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Abstract. The Global Precipitation Measurement (GPM)
mission measures global precipitation at a temporal resolu-
tion of a few hours to enable close monitoring of the global
hydrological cycle. GPM achieves this by combining obser-
vations from a spaceborne precipitation radar, a constella-
tion of passive microwave (PMW) sensors, and geostationary
satellites. The Goddard Profiling Algorithm (GPROF) is used
operationally to retrieve precipitation from all PMW sensors
of the GPM constellation. Since the resulting precipitation
rates serve as input for many of the level 3 retrieval prod-
ucts, GPROF constitutes an essential component of the GPM
processing pipeline.

This study investigates ways to improve GPROF using
modern machine learning methods. We present two neural-
network-based, probabilistic implementations of GPROF:
GPROF-NN 1D, which (just like the current GPROF im-
plementation) processes pixels individually, and GPROF-NN
3D, which employs a convolutional neural network to incor-
porate structural information into the retrieval. The accuracy
of the retrievals is evaluated using a test dataset consistent
with the data used in the development of the GPROF and
GPROF-NN retrievals. This allows for assessing the accu-
racy of the retrieval method isolated from the representa-
tiveness of the training data, which remains a major source
of uncertainty in the development of precipitation retrievals.
Despite using the same input information as GPROF, the
GPROF-NN 1D retrieval improves the accuracy of the re-
trieved surface precipitation for the GPM Microwave Imager
(GMI) from 0.079 to 0.059 mm h−1 in terms of mean abso-

lute error (MAE), from 76.1 % to 69.5 % in terms of sym-
metric mean absolute percentage error (SMAPE) and from
0.797 to 0.847 in terms of correlation. The improvements
for the Microwave Humidity Sounder (MHS) are from 0.085
to 0.061 mm h−1 in terms of MAE, from 81 % to 70.1 %
for SMAPE, and from 0.724 to 0.804 in terms of correla-
tion. Comparable improvements are found for the retrieved
hydrometeor profiles and their column integrals, as well as
the detection of precipitation. Moreover, the ability of the
retrievals to resolve small-scale variability is improved by
more than 40 % for GMI and 29 % for MHS. The GPROF-
NN 3D retrieval further improves the MAE to 0.043 mm h−1;
the SMAPE to 48.67 %; and the correlation to 0.897 for GMI
and 0.043 mm h−1, 63.42 %, and 0.83 for MHS.

Application of the retrievals to GMI observations of Hurri-
cane Harvey shows moderate improvements when compared
to co-located GPM-combined and ground-based radar mea-
surements indicating that the improvements at least partially
carry over to assessment against independent measurements.
Similar retrievals for MHS do not show equally clear im-
provements, leaving the validation against independent mea-
surements for future investigation.

Both GPROF-NN algorithms make use of the same input
and output data as the original GPROF algorithm and thus
may replace the current implementation in a future update
of the GPM processing pipeline. Despite their superior ac-
curacy, the single-core runtime required for the operational
processing of an orbit of observations is lower than that of
GPROF. The GPROF-NN algorithms promise to be a simple
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and cost-efficient way to increase the accuracy of the PMW
precipitation retrievals of the GPM constellation and thus im-
prove the monitoring of the global hydrological cycle.

1 Introduction

The Goddard Profiling Algorithm (GPROF, Kummerow et
al., 2015) is the operational precipitation retrieval algorithm
for the passive microwave (PMW) observations from the ra-
diometer constellation of the Global Precipitation Measure-
ment (GPM, Hou et al., 2014) mission, whose objective is
to provide consistent global measurements of precipitation
at a temporal resolution of a few hours. The precipitation re-
trieved by GPROF serves as input for the Integrated Multi-
Satellite Retrievals for GPM (IMERG, Huffman et al., 2020),
which can be considered the state of the art of global precip-
itation measurements. The algorithm thus constitutes an es-
sential component of the global observation system that en-
ables monitoring of the hydrological cycle for the benefit of
science and society.

The development of GPROF was originally motivated by
the Tropical Rainfall Measurement Mission (TRMM, Simp-
son et al., 1996), the precursor of the GPM mission, and
thus dates back almost 30 years (Kummerow and Giglio,
1994b, c). Due to the conceptual and computational com-
plexity of simulating PMW observations of clouds and pre-
cipitation, the algorithm was and remains based on a retrieval
database consisting of observations and corresponding pro-
files of hydrometeors and precipitation rates. Nonetheless,
the algorithm has undergone several updates since its con-
ception. Methodologically, the most fundamental modifica-
tion was the introduction of the Bayesian retrieval scheme in
Kummerow et al. (1996), which is used in the algorithm up
to the present. Following this, algorithm updates were mostly
focused on improving the retrieval database and the incorpo-
ration of ancillary data into the retrieval. While the first ver-
sion of GPROF still used handcrafted hydrometeor profiles
to generate the retrieval database, these were soon replaced
by profiles from a mesoscale weather model (Kummerow et
al., 1996). An important improvement was the replacement
of the model-derived database by an observationally gener-
ated database for the GPROF 2010 algorithm (Kummerow
et al., 2011, 2015), which helped reduce errors caused by
misrepresentation of atmospheric states in the database. The
2014 version of GPROF (Kummerow et al., 2015) introduced
the first fully parametric version of the algorithm, which was
designed to be applicable to all sensors of the GPM constel-
lation. This version of GPROF became the operational PMW
precipitation retrieval of the GPM mission.

This study focuses on the computational method that
is used to produce the retrieval results from the retrieval
database used by GPROF. Since its introduction in Kum-
merow et al. (1996), the currently used Bayesian method

has not received much consideration, mainly because the
database and the incorporation of ancillary data were deemed
to be more relevant for improving the accuracy of the re-
trieval. However, two disadvantages of the current retrieval
method have become apparent with the introduction of the
much larger, observationally generated retrieval databases
into the algorithm (Elsaesser and Kummerow, 2015): first,
the retrieval database must be compressed into self-similar
clusters to reduce the processing time. This lossy compres-
sion may limit the extent to which the current algorithm can
benefit from the size and representativeness of observation-
ally generated retrieval databases. This is expected to affect
retrievals of high rain rates due to their scarcity in the re-
trieval database. Second, the accuracy of the retrieval results
depends on the uncertainties assigned to the database obser-
vations. Since there is no principled way to calculate these
uncertainties, they need to be tuned heuristically for each
sensor.

While GPROF is currently based on a data-driven method
to solve Bayesian inverse problems, more general machine
learning techniques have recently gained popularity for ap-
plication in precipitation retrievals. Deep neural networks
(DNNs), which have enabled a number of significant break-
throughs in different scientific fields (Silver et al., 2016;
Jumper et al., 2021), have in recent years been explored for
retrieving precipitation from satellite observations. Convolu-
tional neural networks (CNNs) are especially appealing for
this application because of their ability to leverage spatial
patterns in image data. This property sets them apart from
traditional retrieval methods and shallow machine-learning
techniques, which are limited in their ability to use this infor-
mation by computational complexity (Duncan et al., 2019) or
the need for feature engineering or manual incorporation of
spatial information through techniques such as convective–
stratiform discrimination (Gopalan et al., 2010).

Shallow neural networks have long been used to retrieve
precipitation from PMW observations (Staelin and Chen,
2000; Surussavadee and Staelin, 2008). The Passive mi-
crowave Neural network Precipitation Retrieval (PNPR) pre-
sented in Sanò et al. (2015, 2016, 2018) and the work by Tang
et al. (2018) are among the more recent algorithms that use
neural networks for retrieving precipitation from PMW ob-
servations. They employ relatively shallow neural networks
and retrieve precipitation in a pixel-wise manner, thus ne-
glecting the spatial structure in the observations. Other re-
cent work demonstrates the ability of CNNs to leverage spa-
tial information in satellite observations. Examples of this
are IR-based retrievals by Sadeghi et al. (2019), PMW-based
precipitation detection (Li et al., 2021), and retrievals com-
bining PMW with IR observations (Gorooh et al., 2022) and
gauge measurements (Moraux et al., 2019).

A shortcoming of the aforementioned studies is that none
of them addresses the inherent uncertainty of the precipita-
tion retrievals. Retrieving precipitation from PMW observa-
tions constitutes an inverse problem, whose ill-posed char-
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acter leads to significant uncertainties in the retrieval results.
Traditionally, these uncertainties are handled using Bayesian
statistics. However, because the algorithms mentioned above
neglect the probabilistic character of the retrieval, there is no
way to reconcile them with the Bayesian approach.

Moreover, existing precipitation retrievals that make use
of DNNs (Moraux et al., 2019; Sadeghi et al., 2019; Li et al.,
2021; Gorooh et al., 2022) are experimental retrievals that
are currently not used operationally. The design of an oper-
ational retrieval algorithm for the GPM PMW observations
needs to address a number of additional requirements, such
as the handling of observations from different sensors and the
retrieval of multiple output variables. Furthermore, because
GPM is an ongoing mission, continuity of the output vari-
ables must be ensured, which further constrains the design of
the retrieval algorithm.

This study explores the use of DNNs for the operational
retrieval of precipitation rates and hydrometeor profiles from
the PMW observations from the GPM constellation. To this
end, we present two PMW precipitation retrieval algorithms
that provide probabilistic precipitation estimates and can be
used in the operational processing pipeline for the GPM
PMW observations.

GPROF-NN 1D This algorithm uses a fully connected neu-
ral network to retrieve single-column hydrometeor pro-
files and rain rates based on the observed brightness
temperature vector. It thus uses exactly the same input
data as the standard GPROF algorithm.

GPROF-NN 3D This algorithm extends the GPROF-NN
1D algorithm by incorporating spatial information into
the retrieval using a CNN. It produces the same output
as GPROF and GPROF-NN 1D but processes all obser-
vations simultaneously, thus allowing the algorithm to
combine information from pixels across the swath.

The proposed algorithms are based on quantile regression
neural networks (QRNNs, Pfreundschuh et al., 2018), which
can be used to predict the posterior distribution of a Bayesian
solution of the retrieval, given that the assumed a priori dis-
tribution of the Bayesian solution is the same as the distri-
bution of the neural network’s training data. Because of this,
the GPROF-NN retrievals can produce all of GPROF’s re-
trieval outputs, which include a probability of precipitation
and an uncertainty estimate of the predicted precipitation in
the form of terciles of the posterior distribution.

Before a retrieval can replace the current operational ver-
sion of GPROF, it is imperative to establish its ability to
improve the retrieval accuracy to avoid degradation of the
GPM data products. A balanced evaluation of the accuracy
of precipitation retrievals is difficult because it depends on
the statistics of the data used in the assessment. Data-driven
retrievals generally yield the most accurate results when eval-
uated on data with the same distribution as the data used for
their training. At the same time, evaluation against indepen-

dent measurements may distort the evaluation when these
measurements deviate significantly from the training data. In
this study, the retrieval performance of the GPROF-NN algo-
rithms is evaluated and compared to that of GPROF using a
held-out part of the retrieval database. This provides the most
direct estimate of the benefits of the neural-network-based re-
trievals because it avoids the distorting effects of using test
data from a different origin. Moreover, the nominal accuracy
of both the GPROF and GPROF-NN algorithms provides a
reference for future validation against independent measure-
ments. More specifically, this study employs the newly de-
veloped GPROF-NN algorithms to answer the following two
questions.

1. Can a DNN that uses the same input information as
GPROF provide more accurate retrievals of surface pre-
cipitation and vertical hydrometeor profiles?

2. What is the potential of using a CNN to incorporate spa-
tial information into the retrieval to further improve the
accuracy of the retrievals within the current processing
pipeline?

This study uses the upcoming version of the GPROF algo-
rithm, GPROF 2021 (also known as GPROF V7, in the GPM
Precipitation Processing System; NASA, 2021). The retrieval
performance is assessed for two sensors of the GPM con-
stellation: the GPM Microwave Imager (GMI) and the Mi-
crowave Humidity Sounder (MHS, Bonsignori, 2007). In ad-
dition to the evaluation against the data from the retrieval
database, the study also presents a case study of the re-
trieved surface precipitation from overpasses of both GMI
and MHS, which are compared to reference measurements
from the GPM combined product (CMB, Grecu et al., 2016)
and ground-based radar measurements from the Multi-Radar
Multi-Sensor (MRMS, Smith et al., 2016) product suite.

2 Data and methods

The GPROF-NN algorithms make use of the same data as
the original GPROF algorithm. This data, which we refer to
as the retrieval database, defines, for all three algorithms, the
input for the retrieval and the precipitation and hydrometeor
profiles that the retrieval aims to reproduce. Because of its
fundamental importance for all retrievals considered here,
this section provides an overview of the retrieval database.
This is followed by a brief description of the current GPROF
algorithm and the implementation of the GPROF-NN re-
trievals.

2.1 The retrieval database

The GPROF retrieval database is made up of pairs of retrieval
input data and corresponding output. The input comprises
PMW observations and ancillary data. The output consists of
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Table 1. Retrieval quantities in the retrieval database.

Retrieval variable Unit Type

Surface precipitation mm h−1 Scalar
Convective precipitation mm h−1 Scalar
Cloud water path kg m−2 Scalar
Rain water path kg m−2 Scalar
Ice water path kg m−2 Scalar
Cloud water content g m−3 Profile
Rain water content g m−3 Profile
Snow water content g m−3 Profile
Latent heating K h−1 Profile

the values of the retrieved quantities. GPROF’s retrieval out-
puts include surface precipitation; profiles and path integrals
of rain, snow, and cloud water; and latent heating profiles. A
listing of all retrieval targets and corresponding units is pro-
vided in Table 1.

Since the available channels and the viewing geometries
vary between the sensors of the GPM constellation, a sepa-
rate database is generated for each sensor type. A crucial dif-
ference between the retrieval databases for GMI and the other
sensors of the GPM constellation is that the database for GMI
uses real observations, whereas the databases for the other
sensors are constructed using simulations. The varying reso-
lutions and viewing geometries of different sensors are taken
into account by resampling and averaging the simulated ob-
servations and retrieval results to the observation footprints
of the corresponding sensor. The channels of the GMI and
MHS sensors that are used in this study are listed in Table 2.

The databases for GPROF 2021 are derived from 1 year
(October 2018 to September 2019) of retrieved hydrome-
teor profiles from the GPM CMB product (Grecu et al.,
2016). This data are complemented with surface precipita-
tion from the currently operational Microwave Integrated Re-
trieval System (Boukabara et al., 2011), which adds light pre-
cipitation in areas where no echo is detected by the GPM
Dual-Frequency Precipitation Radar. Observations over sea
ice and snow-covered surfaces are handled separately. For
sea ice, precipitation is derived from the ERA5 reanalysis
(Hersbach et al., 2020). For snow-covered surfaces, precip-
itation is derived from several years of co-locations with
gauge-corrected radar measurements from MRMS (Smith et
al., 2016).

The ancillary data that serve as additional retrieval inputs
are derived from reanalysis datasets. They consist of 2 m tem-
perature (T2 m), total column water vapor (TCWV), the sur-
face type, and an air lifting index (ALI) that encodes infor-
mation on atmospheric convergence in mountainous areas.
The ancillary data for the databases used in this study were
derived from the ERA5 reanalysis (Hersbach et al., 2020).

A detailed description of the retrieval database and the
derivation of the data it contains can be found in the GPROF

Table 2. Channels of the GMI and MHS sensors used for the re-
trievals in this study.

Channel Freq. (GHz) Pol.

GMI-1 10.6 V
GMI-2 10.6 H
GMI-3 18.7 V
GMI-4 18.7 H
GMI-5 23 V
GMI-6 37 V
GMI-7 37 H
GMI-8 89 V
GMI-9 89 H
GMI-10 166 V
GMI-11 166 H
GMI-12 183± 3 V
GMI-13 183± 7 V

Sensor Freq. (GHz) Pol.

MHS-1 89 V
MHS-2 157 V
MHS-3 183± 1 H
MHS-4 183± 3 H
MHS-5 190.31 V

Algorithm Theoretical Basis Document (ATBD) (Passive
Microwave Algorithm Team Facility, 2022). The training
data for the GPROF-NN retrievals consists of the data from
the retrieval database. The training data are stored in an in-
termediate format to simplify the loading of the data during
training of the neural network. The format and the creation
process of the training data are both described in detail in
Sect. B1 in Appendix B.

2.2 The GPROF algorithm

The current implementation of GPROF uses a Bayesian
scheme to retrieve precipitation and hydrometeor profiles,
which works by resampling the profiles in the database
based on the similarity of the observations and ancillary data.
GPROF uses ancillary data to split the database into separate
bins. This reduces the number of profiles for which weights
must be computed and helps to constrain the retrieval. More-
over, the profiles in each bin are clustered to limit the number
of profiles that need to be processed. A detailed description
of the implementation of GPROF is provided in Appendix A.

2.3 The GPROF-NN algorithms

The principal objective guiding the design of the GPROF-
NN algorithms was to develop a neural-network-based re-
trieval that operates on the same input data and provides the
same output as GPROF so that it can replace the current im-
plementation in a future update. Although GPROF’s retrieval
scheme is defined on independent pixels, the algorithm pro-
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cesses full orbits of observations and corresponding ancillary
data. Both GPROF-NN retrievals were therefore designed to
process the same input format as GPROF, which corresponds
to each sensor’s level 1C observations in their native spatial
sampling, which is remapped to a common grid where re-
quired. The output from all retrievals is on the same grid as
the input.

GPROF produces multiple probabilistic outputs: a proba-
bility of precipitation and the mode and terciles of the pos-
terior distribution of precipitation. An implementation based
on standard regression neural networks would not provide
any principled way to produce these probabilistic outputs due
to the incompatibility of deterministic regression with the
Bayesian retrieval formulation used in GPROF. The imple-
mentation of the GPROF-NN retrievals uses quantile regres-
sion neural networks (QRNNs) to overcome this limitation.
As shown in Pfreundschuh et al. (2018), when trained on a
dataset distributed according to the a priori distribution of a
Bayesian retrieval, QRNNs learn to predict quantiles of the
Bayesian posterior distribution. They thus provide a simple
and efficient way to reconcile neural network retrievals with
the Bayesian framework employed by GPROF.

QRNNs predict a sequence of quantiles, which allows re-
constructing the cumulative distribution function (CDF) of
the a posteriori distribution of any scalar retrieval quantity.
Since the distribution of a scalar variable is fully described
by its CDF, any relevant statistic of the a posteriori distribu-
tion can be derived from the predicted CDF. The GPROF-NN
retrievals use the predicted CDF to derive the most likely and
mean surface precipitation (the latter of which is identical
to the solution that would have been obtained with standard
mean squared error regression), the terciles of the posterior
distribution, and the probability of precipitation. Figure 1 il-
lustrates the principle of the GPROF-NN retrievals: the re-
trieval employs a neural network to predict a vector of values
for each pixel in the input observations. The elements of this
vector correspond to a sequence of quantiles of the a poste-
riori distribution. These quantiles are used to reconstruct a
piece-wise linear approximation of the CDF of the distribu-
tion from which the retrieval results are derived.

2.3.1 Training objectives

A neural network can be trained to predict a quantile x̂τ of a
given conditional distribution by training it to minimize the
quantile loss function Lτ corresponding to the quantile frac-
tion τ (Koenker and Hallock, 2001):

Lτ (x̂τ ,x)=
(
τ − Ix≤x̂τ

)(
x− x̂τ

)
, (1)

where x̂τ is the predicted quantile, x is the reference value
from the training data, and Ix≤x̂ is the indicator function tak-
ing the value 1 when the condition x ≤ x̂ is true and 0 other-
wise.

This principle can be extended to a sequence of quantiles
corresponding to quantile fractions τ1, . . ., τN by minimizing

the mean of the loss functions corresponding to each quantile
fraction:

Lτ1,...,τN

(
x̂,x

)
=

1
N

N∑
i=0

Lτi (x̂i,x) , (2)

where x̂i is the ith component of the vector of predicted
quantiles x̂. The GPROF-NN retrievals use this loss function
with 128 equally spaced quantiles ranging from τ1 = 0.001
to τ128 = 0.999 for all scalar retrieval variables.

A difficulty with predicting quantiles of precipitation is
that lower quantiles may become degenerate due to the high
probability of no precipitation. For example, it is impossible
to predict empirical quantiles with 0< τ < 0.5 for a pixel
with 50 % probability of precipitation. To allow monitoring
of the ability of the network to correctly predict retrieval un-
certainty up to the degeneracy induced by non-raining pixels,
we replace rain rates of non-raining pixels with random val-
ues from a log-uniform distribution that are smaller than the
smallest rain rate in the training data. During the retrieval,
predicted precipitation rates that are smaller than this thresh-
old are set to zero. The threshold is chosen as 10−4 mm h−1

and thus has negligible impact on mean or accumulated pre-
cipitation.

An additional advantage of the application of the quan-
tile loss function is that the training can be performed on
transformed retrieval outputs without changing the statisti-
cal properties of the network predictions given that the trans-
formation function is strictly monotonic. The training of
all scalar, non-negative retrieval quantities uses a log-linear
transformation function of the form

f (x)=

{
log(x) if x < 1

x− 1 if otherwise.
(3)

In addition to avoiding the prediction of negative values, we
found this to slightly increase retrieval accuracy for quanti-
ties that vary by multiple orders of magnitude, which precip-
itation rates and hydrometeor concentrations typically do.

For hydrometeor profiles, the retrieval is implemented in a
slightly different manner. To reduce the number of network
outputs, the posterior mean of hydrometeor profiles is pre-
dicted directly using mean squared error regression. Since
the output of GPROF contains only the posterior mean of
the hydrometeor concentrations, it was deemed unnecessary
to predict their full posterior distribution at each level using
quantile regression. To avoid the prediction of negative con-
centrations, rectified linear unit (ReLU) activation functions
are applied to the network outputs corresponding to hydrom-
eteor concentrations.

2.3.2 GPROF-NN 1D

The GPROF-NN 1D retrieval was designed to use the
same input information and produce the same output as the



6 S. Pfreundschuh et al.: A neural-network-based implementation of the GPROF

Figure 1. The basic principle of the implementation of the GPROF-NN retrievals. A Bayesian solution of the retrieval is obtained by
predicting, for each input pixel, a sequence of quantiles of the a posteriori distribution that is used to reconstruct its CDF. The predicted CDF
is then used to derive the scalar retrieval results.

Bayesian scheme used by GPROF. GPROF-NN 1D thus op-
erates on single pixels of brightness temperatures and ancil-
lary data and predicts the corresponding precipitation and hy-
drometeor profiles.

The neural network architecture used for the GPROF-NN
1D retrieval is illustrated in Fig. 2. A single network is
trained to predict all retrieval variables (see Table 1) using the
training objectives described in Sect. 2.3.1. The network con-
sists of a shared body and a separate head for each retrieved
variable. Bodies and heads are built-up of blocks consist-
ing of a fully connected layer followed by layer normaliza-
tion (Ba et al., 2016) and Gaussian error linear unit (GELU)
(Hendrycks and Gimpel, 2016) activation functions. During
development we have experimented with different numbers
of blocks in each body (Nb) and each of the heads (Nh) but
found only a marginal impact on the retrieval performance,
and we settled for a configuration with Nb = 6 and Hh = 4.

Detailed descriptions of the neural network training and
the retrieval processing for GPROF-NN 1D are provided in
Sects. B2 and. B3, respectively.

2.3.3 GPROF-NN 3D

The GPROF-NN 3D retrieval extends the GPROF and
GPROF-NN 1D algorithms by incorporating structural infor-
mation into the retrieval. To achieve this, the GPROF-NN 3D
algorithm employs a CNN that performs the retrieval for all
pixels in the swath simultaneously.

The network architecture for the GPROF-NN 3D al-
gorithm, illustrated in Fig. 3, consists of an asymmetric
encoder–decoder structure followed by a separate head for
each retrieved variable. The stages of the encoder and de-
coder are built up of what we refer to here as Xception blocks
(Fig. 3a) because they are based on the Xception architec-
ture introduced in Chollet (2017). Each block consists of two
depth-wise separable convolutions with a kernel size of 3
followed by group normalization layers with 32 groups and
GELU activation functions. The first block in each stage of
the encoder additionally contains a 3× 3 max-pooling layer

with a stride of 2 following the first 3× 3 convolution layer.
Each downsampling block in the encoder is followed by
N = 4 standard Xception blocks. The stages of the decoder
consist of a bilinear up-sampling layer followed by a single
Xception block. The network architecture was chosen with
the aim of maximizing the depth and width of the network
while keeping the time required for processing an orbit low.
Symmetric padding is performed before all convolution oper-
ations with a kernel size larger than one in order to conserve
the input size.

Additional complexity in the training of the GPROF-NN
3D retrieval derives from the requirement to operate on the
same data as GPROF, which means that input and output data
must be on the native observation grid of each sensor. This
is problematic because the viewing geometries of PMW sen-
sors break the translational symmetry of digital images that
constitutes one of the inductive biases of CNNs (Goodfellow
et al., 2016). For example, geolocated pixels of conical scan-
ners do not lie on a rectangular grid, which causes shapes to
appear differently depending on their position in the swath.
Figure 4 illustrates this for GMI observations. The rectangu-
lar shapes shown in Fig. 4a are distorted when the observa-
tions are plotted on a uniform grid (Fig. 4b).

Moreover, because GPROF currently only uses the cen-
tral 21 pixels of the CMB product for the generation of the
retrieval database, the values of the retrieval targets in the
GPROF database are known only at the central pixels of the
GMI swath. The location of these pixels is marked by the
light stripe in Fig. 4. The neural network can thus learn the
spatial structure of precipitation only from the central part of
the GMI observations.

The training of the GPROF-NN 3D retrieval employs a
customized data augmentation scheme to account for the
aforementioned characteristics of the training data. Training
samples for the GPROF-NN 3D retrieval are transformed to
simulate the effect of observing each training scene at vary-
ing locations of the sensor swath. The transformations are
applied randomly when a training sample is loaded, thus en-
suring that the network rarely or never sees a training scene
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Figure 2. Illustration of the neural network architecture used in the GPROF-NN 1D algorithm. The network consists of a common body
and one head for each retrieval variable. Each block in body and head consists of a fully connected layer, layer norm, and GELU activation
function.

Figure 3. The neural network architecture of the GPROF-NN 3D retrieval. Panel (a) displays the structure of the Xception blocks (Chollet,
2017) that form the building blocks of the GPROF-NN 3D model. An Xception block consists of two depth-wise separable convolutions
followed by a group normalization layer and a GELU activation function. Panel (b) shows how the Xception blocks are used in an asymmetric
encoder-decoder structure that forms the body of the network. Output from the body is combined with the ancillary data to form the inputs
to the separate heads that predict the retrieval results for each of the retrieved variables.
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Figure 4. The effect of GMI’s conical viewing geometry on observed features. Panel (a) displays geolocated observations of the 10.6 GHz
channel (colored background). Grey squares mark equilateral shapes with a side length of 200 km oriented along the swath. The highlighted
stripe located at the swath center marks the region where the values of the retrieved variables are known. Panel (b) shows the same observa-
tions viewed as an image on a uniform grid. Panel (c) shows six synthetically generated training inputs based on two input regions marked in
panel (b). The first row shows three synthetic samples that simulate the effect of viewing the input in region A at a different position across
the GMI swath. The second row shows the corresponding transformations for the input in region B.

from the same perspective. The transformations also vary the
relative location of the pixels at which values of retrieval vari-
ables are known across the full width of the swath instead of
always being located at its center. Examples of transformed
inputs for GMI are displayed in Fig. 4c.

A detailed description of the training and the retrieval
processing for the GPROF-NN 3D retrieval are provided in
Sects. B2 and B3, respectively.

2.3.4 Extension to other sensors

The GPROF retrieval for GMI is special because it is the
only sensor of the GPM constellation for which the retrieval
inputs used in the database correspond to real observations.
For the other sensors, the observations used to construct the
retrieval database are simulated. Since the simulations take
into account the effect of the different viewing geometries
and resolutions, GPROF-NN 1D inherits its ability to handle
observations from different sensors directly from the design
of retrieval database.

For the GPROF-NN 3D algorithm this is not the case.
The problem for sensors other than GMI is that the retrieval
database contains simulated observations only at the central
pixels of the GMI swath (the highlighted pixels in Fig. 4a).
To obtain two-dimensional training scenes that are suffi-
ciently wide to train a CNN, we make use of an interme-
diate CNN-based model to “retrieve” simulated brightness
temperatures across the full GMI swath. The extended sim-
ulated brightness temperatures are then remapped from the
GMI viewing geometry to the viewing geometry of the target
sensor. While this approach is certainly not ideal with respect
to the realism of the generated scenes, it was the simplest and
currently only feasible way to extend the GPROF-NN 3D re-
trieval to other sensors than GMI using only currently avail-
able data from the GPROF database. A detailed description

of the procedures involved in generating the training data for
different sensors is provided in Sect. B1 in Appendix B.

Moreover, since the databases for other sensors rely on
simulations, it is not guaranteed that the distribution of
brightness temperatures in the database matches those of ac-
tual observations. The simulations are therefore corrected us-
ing a surface type and total TCWV-dependent correction that
matches the quantiles of the conditional distributions of sim-
ulated and real observations. The GPROF algorithm’s cor-
rection distinguishes three different surface types. However,
the GPROF-NN algorithms use a correction with all 18 sur-
face types because the correction used by GPROF was found
to be too crude over land surfaces leading to artifacts in the
retrieval results.

3 Results

This section presents the results of the evaluation of GPROF
and the novel GPROF-NN algorithms. The first part evalu-
ates the retrievals using a held-out test dataset. The remainder
of this section presents a case study of precipitation retrievals
from Hurricane Harvey followed by a brief assessment of the
processing times of the different algorithms.

3.1 Assessment on held-out test data

The held-out test data comprise observations from the re-
trieval database from the first 3 d of every month. These data
have not been used for training the neural network retrievals.
It is, however, derived from the same data sources and thus
stems from the same distribution as the training data.

Table 3 lists the number of pixels with precipitation in-
formation used for testing the retrievals. The evaluation of
the GPROF-NN 3D retrieval uses spatially contiguous scenes
of the same size as the ones used during its training. Since
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Table 3. Number of pixels with precipitation information in the test
datasets used to evaluate the retrievals.

Sensor GPROF and GPROF-NN 1D GPROF-NN 3D

GMI 50435584 14218203
MHS 24975877 4945165

these scenes typically do not cover all of the pixels with pre-
cipitation information, the test data for the GPROF-NN 3D
retrievals contain fewer pixels that can be used for evalua-
tion. The lower number of test pixels for MHS is due to
the coarser resolution of the observations, which leads to a
smaller number of observations over sea ice and snow and an
additional reduction of the pixels available for evaluation of
the GPROF-NN 3D retrieval.

3.1.1 Precipitation and hydrometeor paths

As described in Table 1, the scalar variables retrieved by
GPROF are surface and convective precipitation and the
column-integrated concentrations of cloud droplets, rain, and
snow. They are denoted as cloud water path (CWP), rain wa-
ter path (RWP), and ice water path (IWP), respectively. Scat-
ter plots of the retrieval results for these five quantities eval-
uated over all surfaces are displayed in Fig. 5 for GMI and
Fig. 6 for MHS. The frequencies in all plots have been nor-
malized column-wise to ensure that results for high reference
values remain visible.

Consistent improvements in the accuracy of the surface
precipitation retrieved by GMI are observed between GPROF
and GPROF-NN 1D and between GPROF-NN 1D and
GPROF-NN 3D. The improvements are most pronounced for
light rates between 10−2 and 10−1 mm h−1 but are consistent
across the full range of values. The comparably bad perfor-
mance of GPROF for light precipitation is likely due to the
tuning of the assigned uncertainties to yield good results for
heavier rain that is more relevant for rainfall accumulation.

For convective precipitation, the results of GPROF deviate
noticeably from the diagonal. The results of GPROF-NN 1D
slightly improve upon those of GPROF. Although the mode
of the distribution is still displaced from the diagonal, the
GPROF-NN 3D algorithm yields the best agreement with
the reference data. For the path-integrated quantities, simi-
lar improvements between GPROF and GPROF-NN 1D as
well as GPROF-NN 1D and GPROF-NN 3D are observed.
Large cloud water path values are underestimated by all re-
trievals, which is likely because these values are associated
with precipitation but difficult to distinguish from it. Due to
the lack of a cloud water path signal in raining profiles, all al-
gorithms resort to predicting the climatology in the presence
of significant rain.

The results for MHS, displayed in Fig. 6, paint a simi-
lar picture. Although the overall accuracy of all retrievals
is lower than for GMI, GPROF-NN 1D consistently yields

more accurate results than GPROF. The GPROF-NN 3D re-
trieval also yields further consistent improvements compared
to the GPROF-NN 1D retrieval.

Quantitative measures of the retrieval accuracy for surface
precipitation of the three retrieval algorithms are displayed
in Table 4 for GMI and Table 5 for MHS. Similar tables for
the other retrieval quantities are provided in Tables C1–C8
in Appendix C. Each table displays bias, mean absolute error
(MAE), mean squared error (MSE), the symmetric mean ab-
solute percentage error (SMAPEt ) for all test samples with
a reference value that exceeds a quantity-specific threshold t
and the correlation. The error metrics confirm the qualitative
findings from Figs. 5 and 6: the neural network implementa-
tions outperform GPROF in terms of all considered metrics.
Moreover, the GPROF-NN 3D algorithm further improves
upon the performance of the GPROF-NN 1D algorithm. The
same tendency is observed for MHS, albeit with lower over-
all accuracy.

Since the surface type has a considerable effect on the
lower-frequency observations used in the retrieval, its im-
pact on the retrieval of surface precipitation is assessed in
Fig. 7. Figure 7 displays bias, MSE, MAE, SMAPE, and cor-
relation for principal surface types. For the analysis, original
GPROF surface types have been grouped into ocean (sur-
face type 1), dense vegetation (surface types 3–5), sparse
vegetation (6–7), snow (surface types 8–11), and coast (sur-
face types 12–15). Even when the different surface types are
considered separately, the results of the surface precipita-
tion retrieval show the same pattern as the scatter plots in
Fig. 5. The results of the GPROF-NN 1D retrieval are gener-
ally more accurate than those of GPROF, and the results of
the GPROF-NN 3D algorithm are more accurate than those
of the GPROF-NN 1D algorithm. These findings are mostly
consistent across the considered surface types and both sen-
sors. Exceptions are the biases of the GPROF-NN 1D algo-
rithm for GMI over densely vegetated surfaces and for MHS
over snow, which are larger than those of GPROF, and the
MSE of the GPROF-NN 3D algorithm for MHS over snow,
which is slightly larger than that of the GPROF-NN 1D re-
trieval. We suspect this is caused by the relative scarcity of
the observations in the retrieval database.

Figure 8 displays the geographical distribution of bias,
MSE, and SMAPE for GMI in 5◦× 5◦ boxes. As could be
expected from the previous results, the magnitudes of the
biases of GPROF are considerably larger than for the other
two algorithms. Furthermore, GPROF exhibits consistent bi-
ases across geographical regions such as the northwestern
Atlantic and northwestern Pacific, which is less the case for
the neural network algorithms. Although spatial distribution
of the MSE mostly reflects the global distribution of pre-
cipitation, a gradual decrease in MSE can be observed be-
tween the results of GPROF and GPROF-NN 1D and be-
tween GPROF-NN 1D and GPROF-NN 3D. More consis-
tent patterns are visible in the SMAPE: the largest errors for
all three retrievals occur over land surfaces, which likely re-
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Figure 5. Scatter plots of scalar retrieval targets for the three retrieval algorithms for GMI. Rows display the results for the GPROF, GPROF-
NN 1D, and GPROF-NN 3D algorithms, respectively. Columns display the results for different retrieval targets. Frequencies in the plots have
been normalized column-wise, i.e., per bin of the reference value.

Table 4. Mean error metrics and estimated standard deviation for surface precipitation retrieved from GMI observations.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0029± 0.0001 −0.0024± 0.0001 −0.0006± 0.0001

MAE [mm h−1
] 0.0788± 0.0001 0.0585± 0.0001 0.0444± 0.0001

MSE [mm h−1
] 0.1965± 0.0001 0.1379± 0.0001 0.0983± 0.0001

SMAPE0.01 [%] 76.0598± 0.0139 69.5382± 0.0127 56.0040± 0.0181
Correlation 0.7971 0.8470 0.8966

flects the decrease in information content due to the reduced
contrast in the lower-frequency channels. Over ocean, errors
are generally higher in the sub-tropics and tropics compared
to higher latitudes. Although these patterns are observed in
the results of all algorithms, a clear and globally consistent
decrease in SMAPE can be observed between the GPROF,
GPROF-NN 1D, and GPROF-NN 3D retrievals.

The corresponding results for MHS are provided in
Fig. C1. Again, although the errors are slightly larger, the
results are qualitatively similar.

3.1.2 Predicted retrieval uncertainties and
probabilistic rain detection

In addition to quantitative precipitation estimates, GPROF
produces estimates of the first and second tercile of the pos-
terior distribution of surface precipitation, which provide an
uncertainty estimate for the retrieved mean surface precipi-
tation, as well as a probabilistic classification of pixels into
raining and non-raining pixels based on an estimated proba-
bility of precipitation. Due to their probabilistic nature, simi-
lar results can be produced using the GPROF-NN algorithms.
From the predicted quantiles, the terciles can be inferred by
interpolating them to the fractions 1

3 and 2
3 , respectively. The

probability of precipitation is calculated by using the pre-
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Figure 6. The same as Fig. 5 but for MHS.

Table 5. Mean error metrics and estimated standard deviation for surface precipitation retrieved from MHS observations.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0110± 0.0001 −0.0066± 0.0001 −0.0018± 0.0001

MAE [mm h−1
] 0.0846± 0.0001 0.0609± 0.0001 0.0487± 0.0001

MSE [mm h−1
] 0.2317± 0.0001 0.1682± 0.0001 0.1087± 0.0001

SMAPE0.01 [%] 80.8641± 0.0190 68.4961± 0.0185 62.3086± 0.0377
Correlation 0.7239± 0.0000 0.8040± 0.0000 0.8400± 0.0000

dicted posterior distribution to calculate the probability of the
retrieved surface precipitation to be larger than the smallest
non-zero rain rate in the training data.

To assess the accuracy of the uncertainty estimates from
GPROF and the GPROF-NN algorithms, Table 6 lists the cal-
ibration, i.e., the frequency with which each predicted tercile
was larger than the true surface precipitation. The evalua-
tion of the results for the GPROF-NN algorithms was per-
formed with the replacement of non-raining values described
in Sect. 2.3.1, which allows us to account for degenerate
quantiles. Since no such mechanism is available for GPROF,
it is not possible to evaluate the calibration of the predicted
terciles without their effect. At least partially because of this,
the calibration of GPROF deviates from the nominal frequen-
cies. For the GPROF-NN algorithms, however, both algo-
rithms yield frequencies that are close to the expected fre-
quencies of 1

3 and 2
3 , respectively.

The quality of the raining or non-raining classification
is assessed in Fig. 9, which displays the calibration of the
predicted probability and the receiver operating characteris-
tic (ROC) curve. The predicted probabilities are fairly well
calibrated for all algorithms and sensors. Nonetheless, the
GPROF-NN algorithms yield results that are slightly closer
to the diagonal. The results for the ROC curves are analo-
gous: the GPROF-NN 1D algorithm yields better precipita-
tion detection than GPROF and the GPROF-NN 3D retrieval
in turn yields slightly better performance than the 1D ver-
sion. In terms of classification skill, worse performance is
achieved for GMI than for MHS by all algorithms, but again
the relative performance of the retrievals is the same.
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Figure 7. Bias, MSE, MAE, SMAPE0.01, and correlation of the retrieved surface precipitation with respect to the surface type and retrieval
algorithm. The results for the GMI sensor are displayed in the first column, and results for the MHS sensor are displayed in the second
column. Error bars mark one standard deviation around the mean.

Figure 8. Spatial distributions of bias (column 1), MSE (column 2), SMAPE0.01 (column 3), and the counts in each 5◦× 5◦ box (column 4)
for the GPROF (row 1), GPROF-NN 1D (row 2), GPROF-NN 3D (row 3) algorithms for GMI.
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Table 6. Calibration of the predicted terciles of the posterior distribution of surface precipitation for the three retrieval algorithms and the
GMI and MHS sensors.

Tercile Nominal GMI MHS

GPROF GPROF-NN 1D GPROF-NN 3D GPROF GPROF-NN 1D GPROF-NN 3D

First 0.333 0.461 0.351 0.349 0.274 0.34 0.326
Second 0.667 0.514 0.652 0.654 0.480 0.664 0.649

Figure 9. Calibration (a) and receiver operating characteristic (ROC, b) for the predicted probability of precipitation.

3.1.3 Effective resolution

Next, we aim to assess the impact of the retrieval method on
the effective resolution of the retrieved precipitation fields,
which is important for hydrologic applications. For this, we
adopt the approach from Guilloteau et al. (2017), who have
studied the effective resolution of the previous version of
GPROF for the GMI and the TRMM Microwave Imager sen-
sors. A 1D Haar wavelet decomposition in along-track direc-
tion over all 128 pixel sequences in the test data is performed
to calculate the effective resolution. We do not consider ob-
servations for different surface types separately. Following,
Guilloteau et al. (2017), we examine energy spectra, corre-
lation coefficients, and Nash–Sutcliffe (NS) efficiency of the
coefficients of the wavelet decomposition for the reference
and retrieved surface precipitation. The results are displayed
in Fig. 10.

An obvious difference to the results from Guilloteau et al.
(2017) is that the energy spectrum of the reference precipi-
tation field is not monotonically decreasing. The reason for
this is that the reference precipitation field in the retrieval
database is smoothed using an averaging filter adapted to the
footprint size of the respective sensor. For GMI, the GPROF-
NN 3D algorithm has the highest variability in the retrieved
precipitation field, followed by the GPROF-NN 1D algo-
rithm and GPROF. However, the variability of all retrievals
remains lower than that of the reference field. The correla-
tion of the wavelet coefficients at different scales (Fig. 10b)
is highest for the GPROF-NN 3D algorithm, followed by the

GPROF-NN 1D algorithm and GPROF. The same pattern is
observed for the NS efficiency. In terms of effective resolu-
tion, defined following Guilloteau et al. (2017) as the small-
est scale at which the NS efficiency exceeds 0.5, the GPROF-
NN 3D algorithm for the GMI sensor achieves a resolution of
13.5 km, which is the distance between consecutive pixels in
along-track direction and thus the smallest spatial scale that
can be resolved in this analysis. The effective resolution is
14.1 km for the GPROF-NN 1D algorithm and 23.1 km for
the GPROF algorithm.

For MHS, the effective resolutions of GPROF and
GPROF-NN 1D of 104 and 73 km, respectively, are signif-
icantly higher than for GMI. Since the resolution is aver-
aged over the viewing angles of the cross-track scanner and
because of its generally lower sensitivity to precipitation, a
certain degradation of the resolution was expected. Despite
this, the GPROF-NN 3D algorithm achieves a resolution of
22.3 km, which is close to that of GPROF for GMI.

3.1.4 Profile retrieval variables

In addition to precipitation fields and path-integrated hy-
drometeor concentrations, GPROF retrieves concentration
profiles of rain, snow, and cloud water. The retrieval database
also contains latent heating rates as a target variable, but
there is currently no plan to include them in the operational
output of GPROF 2021. For this study, latent heating rates
were nonetheless included in the output of the GPROF-NN
retrievals to investigate the feasibility of the retrieval.
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Figure 10. Spatial variability of retrieved and reference fields. Panel (a) shows the average of the total energy defined as the sum of the squared
wavelet coefficients at different length scales for the reference and retrieved surface precipitation fields. Panel (b) shows the correlation
coefficient between the coefficients of the reference and the retrieved precipitation field. Panel (c) shows the corresponding Nash–Sutcliffe
efficiency.

The error statistics for the profile retrievals are displayed in
Fig. 11. For GMI, the results are qualitatively similar to those
observed for the scalar retrieval variables: the GPROF-NN
1D retrieval has slightly lower biases than GPROF, with the
GPROF-NN 3D algorithm yielding the lowest biases. Sim-
ilar patterns are observed for MSE, SMAPE, and correla-
tion throughout most of the atmosphere. For rain and snow
water content, the SMAPE of the GPROF-NN 3D retrieval
increases and even exceeds that of GPROF-NN 1D at the
topmost levels where the hydrometeors are present. This is
presumably due the scarcity of profiles with hydrometeors
at these altitudes, leading to decreased accuracy for the more
complex neural network model employed by the GPROF-NN
3D algorithm.

For MHS, the retrievals exhibit slightly lower accuracy,
but qualitatively the results are very similar to those from
GMI. One exception are the biases for cloud water content,
which are slightly larger than those of GPROF. It is not quite
clear what causes this, but given that the biases remain com-
parable to those of GPROF and the results for GMI, we do
not consider these deviations critical.

3.2 Case study: Hurricane Harvey

All of the results presented above were based on a test dataset
with the same statistics as the retrieval database. While for
GMI the observations can be expected to be consistent with
those in the database, this is not necessarily the case for sen-
sors for which the retrieval database contains mostly simu-
lated observations. While a comprehensive analysis of the re-
trieval performance on real observations is outside the scope
of this study, this section presents retrieval results from two
overpasses over Hurricane Harvey to provide an indication
as to whether the performance characteristics of the retrieval
algorithm can be expected to carry over to real observations.

The first considered overpass is from the GPM Core Ob-
servatory over Hurricane Harvey and occurred on 25 August
2017 at 11:50 UTC. Figure 12 shows the retrieved surface
precipitation and reference measurements from the CMB

product and MRMS. The retrieved precipitation fields ex-
hibit marked differences in structure: the GPROF retrieval
produces large areas of low precipitation covering large parts
of the scene that are not present in the CMB or MRMS mea-
surements. This is consistent with the overestimation of light
precipitation observed in Fig. 5. These artifacts are reduced
in the results of the GPROF-NN 1D algorithm and practically
absent in the results of the GPROF-NN 3D retrieval.

A quantitative assessment of the retrieval results is pro-
vided in Table 7, which shows bias, MSE, and correlation,
as well as the precision and recall of the retrieved precipita-
tion flag. The precision is the fraction of correctly detected
raining pixels of all pixels predicted to be raining, and the re-
call is the fraction of all truly raining pixels that are correctly
detected.

All statistics were calculated using the CMB product and
the MRMS ground-based measurements as a reference. The
reference measurements were averaged to the footprint of the
GMI 18.7 GHz channel, taking into account the rotation of
the pixels across the swath. Only measurements with a radar
quality index of at least 0.8 were used for the comparison
against MRMS retrievals.

The accuracy of all retrievals is lower when compared
to MRMS than when compared to CMB. This is likely be-
cause all GPROF retrievals are designed to reproduce the re-
trieval database, which is to a large extent derived from the
CMB product. The GPROF-NN retrievals yield more accu-
rate results than GPROF across all considered metrics except
for the recall, which is lower for GPROF-NN 1D than for
GPROF. Interestingly, GPROF-NN 1D achieves lower MAE,
MSE, and bias, as well as higher correlation than GPROF-
NN 3D in the comparison against MRMS, while the two per-
form similarly in the comparison against CMB.

Figure 13 presents retrieved surface precipitation from an
overpass of the MHS sensor on board the NOAA-18 satellite
over the same storm at 13:58 UTC. Because no co-located
CMB measurements are available for this overpass, only
the MRMS measurements are shown as reference measure-
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Figure 11. Error statistics of the retrieved profile variables. Columns show the errors for the different retrieved variables, whereas rows show
altitude averaged bias, RMSE, SMAPE, and correlation, respectively.

Table 7. Accuracy metrics for surface precipitation retrieved from GMI PMW observations of Hurricane Harvey for the overpass on 25 Au-
gust 2017 at 11:50:00 UTC. Each metric is calculated with respect to the surface precipitation from the CMB product as well as the surface
precipitation from MRMS as reference.

Retrieval Bias [mm h−1
] MSE [(mm h−1)2

] Correlation Precision Recall

CMB MRMS CMB MRMS CMB MRMS CMB MRMS CMB MRMS

GPROF 0.346 0.355 2.691 8.299 0.892 0.651 0.9 0.82 0.82 0.81
GPROF-NN 1D 0.245 0.145 1.944 4.927 0.914 0.701 0.95 0.9 0.90 0.75
GPROF-NN 3D 0.248 0.184 1.953 6.12 0.923 0.676 0.95 0.9 0.90 0.87
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Figure 12. Surface precipitation during Hurricane Harvey on 25 August 2017 at 11:50:00 UTC retrieved from GMI. Panel (a) shows a
GOES 16 Night IR composite (generated using the night_ir_with_background_hires composite in satpy, Raspaud et al., 2021),
which merges infrared observations from the Advanced Baseline Imager (ABI, Schmit et al., 2005) on GOES 16 and NASA black marble
imagery (NASA, 2022). Panel (b) shows ground-based precipitation measurements from MRMS for which the radar quality index exceeds
0.8. Panel (c) shows retrieved surface precipitation from the CMB product. Panels (d), (e), and (f) show the retrieved surface precipitation
fields from GPROF, GPROF-NN 1D, and GPROF-NN 3D, respectively.

Figure 13. Surface precipitation during Hurricane Harvey on 25 August 2017 at 13:58:00 UTC retrieved from MHS on NOAA-18. Panel (a)
shows a natural color composite from the ABI on GOES 16 (generated using the natural_color composite in Satpy; Raspaud et al.,
2021). Panel (b) shows ground-based precipitation measurements from MRMS for which the radar quality index is at least 0.8. Panel (c)
shows retrieved surface precipitation from the CMB product. Panels (d), (e), and (f) show the retrieved surface precipitation fields from
GPROF, GPROF-NN 1D, and GPROF-NN 3D, respectively.
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Table 8. Accuracy metrics for surface precipitation retrieved from MHS PMW observations of Hurricane Harvey for the overpass on 25 Au-
gust 2017 at 13:58 UTC. The metrics are calculated against the MRMS surface precipitation estimates. TS1

Retrieval Bias [mm h−1
] MSE [(mm h−1)2

] Correlation Precision Recall

GPROF 0.11 2.602 0.749 0.88 0.12
GPROF-NN 1D 0.259 4.031 0.751 0.9057 0.094
GPROF-NN 3D 0.152 3.168 0.759 0.948 0.052

ments. GPROF predicts low precipitation rates across large
parts of the scene and even in cloud-free areas. This ten-
dency is reduced in the results of the GPROF-NN 1D re-
trieval and even more so in the results of GPROF-NN 3D.
The GPROF-NN retrievals also generally yield better agree-
ment with MRMS over land. Furthermore, the rain bands of
the hurricane are better defined in the results of the GPROF-
NN 3D retrievals, which is consistent with the increased ef-
fective resolution of the retrievals.

Accuracy metrics for comparing the MHS retrievals with
MRMS are shown in Table 8. The MRMS measurements
were averaged to the MHS observation footprints, taking into
account the changes in footprint size and shape across the
swath. For MHS, GPROF has the lowest bias, MAE, and
MSE and higher recall than GPROF-NN 1D. These results
do not show any clear improvements for the GPROF-NN re-
trievals. However, the GPROF-NN 3D retrievals improve the
retrieval in terms of all metrics compared to GPROF-NN 1D,
suggesting that the GPROF-NN 3D can make use of the spa-
tial information in the observations despite being trained on
simulated observations.

3.3 Processing time

GPROF is used to process PMW observations from a constel-
lation of sensors spanning several decades of observations.
Therefore, the processing time must not be excessively high.
Although neural networks are generally efficient to evaluate,
this often assumes dedicated hardware, which can not be ex-
pected to be available at the processing centers yet.

We measure the processing time required for retrieving
precipitation from a full orbit of observations using a sin-
gle CPU core of an Intel Xeon Gold 6234 CPU to assess the
computational complexity of the three retrievals. The pro-
cessing time here includes all steps from reading a GPROF
input file to writing the corresponding output file. The input
and output files are the same for all three algorithms, exclud-
ing differences in the retrieval results.

The results are displayed in Fig. 14. The processing of a
single GMI file takes about 4 min for GPROF but only about
2 min for the GPROF-NN retrievals. Because of the lower
number of pixels in a single orbit, all retrievals are signif-
icantly faster for MHS. However, here the GPROF-NN re-
trievals are also significantly faster than GPROF. This shows
that, even in the absence of dedicated hardware, the GPROF-

Figure 14. Single CPU core processing time for an orbit of obser-
vations for the three retrieval algorithms for GMI and MHS. Error
bars show the range of 1 standard deviation around the mean for
five executions of each retrieval.

NN retrievals process observations faster than the current im-
plementation.

4 Discussion

This study presented two novel neural-network-based imple-
mentations of the GPROF retrieval algorithm and evaluated
their performance for the GMI and MHS sensors against the
current implementation.

4.1 Retrieval performance

The evaluation of the GPROF-NN 1D algorithm against
GPROF showed that retrieval accuracy and effective reso-
lution can be improved by replacing the current retrieval
method with a fully connected neural network. Although
GPROF and the GPROF-NN 1D algorithm are both based
on the same retrieval database and use the same information
as retrieval input, the neural network provides more accurate
results. A potential explanation for this may lie in the way
the two algorithms handle observation uncertainties, which
were shown by Elsaesser and Kummerow (2015) to have a
significant effect on the retrieval accuracy. For GPROF, these
uncertainties must be specified manually. Apart from sensor
noise, observations from sensors other than GMI are affected
by modeling errors in the simulated observations, which are

simon
Thank you very much for the clarification.

I would like to request the following post-review adjustment to table 8:

The 'Recall' column in Table 8 mistakenly shows the false discovery rate instead of the recall. The correct values are 0.69, 0.67 and 0.68 for GPROF, GPROF-NN 1D and GPROF-NN 3D, respectively. Note that these values are in much better agreement with the recall values for GMI reported in Table 7.
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difficult to estimate and unlikely to be well described by the
assumed Gaussian error model. In addition to this, uncertain-
ties are inflated to account for the sparsity of the retrieval
database and the effects of clustering. Since samples with
low precipitation rates are generally better represented in the
database, this likely makes the uncertainties too large for the
retrieval of low precipitation rates, which may explain the
inferior performance of GPROF for low precipitation rates
observed in Figs. 5 and 6. The neural-network-based algo-
rithms infer observation errors directly from the data and can
thus handle arbitrary observation errors if they are accurately
represented in the training data.

Another advantage of the neural network retrievals that
may explain the improved accuracy is that they scale more
easily to large retrieval databases. While the GPROF algo-
rithm requires compressing the retrieval database in a way
that causes information loss, the training of the neural net-
works uses the full database. However, even in the absence of
clustering, Pfreundschuh et al. (2018) provided empirical ev-
idence that neural-network-based retrievals are less affected
by the curse of dimensionality, which means they yield more
accurate results when limited data are available. Although the
GPROF database is fairly large, heavy precipitation events
are likely still underrepresented, which may be exacerbated
by the clustering performed by GPROF. In this context, it
may also be worth pointing out that since the database size
only influences the training time of the GPROF-NN algo-
rithms, they can potentially be applied with even larger re-
trieval databases than the one currently used, which may help
to further improve the retrieval accuracy in the future.

The second important finding from this study is that by
extending the retrieval to incorporate structural information,
its accuracy can be further improved by about 20 % in terms
of MAE, MSE, and SMAPE and 5 % in terms of correla-
tion compared to the GPROF-NN 1D retrieval at the same
time as the effective resolution in the along-track direction
is decreased to its lower limit of 13.5 km for GMI and im-
proved by 70 % for MHS. Because precipitation exhibits dis-
tinct spatial patterns in satellite observations, many algo-
rithms make use of this information to improve precipitation
retrievals (Kummerow and Giglio, 1994a; Sorooshian et al.,
2000; Hong et al., 2004; Gopalan et al., 2010). Our results
confirm that CNNs learn to leverage this information directly
from the satellite imagery and that it can notably improve the
retrieval accuracy, which is in agreement with the findings
from other precipitation retrievals that employ CNNs (Tang
et al., 2018; Sadeghi et al., 2019; Gorooh et al., 2022; Sanò
et al., 2018).

As a concluding remark regarding the retrieval perfor-
mance, it should also be noted that this study focused on the
development of a generic retrieval algorithm applicable to all
sensors of the GPM constellation within the operational con-
straints of the current GPROF retrieval. This means that the
neural network models used were not optimized exhaustively
and that the performance of neural-network-based PMW pre-

cipitation retrievals can likely be improved further by dedi-
cated tuning of the architecture.

4.2 Limitations

It is important to consider the limitations of the results pre-
sented in this study. We have deliberately limited the eval-
uation of the retrieval accuracy to test data with the same
statistical properties as the retrieval database. This was done
to isolate the effect of the retrieval method from potential
aliasing effects that would be introduced by the use of exter-
nal validation data. The presented retrieval accuracy should
therefore be interpreted as an upper bound on the accuracy
that can be achieved with respect to external validation data.
Since the GMI retrieval is trained using real observations, the
performance on real observations can be expected to be close
to the results presented, which was confirmed by the results
from the GMI overpass over Hurricane Harvey (Fig. 12).

For other sensors, however, the observations in the
database can only be simulated and may deviate significantly
from true observations. As described in Sect. B1.2, the train-
ing of the GPROF-NN 3D retrieval requires an additional
neural network model to generate simulated observations of
sufficiently large extent to train a CNN. The results presented
in Sect. 3.1 should therefore be seen as an assessment of the
potential benefits of a CNN-based retrieval given a perfect re-
trieval database rather than the real-world retrieval accuracy.

The quantitative assessment of the accuracy of the MHS
retrievals of Hurricane Harvey did not show any clear
improvements for the GPROF-NN retrievals compared to
GPROF. This can be due to multiple reasons. Firstly, the
hurricane constitutes an extreme event and it is likely that
the instantaneous MRMS precipitation rates used as refer-
ence measurements are themselves affected by considerable
uncertainties. Secondly, given that the bulk of the precip-
itation in the considered scene is intense and over ocean,
GPROF can be expected to work quite well. This makes it
less likely to find clear improvements in this particular sce-
nario. Finally, the accuracy of the neural-network-based re-
trievals may be limited by the modeling error of the simula-
tions in the retrieval database. In principle, simulation errors
could even cause the GPROF-NN retrievals to be less accu-
rate than GPROF for real observations. Should this really be
the case, the demonstrated potential of the GPROF-NN re-
trievals would imply that the quality of the simulations in the
GPROF database limits the accuracy of the GPM PMW pre-
cipitation measurements and that future work should focus
on improving the simulations.

5 Conclusions

The results presented in this study clearly demonstrate
the potential of a neural-network-based implementation of
GPROF to improve accuracy and effective resolution of
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retrievals of precipitation and hydrometeor profiles. Both
GPROF-NN retrievals have been designed as a drop-in re-
placement for GPROF and can be directly used in the op-
erational GPM processing pipeline. The results presented in
this study show that, given a perfect retrieval database, con-
siderable improvements in the accuracy of GPROF can be
achieved by replacing the current Bayesian scheme with a
deep neural network that processes pixels independently. In
addition, further improvements of similar magnitude can be
achieved with a CNN-based implementation that incorpo-
rates structural information into the retrieval.

Although the results presented here cannot fully answer
the question to what extent the improvements observed for
the GPROF-NN algorithms carry over to operational ap-
plication of the retrievals, they show the potential of the
neural-network-based PMW retrievals. Upgrading GPROF
to a neural-network-based retrieval thus has the potential
of being a very cost-efficient way to improve global mea-
surements of precipitation with the added advantage of be-
ing applicable even to historical observations. Furthermore,
the results provide an important reference point, which, to-
gether with a future evaluation of the retrievals against in-
dependent measurements, is required to inform further de-
velopment aiming to improve the accuracy of GPM PMW
retrievals.

The GPROF implementations presented in this study con-
stitute a first step towards a potential upgrade of GPROF
to a neural-network-based implementation. The next step
will be to run the GPROF-NN retrievals alongside GPROF
2021 for all sensors of the GPM constellation and to validate
the retrieval results against independent validation data. The
Python-based software package that implements the retrieval
and training framework is made available together with all
trained models as free software (Pfreundschuh, 2022).

Although the effective improvements that will be achieved
in operational use still remain to be investigated, we take the
results presented here as a promising indication of the poten-
tial of the GPROF-NN retrievals to improve PMW retrievals
from the sensors of the GPM constellation. These algorithms
may thus constitute a step towards improving our ability to
measure the global hydrological cycle and its changes in a
warming climate.

Appendix A: The GPROF Bayesian retrieval scheme

At the base of the GPROF is a Bayesian retrieval method
based on Monte Carlo integration of the profiles in the re-
trieval database. The database is split into bins using the an-
cillary data to reduce the number of profiles that must be pro-
cessed for each pixel and better constrain the retrieval. More-
over, the profiles are clustered to further reduce the number
of profiles to process. Fig. A1 illustrates the three compo-
nents of the GPROF retrieval.

The binning of the profiles in the database is performed
with respect to all ancillary variables, that is T2 m, TCWV,
surface type, and the airlifting index (Fig. A1a). Each bin
covers a range of 1 K in T2 m and 1 kg m−2 in TCWV around
the closest corresponding integral value. If a bin contains
less than 30 000 profiles, its profiles are combined with those
from bins with neighboring T2 m and TCWV values.

The profiles in each bin are combined into self-similar
clusters and only the mean of the observations and retrieval
targets and the number of observations is retained (Fig. A1b).
The hierarchical clustering merges profiles with similar ob-
servations until the number of clusters per bin is less than
800.

The binning and clustering of the database is performed
offline, i.e., during the development phase of the retrieval.
The following scheme is applied to retrieve precipitation and
hydrometeor profiles from the clustered database bins. The
first step in the retrieval is the determination of the database
bins to be used. The central bin is found from the surface type
and airlifting index and the rounded input T2 m and TCWV
values. Profiles from this central bin and the two neighboring
T2 m bins are considered for the retrieval.

Let (y1,x1,n1), . . ., (yN ,xN ,nN ) denote the profile clus-
ters in the selected database bin, where yi and xi are the cen-
troids of the observation and state vector, respectively, and
ni is the corresponding number of profiles in the ith cluster.
Assuming that the profiles in the database bins are distributed
according to the a priori distribution p(x), the expected value
of x with respect to the corresponding posterior distribution
p(x|y) can be approximated using∫
x

xp(x|y) dx =

∫
x

x
p(y|x)p(x)

p(y)
dx

≈

∑
ip(y|xi)xi∑
ip(y|xi)

. (A1)

The conditional probability p(y|xi) of the input observation
y given atmospheric state xi is taken as the probability of
the deviations of y from the observations yi to be caused by
the random error in the observations, which is assumed to be
unbiased and Gaussian:

p(y|xi)=
ni

√
det(2πS)

exp
{
−

1
2
(y− yi)

T S−1(y− yi)

}
, (A2)

where S is a diagonal covariance matrix. The observation er-
ror includes sensor noise and other causes of deviations of
real observations from the observations in the database, such
as calibration errors or modeling errors. It should be noted
here that the assumption of Gaussian errors with a state-
independent, diagonal covariance matrix is made for simplic-
ity but is likely insufficient to accurately describe modeling
errors that are state dependent and correlated between chan-
nels. As illustrated in Fig. A1c, Eq. (A1) corresponds to a
resampling of the states in the database with case-specific
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Figure A1. Components of the GPROF retrieval algorithm. Panel (a) illustrates the binning of the database with respect to the ancillary data,
which consists of 2 m temperature (T2 m), total column water vapor (TCWV), surface type, and the airlifting index. Panel (b) illustrates the
clustering of each database bin into self-similar clusters, with the size of the markers representing the number of profiles in each cluster.
Panel (c) illustrates the Bayesian scheme that is used to approximate the posterior distribution of the retrieval, which corresponds to the filled
curve to the right, by weighting the samples in the database.

weights calculated using Eq. (A2). This approach can be ex-
tended to approximate the probability density function of the
posterior distribution or derive probabilities of certain char-
acteristics of the a posteriori state, such as the presence of
precipitation in a given observation.

Appendix B: Implementation of the GPROF-NN
retrievals

B1 Training data

B1.1 Structure

The training data for the GPROF-NN retrievals are stored
in an intermediate format to simplify the loading of the
data during the training process. The data are organized into
scenes measuring 221 contiguous GMI pixels in both along-
and across-track directions. Each scene contains the GMI
L1C brightness temperatures and the corresponding values
of the retrieval quantities at the center of the GMI swath. For
sensors other than GMI, each scene also contains the simu-
lated brightness temperatures of the corresponding sensor.

B1.2 Generation

An overview of the data flow for the training data genera-
tion during the GPROF-NN retrievals is displayed in Fig. B1.
The training data originate from four primary sources: the
GPROF simulator files, which contain surface precipitation,
hydrometeor profiles, and simulated brightness temperatures
for an orbit of the GPM combined product. Surface precipita-
tion over snow surfaces and sea ice are derived from MRMS
and ERA5 data, respectively. These data are matched with
GMI L1C-R brightness temperatures. The data are split into
non-overlapping scenes measuring 221 scans and 221 pixels.
For sensors other than GMI, the brightness temperature dif-
ferences between actual and simulated GMI observations are

Table B1. Sizes of neural network models and the training data.

Model parameters Training samples
(GMI)

GPROF-NN 1D 5453056 2136604660 pixels
GPROF-NN 3D 23855792 86350 scenes

included and added to the simulated observations to provide
a first-order correction for the modeling error in the observa-
tions.

Simulated brightness temperatures are only available
where the hydrometeor profiles and surface precipitation are
both known, i.e., at the center of the training scenes. Because
this is insufficient to train a CNN with 2D convolutions for
sensors other than GMI, an intermediate simulator retrieval
is trained to retrieve simulated brightness temperatures from
GMI observations. This retrieval is applied to the training
data to fill in the simulated brightness temperatures across
the entire GMI swath. The simulator neural network uses the
same architecture as the GPROF-NN 3D retrieval.

B2 Training

Table B1 lists the number of parameters of the neural net-
works used in the GPROF-NN retrievals together with the
number of samples in the training data. Owing to its more
complex network architecture, the neural network employed
by GPROF-NN 3D has a larger number of parameters. The
training data comprise 86350 scenes of 221× 221 GMI pix-
els. From those scenes, only the pixels with known surface
precipitation are used for the training of the GPROF-NN 1D
retrieval. The total number of pixels meeting this threshold is
2136604660.
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Figure B1. Data flow diagram for the generation and organization of the GPROF-NN training data. Grey rectangles represent datasets, and
colored rectangles with rounded corners represent algorithms.

B2.1 GPROF-NN 1D

The GPROF-NN 1D network is trained by simultaneously
minimizing the sum of the losses of all retrieval variables.
The training is performed over 70 epochs using the Adam
optimizer (Kingma and Ba, 2014) with an initial learning rate
of 5× 10−4 and a cosine-annealing learning rate schedule
(Loshchilov and Hutter, 2016). Warm restarts are performed
after 10, 30, and 50 epochs.

The following pre-processing steps are performed when
the training data for the GPROF-NN 1D retrieval are loaded:

1. extracting pixels with known surface precipitation,

2. sampling Earth-incidence angle and interpolating inputs
and outputs (cross-track scanners),

3. applying the brightness temperature correction (sensors
other than GMI),

4. normalizing and encoding the input,

5. replacing zeros,

6. adding thermal noise (sensors other than GMI),

7. shuffling training samples.

The retrieval outputs in the GPROF-NN training data are
known only at a limited number of pixels at the center of
each scene. Only these pixels are extracted from each scene

in step (1). For cross-track-scanning sensors, the training data
contain retrieval input and output for a sequence of discrete
Earth-incidence angles. A random Earth-incidence angle is
generated for each training sample, and the inputs and out-
puts are interpolated to that angle (2). If the sensor relies on
simulations, the brightness temperatures are corrected using
the method described in Sect. 2.3.4. The retrieval inputs are
then encoded and normalized (4; see Sect. B2.4). Zero val-
ues of non-negative retrieval quantities are replaced by very
small random values to avoid degenerate quantiles and prob-
lems with the application of the log-linear transformation
Eq. (3) (5). Finally, thermal noise according to sensor speci-
fication is added to simulated observations for sensors other
than GMI (6), and the loaded samples are shuffled (7).

B2.2 GPROF-NN 3D

The training of the GPROF-NN 3D retrieval is performed
over 70 epochs using the Adam optimizer (Kingma and Ba,
2014) with an initial learning rate of 5× 10−4 and a cosine-
annealing learning rate schedule (Loshchilov and Hutter,
2016). Warm restarts are performed after 10, 30, and 50
epochs.

The following pre-processing steps are performed when
the training data for the GPROF-NN 3D retrieval are loaded:

1. remapping of observations to the viewing geometry of
sensor,
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2. applying the brightness temperature correction (sensors
other than GMI),

3. normalizing and encoding the input,

4. replacing zeros,

5. adding thermal noise and simulator error (sensors other
than GMI),

6. shuffling training samples.

Each training scene is randomly remapped from the GMI
swath to the viewing geometry of the sensor for which the
training is performed (1, see Sect. B2.3). If the sensor re-
lies on simulations, the correction described in Sect. 2.3.4
is applied to the brightness temperatures. The input for each
scene is then encoded and normalized (3; see Sect. B2.4).
Zero values of non-negative retrieval quantities are replaced
by very small random values to avoid degenerate quantiles
and avoid problems with the application of the log-linear
transformation Eq. (3) (4). Thermal noise and a simulator er-
ror are added to the simulated observations for sensors other
than GMI (5). The simulator error is modeled to be constant
across each scene and determined from the MSE of the sim-
ulator network on the training data. Finally, the samples are
shuffled (6).

B2.3 Viewing geometry remapping

Because the largest part of the GPROF retrieval database
is derived from collocations of GMI observations with the
GPM CMB product, the spatial sampling of most training
scenes corresponds to that of the GMI L1C-R product regard-
less of the sensor for which the database was generated. The
viewing geometry of the observations in the database there-
fore does not match that of the other sensors of the GPM
constellation. In addition, the values of the retrieval targets
are only known at the center of the GMI swath. The distor-
tions that occur towards the sides of the swath of GMI and
the other sensors are therefore not well represented in the
training data.

A custom data augmentation scheme is applied to over-
come these limitations, which consists of a random remap-
ping of the scenes to the viewing geometry of the target sen-
sor. The remapping is implemented as follows.

1. A random center location cout in the swath of the target
sensor is sampled.

2. The approximate positions pout of h×w pixels in the
swath of the target sensor in a two-dimensional Eu-
clidean coordinate system centered on cout are calcu-
lated.

3. A random center location cin in the GMI swath is sam-
pled.

4. The approximate positions pin of all GMI pixels in the
training scene in a two-dimensional Euclidean coordi-
nate system centered on cin are calculated.

5. The retrieval inputs and outputs are interpolated from
the positions pin to the positions pout.

6. For cross-track-scanning sensors, the simulated bright-
ness temperatures and retrieval outputs are interpolated
to the Earth-incidence angles corresponding to the posi-
tions pout in the output window.

The height h andw of the output window for GMI is 128 in
the along-track direction and 96 in the across-track direction.
Since many sensors have considerably wider swaths than
GMI, the size of the output window is adapted to avoid cases
where too many pixels lie outside the GMI swath. The width
of the output window in across-track direction for MHS was
set to 32 pixels.

B2.4 Input normalization and encoding

The brightness temperatures and scalar ancillary data that
constitute the input to the retrieval are normalized using
minimum–maximum normalization. For each scalar input x,
the minimum xmin and maximum xmax values in the training
data are calculated. The values are then normalized to the
range [−1,1] using

xnormalized =
x− xmin

xmax− xmin
. (B1)

Missing values in the input are set to the value −1.5. Cat-
egorical ancillary data, i.e., the surface type and air-lifting
index, are encoded using one-hot encoding.

B3 Retrieval processing

The data flow for the application of the GPROF and GPROF-
NN retrievals is displayed in Fig. B2. The first step, which
is common for all three retrievals, is the augmentation of the
GPM L1C data with ancillary data. This process is performed
by the GPROF preprocessor application. A detailed descrip-
tion of the ancillary data and its derivation can be found in
the GPROF ATBD (Passive Microwave Algorithm Team Fa-
cility, 2022). The GPROF preprocessor produces a binary
file containing the observations and ancillary data. This file
serves as input for both GPROF and the GPROF-NN re-
trievals.

B3.1 GPROF-NN 1D

The processing of input observations for the GPROF-NN 1D
retrieval involves the following steps:

1. flattening of retrieval inputs,

2. normalizing and encoding the input,
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Figure B2. Data flow diagram for the application of the GPROF and GPROF-NN retrievals. The input for all retrievals is a GPROF prepro-
cessor file, which is a binary file that contains the brightness temperatures and corresponding ancillary data. From this input, all retrievals
produce the retrieval results, which are stored in a common binary format before being converted to HDF5 files.

3. evaluating the network batch-wise and calculating the
posterior statistics,

4. reassembling the results into a swath structure,

5. writing the GPROF binary output file.

The observations and corresponding ancillary data are flat-
tened into a list of inputs (1). All inputs are normalized and
the categorical input variables are one-hot encoded using the
same statistics as during training (2). The GPROF-NN 1D
network is then used to calculate the posterior distributions of
the retrieval targets from which the relevant posterior statis-
tics are derived (3). Finally, the results for each pixel are re-
assembled into the original swath structure and written to the
GPROF binary output format, which is converted to HDF5
format in a separate step.

B3.2 GPROF-NN 3D

The processing of input observations for the GPROF-NN 3D
retrieval involves the following steps:

1. normalizing and encoding the input,

2. padding the input,

3. evaluating the network and calculating the posterior
statistics,

4. removing padding.

The input observations and ancillary data are normalized
and encoded using the same statistics as during the train-
ing. The input observations are then padded using symmetric
padding so that the dimension of the input data are a multi-
ple of 32, which is required to fulfill symmetry requirements
of the down- and up-sampling transformations in the neural
network. The GPROF-NN 3D network is then evaluated, and
the posterior statistics are calculated. Because the GPROF-
NN 3D network employs a fully convolutional architecture,
the results can be calculated for a full orbit of observations
at once. However, since this may require excessive amounts
of memory, the processing allows for optional tiling in the
along-track direction. After removal of the padding, the re-
trieval results are written to the same binary format that is
used by GPROF-NN 1D and GPROF.



24 S. Pfreundschuh et al.: A neural-network-based implementation of the GPROF

Appendix C: Error metrics

Figure C1. The same as Fig. 8 but for MHS.

Table C1. The same as Table 4 but for convective precipitation.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0007± 0.0001 −0.0015± 0.0001 −0.0011± 0.0001

MAE [mm h−1
] 0.0322± 0.0001 0.0239± 0.0001 0.0204± 0.0001

MSE [mm h−1
] 0.1927± 0.0001 0.1298± 0.0001 0.0854± 0.0001

MAPE0.01 [%] 118.151± 0.0391 107.1976± 0.0378 92.8343± 0.0542
Correlation 0.6380 0.7467 0.8152

Table C2. The same as Table 4 but for RWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] 0.0016± 0.0000 −0.0005± 0.0000 −0.0003± 0.0000

MAE [mm h−1
] 0.0185± 0.0000 0.0127± 0.0000 0.0094± 0.0000

MSE [mm h−1
] 0.0120± 0.0000 0.0086± 0.0000 0.0047± 0.0000

MAPE0.001 [%] 84.072± 0.0287 69.6918± 0.0284 61.8979± 0.0315
Correlation 0.8308 0.8777 0.9241

Table C3. The same as Table 4 but for IWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0022± 0.0000 −0.0006± 0.0000 −0.0002± 0.0000

MAE [mm h−1
] 0.0204± 0.0000 0.0123± 0.0000 0.0085± 0.0000

MSE [mm h−1
] 0.0186± 0.0000 0.0123± 0.0000 0.0053± 0.0000

MAPE0.001 [%] 88.26± 0.0312 67.3705± 0.0305 58.5831± 0.0334
Correlation 0.7897 0.8637 0.9350
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Table C4. The same as Table 4 but for CWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0019± 0.0000 −0.0005± 0.0000 −0.0005± 0.0000

MAE [mm h−1
] 0.0268± 0.0000 0.0157± 0.0000 0.0115± 0.0000

MSE [mm h−1
] 0.0027± 0.0000 0.0015± 0.0000 0.0009± 0.0000

MAPE0.001 [%] 62.2267± 0.0100 36.6584± 0.0078 27.9016± 0.0087
Correlation 0.8709 0.9265 0.9531

Table C5. The same as Table 5 but for convective precipitation.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0046± 0.0001 −0.0023± 0.0001 −0.0012± 0.0001

MAE [mm h−1
] 0.0330± 0.0001 0.0281± 0.0001 0.0210± 0.0001

MSE [mm h−1
] 0.1674± 0.0001 0.1337± 0.0001 0.0824± 0.0001

SMAPE0.01 [%] 108.8755± 0.0480 104.2921± 0.0507 94.0801± 0.1057
Correlation 0.5927 0.6839 0.7336

Table C6. The same as Table 5 but for RWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0002± 0.0000 −0.0015± 0.0000 −0.0005± 0.0000

MAE [mm h−1
] 0.0210± 0.0000 0.0144± 0.0000 0.0116± 0.0000

MSE [mm h−1
] 0.0143± 0.0000 0.0102± 0.0000 0.0060± 0.0000

SMAPE0.001 [%] 88.1093± 0.0327 75.4804± 0.0335 72.0101± 0.0703
Correlation 0.7591 0.8346 0.8785

Table C7. The same as Table 5 but for IWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0035± 0.0000 −0.0009± 0.0000 −0.0008± 0.0000

MAE [mm h−1
] 0.0222± 0.0000 0.0123± 0.0000 0.0100± 0.0000

MSE [mm h−1
] 0.0137± 0.0000 0.0093± 0.0000 0.0060± 0.0000

SMAPE0.001 [%] 92.0949± 0.0357 74.1056± 0.0362 69.5782± 0.0762
Correlation 0.8372 0.8878 0.9129

Table C8. The same as Table 5 but for CWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1
] −0.0019± 0.0000 0.0000± 0.0000 −0.0004± 0.0000

MAE [mm h−1
] 0.0268± 0.0000 0.0195± 0.0000 0.0149± 0.0000

MSE [mm h−1
] 0.0027± 0.0000 0.0016± 0.0000 0.0011± 0.0000

SMAPE0.001 [%] 62.219± 0.0130 47.2591± 0.0114 38.3892± 0.0237
Correlation 0.8701 0.9194 0.9369
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Code availability. The implementation of the GPROF-NN re-
trievals is published as free software online in Pfreundschuh (2022,
https://doi.org/10.5281/zenodo.5819297).

Data availability. Because of their size and unlikely usefulness for
other researchers, it was deemed impractical to make the GPROF
retrieval databases, which were used to generate training and test
data, publicly available. However, we are happy to provide ac-
cess to the data upon request. The training data for the GPROF-
NN retrievals, which are derived from these databases, are even
larger, which is why we do not store them persistently. However,
the required code to generate the training data is publicly available
(https://doi.org/10.5281/zenodo.5819297, Pfreundschuh, 2022).

GPM L1C observations and GPM CMB were obtained from
https://doi.org/10.5067/GPM/GMI/GPM/1C/07 (Berg, 2022a),
https://doi.org/10.5067/GPM/MHS/NOAA18/1C/07 (Berg,
2022b), and https://doi.org/10.5067/GPM/DPRGMI/CMB/2B/07
(Olson, 2022), respectively. MRMS QPE (Smith et al., 2016)
data were downloaded from https://mtarchive.geol.iastate.edu/
2022/01/01/mrms/ncep/PrecipRate/ (Multi-RADAR Multi-Sensor
Archiving, 2022).
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