-D
1200 methods using cloudy atmospheres inferred from A-train satellite data, *Surv. Geophys.*, 33,
1201 657–676, 2012.

1202 Cahalan, R., Oreopoulos, L., Marshak, A., Evans, F., Davis, A., Pincus, R., Yetzen, K. H., Mayer,
1203 B., Yetzer, K. H., Mayer, B., Davies, R., Ackerman, T. P., Barker, H. W., Clothiaux, E. E.,
1204 Ellingson, R. G., Garay, M. J., Kassianov, E., Kinne, S., Macke, A., O'Hirok, W., Partain, P.
1205 T., Prigarin, S. M., Rublev, A. N., Stephens, G. L., Szczap, F., Takara, E. E., Varnai, T., Wen,
1206 G., and Zhuravleva, T.: The I3RC: Bringing Together the Most Advanced Radiative Transfer
1207 Tools for Cloudy Atmospheres, *B. Am. Meteorol. Soc.*, 86, 1275–1293, 2005.

1208 Chen, H. and Schmidt, S.: er3t-v0.1.1, <https://doi.org/10.5281/zenodo.7734965>, 2023.

1209 Chen, H., Schmidt, S., and Holz, R. E.: Synchronized Flight Videos for NASA CAMP²Ex,
1210 <https://doi.org/10.5281/zenodo.7358509>, 2022.

1211 Crisp, D.: Measuring Atmospheric Carbon Dioxide from Space with the Orbiting Carbon
1212 Observatory-2 (OCO-2), *P. Soc. Photo.-Opt. Ins.*, 9607, 960702,
1213 <https://doi.org/10.1117/12.2187291>, 2015.

1214 Coddington, O., Schmidt, K. S., Pilewskie, P., Gore, W. J., Bergstrom, R., Roman, M., Redemann,
1215 J., Russell, P. B., Liu, J., and Schaaf, C. C.: Aircraft measurements of spectral surface albedo
1216 and its consistency with ground-based and space-borne observations, *J. Geophys. Res.*, 113,
1217 D17209, doi:10.1029/2008JD010089, 2008.

1218 Deneke, H., Barrientos-Velasco, C., Bley, S., Hünerbein, A., Lenk, S., Macke, A., Meirink, J. F.,
1219 Schroedter-Homscheidt, M., Senf, F., Wang, P., Werner, F., and Witthuhn, J.: Increasing the
1220 spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-

1221 resolution visible channel: implementation and examples, *Atmos. Meas. Tech.*, 14, 5107–
1222 5126, <https://doi.org/10.5194/amt-14-5107-2021>, 2021.

1223 Deutschmann, T., Beirle, S., Friess, U., Grzegorski, M., Kern, C., Kritten, L., Platt, U., Prados-
1224 Roman, C., Pukite, J., Wagner, T., Werner, B., and Pfeilsticker, K.: The Monte Carlo
1225 atmospheric radiative transfer model McArtim: introduction and validation of Jacobians and
1226 3-D features, *J. Quant. Spectrosc. Ra.*, 112(6), 1119–1137, ISSN 0022-4073,
1227 doi:10.1016/j.jqsrt.2010.12.009, 2011.

1228 Doicu, A., Efremenko, D., and Trautmann, T.: A multi-dimensional vector spherical harmonics
1229 discrete ordinate method for atmospheric radiative transfer, *J. Quant. Spectrosc. Ra.*, 118,
1230 121–131, <https://doi.org/10.1016/j.jqsrt.2012.12.009>, 2013.

1231 Emde, C., Barlakas, V., Cornet, C., Evans, F., Korkin, S., Ota, Y., Labonne, L. C., Lyapustin,
1232 A., Macke, A., Mayer, B., and Wendisch, M.: IPRT polarized radiative transfer model
1233 intercomparison project – Phase A, *Journal of Quantitative Spectroscopy and Radiative
1234 Transfer*, 164, 8–36, <https://doi.org/10.1016/j.jqsrt.2015.05.007>, 2015.

1235 Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J., Richter,
1236 B., Pause, C., Dowling, T., and Bugliaro, L.: The libRadtran software package for radiative
1237 transfer calculations (version 2.0.1), *Geosci. Model Dev.*, 9, 1647–1672,
1238 <https://doi.org/10.5194/gmd-9-1647-2016>, 2016.

1239 Evans, K. F.: The spherical harmonics discrete ordinate method for three-dimensional atmospheric
1240 radiative transfer, *J. Atmos. Sci.*, 55, 429–446, 1998.

1241 Gatebe, C. K., Jethva, H., Gautam, R., Poudyal, R., and Várnai, T.: A new measurement approach
1242 for validating satellite-based above-cloud aerosol optical depth, *Atmos. Meas. Tech.*, 14,
1243 1405–1423, <https://doi.org/10.5194/amt-14-1405-2021>, 2021.

1244 Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.: Surface Solar Irradiance in
1245 Continental Shallow Cumulus Fields: Observations and Large-Eddy Simulation, *J. Atmos.
1246 Sci.*, 77, 1065–1080, <https://doi.org/10.1175/JAS-D-19-0261.1>, 2020a.

1247 Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.: On the Relationship
1248 Between Shallow Cumulus Cloud Field Properties and Surface Solar Irradiance, *Geophysical
1249 Research Letters*, 47, e2020GL090152, <https://doi.org/10.1029/2020GL090152>, 2020b.

1250 Gristey, J. J., Feingold, G., Glenn, I. B., Schmidt, K. S., and Chen, H.:
1251 Influence of Aerosol Embedded in Shallow Cumulus Cloud Fields on the Surface Solar

1252 Irradiance, *Journal of Geophysical Research: Atmospheres*, 127, e2022JD036822,
1253 <https://doi.org/10.1029/2022JD036822>, 2022.

1254 Heidinger, A. K., Foster, M. J., Walther, A., and Zhao, X.: The Pathfinder Atmospheres-Extended
1255 AVHRR climate dataset, *B. Am. Meteorol. Soc.*, 95, 909–922,
1256 <https://doi.org/10.1175/BAMS-D-12-00246.1>, 2014.

1257 Illingworth, A. J., Barker, H. W., Beljaars, A., Chepfer, H., Delanoe, J., Domenech, C., Donovan,
1258 D. P., Fukuda, S., Hirakata, M., Hogan, R. J., Huenerbein, A., Kollias, P., Kubota, T.,
1259 Nakajima, T., Nakajima, T. Y., Nishizawa, T., Ohno, Y., Okamoto, H., Oki, R., Sato, K.,
1260 Satoh, M., Wandinger, U., Wehr, T., and van Zadelhoff, G.: The EarthCARE Satellite: the
1261 next step forward in global measurements of clouds, aerosols, precipitation and radiation, *B.
1262 Am. Meteorol. Soc*, 96, 1311–1332, <https://doi.org/10.1175/BAMS-D-12-00227.1>, 2015.

1263 Iwabuchi, H.: Efficient Monte Carlo methods for radiative transfer modeling, *J. Atmos. Sci.*, 63,
1264 2324–2339, 2006.

1265 Kindel, B. C., Schmidt, K. S., Pilewskie, P., Baum, B. A., Yang, P., and Platnick, S.: Observations
1266 and modeling of ice cloud shortwave spectral albedo during the Tropical Composition, Cloud
1267 and Climate Coupling Experiment (TC⁴), *J. Geophys. Res.*, 115, D00J18,
1268 doi:10.1029/2009JD013127, 2010.

1269 King, M., and Platnick, S.: The Earth Observing System (EOS), *Comprehensive Remote Sensing*,
1270 7, 26, doi:10.1016/b978-0-12-409548-9.10312-4, 2018.

1271 Levis, A., Schechner, Y. Y., Davis, A. B., and Loveridge, J.: Multi-View Polarimetric Scattering
1272 Cloud Tomography and Retrieval of Droplet Size, *Remote Sens.*, 12, 2831,
1273 <https://doi.org/10.3390/rs12172831>, 2020.

1274 Li, J., Scinocca, J., Lazare, M., McFarlane, N., von Salzen, K., and Solheim, L.: Ocean Surface
1275 Albedo and Its Impact on Radiation Balance in Climate Models, *J. Climate*, 19, 6314–6333,
1276 2006.

1277 Long, C. N., Bucholtz, A., Jonsson, H., Schmid, B., Vogelmann, A., and Wood, J.: A Method of
1278 Correcting for Tilt from Horizontal in Downwelling Shortwave Irradiance Measurements on
1279 Moving Platforms, *The Open Atmospheric Science Journal*, 4, 78–87, 2010.

1280 Loveridge, J., Levis, A., Di Girolamo, L., Holodovsky, V., Forster, L., Davis, A. B., and Schechner,
1281 Y. Y.: Retrieving 3D distributions of atmospheric particles using Atmospheric Tomography
1282 with 3D Radiative Transfer – Part 1: Model description and Jacobian calculation, *Atmos.*

1283 Meas. Tech. Discuss. [preprint], <https://doi.org/10.5194/amt-2022-251>, in review, 2022.

1284 Masuda, R., Iwabuchi, H., Schmidt, K. S., Damiani, A. and Kudo, R.: Retrieval of Cloud Optical
1285 Thickness from Sky-View Camera Images using a Deep Convolutional Neural Network
1286 based on Three-Dimensional Radiative Transfer, *Remote Sensing*, 11(17), 1962,
1287 doi:10.3390/rs11171962, 2019.

1288 Marshak, A., Davis, A., Wiscombe, W., and Cahalan, R.: Radiative smoothing in fractal clouds, *J.
1289 Geophys. Res.*, 100, 26247–26261, <https://doi.org/10.1029/95JD02895>, 1995.

1290 Marshak, A., Wen, G., Coakley, J., Remer, L., Loeb, N. G., and Cahalan, R. F.: A simple model
1291 for the cloud adjacency effect and the apparent bluing of aerosols near clouds, *J. Geophys.
1292 Res.*, 113, D14S17, <https://doi.org/10.1029/2007JD009196>, 2008.

1293 Massie, S. T., Schmidt, K. S., Eldering, A., and Crisp, D.: Observational evidence of 3-D cloud
1294 effects in OCO-2 CO₂ retrievals, *J. Geophys. Res. Atmos.*, 122, 7064–7085,
1295 <https://doi.org/10.1002/2016JD026111>, 2017.

1296 Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer
1297 calculations – description and examples of use, *Atmos. Chem. Phys.*, 5, 1855–1877,
1298 <https://doi.org/10.5194/acp-5-1855-2005>, 2005.

1299 Mayer, B.: Radiative transfer in the cloudy atmosphere, *EPJ Web of Conferences*, 1, 75–99,
1300 doi:10.1140/epjconf/e2009-00912-1, 2009.

1301 Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer
1302 for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave, *J.
1303 Geophys. Res.*, 102, 16663–16682, 1997.

1304 Nakajima, T. and King, M. D.: Determination of the optical thickness and effective particle radius
1305 of clouds from reflected solar radiation measurements. Part I: Theory, *J. Atmos. Sci.*, 47,
1306 1878–1893, 1990.

1307 Nataraja, V., Schmidt, S., Chen, H., Yamaguchi, T., Kazil, J., Feingold, G., Wolf, K., and Iwabuchi,
1308 H.: Segmentation-Based Multi-Pixel Cloud Optical Thickness Retrieval Using a
1309 Convolutional Neural Network, *Atmos. Meas. Tech.*, 15, 5181–5205, doi:10.5194/amt-15-
1310 5181-2022, 2022.

1311 Norgren, M. S., Wood, J., Schmidt, K. S., van Diedenhoven, B., Stamnes, S. A., Ziembra, L. D.,
1312 Crosbie, E. C., Shook, M. A., Kittelman, A. S., LeBlanc, S. E., Broccardo, S., Freitag, S., and
1313 Reid, J. S.: Above-aircraft cirrus cloud and aerosol optical depth from hyperspectral

1345 Ronneberger, O., Fischer, P., and Brox, T.: U-net: Convolutional networks for biomedical image
1346 segmentation, in: International Conference on Medical image computing and computer-
1347 assisted intervention, 234–241, Springer, https://doi.org/10.1007/978-3-319-24574-4_28,
1348 2015.

1349 Rothman, L., Jacquemart, D., Barbe, A., Chris Benner, D., Birk, M., Brown, L., Carleer, M.,
1350 Chackerian, C., Chance, K., Coudert, L., Dana, V., Devi, V., Flaud, J.-M., Gamache, R.,
1351 Gold- man, A., Hartmann, J.-M., Jucks, K., Maki, A., Mandin, J.- Y., Massie, S., Orphal, J.,
1352 Perrin, A., Rinsland, C., Smith, M., Tennyson, J., Tolchenov, R., Toth, R., Vander Auwera,
1353 J., Varanasi, P., and Wagner, G.: The HITRAN 2004 molecular spectroscopic database, J.
1354 Quant. Spectrosc. Ra., 96, 139–204, <https://doi.org/10.1016/j.jqsrt.2004.10.008>, 2005.

1355 Schmidt, K. S., Pilewskie, P., Platnick, S., Wind, G., Yang, P., and Wendisch, M.: Comparing
1356 irradiance fields derived from Moderate Resolution Imaging Spectroradiometer airborne
1357 simulator cirrus cloud retrievals with solar spectral flux radiometer measurements, J. Geophys.
1358 Res., 112, D24206, doi:10.1029/2007JD008711, 2007.

1359 Schmidt, S., Pilewskie, P., Mayer, B., Wendisch, M., Kindel, B., Platnick, S., King, M. D., Wind,
1360 G., Arnold, G. T., Tian, L., Heymsfield, G., and Kalesse, H.: Apparent absorption of solar
1361 spectral irradiance in heterogeneous ice clouds, J. Geophys. Res., 115, D00J22,
1362 <https://doi.org/10.1029/2009JD013124>, 2010.

1363 Song, S., Schmidt, K. S., Pilewskie, P., King, M. D., Heidinger, A. K., Walther, A., Iwabuchi, H.,
1364 Wind, G., and Coddington, O. M.: The Spectral Signature of Cloud Spatial Structure in
1365 Shortwave Irradiance, Atmos. Chem. Phys., 16, 13791–13806, <https://doi.org/10.5194/acp-16-13791-2016>, 2016.

1366 Strahler, A., Muller, J., Lucht, W., Schaaf, C., Tsang, T., Gao, F., Li, X., Lewis, P., and Barnsley,
1367 M.: MODIS BRDF/albedo product: algorithm theoretical basis document version 5.0,
1368 MODIS documentation, 1999.

1369 Spada, F., Krol, M. C., and Stammes, P.: McSCIA: application of the Equivalence Theorem in a
1370 Monte Carlo radiative transfer model for spherical shell atmospheres, Atmos. Chem. Phys.,
1371 6, 4823–4842, <https://doi.org/10.5194/acp-6-4823-2006>, 2006.

1372 Várnai, T., A. Marshak, C.-H. Huang: Publicly available online simulator of 3D radiative
1373 processes, International Radiation Symposium 2022, Thessaloniki, Greece, 4–8 July 2022,
1374 File listed as IRS_2022_paper_89.pdf at

1376 https://mycloud.auth.gr/index.php/s/t7fYkzsiFWYFdqy?path=/S4-
1377 General_Remote_Sensing, 2022.
1378 Wood, J., Smyth, T. J., and Estellés, V.: Autonomous marine hyperspectral radiometers for
1379 determining solar irradiances and aerosol optical properties, *Atmos. Meas. Tech.*, 10, 1723–
1380 1737, <https://doi.org/10.5194/amt-10-1723-2017>, 2017.