

1 **Realtime measurement of phase partitioning of organic**
2 **compounds using a Proton-Transfer-Reaction Time-of-Flight**
3 **Mass Spectrometer coupled to a CHARON inlet**

4 **Yarong Peng^{1,2}, Hongli Wang^{2,*}, Yaqin Gao², Shengao Jing², Shuhui Zhu², Dandan**
5 **Huang², Peizhi Hao³, Shengrong Lou², Tiantao Cheng^{4,5,*}, Cheng Huang², Xuan**
6 **Zhang^{3,*}**

7 ¹ Department of Environmental Science and Engineering, Fudan University, Shanghai, 200438, China

8 ² State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution
9 Complex, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China

10 ³ School of Natural Sciences, University of California, Merced, 95343, USA

11 ⁴ Department of Atmospheric and Oceanic Sciences, Fudan University, Shanghai, 200438, China

12 ⁵ Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University, Shanghai,
13 200438, China

14

15 *Correspondence to:* Hongli Wang (wanghl@saes.sh.cn), Tiantao Cheng (ttcheng@fudan.edu.cn), Xuan
16 Zhang (xzhang87@ucmerced.edu)

17

18 **Abstract.** Understanding the gas-particle partitioning of semivolatile organic compounds
19 (SVOCs) is of crucial importance in the accurate representation of the global budget of
20 atmospheric organic aerosols. In this study, we quantified the gas- vs. particle-phase fractions
21 of a large number of SVOCs in real time in an urban area of East China with the use of a
22 CChemical Analysis of aeRosols ONline (CHARON) inlet coupled to a high resolution Proton
23 Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS). We demonstrated the
24 use of the CHARON inlet for highly efficient collection of particulate SVOCs while
25 maintaining the intact molecular structures of these compounds. The collected month-long
26 dataset with hourly resolution allows us to examine the gas-particle partitioning of a variety of
27 SVOCs under ambient conditions. By comparing the measurements with model predictions
28 using the instantaneous equilibrium partitioning theory, we found that the dissociation of large
29 parent molecules during the PTR ionization process likely introduces large uncertainties to the
30 measured gas- vs. particle-phase fractions of less oxidized SVOCs, and therefore, caution
31 should be taken when linking the molecular composition to the particle volatility when
32 interpreting the PTR-ToF-MS data. Our analysis suggests that understanding the fragmentation
33 mechanism of SVOCs and accounting for the neutral losses of small moieties during the
34 molecular feature extraction from the raw PTR mass spectra could reduce, to a large extent, the
35 uncertainties associated with the gas-particle partitioning measurement of SVOCs in the
36 ambient atmosphere.

37

38 **1. Introduction**

39 Gas-particle partitioning of semivolatile organic compounds (SVOCs) is a critical process
40 involved in the formation and evolution of atmospheric organic aerosols (OA). Traditionally,

41 gas-particle equilibrium partitioning of organic substances is assumed to be established
42 instantaneously (Zhang and Seinfeld, 2013), this assumption is in question if particles are semi-
43 solid or glassy (Shiraiwa et al., 2013). Most studies to date addressing the kinetic limitations in
44 partitioning have used indirect and/or theoretical methods that are lack of chemical and
45 molecular specificity (Mai et al., 2015; Shiraiwa and Seinfeld, 2012). Direct measurements of
46 gas-particle partitioning of SVOCs are needed in order to develop accurate parameterizations
47 for the organic aerosol formation in climate models.

48 The major challenge in the characterization of gas-particle partitioning of SVOCs lies in
49 the realtime measurement of labile compounds while maintaining their intact molecular
50 structures with minimal fragmentation (Zhang et al., 2016a; Zhang et al., 2016b; Zhang et al.,
51 2019). In recent years, soft ionization techniques coupled to mass spectrometry have been
52 widely used for the measurement of gas-phase SVOCs at the molecular level (Veres et al., 2008;
53 Crounse et al., 2006; Heald and Kroll, 2020). Combined with thermal desorption methods, these
54 techniques have also been deployed to measure organic compounds in both gas and particle
55 phases nearly simultaneously (Krechmer et al., 2016). A notable example would be the use of
56 the Filter Inlet for Gases and AEROsols coupled with the Chemical Ionization Mass
57 Spectrometry (FIGAERO-CIMS) to quantify the gas-particle partitioning of a broad range of
58 organic compounds in real time (Lopez-Hilfiker et al., 2014; Ye et al., 2021; Voliotis et al., 2021;
59 Wang et al., 2020a; Lutz et al., 2019; Lee et al., 2018; Le Breton et al., 2018; Stark et al., 2017;
60 Lopez-Hilfiker et al., 2016; Lopez-Hilfiker et al., 2015; Palm et al., 2020). A number of studies
61 among those have reached a consensus that the thermograms method, i.e., using the calibrated
62 thermal desorption profiles vs. temperature to derive the volatility, likely provides the best
63 estimates of the actual phase distribution. In contrast, using the directly measured gas- and

64 particle-phase fractions of a given analyte will most likely introduce a significant positive or
65 negative bias to the volatility estimation due to the thermal decomposition of labile organic
66 compounds during the desorption process (Lopez-Hilfiker et al., 2015; Stark et al., 2017). Such
67 thermal decomposition (or ion fragmentation) artifacts, either positive or negative depending
68 on the molecular size, have been suggested to constitute the largest uncertainties in the
69 estimation of phase partitioning behaviors of SVOCs using the thermal desorption method at
70 ambient pressure (Thompson et al., 2016).

71 Along with the line of thermal desorption method development, an inlet designed for the
72 CHemical Analysis of aeRosols ONline (CHARON) has been developed and coupled to the
73 Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) in recent years.
74 As CHARON-PTR-ToF-MS does not rely on any form of pre-concentration on surfaces, it
75 could provide online and direct measurements of organic compounds in both phases, compared
76 with traditional thermal desorption instruments which still need to address artifacts during the
77 particle collection and desorption processes. Another potential advantage of CHARON-PTR-
78 ToF-MS is that the chemical information of the collected particles can be studied qualitatively
79 and quantitatively over a chemical composition level even at sub-nanogram mass
80 concentrations per molecule owing to the well studied ion-molecule reaction chemistry in PTR-
81 ToF-MS (Piel et al., 2019). CHARON has shown promising potential in the realtime analysis
82 of the chemical composition and spatiotemporal distributions of aerosols with laboratory-,
83 ground-, and aircraft-based platforms (Piel et al., 2019; Tan et al., 2018; Gkatzelis et al., 2018a;
84 Gkatzelis et al., 2018b; Muller et al., 2017; Eichler et al., 2017; Eichler et al., 2015; Antonsen
85 et al., 2017; Leglise et al., 2019; Piel et al., 2021). As a relatively new technique, the use of
86 CHARON-PTR-ToF-MS to investigate the gas-particle partitioning of organic compounds is

87 still quite limited. Only one study by Gkatzelis et al. (2018b) deployed CHARON, together
88 with two other aerosol sampling inlets, to measure the OA formation and aging from
89 monoterpenes and real plant emissions in chamber experiments. Whether the CHARON inlet
90 can be applied to the study of gas-particle partitioning of organic compounds under the actual
91 atmospheric conditions remains to be validated.

92 In this study, we assess the applicability of the CHARON inlet to the time-resolved
93 collection of organic compounds in their native molecular state using laboratory tests with a
94 series of authentic standards. We further employ the CHARON inlet coupled to a high
95 resolution PTR-ToF-MS instrument to measure an array of gaseous and particulate SVOCs in
96 an urban area of East China. The obtained month-long hourly dataset allows us to examine the
97 gas-particle partitioning of SVOCs spanning a range of volatilities. By comparing the
98 measurements with model predictions using the instantaneous equilibrium partitioning theory,
99 we found that fragmentation during the PTR ionization process may introduce large
100 uncertainties to the measured gas- vs. particle-phase fractions of less oxidized SVOCs.
101 Understanding the dissociation patterns of parent molecules and accounting for the
102 fragmentation losses when extracting the molecular features from the raw PTR mass spectra
103 are needed to improve the measured accuracy of SVOCs partitioning between the gas and
104 particle phase.

105

106 **2. Material and Methods**

107 **2.1. Sampling site**

108 The sampling site located in the campus of the Shanghai Academy of Environmental
109 Science (SAES) is representative of a typical urban setting surrounded by restaurants, shopping

110 malls, and residential and commercial buildings (Fig. S1). Two traffic-heavy streets in the area
111 (Caobao Road and Humin Highway) are located \sim 150 m and 450 m lateral distances to the east
112 of the sampling site. A few number of petrochemical and chemical industrial facilities are
113 located \sim 50 km to the south and southwest of the observation site, which likely bring certain
114 long-lived pollutants to the site at a typical wind speed of \sim 1 – 3 m/s. Major pollution sources
115 in the area include traffic, commercial and residential activities, and regional transport (Huang
116 et al., 2021; Peng et al., 2023). The sampling inlet of the PTR-ToF-MS instrument was installed
117 on the roof of an eight-story building \sim 24 m above the ground. A comprehensive measurement
118 of gas- and particle-phase compounds in the ambient air was performed from Oct 24 to Nov 22.
119 During the sampling period, the average temperature, relative humidity, and wind speed were
120 18.0 ± 3.0 °C, $61.0 \pm 15.0\%$, and 1.8 ± 0.7 m/s, respectively. The prevailing wind direction in
121 this region was from the northwest and north during the polluted period (Fig. S2).

122 **2.2. CHARON-PTR-ToF-MS**

123 **2.2.1. Operation protocols**

124 A Proton Transfer Reaction Time-of-Flight Mass Spectrometer (PTR-ToF-MS) coupled to
125 a CChemical Analysis of aeRosols ONline (CHARON, Ionicon Analytik Inc, Innsbrunck,
126 Austria) inlet was employed to measure the gas- and particle-phase concentrations of a series
127 of SVOCs. The PTR-ToF-MS instrument used here is equipped with a radio frequency (RF)-
128 only quadrupole ion guide that transmits ions more efficiently (PTR-QiTof, Ionicon Analytik
129 Inc). The operating parameters of the PTR-ToF-MS were held constant during the entire
130 measurement period. The drift tube pressure, temperature, and voltage were 2.9 mbar, 120 °C,
131 and 500 V, respectively. These conditions correspond to an E/N (E is the electric field, and N is
132 the number density of the gas molecules in the drift tube) value of \sim 100 Td (1 Td = 10^{-17} V

133 cm^2) and a reaction time of 120 μs . Note that the E/N value determines the collision energy of
134 ions in the reactor and therefore the degree of fragmentation and cluster formation. The
135 operating conditions were selected for the purpose of relatively low fragmentation intensities
136 (compared to 120 – 140 Td) and limited production of water clusters (compared to 60 – 80 Td).
137 Low E/N enhances the degree of water clustering, which complicates the analysis of analyte
138 ions due to a complex interplay between cluster formation ($\text{RH}^+(\text{H}_2\text{O})_n$) and proton transfer
139 reactions (Holzinger et al., 2019). During the campaign, the sensitivity of the PTR-ToF-MS
140 was in the range of 300 – 1000 ncps ppb^{-1} and the mass resolution was maintained at ~ 5000
141 $\text{m}/\Delta\text{m}$. Mass spectra were collected at a time resolution of 10 s.

142 The CHARON inlet consists of 1) a gas-phase denuder (GPD) for stripping off gas-phase
143 analytes, 2) an aerodynamic lens (ADL) for particle collimation which is combined with an
144 inertial sampler for emanating the particle-enriched flow, and 3) a thermo-desorption unit (TDU)
145 for particle volatilization. The CHARON inlet functionality has been described in great detail
146 by Eichler et al. (2015). The inlet we used here had a particle enrichment factor of ~ 15 , as
147 discussed shortly. The vaporizer (TDU) was operated at 140 $^{\circ}\text{C}$ and ~ 8 mbar absolute pressure.
148 Measurements of organic compounds in the gas and particle phase were conducted using a
149 parallel sampling system with two independent pumps, allowing for the selection of flow rates
150 specifically adjusted for each phase, resulting in the overall residence time of less than 2 s (Fig.
151 S3).

152 **2.2.2. Sampling alternation between gas and particle phase**

153 Gas-phase compounds were measured by directly sampling the ambient air via a 2 m long
154 perfluoro-alkoxy (PFA) tube (1/4" OD) capped with a polytetrafluoroethylene (PTFE) filter
155 (MitexTM PTFE membrane, 5 μm pore size, 47 mm diameter) to prevent the clogging of

156 particles in the PTR capillaries. The gas-phase inlet was independently connected to the PTR-
157 ToF-MS instrument upstream of the drift tube via a pressure-controlled subsampling PEEK
158 capillary (1/16" OD). Zero measurements were performed by overflowing catalytically
159 (platinum at 370°C) purified air through the inlet. Ambient particles were sampled through a
160 stainless steel tube (3/8" OD) with a flow rate of $\sim 3 \text{ L min}^{-1}$, out of which a flow of $\sim 500 \text{ ml}$
161 min^{-1} was directed to the CHARON inlet. A PM_{2.5} cyclone was installed in front of the sampling
162 line to remove coarse particles ($> 2.5 \mu\text{m}$). The particle-phase background was measured by
163 placing a High-Efficiency Particulate Air filter (HEPA, HEPA-CAP 7, GE Healthcare UK
164 Limited, Buckinghamshire, UK) upstream of the CHARON inlet. Servo motor activated valves
165 made of passivated stainless steel were used for switching between the two inlet configurations.
166 During the campaign, CHARON-PTR-ToF-MS automatically switched between gas and
167 particle phase every 15 min. Detailed setup is given in Fig. S3 in the Supporting Information.

168 The built-in PTR-manager software (Ionicon Analytik GmbH, Innsbruck, Austria) offers
169 the possibility to program sequences by which the instrument switches between different
170 settings. It takes $\sim 1 \text{ min}$ for gases and particles to re-equilibrate when switching between these
171 two modes. Data generated during this transition period ($\sim 2 \text{ min}$) were not considered.
172 Instrument background was measured for 15 min every 5h. The limits of detection (LoD) at 1
173 min resolution were in the range of $5.6 \pm 2.9 \text{ ng m}^{-3}$ for gases and $0.7 \pm 0.5 \text{ ng m}^{-3}$ for particles,
174 respectively (Fig. S5). Concentrations of gaseous and particulate compounds shown here
175 included the last 5 min of every gas/particle-phase working mode, in order to minimize the
176 interferences carried over from the previous working mode by allowing for a sufficient amount
177 of equilibration time in the inlet (Piel et al., 2021). In order to synchronize the gas- and particle-
178 phase data to calculate gas-particle partitioning, the average hourly data were then used for

179 further analysis.

180 **2.2.3. Sensitivity and calibration**

181 Weekly calibrations were performed using a multicomponent calibration gas standard
182 (Linde, USA) at five concentration levels from 0.5 to 10 ppb (Fig. S4a). The calibration mixture
183 includes methanol, acetonitrile, acetaldehyde, acrolein, acetone, isoprene, methyl vinyl ketone,
184 methyl ethyl ketone, 2-pentanone, toluene, styrene, p-xylene, 1,3,5-trimethylbenzene,
185 naphthalene and α -pinene. Here the sensitivity of PTR-ToF-MS is defined as the normalized
186 ion intensity of RH^+ (ncps) obtained at a mixing ratio of 1 ppb. For a given species (R), its
187 sensitivity (S , ncps ppb $^{-1}$) is a linear function of the rate constant of its reaction with H_3O^+ (k) :

$$188 S = \frac{\frac{I_{\text{RH}^+}}{I_{\text{H}_3\text{O}^+}} \times 10^6}{\frac{[R]}{N} \times 10^9} = k \times N \times 10^{-3} \times t \times \frac{T_{\text{RH}^+}}{T_{\text{H}_3\text{O}^+}} \times F_{\text{RH}^+} \quad (1)$$

$$189 \text{corrected } S = \frac{S}{\frac{T_{\text{RH}^+}}{T_{\text{H}_3\text{O}^+}} \times F_{\text{RH}^+}} = a \times k \quad (2)$$

190 where the signals of H_3O^+ ($I_{\text{H}_3\text{O}^+}$) and RH^+ ions (I_{RH^+}) measured by the mass analyzer (in cps)
191 can be related to the signals of H_3O^+ ($[\text{H}_3\text{O}^+]$) and RH^+ ($[\text{RH}^+]$) ions at the end of the drift tube,
192 using their respective transmission efficiencies ($T_{\text{H}_3\text{O}^+}$ and T_{RH^+}) from the drift tube to the
193 detector (De Gouw and Warneke, 2007). $[R]$ is the concentration of species R and N is the
194 number density of gas in the drift tube. The reaction time (t) is determined by the ion drift
195 velocity. F_{RH^+} represents the fraction of product ions detected as RH^+ ions ($0 \leq F_{\text{RH}^+} \leq 1$). For
196 non-fragmenting compounds, $F_{\text{RH}^+} = 1$. The measured sensitivity is further corrected by
197 accounting for fragmentation and transmission efficiency. The relative transmission efficiency
198 of ions was derived from laboratory experiments (Fig. S4a). a is the slope of the linear
199 regression of the corrected sensitivities on the proton-transfer-reaction rate coefficients (k), as

200 shown in Fig. S4b. Following the method by Sekimoto et al. (2017), the linear regression result
201 was used to determine the sensitivities of all uncalibrated species. The overall uncertainty was
202 less than 15% for compounds with standards and around 50% for those without standards.
203 Calculated sensitivity based on this method agrees well with measurements of authentic
204 standards (Fig. S4c).

205 **2.2.4. Enrichment factor**

206 The CHARON inlet was calibrated routinely with pure ammonium nitrate particles to
207 derive the enrichment factor as a function of the particle size following the procedures described
208 in Eichler et al. (2015). In addition, we used a selection of authentic standards (Table S1) to test
209 the effect of desorption temperature on the enrichment factor of labile compounds. Previous
210 studies with CHARON generally used a temperature of 140 °C to vaporize particles (Leglise et
211 al., 2019; Gkatzelis et al., 2018b; Tan et al., 2018). Herein, we tested the TDU temperature
212 ranging from 70 to 140°C. The selected chemical standards were individually dissolved in
213 distilled water (ethanol in the case of 2-Pentadecanone and 1-Pentadecanol) and nebulized by
214 an atomizer (TSI 3076, Shore-view, MN, USA) that was pressurized with ultrapure zero air.
215 The nebulizer outflow was diverted through two diffusion dryers to remove water vapor and an
216 activated charcoal denuder (NovaCarb F, Mast Carbon International Ltd., Guilford, UK) to
217 remove organic vapors. The resulting flow of polydisperse particles was then delivered into a
218 differential mobility analyzer (DMA, TSI 3080) for particle size selection. The transmitted
219 particles at a given size bin (300 nm for organics and 100 – 450 nm range for ammonium nitrate)
220 were introduced into the CHARON-PTR-ToF-MS analyzer and a condensation particle counter
221 (CPC, TSI 3775), respectively. Particle mass concentrations were calculated based on the CPC
222 number distribution measurements by assuming a shape factor of 0.8 for ammonium nitrate

223 particles and 1 for organic particles, respectively.

224 The particle enrichment factor (EF) of a given analyte i was calculated as the ratio of the
225 PTR-ToF-MS derived vs. CPC derived mass concentrations of analyte i at a given particle size
226 bin:

$$227 \quad VMR_{(PTR)i} = \frac{I_i}{S_i} \quad (3)$$

$$228 \quad VMR_{(CPC)i} = \rho_i \times V \times N_i \times V_m / Mw_i \quad (4)$$

$$229 \quad EF = \frac{VMR_{(PTR)i}}{VMR_{(CPC)i}} \quad (5)$$

230 where I_i is the normalized signal of species i (ncps) by PTR-ToF-MS, S_i is the sensitivity
231 (ncps ppb $^{-1}$), VMR is the volume mixing ratio (ppb), ρ is the density of species i (g cm $^{-3}$),
232 V is the volume of a particle sphere (m 3), N_i is the number concentration of particles measured
233 by CPC (cm $^{-3}$), V_m is the molar volume of an ideal gas at 1 atm (22.4 L mol $^{-1}$), Mw_i is the
234 molecular weight (g mol $^{-1}$). As the calculated sensitivities of most organics in the absence of
235 authentic standards are subject to uncertainties (15% – 50%), we will herein use the
236 multiplication of EF and S_i to evaluate the combined effect of CHARON enrichment and
237 sensitivity on the measured concentrations of a given analyte i in the particle phase.

238 2.2.5. Data processing

239 Data were analyzed using the Tofware package (v3.2.0, Tofwerk Inc), within the Igor Pro
240 software (v7.0, Wavemetrics). Using this package, time-dependent mass calibrations were
241 performed using four ions ($H_3^{18}O^+$, NO^+ , $C_6H_5I^+$ and $C_6H_5I_2^+$), where $C_6H_5I^+$ and $C_6H_5I_2^+$ were
242 produced from the internal standard di-iodobenzene. The relative mass deviation was within 6
243 – 8 ppm across the mass spectra. Considering the humidity dependence of reagent ions (H_3O^+
244 and $H_3O^+(H_2O)$), the fitted product ion signals (RH^+) were normalized to a standard reagent ion

245 of 10^6 cps (counts per second). Elemental composition was determined based on the accurate
246 *m/z* (mass to charge ratio) and isotopic pattern analysis. A list of ~ 1600 ions was extracted,
247 including both gas- and particle-phase ions. Molecular formulas including only C, H, and O
248 atoms were assigned to the detected ions by the addition of one proton in cases where the
249 elemental composition analysis returned multiple options. About 85% of the signals were
250 elementally resolved by the $C_xH_yO_z$ formula in ambient air mass spectra. A small number of
251 nitrogen containing compounds, such as nitroaromatics, were also identified but not included
252 in the following analysis. Throughout of the context, we use the word “species” to refer to all
253 compounds with assigned molecular formula, which may include multiple isomers.

254 **2.3. Complementary measurements**

255 In addition to CHARON-PTR-ToF-MS, a Thermal desorption Aerosol Gas chromatograph
256 (TAG) was also employed to measure a series of particle-phase organic species. Details of the
257 TAG operation and data analysis protocols can be found in previous studies (He et al., 2020;
258 Wang et al., 2020b; Zhu et al., 2021). The elemental composition and mass concentration of
259 particles were measured by an Aerodyne high-resolution time-of-flight Aerosol Mass
260 Spectrometer (AMS), with details of operation and quality control protocols given by our recent
261 study (Huang et al., 2021). Volatile organic compounds (VOCs, $C_2 - C_{12}$) were analyzed by a
262 custom-built online gas chromatography system equipped with a mass spectrometer and a flame
263 ionization detector (GC-MS/FID). The performance of this system can be found in our previous
264 publications (Zhu et al., 2018; Wang et al., 2014). Meteorological parameters (ambient
265 temperature, wind speed, wind direction, and relative humidity) were collected by an automatic
266 weather station (Metone 590 series) mounted on the roof top of the campaign site.

267 **2.4. Gas-particle partitioning measurements vs. modeling**

268 The CHARON-PTR-ToF-MS measured gas- and particle-phase concentrations of a given
 269 species i can be used to calculate its particle-phase fraction ($F_{p,i}$).

270
$$P_i = \frac{\frac{I_{p,i} \times \left(\frac{m}{z_i} - 1\right)}{V_m \times S_i}}{EF} \quad (6)$$

271
$$G_i = \frac{I_{g,i} \times \left(\frac{m}{z_i} - 1\right)}{V_m \times S_i} \quad (7)$$

272
$$F_{p,i} = \frac{P_i}{P_i + G_i} \quad (8)$$

273 where P_i and G_i are the mass concentrations (ng m^{-3}) of species i in the particle and gas
 274 phase, respectively. $I_{p,i}$ and $I_{g,i}$ are the normalized signal (ncps) of the PTR-ToF-MS detected
 275 ion i in the particle and gas phase, respectively. V_m is taken as 22.4 L/mol . S_i is calculated
 276 or measured sensitivity (ncps ppb^{-1}), see details in Section 2.2.3. As structural isomers cannot
 277 be resolved in the mass spectra, the calculation here assumes that all isomers with the same
 278 molecular formula have the same chemical properties, i.e., saturation vapor pressures.
 279 Substitution of Equations (6) and (7) to Equation (8) yields the final expression of the particle-
 280 phase fraction of species i ($F_{p,i}$), which is a function of the observed PTR-MS raw signals of
 281 species i in the gas and particle phase (in total ion counts), as well as the particle enrichment
 282 factor (EF) of species i .

283
$$F_{p,i} = \frac{I_{p,i}/EF}{I_{p,i}/EF + I_{g,i}} \quad (9)$$

284 Gas-particle partitioning of a given analyte i was also modeled using the equilibrium
 285 partitioning theory (Pankow, 1994):

286
$$F_{p,i} = \frac{1}{1 + C_i^* / C_{OA}} \quad (10)$$

287
$$C_i^* = \frac{10^6 Mw_i \zeta p_i}{RT} \quad (11)$$

288 where C_{OA} is the organic aerosol concentration measured by AMS ($\mu\text{g m}^{-3}$), C_i^* is the
 289 saturation mass concentration ($\mu\text{g m}^{-3}$), Mw_i is the molecular weight (g mol^{-1}), ζ is the
 290 activity coefficient (assumed as unity), p_i is the pure component liquid vapor pressure (Pa), R
 291 is the universal gas constant ($8.2 \times 10^{-5} \text{ m}^3 \text{ atm K}^{-1} \text{ mol}^{-1}$), and T is the ambient temperature
 292 (K). As detailed chemical information is lacking for all species detected by PTR-ToF-MS, here
 293 we use the expression given by Donahue et al. (2011) to approximate the value of C_i^* :

294
$$\log_{10} C_i^* = (n_C^0 - n_C^i) b_C - n_O^i b_O - 2 \frac{n_C^i n_O^i}{n_C^i + n_O^i} b_{CO} \quad (12)$$

295 where $n_C^0 = 25$, $b_C = 0.475$, $b_O = 2.3$, and $b_{CO} = -0.3$.

296

297 **2.5. Uncertainties in the measured and modeled gas-particle partitioning**

298 The uncertainty associated with the PTR-MS measured concentrations in both gas and
 299 particle phases is less than 15% for compounds with chemical standards based on the optimally
 300 fitted transmission efficiency curve. For those in the absence of standards, their PTR
 301 sensitivities were calculated theoretically using Equations (1-2), and the uncertainty in the
 302 calculation mainly arises from the estimation of polarizability and dipole moment of the target
 303 molecule, which has been estimated to be within $\sim 50\%$ when only the elemental composition
 304 of that molecule is given (Sekimoto et al., 2017). It is important to note, however, that the
 305 uncertainty associated with the estimated PTR sensitivity has zero influence on the measured
 306 particle-phase fraction of any given compound because the sensitivity term is essentially
 307 canceled in the divisor function in Equation (9). The uncertainty associated with the particle
 308 fraction of a given species i derived from the PTR-MS measurements arises predominantly

309 from the “*EF*” term. Since the uncertainty of the measured *EF* depends on the uncertainty of
310 $I_{p,i}$, we thus express the overall uncertainties of the measured gas-particle partitioning as:

311
$$Unc(F_{p,i}) = \sqrt{Unc(EF)^2 + Unc(I_{g,i})^2} \quad (13)$$

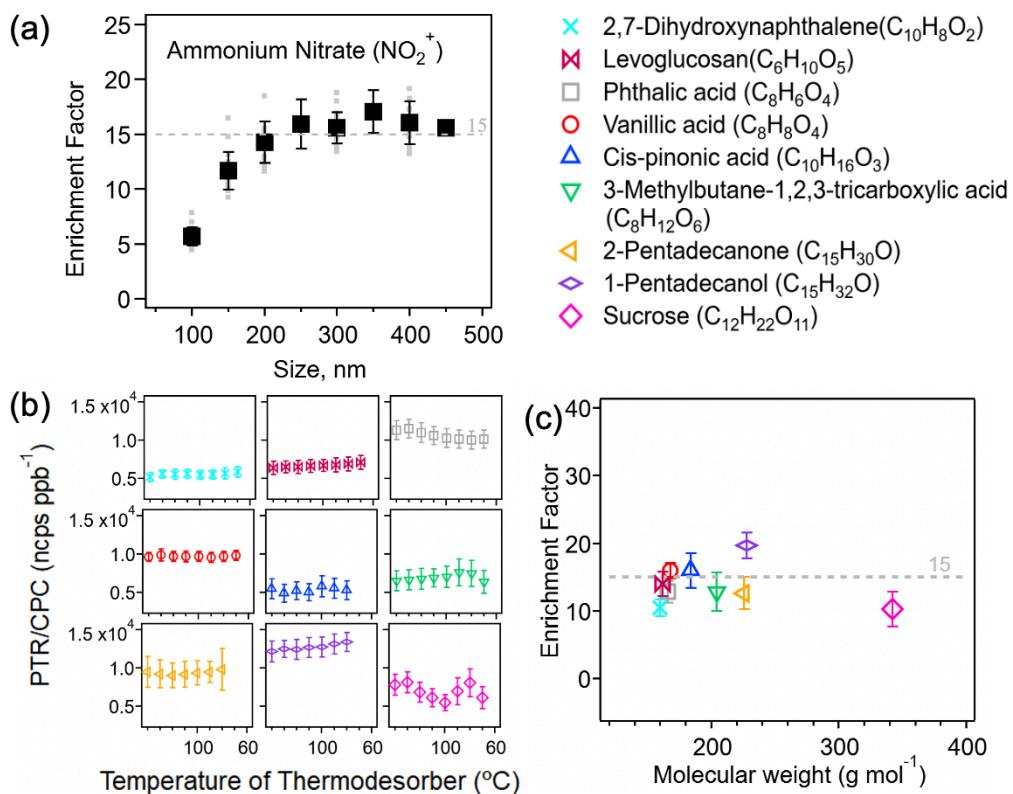
312 with the calibration standards used in this study, the enrichment factor is calculated to be within
313 25% error (*Unc(EF)*) (see detailed calculations listed in Table S2 and S3), including the effect
314 of wall loss inside the inlet tubing and the precision of the measurement. Huang et al. (2019)
315 has tested the uncertainty of wall loss (*Unc(I_{g,i})*) in this PTR-MS instrument as 28%. Therefore,
316 the overall uncertainty in the measured particle-phase fraction (*Unc(F_{p,i})*) was estimated as
317 38%.

318 The uncertainty associated with the modeled gas-particle partitioning arises primarily from
319 the uncertainty in the estimation of the saturation mass concentration (C_i^*) based on the method
320 developed by Donahue et al. (2011). In this method, the saturation mass concentration of
321 species *i* is a non-linear function of the numbers of carbon and oxygen atoms in that particular
322 species, see Equation (12). For each generic molecular formula, i.e., C_xH_y , C_xH_yO , $C_xH_yO_2$, and
323 $C_xH_yO_4$, Donahue et al. (2011) have used a total of 25, 48, 18, and 10 chemical standards with
324 known volatilities to validate the estimated saturation concentrations, and the estimated errors
325 were taken as 34%, 16%, 25%, and 54%, respectively (see Table S6). As the $C_xH_yO_3$ group was
326 not tested, we tentatively assumed the associated errors as the same as the $C_xH_yO_4$ group. The
327 extent to which these uncertainties may affect the difference between measurements and model
328 results was discussed in detail in the Supporting Information (Fig. S10).

329

330 **3. Results and Discussion**

331 **3.1. Particle enrichment: effect of desorption temperature**

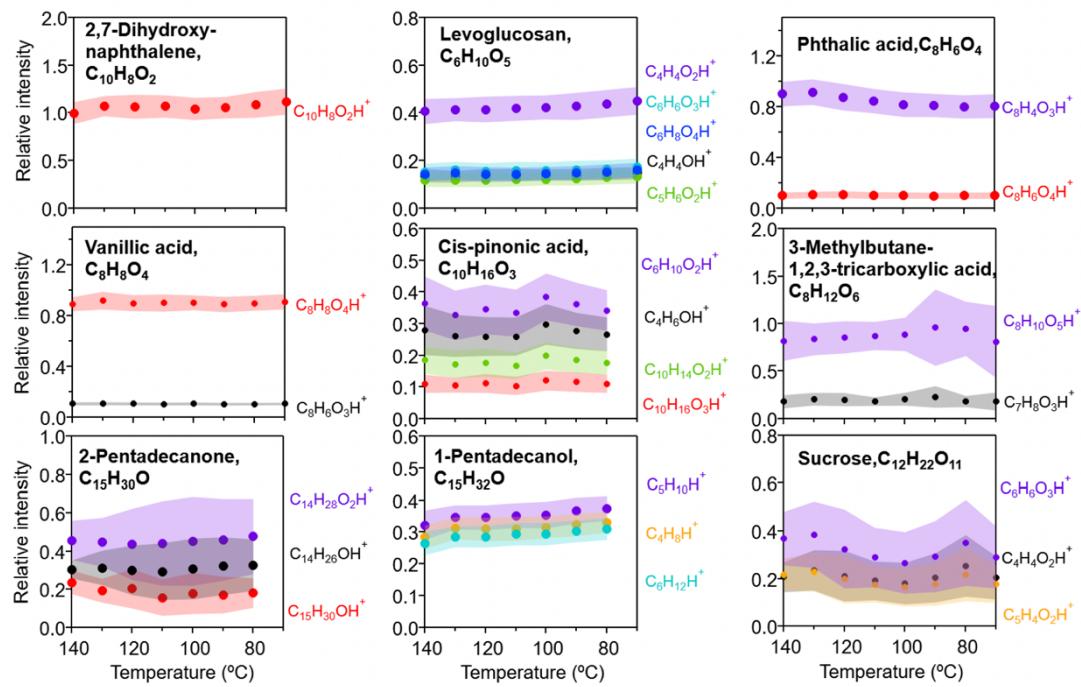

332 Thermal desorption as a common procedure used in the chemical characterization of
333 organic aerosols is often susceptible to fragmentation of non-refractory compounds. Due to the
334 high temperature used to evaporate particles collected, labile and large molecules are inevitably
335 subject to fragmentation, thereby introducing large uncertainties to the measured mass and
336 composition of the particulate organic compounds (Lopez-Hilfiker et al., 2015; Yatavelli et al.,
337 2012; Zhao et al., 2013). Thermal decomposition of oxidized organic compounds has been
338 observed at vaporizer temperature as low as 200 °C, the lowest temperature required to vaporize
339 OA as reported (Stark et al., 2017). While decreasing the vaporizer temperature is necessary to
340 maintain the intact structure of labile molecules, low temperature (e.g., 85 °C), however, might
341 fail to completely evaporate the collected particles into vapors, resulting in an underestimation
342 of the collected OA mass (Inomata et al., 2014). Here we performed a series of sensitivity tests
343 to identify the optimal vaporizer temperature in the CHARON inlet for the measurements of
344 organic compounds in the particle phase.

345 Prior to the temperature sensitivity test, we have validated that the particle enrichment
346 factor, also known as collection efficiency and defined as the ratio of the particle mass
347 concentration upstream to downstream of the aerodynamic lens, does not depend on the particle
348 size. As shown in Fig. 1a, the measured *EF* value for ammonium nitrate particles, detected as
349 NO_2^+ produced from the nitric acid vapor, remains constant as ~ 15 in the 150 – 450 nm particle
350 size range. The lower values in the 100 – 150 nm size range can be explained by the lower
351 particle transmission efficiency in the gas phase denuder, e.g., 75% – 80% for 100 nm particles
352 (Eichler et al., 2015). Also, particles below 150 nm are less efficiently concentrated in the

353 subsampling flow after the aerodynamic lens. Therefore, we used the monodisperse particles
354 generated from selected organic standards at 300 nm for the temperature sensitivity test.

355 A number of chemical standards that are representative of alcohols, carbonyls, and
356 carboxylic acids and with the vapor pressure ranging from 10^{-14} to 10^{-1} Pa at 25 °C (taken from
357 EPA EPI Suite (2012), see values given in Table S1) were used to generate organic aerosols,
358 which, upon size selection at 300 nm, were directed to the CHARON inlet. Particle evaporation
359 occurs downstream of the aerodynamic lens in the gas phase and on the tube and orifice surface
360 to which submicron particles rapidly diffuse at ~ 8 mbar operating pressure. The thermal
361 desorption unit was designed to ensure that ammonium sulfate particles (10^{-20} Pa) can be
362 completely evaporated (Piel et al., 2019; Eichler et al., 2015). As the desorption temperature
363 was varied from 70 °C to 140 °C, the intensities of all detected ions (including both parent and
364 fragment ions) for each organic standard analyzed were stable within 15%, as shown in Fig. 1b.
365 Also note that we did not observe any ions produced from decarboxylation and/or dehydration
366 during the particle evaporation process. This is because the relative low operation temperature
367 and the short heat exposure time could effectively limit any thermal dissociation of organic
368 molecules. This demonstrates that the parent molecule fragmentation, if any, does not occur
369 under the range of desorption temperature used in the CHARON inlet, but rather results from
370 the ionic dissociation process in the PTR ionization chamber, see more discussions in Section
371 3.3. We therefore used the sum total of intensities of all major ions detected as the PTR-ToF-
372 MS response to a given organic standard analyzed. Fig. 1c shows that the derived enrichment
373 factors stay constant for all compounds investigated ($Mw \sim 160 - 230$ g/mol). The relative
374 signals of all fragment ions were stable over the range of the desorption temperature as shown
375 in Fig. 2. This suggests that the desorption temperature used here, even as low as 70 °C, is

376 sufficient to evaporate SVOCs (volatility $> 10^{-14}$ Pa at 25 °C), due to the low operating pressure
 377 (~ 8 mbar) that significantly enhances the partitioning shift to the gas phase. One low volatility
 378 compound, sucrose (M_w is 342 g/mol and vapor pressure is 4.69×10^{-14} Pa), has a slightly lower
 379 enhancement factor compared with all the other organic standards tested. This is mainly due to
 380 the intensive dehydration of the parent compound in the ionization chamber, and as a result,
 381 only a few fragment ions were captured, resulting in a lower PTR response and thereby lower
 382 EF value calculated from Equations (3-5). The EF values of sucrose also have much higher
 383 standard deviations at all temperatures due to fragmentation (Table S3).



384

385 Figure 1. (a) Measured unitless enrichment factor (EF) of ammonium nitrate particles as a

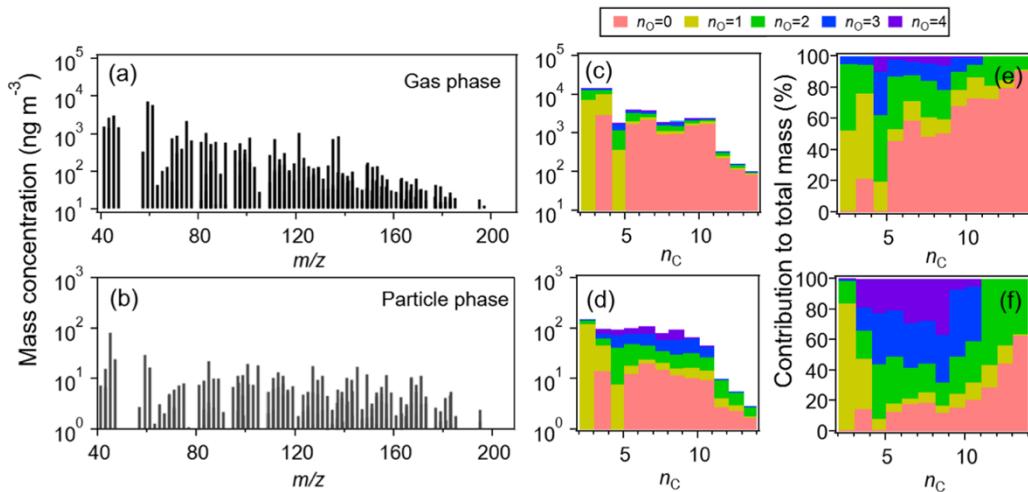
386 function of particle size in the 100 – 450 nm range. Grey markers represent all replicating
 387 measurements. The error bar denotes one standard deviation (1σ) of the average. (b) Ratios of
 388 PTR-ToF-MS signals (including both parent and fragment ions) to CPC counts ($\pm 1\sigma$) at 300
 389 nm for all organic standards studied. (c) EF ($\pm 1\sigma$) of selected organic standards based on the
 390 calculated sensitivity.

391

392

393 Figure 2. Ratios of CHARON-PTR-ToF-MS signals (ncps) to CPC measurements (ppb) of all
 394 detected ions (including both parents and fragments) for a given pure organic standard tested
 395 under different desorption temperatures (70 – 140 °C), normalized to the corresponding ratios
 396 obtained at 140 °C. Ions with relative intensities less than 10% are excluded. Red markers
 397 represent the parent peaks. Colored shades represent the relative standard deviations at different

398 temperatures (exact values are given in Table S4).

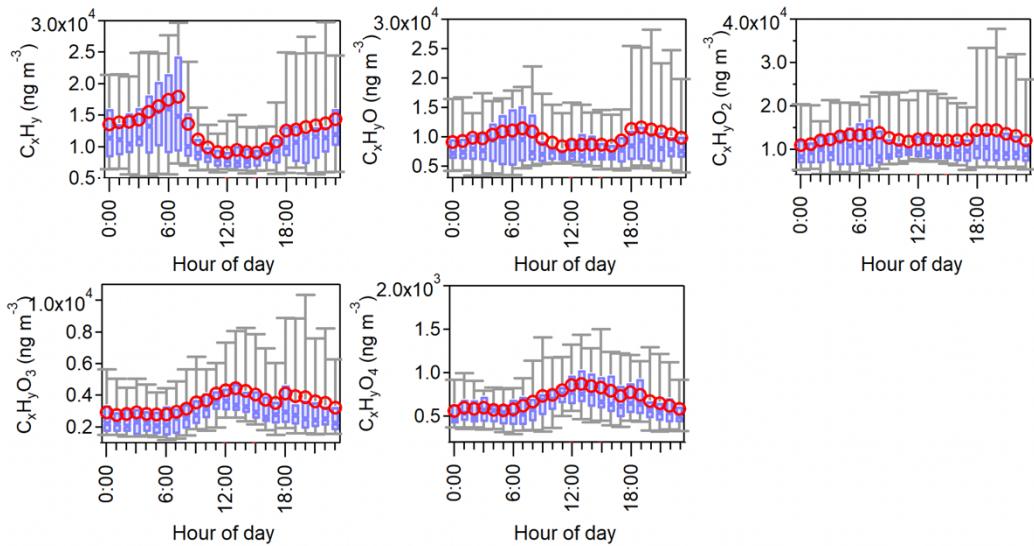

399 It has been recognized that species with one functional group follow certain fragmentation
400 patterns during the PTR ionization process (Pagonis et al., 2019; Francis et al., 2007; Spanel et
401 al., 1997; Tani et al., 2003; Spanel and Smith, 1997), such as dehydration of acids and alcohols.
402 The observed dissociation of carboxylic acid standards used in this study, e.g., phthalic acid
403 and 3-methylbutane-1,2,3-tricarboxylic acid, can be explained by this common fragmentation
404 pattern. The fragmentation mechanism of muti-functionalized species is rather complicated and
405 a number of fragments can be produced upon PTR ionization. Nevertheless, the identity and
406 abundance of fragments from a given muti-functionalized species have been found comparable
407 under the same PTR operation protocols (Leglise et al., 2019; Gkatzelis et al., 2018a). For
408 example, *cis*-pinonic acid yields the following fragments (main ions only and relative
409 abundance in parentheses): m/z 71.049 (~28%), 115.075 (~36%), 167.108 (~19%), and 185.117
410 (~11%), which is comparable with an earlier study (Leglise et al., 2019): m/z 71.049 (~27%),
411 115.075 (~33%), 167.108 (~26%), and 185.117 (~14%) at 100 Td settings.

412

413 **3.2. Molecular features of detected organic species**

414 A month-long field dataset of particle- and gas-phase organic species was collected at
415 hourly resolution using the CHARON-PTR-ToF-MS instrument. A comparison of PTR-ToF-
416 MS measurements with other techniques available on site was performed for both gas and
417 particle phases. For the gas phase, quantitative measurements of a suite of VOCs by GC-
418 MS/FID, including benzene, toluene, styrene, C₈ and C₉ aromatics, acrolein, and C₄, C₅, and C₆
419 ketones, agree well with corresponding PTR-ToF-MS measurements, as shown in Fig. S6. For
420 the particle phase, the time series of a group of C_xH_yO₄ species (including C₄H₆O₄, C₅H₈O₄,

421 $C_6H_{10}O_4$, and $C_8H_6O_4$) are in reasonable agreement with corresponding measurements taken by
 422 TAG ($r \sim 0.60 - 0.80$), although the CHARON-PTR-ToF-MS measured total molecular mass
 423 is generally lower than the TAG measurements by a factor of 2 to 6 (Fig. S7). This is likely
 424 caused by the fragmentation (e.g., loss of H_2O , see Fig. S8) of the parent compounds during the
 425 ionization process, as discussed in detail in Section 3.3. The time series of total OA mass
 426 characterized by CHARON-PTR-ToF-MS also agree with the AMS measurements ($r \sim 0.91$,
 427 Fig. S9). Previous studies have reported the particulate organics measured by PTR-MS with a
 428 thermal desorption inlect account for 25% – 60% mass of the total organic aerosols measured
 429 by AMS (Holzinger et al., 2013). Direct comparison of the total OA mass loading is not
 430 applicable here since the CHARON-PTR-ToF-MS measurement only focused on compounds
 431 with the mass to charge ratio below 300 Th. That the majority of ions detected by PTR are
 432 present in the lower mass range is primarily due to the fragmentation of larger masses during
 433 the ionization process, as discussed extensively in Section 3.3.


434
 435 Figure 3. Background subtracted monthly-average PTR-ToF-MS mass spectra in the (a) gas
 436 phase and (b) particle phase. Mass distributions of all identified species resolved by the carbon

437 and oxygen numbers (n_C and n_O) in the (c) gas phase and (d) particle phase, as well as their
438 relative contribution to the total organic mass in the (e) gas phase and (f) particle phase.

439

440 Fig. 3 (a-b) shows the PTR-ToF-MS spectra of dominant ions averaged over the entire
441 campaign in both gas and particle phases. The mass concentrations of individual ions are in the
442 range of $7.9 - 7179.3 \text{ ng m}^{-3}$ in the gas phase and $0.6 - 82.7 \text{ ng m}^{-3}$ in the particle phase. A total
443 of 152 species (with $> 60\%$ data points above the PTR-ToF-MS detection limits) are identified,
444 contributing to $\sim 69\%$ and $\sim 44\%$, respectively, of the total organic mass measured in the gas
445 and particle phase. The molecular distribution characterized by the carbon and oxygen of these
446 species is given in Fig. 3 (c-d). The most abundant species are characterized by a generic
447 formula of C_xH_yO and $C_xH_yO_2$, resolving $\sim 64\%$ and $\sim 46\%$ in total of all identified species in
448 the gas and particle phase, respectively. Another dominant component in the gas phase is
449 hydrocarbon-like compounds (C_xH_y) ($\sim 27\%$), which contribute $\sim 12\%$ of the organic mass in
450 the particle phase. Species with higher oxygen numbers (> 2) contribute to a large fraction (\sim
451 42%) of the total particulate mass. These $C_xH_yO_{1-4}$ groups exhibit different diurnal cycles, as
452 shown in Fig. 4, reflecting their unique formation chemistry. The C_xH_y group peaks in the early
453 morning rush hour and likely originates from primary traffic emissions. On the contrary, both
454 $C_xH_yO_3$ and $C_xH_yO_4$ groups peak at noon, suggesting a strong secondary formation source. The
455 diurnal trends for C_xH_yO and $C_xH_yO_2$ groups are relatively flat during the day, likely indicative
456 of an intertwined primary emission and secondary formation processes.

457

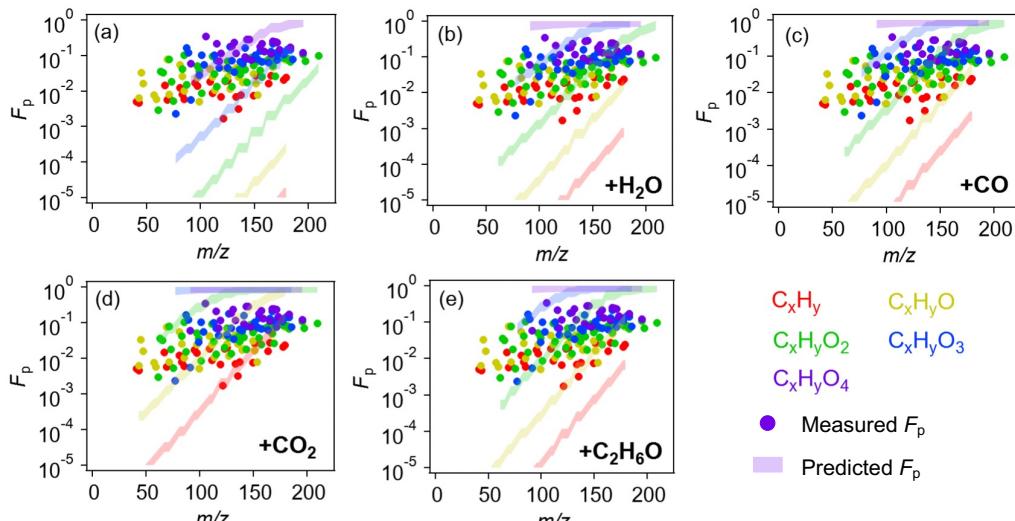
458

459 Figure 4. Diurnal variations of observed gas-phase species with a generic formula of $C_{2-13}H_{2-22}O_{0-4}$. Hourly average values ($ng\ m^{-3}$), together with 10th, 25th, 75th, and 90th percentiles, are
 460 461 also plotted.

462

463 3.3. Measured vs. modeled gas-particle partitioning

464 Fig. 5 shows the calculated particle-phase fraction (F_p) of the identified 152 species using
 465 the CHARON-PTR-ToF-MS measurements in both phases. It is important to note that an
 466 authentic standard is not required for the calculation of F_p for any given species, because the
 467 PTR sensitivity term is essentially canceled in the divisor function in Equations (6-8). Also
 468 given in Fig. 5 is the simulated F_p of the derived molecular formulas of all species identified
 469 using the equilibrium partitioning theory, see method described in Section 2.4. Interestingly,
 470 for oxidized species such as $C_xH_yO_4$, their measured F_p agree reasonably with the simulations,
 471 as shown in Fig. 5a. The $C_xH_yO_4$ group resides in the relatively higher mass range, and species


472 identified in this group are more likely actual compounds rather than fragments from larger
473 parent molecules. Even these species dissociate into lower mass ions during PTR ionization,
474 their calculated particle-phase fractions are unaffected by such fragmentation processes because
475 signals of parent ions decrease by the same extent upon fragmentation in both gas and particle
476 phases. As the oxygen number decreases, the measured F_p values tend to deviate from the
477 simulations by up to several orders of magnitude. Note that these less oxidized compounds (e.g.,
478 C_xH_y) are mostly small molecules and they are highly unlikely present in the condensed phase
479 as closed-shell monomers (Pankow and Asher, 2008; Holzinger et al., 2010). Instead, they are
480 more likely fragments produced from the decomposition of larger molecules, which no
481 surprisingly favor partitioning in the particle phase. The discrepancy in the measurement-model
482 comparison underscores the importance of understanding the fragmentation mechanism during
483 PTR ionization when extracting molecular features from the raw mass spectra.

484 Parent ion fragmentation has been widely observed in PTR-MS instruments (Pagonis et al.,
485 2019). Oxygenates exhibit trends in neutral losses of water or saturated alcohols. Here, we
486 apply a correction to the molecular formula of the 152 identified species by assuming that these
487 species are fragments produced from their parent precursors through the neutral losses of a
488 carboxyl group (-CO₂), a carbonyl group (-CO), a hydroxyl group (-H₂O), or an alcohol group
489 (-C₂H₆O). By applying this correction, the modeled F_p of a given species $C_xH_yO_z$ would actually
490 represent the particle-phase fraction of its parent species $C_xH_yO_z \bullet CO_2$, $C_xH_yO_z \bullet CO$,
491 $C_xH_yO_z \bullet H_2O$, or $C_xH_yO_z \bullet C_2H_6O$. As shown in Fig. 5 (b-e), such a correction could significantly
492 increase the modeled F_p values by several orders of magnitude. The assumption of neutral
493 losses of CO₂ or C₂H₆O allows for much improved agreement between modeled vs. measured
494 F_p values for less oxidized species. This implies that these small and less oxidized species are

likely fragments resulting from the decomposition of larger parent precursors. As our particle enrichment test (details given in Section 3.1) has confirmed that the thermal desorption temperature employed for particle evaporation does not lead to any intensive fragmentation, therefore the collision-induced dissociation during the proton transfer reaction process becomes the predominant process that produces fragments (Lindinger et al., 1998; Gueneron et al., 2015; Gkatzelis et al., 2018b). Although the electric field applied to the drift tube is considered low to moderate compared with most previous PTR-MS measurements ($E/N \sim 100$ Td in this study vs. $E/N \sim 120 - 140$ Td commonly found in PTR-MS measurements) (Pagonis et al., 2019), parent ion fragmentation was still widely observed here and complicated the mass spectra interpretation and molecular feature extraction. While some recent CHARON measurements employed lower electric field in the drift tube ($E/N \sim 60$ Td) (Leglise et al., 2019; Gkatzelis et al., 2018a; Piel et al., 2019), such conditions could promote the formation of water cluster ions, which increase with humidity and reduce the PTR sensitivity, and therefore are not ideally suitable for our field measurements. A compromise solution would be using a moderate electric field in the drift tube (e.g., ~ 100 Td) and meanwhile applying appropriate molecular corrections to all ions detected in the mass spectra by considering possible neutral losses of small moieties. Since in this study only the information of molecular formula is derived from the PTR-MS spectra, we thus provide the lower and upper bound of the gas-particle partitioning corrections owing to neutral losses of H_2O and CO_2 , respectively. In general, lower masses with higher volatilities are subject to notable changes in the particle-phase fraction as a result of neutral losses during the PTR ionization process, see detailed discussions in Text S1.

516

517

518

519 Figure 5. (a) Campaign average fraction of organic species in the particle phase (F_p) grouped
 520 by the oxygen number. Solid markers represent the calculated F_p based on the CHARON-PTR-
 521 ToF-MS measurements. Colored shades represent the predicted F_p of corresponding molecular
 522 formulas. (b-e) Measured vs. predicted F_p assuming the identified species are fragments of
 523 corresponding parent compounds through neutral losses of H_2O , CO , CO_2 , and C_2H_6O ,
 524 respectively (values are given in Table S5).

525

526 4. Conclusions

527 Recent studies have suggested that some of the model-measurement discrepancies in the
 528 representation of ambient organic aerosol budget might be due to the nonequilibrium
 529 gas/particle partitioning caused by kinetic limitations in the presence of glassy or semi-solid
 530 phase (Perraud et al., 2012; Mai et al., 2015; Shiraiwa et al., 2013). It is therefore necessary to
 531 validate whether the equilibrium partitioning theory could adequately describe the
 532 condensation of semivolatile organic vapors onto atmospheric aerosols under ambient

533 conditions, and the accurate measurement of these SVOCs in both gas and particle phases is
534 the crucial prerequisite. In this study, we have employed the PTR-ToF-MS instrument coupled
535 to a CHARON inlet, together with a suite of complementary measurements, to characterize the
536 atmospheric partitioning behaviors of an array of SVOCs in an urban environment of East
537 China. Prior to the application to the field measurements, we first performed a series of
538 laboratory experiments to test whether the CHARON inlet is capable of sampling organic
539 molecules (including alcohols, carbonyls, and carboxylic acids) in their native states. With the
540 low pressure condition used in the CHARON inlet, a thermal desorption temperature less than
541 140 °C could adequately evaporate organic compounds with vapor pressure higher than 10^{-14}
542 Pa while minimizing the thermal decomposition of labile functionalities. The auto-switch
543 function between the gas and particle mode with one single PTR-ToF-MS instrument could
544 monitor gaseous and particulate organic compounds in real time, thereby providing important
545 information of their partitioning behaviors in the ambient atmosphere. Particle-phase fractions
546 of a total of 152 organic species were derived from the CHARON-PTR-ToF-MS measurements
547 and further compared with model predictions using the instantaneous equilibrium partitioning
548 theory. While the model captured the particle-phase fraction of oxidized compounds (e.g.,
549 $C_xH_yO_{3.4}$), predictions of less oxidized compounds, notably the C_xH_y family, differ from the
550 corresponding measurements by several orders of magnitude. Such a large discrepancy is very
551 likely caused by the intensive fragmentation of the parent organic compounds during the PTR
552 ionization process. Accounting for common fragmentation patterns in the simulations of gas-
553 particle partitioning, for example, neutral losses of $-CO_2$, $-CO$, $-H_2O$, or $-C_2H_6O$, could largely
554 improve the model-measurement agreement. Such corrections are very necessary towards an
555 accurate measurement of both particle- and gas-phase SVOCs using the CHARON-PTR-ToF-

556 MS instrument. Our study suggests the crucial importance of optimizing operation conditions
557 and understanding the fragmentation mechanism in the particle collection, vaporization, and
558 ionization processes in understanding the gas-particle partitioning of organic compounds using
559 any thermal desorption based aerosol measurement method.

560

561 *Data availability.* The data shown in the paper are available upon request from the
562 corresponding author.

563 *Author Contributions.* YP carried out experiments and measurements and drafted the
564 manuscript. HW and XZ designed the experimental studies, supervised the laboratory work and
565 wrote the manuscript. YG and SJ supported the ambient measurements. SZ, DH, PH, and SL
566 supported the data analysis. TC and CH supervised the scientific work. All authors have given
567 approval to the final version of the manuscript.

568 *Competing interests.* The authors declare no competing financial interest.

569 *Acknowledgements.* This research has been supported by the National Natural Science
570 Foundation of China (No. 42175135, No. 42175179) and the Shanghai Science and Technology
571 Commission of the Shanghai Municipality (No. 20ZR1447800).

572

573 **References**

574 Antonsen, S., Bunkan, A. J. C., D'Anna, B., Eichler, P., Farren, N., Hallquist, M., Hamilton, J.
575 F., Kvarnliden, H., Mikoviny, T., Muller, M., Nielsen, C. J., Stenstrom, Y., Tan, W., Wisthaler,
576 A., and Zhu, L.: Atmospheric chemistry of tert-butylamine and AMP, in: Enrgy Proced, edited
577 by: Dixon, T., Laloui, L., and Twinning, S., Energy Procedia, Elsevier Science Bv, Amsterdam,
578 1026-1032, 10.1016/j.egypro.2017.03.1248, 2017.

579 Crounse, J. D., McKinney, K. A., Kwan, A. J., and Wennberg, P. O.: Measurement of gas-phase

580 hydroperoxides by chemical ionization mass spectrometry, *Anal. Chem.*, 78, 6726-6732,
581 10.1021/ac0604235, 2006.

582 de Gouw, J. and Warneke, C.: Measurements of volatile organic compounds in the earths
583 atmosphere using proton-transfer-reaction mass spectrometry, *Mass Spectrometry Reviews*, 26,
584 223-257, 10.1002/mas.20119, 2007.

585 Donahue, N. M., Epstein, S. A., Pandis, S. N., and Robinson, A. L.: A two-dimensional
586 volatility basis set: 1. organic-aerosol mixing thermodynamics, *Atmos. Chem. Phys.*, 11, 3303-
587 3318, 10.5194/acp-11-3303-2011, 2011.

588 Eichler, P., Muller, M., D'Anna, B., and Wisthaler, A.: A novel inlet system for online chemical
589 analysis of semi-volatile submicron particulate matter, *Atmos. Meas. Tech.*, 8, 1353-1360,
590 10.5194/amt-8-1353-2015, 2015.

591 Eichler, P., Muller, M., Rohmann, C., Stengel, B., Orasche, J., Zimmermann, R., and Wisthaler,
592 A.: Lubricating Oil as a Major Constituent of Ship Exhaust Particles, *Environ. Sci. Technol.*
593 Lett., 4, 54-58, 10.1021/acs.estlett.6b00488, 2017.

594 EPA: Estimation Program Interface (EPI) Suite (v4.11), US [code], 2012.

595 Francis, G. J., Milligan, D. B., and McEwan, M. J.: Gas-Phase Reactions and Rearrangements
596 of Alkyl Esters with H₃O⁺, NO⁺, and O₂•⁺: A Selected Ion Flow Tube Study, *J. Phys. Chem.*
597 A, 111, 9670-9679, 10.1021/jp0731304, 2007.

598 Gkatzelis, G. I., Tillmann, R., Hohaus, T., Muller, M., Eichler, P., Xu, K. M., Schlag, P., Schmitt,
599 S. H., Wegener, R., Kaminski, M., Holzinger, R., Wisthaler, A., and Kiendler-Scharr, A.:
600 Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a
601 study on freshly formed and aged biogenic SOA, *Atmos. Meas. Tech.*, 11, 1481-1500, 2018a.

602 Gkatzelis, G. I., Hohaus, T., Tillmann, R., Gensch, I., Muller, M., Eichler, P., Xu, K. M., Schlag,
603 P., Schmitt, S. H., Yu, Z. J., Wegener, R., Kaminski, M., Holzinger, R., Wisthaler, A., and
604 Kiendler-Scharr, A.: Gas-to-particle partitioning of major biogenic oxidation products: a study
605 on freshly formed and aged biogenic SOA, *Atmos. Chem. Phys.*, 18, 12969-12989,
606 10.5194/acp-18-12969-2018, 2018b.

607 Gueneron, M., Erickson, M. H., VanderSchelden, G. S., and Jobson, B. T.: PTR-MS
608 fragmentation patterns of gasoline hydrocarbons, *International Journal of Mass Spectrometry*,

609 379, 97-109, 10.1016/j.ijms.2015.01.001, 2015.

610 He, X., Wang, Q., Huang, X. H. H., Huang, D. D., Zhou, M., Qiao, L., Zhu, S., Ma, Y.-g., Wang,
611 H.-l., Li, L., Huang, C., Xu, W., Worsnop, D. R., Goldstein, A. H., and Yu, J. Z.: Hourly
612 measurements of organic molecular markers in urban Shanghai, China: Observation of
613 enhanced formation of secondary organic aerosol during particulate matter episodic periods,
614 *Atmos. Environ.*, 240, 10.1016/j.atmosenv.2020.117807, 2020.

615 Heald, C. L. and Kroll, J. H.: The fuel of atmospheric chemistry: Toward a complete description
616 of reactive organic carbon, *Sci. Adv.*, 6, 10.1126/sciadv.aay8967, 2020.

617 Holzinger, R., Goldstein, A. H., Hayes, P. L., Jimenez, J. L., and Timkovsky, J.: Chemical
618 evolution of organic aerosol in Los Angeles during the CalNex 2010 study, *Atmos. Chem. Phys.*,
619 13, 10125-10141, 10.5194/acp-13-10125-2013, 2013.

620 Holzinger, R., Williams, J., Herrmann, F., Lelieveld, J., Donahue, N. M., and Rockmann, T.:
621 Aerosol analysis using a Thermal-Desorption Proton-Transfer-Reaction Mass Spectrometer
622 (TD-PTR-MS): a new approach to study processing of organic aerosols, *Atmos. Chem. Phys.*,
623 10, 2257-2267, 10.5194/acp-10-2257-2010, 2010.

624 Holzinger, R., Acton, W. J. F., Bloss, W. J., Breitenlechner, M., Crilley, L. R., Dusanter, S.,
625 Gonin, M., Gros, V., Keutsch, F. N., Kiendler-Scharr, A., Kramer, L. J., Krechmer, J. E.,
626 Languille, B., Locoge, N., Lopez-Hilfiker, F., Materić, D., Moreno, S., Nemitz, E., Quéléver,
627 L. L. J., Sarda Esteve, R., Sauvage, S., Schallhart, S., Sommariva, R., Tillmann, R., Wedel, S.,
628 Worton, D. R., Xu, K., and Zaytsev, A.: Validity and limitations of simple reaction kinetics to
629 calculate concentrations of organic compounds from ion counts in PTR-MS, *Atmos. Meas. Tech.*,
630 12, 6193-6208, 10.5194/amt-12-6193-2019, 2019.

631 Huang, D. D., Zhu, S., An, J., Wang, Q., Qiao, L., Zhou, M., He, X., Ma, Y., Sun, Y., Huang,
632 C., Yu, J. Z., and Zhang, Q.: Comparative Assessment of Cooking Emission Contributions to
633 Urban Organic Aerosol Using Online Molecular Tracers and Aerosol Mass Spectrometry
634 Measurements, *Environ. Sci. Technol.*, 10.1021/acs.est.1c03280, 2021.

635 Huang, G., Liu, Y., Shao, M., Li, Y., Chen, Q., Zheng, Y., Wu, Z., Liu, Y., Wu, Y., Hu, M., Li,
636 X., Lu, S., Wang, C., Liu, J., Zheng, M., and Zhu, T.: Potentially Important Contribution of
637 Gas-Phase Oxidation of Naphthalene and Methylnaphthalene to Secondary Organic Aerosol
638 during Haze Events in Beijing, *Environ. Sci. Technol.*, 53, 1235-1244, 10.1021/acs.est.8b04523,

639 2019.

640 Inomata, S., Sato, K., Hirokawa, J., Sakamoto, Y., Tanimoto, H., Okumura, M., Tohno, S., and
641 Imamura, T.: Analysis of secondary organic aerosols from ozonolysis of isoprene by proton
642 transfer reaction mass spectrometry, *Atmos. Environ.*, 97, 397-405,
643 10.1016/j.atmosenv.2014.03.045, 2014.

644 Krechmer, J. E., Groessl, M., Zhang, X., Junninen, H., Massoli, P., Lambe, A. T., Kimmel, J.
645 R., Cubison, M. J., Graf, S., Lin, Y.-H., Budisulistiorini, S. H., Zhang, H., Surratt, J. D.,
646 Knochenmuss, R., Jayne, J. T., Worsnop, D. R., Jimenez, J.-L., and Canagaratna, M. R.: Ion
647 mobility spectrometry–mass spectrometry (IMS–MS) for on- and offline analysis of
648 atmospheric gas and aerosol species, *Atmos. Meas. Tech.*, 9, 3245-3262, 10.5194/amt-9-3245-
649 2016, 2016.

650 Le Breton, M., Wang, Y. J., Hallquist, A. M., Pathak, R. K., Zheng, J., Yang, Y. D., Shang, D.
651 J., Glasius, M., Bannan, T. J., Liu, Q. Y., Chan, C. K., Percival, C. J., Zhu, W. F., Lou, S. R.,
652 Topping, D., Wang, Y. C., Yu, J. Z., Lu, K. D., Guo, S., Hu, M., and Hallquist, M.: Online gas-
653 and particle-phase measurements of organosulfates, organosulfonates and nitrooxy
654 organosulfates in Beijing utilizing a FIGAERO ToF-CIMS, *Atmos. Chem. Phys.*, 18, 10355-
655 10371, 2018.

656 Lee, B. H., Lopez-Hilfiker, F. D., D'Ambro, E. L., Zhou, P., Boy, M., Petäjä, T., Hao, L.,
657 Virtanen, A., and Thornton, J. A.: Semi-volatile and highly oxygenated gaseous and particulate
658 organic compounds observed above a boreal forest canopy, *Atmos. Chem. Phys.*, 18, 11547-
659 11562, 10.5194/acp-18-11547-2018, 2018.

660 Leglise, J., Muller, M., Piel, F., Otto, T., and Wisthaler, A.: Bulk Organic Aerosol Analysis by
661 Proton-Transfer-Reaction Mass Spectrometry: An Improved Methodology for the
662 Determination of Total Organic Mass, O:C and H:C Elemental Ratios, and the Average
663 Molecular Formula, *Anal. Chem.*, 91, 12619-12624, 10.1021/acs.analchem.9b02949, 2019.

664 Lindinger, W., Hansel, A., and Jordan, A.: Proton-transfer-reaction mass spectrometry (PTR-
665 MS): on-line monitoring of volatile organic compounds at pptv levels, *Chem. Soc. Rev.*, 27,
666 347-354, 10.1039/a827347z, 1998.

667 Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F., Lutz,
668 A., Hallquist, M., Worsnop, D., and Thornton, J. A.: A novel method for online analysis of gas

669 and particle composition: description and evaluation of a Filter Inlet for Gases and AEROSols
670 (FIGAERO), *Atmos. Meas. Tech.*, 7, 983-1001, 10.5194/amt-7-983-2014, 2014.

671 Lopez-Hilfiker, F. D., Mohr, C., Ehn, M., Rubach, F., Kleist, E., Wildt, J., Mentel, T. F.,
672 Carrasquillo, A. J., Daumit, K. E., Hunter, J. F., Kroll, J. H., Worsnop, D. R., and Thornton, J.
673 A.: Phase partitioning and volatility of secondary organic aerosol components formed from α -
674 pinene ozonolysis and OH oxidation: the importance of accretion products and other low
675 volatility compounds, *Atmos. Chem. Phys.*, 15, 7765-7776, 10.5194/acp-15-7765-2015, 2015.

676 Lopez-Hilfiker, F. D., Mohr, C., D'Ambro, E. L., Lutz, A., Riedel, T. P., Gaston, C. J., Iyer, S.,
677 Zhang, Z., Gold, A., Surratt, J. D., Lee, B. H., Kurten, T., Hu, W. W., Jimenez, J., Hallquist, M.,
678 and Thornton, J. A.: Molecular Composition and Volatility of Organic Aerosol in the
679 Southeastern U.S.: Implications for IEPOX Derived SOA, *Environ. Sci. Technol.*, 50, 2200-
680 2209, 10.1021/acs.est.5b04769, 2016.

681 Lutz, A., Mohr, C., Le Breton, M., Lopez-Hilfiker, F. D., Priestley, M., Thornton, J. A., and
682 Hallquist, M.: Gas to Particle Partitioning of Organic Acids in the Boreal Atmosphere, *ACS*
683 *Earth Space Chem.*, 3, 1279-1287, 10.1021/acsearthspacechem.9b00041, 2019.

684 Mai, H., Shiraiwa, M., Flagan, R. C., and Seinfeld, J. H.: Under What Conditions Can
685 Equilibrium Gas-Particle Partitioning Be Expected to Hold in the Atmosphere?, *Environ. Sci.*
686 *Technol.*, 49, 11485-11491, 10.1021/acs.est.5b02587, 2015.

687 Muller, M., Eichler, P., D'Anna, B., Tan, W., and Wisthaler, A.: Direct Sampling and Analysis
688 of Atmospheric Particulate Organic Matter by Proton-Transfer-Reaction Mass Spectrometry,
689 *Anal. Chem.*, 89, 10889-10897, 10.1021/acs.analchem.7b02582, 2017.

690 Pagonis, D., Sekimoto, K., and de Gouw, J.: A Library of Proton-Transfer Reactions of H_3O^+
691 Ions Used for Trace Gas Detection, *Journal of the American Society for Mass Spectrometry*, 30,
692 1330-1335, 10.1007/s13361-019-02209-3, 2019.

693 Palm, B. B., Peng, Q. Y., Fredrickson, C. D., Lee, B., Garofalo, L. A., Pothier, M. A.,
694 Kreidenweis, S. M., Farmer, D. K., Pokhrel, R. P., Shen, Y. J., Murphy, S. M., Permar, W., Hu,
695 L., Campos, T. L., Hall, S. R., Ullmann, K., Zhang, X., Flocke, F., Fischer, E. V., and Thornton,
696 J. A.: Quantification of organic aerosol and brown carbon evolution in fresh wildfire plumes,
697 *Proc Natl Acad Sci U S A*, 117, 29469-29477, 10.1073/pnas.2012218117, 2020.

698 Pankow, J. F.: An absorption-model of the gas aerosol partitioning involved in the formation of

699 secondary organic aerosol, *Atmos. Environ.*, 28, 189-193, 10.1016/1352-2310(94)90094-9,
700 1994.

701 Pankow, J. F. and Asher, W. E.: SIMPOL.1: a simple group contribution method for predicting
702 vapor pressures and enthalpies of vaporization of multifunctional organic compounds, *Atmos.*
703 *Chem. Phys.*, 8, 2773-2796, 10.5194/acp-8-2773-2008, 2008.

704 Peng, Y., Wang, H., Wang, Q., Jing, S., An, J., Gao, Y., Huang, C., Yan, R., Dai, H., Cheng, T.,
705 Zhang, Q., Li, M., Hu, J., Shi, Z., Li, L., Lou, S., Tao, S., Hu, Q., Lu, J., and Chen, C.:
706 Observation-based sources evolution of non-methane hydrocarbons (NMHCs) in a megacity of
707 China, *J. Environ. Sci.*, 124, 794-805, 10.1016/j.jes.2022.01.040, 2023.

708 Perraud, V., Bruns, E. A., Ezell, M. J., Johnson, S. N., Yu, Y., Alexander, M. L., Zelenyuk, A.,
709 Imre, D., Chang, W. L., Dabdub, D., Pankow, J. F., and Finlayson-Pitts, B. J.: Nonequilibrium
710 atmospheric secondary organic aerosol formation and growth, *Proc Natl Acad Sci U S A*, 109,
711 2836-2841, 10.1073/pnas.1119909109, 2012.

712 Piel, F., Muller, M., Mikoviny, T., Pusede, S. E., and Wisthaler, A.: Airborne measurements of
713 particulate organic matter by proton-transfer-reaction mass spectrometry (PTR-MS): a pilot
714 study, *Atmos. Meas. Tech.*, 12, 5947-5958, 10.5194/amt-12-5947-2019, 2019.

715 Piel, F., Müller, M., Winkler, K., Skytte af Sätra, J., and Wisthaler, A.: Introducing the extended
716 volatility range proton-transfer-reaction mass spectrometer (EVR PTR-MS), *Atmos. Meas.*
717 *Tech.*, 14, 1355-1363, 10.5194/amt-14-1355-2021, 2021.

718 Sekimoto, K., Li, S. M., Yuan, B., Koss, A., Coggon, M., Warneke, C., and de Gouw, J.:
719 Calculation of the sensitivity of proton-transfer-reaction mass spectrometry (PTR-MS) for
720 organic trace gases using molecular properties, *International Journal of Mass Spectrometry*, 421,
721 71-94, 10.1016/j.ijms.2017.04.006, 2017.

722 Shiraiwa, M. and Seinfeld, J. H.: Equilibration timescale of atmospheric secondary organic
723 aerosol partitioning, *Geophysical Research Letters*, 39, n/a-n/a, 10.1029/2012gl054008, 2012.

724 Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas-particle partitioning of
725 atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology, *Phys.*
726 *Chem. Chem. Phys.*, 15, 11441-11453, 10.1039/c3cp51595h, 2013.

727 Spanel, P. and Smith, D.: SIFT studies of the reactions of H₃O⁺, NO⁺ and O₂⁺ with a series

728 of alcohols, Int. J. Mass Spectrom. Ion Processes, 167-168, 375-388,
729 [https://doi.org/10.1016/S0168-1176\(97\)00085-2](https://doi.org/10.1016/S0168-1176(97)00085-2), 1997.

730 Spanel, P., Ji, Y. F., and Smith, D.: SIFT studies of the reactions of H₃O⁺, NO⁺ and O₂(⁺)
731 with a series of aldehydes and ketones, International Journal of Mass Spectrometry, 165, 25-
732 37, 10.1016/s0168-1176(97)00166-3, 1997.

733 Stark, H., Yatavelli, R. L. N., Thompson, S. L., Kang, H., Krechmer, J. E., Kimmel, J. R., Palm,
734 B. B., Hu, W. W., Hayes, P. L., Day, D. A., Campuzano-Jost, P., Canagaratna, M. R., Jayne, J.
735 T., Worsnop, D. R., and Jimenez, J. L.: Impact of Thermal Decomposition on Thermal
736 Desorption Instruments: Advantage of Thermogram Analysis for Quantifying Volatility
737 Distributions of Organic Species, Environ. Sci. Technol., 51, 8491-8500,
738 10.1021/acs.est.7b00160, 2017.

739 Tan, W., Zhu, L., Mikoviny, T., Nielsen, C. J., Wisthaler, A., Eichler, P., Muller, M., D'Anna,
740 B., Farren, N. J., Hamilton, J. F., Pettersson, J. B. C., Hallquist, M., Antonsen, S., and Stenstrom,
741 Y.: Theoretical and Experimental Study on the Reaction of tert-Butylamine with OH Radicals
742 in the Atmosphere, J. Phys. Chem. A, 122, 4470-4480, 10.1021/acs.jpca.8b01862, 2018.

743 Tani, A., Hayward, S., and Hewitta, C. N.: Measurement of monoterpenes and related
744 compounds by proton transfer reaction-mass spectrometry (PTR-MS), International Journal of
745 Mass Spectrometry, 223, 561-578, 10.1016/s1387-3806(02)00880-1, 2003.

746 Thompson, S. L., Yatavelli, R. L. N., Stark, H., Kimmel, J. R., Krechmer, J. E., Day, D. A., Hu,
747 W., Isaacman-VanWertz, G., Yee, L., Goldstein, A. H., Khan, M. A. H., Holzinger, R., Kreisberg,
748 N., Lopez-Hilfiker, F. D., Mohr, C., Thornton, J. A., Jayne, J. T., Canagaratna, M., Worsnop, D.
749 R., and Jimenez, J. L.: Field intercomparison of the gas/particle partitioning of oxygenated
750 organics during the Southern Oxidant and Aerosol Study (SOAS) in 2013, Aerosol Sci. Technol.,
751 51, 30-56, 10.1080/02786826.2016.1254719, 2016.

752 Veres, P., Roberts, J. M., Warneke, C., Welsh-Bon, D., Zahniser, M., Herndon, S., Fall, R., and
753 de Gouw, J.: Development of negative-ion proton-transfer chemical-ionization mass
754 spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere,
755 International Journal of Mass Spectrometry, 274, 48-55, 10.1016/j.ijms.2008.04.032, 2008.

756 Voliotis, A., Wang, Y., Shao, Y., Du, M., Bannan, T. J., Percival, C. J., Pandis, S. N., Alfarra, M.
757 R., and McFiggans, G.: Exploring the composition and volatility of secondary organic aerosols

758 in mixed anthropogenic and biogenic precursor systems, *Atmos. Chem. Phys.*, 21, 14251-14273,
759 10.5194/acp-21-14251-2021, 2021.

760 Wang, H. L., Lou, S. R., Huang, C., Qiao, L. P., Tang, X. B., Chen, C. H., Zeng, L. M., Wang,
761 Q., Zhou, M., Lu, S. H., and Yu, X. N.: Source Profiles of Volatile Organic Compounds from
762 Biomass Burning in Yangtze River Delta, China, *Aerosol Air Qual. Res.*, 14, 818-828,
763 10.4209/aaqr.2013.05.0174, 2014.

764 Wang, M. Y., Chen, D. X., Xiao, M., Ye, Q., Stolzenburg, D., Hofbauer, V., Ye, P. L., Vogel, A.
765 L., Mauldin, R. L., Amorim, A., Baccarini, A., Baumgartner, B., Brilke, S., Dada, L., Dias, A.,
766 Duplissy, J., Finkenzeller, H., Garmash, O., He, X. C., Hoyle, C. R., Kim, C., Kvashnin, A.,
767 Lehtipalo, K., Fischer, L., Molteni, U., Petaja, T., Pospisilova, V., Quelever, L. L. J., Rissanen,
768 M., Simon, M., Tauber, C., Tome, A., Wagner, A. C., Weitz, L., Volkamer, R., Winkler, P. M.,
769 Kirkby, J., Worsnop, D. R., Kulmala, M., Baltensperger, U., Dommen, J., El Haddad, I., and
770 Donahue, N. M.: Photo-oxidation of Aromatic Hydrocarbons Produces Low-Volatility Organic
771 Compounds, *Environ. Sci. Technol.*, 54, 7911-7921, 2020a.

772 Wang, Q. Q., He, X., Zhou, M., Huang, D. D., Qiao, L. P., Zhu, S. H., Ma, Y. G., Wang, H. L.,
773 Li, L., Huang, C., Huang, X. H. H., Xu, W., Worsnop, D., Goldstein, A. H., Guo, H., and Yu, J.
774 Z.: Hourly Measurements of Organic Molecular Markers in Urban Shanghai, China: Primary
775 Organic Aerosol Source Identification and Observation of Cooking Aerosol Aging, *ACS Earth
776 Space Chem.*, 4, 1670-1685, 2020b.

777 Yatavelli, R. L. N., Lopez-Hilfiker, F., Wargo, J. D., Kimmel, J. R., Cubison, M. J., Bertram, T.
778 H., Jimenez, J. L., Gonin, M., Worsnop, D. R., and Thornton, J. A.: A Chemical Ionization
779 High-Resolution Time-of-Flight Mass Spectrometer Coupled to a Micro Orifice Volatilization
780 Impactor (MOVI-HRToF-CIMS) for Analysis of Gas and Particle-Phase Organic Species,
781 *Aerosol Sci. Technol.*, 46, 1313-1327, 2012.

782 Ye, C., Yuan, B., Lin, Y., Wang, Z., Hu, W., Li, T., Chen, W., Wu, C., Wang, C., Huang, S., Qi,
783 J., Wang, B., Wang, C., Song, W., Wang, X., Zheng, E., Krechmer, J. E., Ye, P., Zhang, Z., Wang,
784 X., Worsnop, D. R., and Shao, M.: Chemical characterization of oxygenated organic
785 compounds in the gas phase and particle phase using iodide CIMS with FIGAERO in urban air,
786 *Atmos. Chem. Phys.*, 21, 8455-8478, 10.5194/acp-21-8455-2021, 2021.

787 Zhang, X. and Seinfeld, J. H.: A functional group oxidation model (FGOM) for SOA formation
788 and aging, *Atmos. Chem. Phys.*, 13, 5907-5926, 10.5194/acp-13-5907-2013, 2013.

789 Zhang, X., Dalleska, N. F., Huang, D. D., Bates, K. H., Sorooshian, A., Flagan, R. C., and
790 Seinfeld, J. H.: Time-resolved molecular characterization of organic aerosols by PILS plus
791 UPLC/ESI-Q-TOFMS, *Atmos. Environ.*, 130, 180-189, 10.1016/j.atmosenv.2015.08.049,
792 2016a.

793 Zhang, X., Zhang, H. F., Xu, W., Wu, X. K., Tyndall, G. S., Orlando, J. J., Jayne, J. T., Worsnop,
794 D. R., and Canagaratna, M. R.: Molecular characterization of alkyl nitrates in atmospheric
795 aerosols by ion mobility mass spectrometry, *Atmos. Meas. Tech.*, 12, 5535-5545, 10.5194/amt-
796 12-5535-2019, 2019.

797 Zhang, X., Krechmer, J. E., Groessl, M., Xu, W., Graf, S., Cubison, M., Jayne, J. T., Jimenez,
798 J. L., Worsnop, D. R., and Canagaratna, M. R.: A novel framework for molecular
799 characterization of atmospherically relevant organic compounds based on collision cross
800 section and mass-to-charge ratio, *Atmos. Chem. Phys.*, 16, 12945-12959, 10.5194/acp-16-
801 12945-2016, 2016b.

802 Zhao, Y. L., Kreisberg, N. M., Worton, D. R., Isaacman, G., Weber, R. J., Liu, S., Day, D. A.,
803 Russell, L. M., Markovic, M. Z., VandenBoer, T. C., Murphy, J. G., Hering, S. V., and Goldstein,
804 A. H.: Insights into Secondary Organic Aerosol Formation Mechanisms from Measured
805 Gas/Particle Partitioning of Specific Organic Tracer Compounds, *Environ. Sci. Technol.*, 47,
806 3781-3787, 2013.

807 Zhu, H., Wang, H., Jing, S., Wang, Y., Cheng, T., Tao, S., Lou, S., Qiao, L., Li, L., and Chen,
808 J.: Characteristics and sources of atmospheric volatile organic compounds (VOCs) along the
809 mid-lower Yangtze River in China, *Atmos. Environ.*, 190, 232-240,
810 10.1016/j.atmosenv.2018.07.026, 2018.

811 Zhu, S., Wang, Q., Qiao, L., Zhou, M., Wang, S., Lou, S., Huang, D., Wang, Q., Jing, S., Wang,
812 H., Chen, C., Huang, C., and Yu, J. Z.: Tracer-based characterization of source variations of
813 PM2.5 and organic carbon in Shanghai influenced by the COVID-19 lockdown, *Faraday
814 Discuss.*, 226, 112-137, 10.1039/d0fd00091d, 2021.

815