
GPROF-NN: A neural network based implementation of the
Goddard Profiling Algorithm
Simon Pfreundschuh1, 2, Paula J. Brown2, Christian D. Kummerow2, Patrick Eriksson1, and
Teodor Norrestad3

1Department of Space, Earth and Environment, Chalmers University of Technology, 41296 Gothenburg, Sweden
2Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523
3Previously Department of Space, Earth and Environment, Chalmers University of Technology, 41296 Gothenburg, Sweden

Correspondence: Simon Pfreundschuh (simon.pfreundschuh@chalmers.se)

Abstract.

The Global Precipitation Measurement (GPM) mission measures global precipitation at a temporal resolution of a few hours

to enable close monitoring of the global hydrological cycle. GPM achieves this by combining observations from a space-borne

precipitation radar, a constellation of passive microwave (PMW) sensors and geostationary satellites. The Goddard Profiling

Algorithm (GPROF) is used operationally to retrieve precipitation from all PMW sensors of the GPM constellation. Since the5

resulting precipitation rates serve as input for many of the level 3 retrieval products, GPROF constitutes an essential component

of the GPM processing pipeline.

This study investigates ways to improve GPROF using modern machine learning methods. We present two neural network

based, probabilistic implementations of GPROF: GPROF-NN 1D, which, just as the current GPROF implementation, processes

pixels individually, and GPROF-NN 3D, which employs a convolutional neural network to incorporate structural information10

into the retrieval. The accuracy of the retrievals is evaluated using a test dataset consistent with the data used in the devel-

opment of the GPROF and GPROF-NN retrievals. This allows assessing the accuracy of the retrieval method isolated from

the representativeness of the training data, which remains a major source of uncertainty in the development of precipitation

retrievals. Despite using the same input information as GPROF, the GPROF-NN 1D retrieval improves the accuracy of the

retrieved surface precipitation for the GPM Microwave Imager (GMI) from 0.079 mmh−1 to 0.059 mmh−1 in terms of mean15

absolute error (MAE), from 76.1 % to 69.5 % in terms of symmetric mean absolute percentage error (SMAPE) and from 0.797

to 0.847 in terms of correlation. The improvements for the Microwave Humidity Sounder (MHS) are from 0.085 mmh−1 to

0.061 mmh−1 in terms of MAE, from 81 % to 70.1 % for SMAPE and from 0.724 to 0.804 in terms of correlation. Com-

parable improvements are found for the retrieved hydrometeor profiles and their column integrals as well as the detection of

precipitation. Moreover, the ability of the retrievals to resolve small-scale variability is improved by more than 40 % for GMI20

and 29 % for MHS. The GPROF-NN 3D retrieval further improves the MAE to 0.043 mmh−1, the SMAPE to 48.67 % and

the correlation to 0.897 for GMI and 0.043 mmh−1, 63.42 % and 0.83 for MHS.

Application of the retrievals to GMI observations of hurricane Harvey shows moderate improvements when compared to

co-located GPM combined and ground-based radar measurements indicating that the improvements at least partially carry over
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to assessment against independent measurements. Similar retrievals for MHS do not show equally clear improvements, leaving25

the validation against independent measurements for future investigation.

Both GPROF-NN algorithms make use of the same input and output data as the original GPROF algorithm, and may thus

replace the current implementation in a future update of the GPM processing pipeline. Despite their superior accuracy, the

single-core runtime required for the operational processing of an orbit of observations is lower than that of GPROF. The

GPROF-NN algorithms promise to be a simple and cost-efficient way to increase the accuracy of the PMW precipitation30

retrievals of the GPM constellation and thus improve the monitoring of the global hydrological cycle.

1 Introduction

The Goddard Profiling Algorithm (GPROF, Kummerow et al. (2015)) is the operational precipitation retrieval algorithm for

the passive microwave (PMW) observations from the radiometer constellation of the Global Precipitation Measurement (GPM,

Hou et al. (2014)), whose objective is to provide consistent global measurements of precipitation at a temporal resolution of a35

few hours. The precipitation retrieved by GPROF serves as input for the Integrated Multi-Satellite Retrievals for GPM (IMERG,

Huffman et al., 2020), which can be considered the state-of-the-art of global precipitation measurements. The algorithm thus

constitutes an essential component of the global observation system that enables to monitoring the hydrological cycle for the

benefit of science and society.

The development of GPROF was originally motivated by the Tropical Rainfall Measurement Mission (TRMM, Simpson40

et al. (1996)), the precursor of the GPM mission, and thus dates back almost 30 years (Kummerow and Giglio, 1994b, c). Due

to the conceptual and computational complexity of simulating PMW observations of clouds and precipitation, the algorithm

was and remains based on a retrieval database consisting of observations and corresponding profiles of hydrometeors and

precipitation rates. Nonetheless, the algorithm has undergone several updates since its conception: Methodologically, the most

fundamental modification was the introduction of the Bayesian retrieval scheme in Kummerow et al. (1996), which is used in45

the algorithm until today. Following this, algorithm updates were mostly focused on improving the retrieval database and the

incorporation of ancillary data into the retrieval. While the first version of GPROF still used hand crafted hydrometeor profiles

to generate the retrieval database, these were soon replaced by profiles from a meso-scale weather model (Kummerow et al.,

1996). An important improvement was the replacement of the model-derived database by an observationally-generated database

for the GPROF 2010 algorithm (Kummerow et al., 2011, 2015), which helped reduce errors caused by misrepresentation of50

atmospheric states in the database. The 2014 version of GPROF (Kummerow et al., 2015) introduced the first fully-parametric

version of the algorithm, which was designed to be applicable to all sensors of the GPM constellation. This version of GPROF

became the operational PMW precipitation retrieval of the GPM mission.

This study focuses on the computational method that is used to produce the retrieval results from the retrieval database used

by GPROF. Since its introduction in Kummerow et al. (1996), the currently used Bayesian method has not received much con-55

sideration, mainly because the database and the incorporation of ancillary data were deemed to be more relevant for improving

the accuracy of the retrieval. However, two disadvantages of the current retrieval method have become apparent with the intro-
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duction of the much larger, observationally-generated retrieval databases into the algorithm (Elsaesser and Kummerow, 2015):

Firstly, the retrieval database must be compressed into self-similar clusters to reduce the processing time. This lossy compres-

sion may limit the extent to which the current algorithm can benefit from the size and representativeness of observationally60

generated retrieval databases. This is expected to affect retrievals of high rain rates due to their scarcity in the retrieval database.

Secondly, the accuracy of the retrieval results depends on the uncertainties assigned to the database observations. Since there

is no principled way to calculate these uncertainties, they need to be tuned heuristically for each sensor.

While GPROF is currently based on a data-driven method to solve Bayesian inverse problems, more general machine learn-

ing techniques have recently gained popularity for application in precipitation retrievals. Deep neural networks (DNNs), which65

have enabled a number of significant breakthroughs in different scientific fields (Silver et al., 2016; Jumper et al., 2021), have

in recent years been explored for retrieving precipitation from satellite observations. Especially convolutional neural networks

(CNNs) are appealing for this application because of their ability to leverage spatial patterns in image data. This property sets

them apart from traditional retrieval methods and shallow machine-learning techniques, which are limited in their ability to use

this information by computational complexity (Duncan et al., 2019) or the need for feature engineering or manual incorporation70

of spatial information through techniques such as convective-stratiform discrimination (Gopalan et al., 2010).

Shallow neural networks have long been used to retrieve precipitation from PMW observations (Staelin and Chen, 2000;

Surussavadee and Staelin, 2008). The Passive microwave Neural network Precipitation Retrieval (PNPR) presented in Sanò

et al. (2015); Sanò et al. (2016); Sanò et al. (2018) and the work by Tang et al. (2018) are among the more recent algorithms

that use neural networks for retrieving precipitation from PMW observations. They employ relatively shallow neural networks75

and retrieve precipitation in a pixel-wise manner, thus neglecting spatial structure of the observations. Other recent work

demonstrates the ability of CNNs to leverage spatial information in satellite observations. Examples of this are IR-based

retrievals by Sadeghi et al. (2019), PMW-based precipitation detection (Li et al., 2021) and retrievals combining PMW with IR

observations (Gorooh et al., 2022) and gauge measurements (Moraux et al., 2019).

A shortcoming of the aforementioned studies is that none of them addresses the inherent uncertainty of the precipitation80

retrievals. Retrieving precipitation from PMW observations constitutes an inverse problem, whose ill-posed character leads to

significant uncertainties in the retrieval results. Traditionally, these uncertainties are handled using Bayesian statistics. However,

because the algorithms mentioned above neglect the probabilistic character of the retrieval, there is no way to reconcile them

with the Bayesian approach.

Moreover, existing precipitation retrievals that make use of DNNs (Moraux et al., 2019; Sadeghi et al., 2019; Li et al., 2021;85

Gorooh et al., 2022) are experimental retrievals that are currently not used operationally. The design of an operational retrieval

algorithm for the GPM PMW observations needs to address a number of additional requirements, such as the handling of

observations from different sensors and the retrieval of multiple output variables. Furthermore, because GPM is an ongoing

mission, continuity of the output variables must be ensured, which further constrains the design of the retrieval algorithm.

This study explores the use of DNNs for the operational retrieval of precipitation rates and hydrometeor profiles from90

the PMW observations from the GPM constellation. To this end, we present two PMW precipitation retrieval algorithms
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that provide probabilistic precipitation estimates and can be used in the operational processing pipeline for the GPM PMW

observations.

GPROF-NN 1D uses a fully-connected neural network to retrieve single column hydrometeor profiles and rain rates based on

the observed brightness temperature vector. It thus uses exactly the same input data as the standard GPROF algorithm.95

GPROF-NN 3D extends the GPROF-NN 1D algorithm by incorporating spatial information into the retrieval using a CNN. It

produces the same output as GPROF and GPROF-NN 1D but processes all observations simultaneously, thus allowing

the algorithm to combine information from pixels across the swath.

The proposed algorithms are based on quantile regression neural networks (QRNNs, Pfreundschuh et al., 2018), which can

be used to predict the posterior distribution of a Bayesian solution of the retrieval, given that the assumed a priori distribution100

of the Bayesian solution is the same as the distribution of the neural network’s training data. Because of this, the GPROF-NN

retrievals can produce all of GPROF’s retrieval outputs, which include a probability of precipitation and an uncertainty estimate

of the predicted precipitation in the form of terciles of the posterior distribution.

Before a retrieval can replace the current operational version of GPROF, it is imperative to establish its ability to improve

the retrieval accuracy to avoid degradation of the GPM data products. A balanced evaluation of the accuracy of precipitation105

retrievals is difficult because it depends on the statistics of the data used in the assessment. Data-driven retrievals generally

yield the most accurate results when evaluated on data with the same distribution as the data used for their training. At the same

time, evaluation against independent measurements may distort the evaluation when these measurements deviate significantly

from the training data. In this study, the retrieval performance of the GPROF-NN algorithms is evaluated and compared to

that of GPROF using a held-out part of the retrieval database. This provides the most direct estimate of the benefits of the110

neural-network-based retrievals because it avoids the distorting effects of using test data from a different origin. Moreover,

the nominal accuracy of both the GPROF and GPROF-NN algorithms provides a reference for future validation against in-

dependent measurements. More specifically, this study employs the newly developed GPROF-NN algorithms to answer the

following two questions:

1. Can a DNN that uses the same input information as GPROF provide more accurate retrievals of surface precipitation and115

vertical hydrometeor profiles?

2. What is the potential of using a CNN to incorporate spatial information into the retrieval to further improve improve the

accuracy of the retrievals within the current processing pipeline?

This study uses the upcoming version of the GPROF algorithm, GPROF 2021, also known as GPROF V7 in the GPM Pre-

cipitation Processing System (NASA, 2021). The retrieval performance is assessed for two sensors of the GPM constellation:120

The GPM Microwave Imager (GMI) and the Microwave Humidity Sounder (MHS, Bonsignori (2007)). In addition to the eval-

uation against the data from the retrieval data base, the study also presents a case study of the retrieved surface precipitation

from overpasses of both GMI and MHS, which are compared to reference measurements from the GPM combined product

4



Table 1. Retrieval quantities in the retrieval database

Retrieval variable Unit Type

Surface precipitation mm h−1 Scalar

Convective precipitation mm h−1 Scalar

Cloud water path kg m−2 Scalar

Rain water path kg m−2 Scalar

Ice water path kg m−2 Scalar

Cloud water content g m−3 Profile

Rain water content g m−3 Profile

Snow water content g m−3 Profile

Latent heating K h−1 Profile

(CMB, Grecu et al., 2016) and ground-based radar measurements from the Multi-Radar Multi-Sensor (MRMS, Smith et al.,

2016) product suite.125

2 Data and methods

The GPROF-NN algorithms make use of the same data as the original GPROF algorithm. This data, which we refer to as the

retrieval database, defines, for all three algorithms, the input for the retrieval and the precipitation and hydrometeor profiles

that the retrieval aims to reproduce. Because of its fundamental importance for all retrievals considered here, this section

provides an overview of the retrieval database. This is followed by a brief description of the current GPROF algorithm and the130

implementation of the GPROF-NN retrievals.

2.1 The retrieval database

The GPROF retrieval database is made up of pairs of retrieval input data and corresponding output. The input comprises PMW

observations and ancillary data. The output consists of the values of the retrieved quantities. GPROF’s retrieval outputs include

surface precipitation, profiles and path integrals of rain, snow and cloud water as well as latent heating profiles. A listing of all135

retrieval targets and corresponding units is provided in Tab. 1.

Since the available channels and the viewing geometries vary between the sensors of the GPM constellation, a separate

database is generated for each sensor type. A crucial difference between the retrieval databases for GMI and the other sensors

of the GPM constellation is that the database for GMI uses real observations, while the databases for the other sensors are

constructed using simulations. The varying resolutions and viewing geometries of different sensors are taken into account by140

resampling and averaging the simulated observations and retrieval results to the observation footprints of the corresponding

sensor. The channels of the GMI and MHS sensors that are used in this study are listed in Tab. 2.

5



Table 2. Channels of the GMI and MHS sensors used for the retrievals in this study.

Channel Freq. [GHz] Pol.

GMI-1 10.6 V

GMI-2 10.6 H

GMI-3 18.7 V

GMI-4 18.7 H

GMI-5 23 V

GMI-6 37 V

GMI-7 37 H

GMI-8 89 V

GMI-9 89 H

GMI-10 166 V

GMI-11 166 H

GMI-12 183± 3 V

GMI-13 183± 7 V

Sensor Freq. [GHz] Pol.

MHS-1 89 V

MHS-2 157 V

MHS-3 183± 1 H

MHS-4 183± 3 H

MHS-5 190.31 V

The databases for GPROF 2021 are derived from one year (October 2018 to September 2019) of retrieved hydrometeor

profiles from the GPM CMB product (Grecu et al., 2016). This data is complemented with surface precipitation from the

currently operational Microwave Integrated Retrieval System (Boukabara et al., 2011), which adds light precipitation in areas145

where no echo is detected by the GPM Dual-Frequency Precipitation Radar. Observations over sea-ice and snow-covered

surfaces are handled separately. For sea-ice, precipitation is derived from the ERA5 reanalysis (Hersbach et al., 2020). For

snow-covered surfaces, precipitation is derived from several years of co-locations with gauge-corrected radar measurements

from MRMS (Smith et al., 2016).

The ancillary data that serve as additional retrieval inputs are derived from reanalysis datasets. They consist of two meter150

temperature (T2m), total column water vapor (TCWV), the surface type as well as an air lifting index (ALI) that encodes

information on atmospheric convergence in mountainous areas. The ancillary data for the databases used in this study were

derived from the ERA5 reanalysis (Hersbach et al., 2020).

A detailed description of the retrieval database and the derivation of the data it contains can be found in the GPROF ATBD

(Passive Microwave Algorithm Team Facility, 2022). The training data for the GPROF-NN retrievals consists of the data from155

the retrieval database. The training data is stored in an intermediate format to simplify the loading of the data during training

of the neural network. The format and the creation process of the training data is described in detail in Sec. B1 in the appendix.

2.2 The GPROF algorithm

The current implementation of GPROF uses a Bayesian scheme to retrieve precipitation and hydrometeor profiles, which works

by resampling the profiles in the database based on the similarity of the observations and ancillary data. GPROF uses ancillary160
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data to split the database into separate bins. This reduces the number of profiles for which weights must be computed and

helps to constrain the retrieval. Moreover, the profiles in each bin are clustered to limit the number of profiles that need to be

processed. A detailed description of the implementation of GPROF is provided in Sec. A in the appendix.

2.3 The GPROF-NN algorithms

The principal objective guiding the design of the GPROF-NN algorithms was to develop a neural-network-based retrieval that165

operates on the same input data and provides the same output as GPROF so that it can replace the current implementation in

a future update. Although GPROF’s retrieval scheme is defined on independent pixels, the algorithm processes full orbits of

observations and corresponding ancillary data. Both GPROF-NN retrievals were therefore designed to process the same input

format as GPROF, which corresponds to each sensor’s level 1C observations in their native spatial sampling, which, where

required, is remapped to a common grid. The output from all retrievals is on the same grid as the input.170

GPROF produces multiple probabilistic outputs: A probability of precipitation and the mode and terciles of the posterior dis-

tribution of precipitation. An implementation based on standard regression neural networks would not provide any principled

way to produce these probabilistic outputs due to the incompatibility of deterministic regression with the Bayesian retrieval for-

mulation used in GPROF. The implementation of the GPROF-NN retrievals uses quantile regression neural networks (QRNNs)

to overcome this limitation. As shown in Pfreundschuh et al. (2018), when trained on a dataset distributed according to the a175

priori distribution of a Bayesian retrieval, QRNNs learn to predict quantiles of the Bayesian posterior distribution. They thus

provide a simple and efficient way to reconcile neural network retrievals with the Bayesian framework employed by GPROF.

QRNNs predict a sequence of quantiles, which allows reconstructing the cumulative distribution function (CDF) of the a

posteriori distribution of any scalar retrieval quantity. Since the distribution of a scalar variable is fully described by its CDF,

any relevant statistic of the a posteriori distribution can be derived from the predicted CDF. The GPROF-NN retrievals use180

the predicted CDF to derive the most likely and mean surface precipitation (the latter of which is identical to the solution

that would have been obtained with standard mean squared error regression), the terciles of the posterior distribution, and the

probability of precipitation. Fig. 1 illustrates the principle of the GPROF-NN retrievals: The retrieval employs a neural network

to predict a vector of values for each pixel in the input observations. The elements of this vector correspond to a sequence of

quantiles of the a posteriori distribution. These quantiles are used to reconstruct a piece-wise linear approximation of the CDF185

of the distribution from which the retrieval results are derived.

2.3.1 Training objectives

A neural network can be trained to predict a quantile x̂τ of a given conditional distribution by training it to minimize the

quantile loss function Lτ corresponding to the quantile fraction τ (Koenker and Hallock, 2001):

Lτ (x̂τ ,x) = (τ − Ix≤x̂τ
)(x− x̂τ ), (1)190

where x̂τ is the predicted quantile, x is the reference value from the training data and Ix≤x̂ is the indicator function taking the

value 1 when the condition x≤ x̂ is true and 0 otherwise.
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Figure 1. The basic principle of the implementation of the GPROF-NN retrievals. A Bayesian solution of the retrieval is obtained by

predicting, for each input pixel, a sequence of quantiles of the a posteriori distribution that is used to reconstruct its CDF. The predicted CDF

is then used to derive the scalar retrieval results.

This principle can be extended to a sequence of quantiles corresponding to quantile fractions τ1, . . . , τN by minimizing the

mean of the loss functions corresponding to each quantile fraction:

Lτ1,...,τN (x̂,x) =
1

N

N∑
i=0

Lτi(x̂i,x) (2)195

where x̂i is the ith component of the vector of predicted quantiles x̂. The GPROF-NN retrievals use this loss function with 128

equally spaced quantiles ranging from τ1 = 0.001 to τ128 = 0.999 for all scalar retrieval variables.

A difficulty with predicting quantiles of precipitation is that that lower quantiles may become degenerate due to the high

probability of no precipitation. For example, it is impossible to predict empirical quantiles with 0< τ < 0.5 for a pixel with

50 % probability of precipitation. To allow monitoring of the ability of the network to correctly predict retrieval uncertainty up200

to the degeneracy induced by non-raining pixels, we replace rain rates of non-raining pixels with random values from a log-

uniform distribution that are smaller than the smallest rain rate in the training data. During the retrieval, predicted precipitation

rates that are smaller than this threshold are set to zero. The threshold is chosen as 10−4 mm h−1 and thus has negligible

impact on mean or accumulated precipitation.

An additional advantage of the application of the quantile loss function is that the training can be performed on transformed205

retrieval outputs without changing the statistical properties of the network predictions given that the transformation function is

strictly monotonic. The training of all scalar, non-negative retrieval quantities uses a log-linear transformation function of the

form

f(x) =

log(x) if x < 1

x− 1 if otherwise.
(3)
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In addition to avoiding the prediction of negative values, we found this to slightly increase retrieval accuracy for quantities that210

vary by multiple orders of magnitude, which precipitation rates and hydrometeor concentrations typically do.

For hydrometeor profiles, the retrieval is implemented in a slightly different manner. To reduce the number of network

outputs, the posterior mean of hydrometeor profiles is predicted directly using mean squared error regression. Since the output

of GPROF contains only the posterior mean of the hydrometeor concentrations, it was deemed unnecessary to predict their

full posterior distribution at each level using quantile regression. To avoid the prediction of negative concentrations ReLU215

activation functions are applied to the network outputs corresponding to hydrometeor concentrations.

2.3.2 GPROF-NN 1D

The GPROF-NN 1D retrieval was designed to use the same input information and produce the same output as the Bayesian

scheme used by GPROF. GPROF-NN 1D thus operates on single pixels of brightness temperatures and ancillary data and

predicts the corresponding precipitation and hydrometeor profiles.220
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Figure 2. Illustration of the neural network architecture used in the GPROF-NN 1D algorithm. The network consists of a common body

and one head for each retrieval variable. Each block in body and head consists of fully-connected layer, layer norm and GELU activation

function.

The neural network architecture used for the GPROF-NN 1D retrieval is illustrated in Fig. 2. A single network is trained to

predict all retrieval variables (c.f. Tab. 1) using the training objectives described in Sec. 2.3.1. The network consists of a shared

body and a separate head for each retrieved variable. Body and heads are built-up of blocks consisting of a fully-connected

layer followed by layer normalization (Ba et al., 2016) and GELU (Hendrycks and Gimpel, 2016) activation functions. During

development we have experimented with different numbers of blocks in body (Nb) and each of the heads (Nh) but found only225

marginal impact on the retrieval performance and settled for a configuration with Nb = 6 and Hh = 4.
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Detailed descriptions of the neural network training and the retrieval processing for GPROF-NN 1D are provided in Sec. B2

and Sec. B3, respectively.

2.3.3 GPROF-NN 3D

The GPROF-NN 3D retrieval extends the GPROF and GPROF-NN 1D algorithms by incorporating structural information into230

the retrieval. To achieve this, the GPROF-NN 3D algorithm employs a CNN that performs the retrieval for all pixels in the

swath simultaneously.
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Figure 3. The neural network architecture of the GPROF-NN 3D retrieval. Illustration (a) displays the structure of the Xception blocks

(Chollet, 2017) that form the building blocks of the GPROF-NN 3D model. An Xception block consists of two depthwise separable convo-

lutions followed by a group normalization layer and a GELU activation function. Illustration (b) shows how the Xception blocks are used in

an asymmetric encoder-decoder structure that forms the body of the network. Output from the body is combined with the ancillary data to

form the inputs to the separate heads that predict the retrieval results for each of the retrieved variables.
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The network architecture for the GPROF-NN 3D algorithm, illustrated in Fig. 3, consists of an asymmetric encoder-decoder

structure followed by a separate head for each retrieved variable. The stages of the en- and decoder are built up of what we

refer to here as Xception blocks (Fig. 3 (a)) because they are based on the Xception architecture introduced in Chollet (2017).235

Each block consists of two depthwise separable convolutions with a kernel size of 3 followed by group normalization layers

with 32 groups and GELU activation functions. The first block in each stage of the encoder additionally contains a 3× 3 max-

pooling layer with a stride of 2 following the first 3×3 convolution layer. Each downsampling block in the encoder is followed

by N = 4 standard Xception blocks. The stages of the decoder consist of a bi-linear upsampling layer followed by a single

Xception block. The network architecture was chosen with the aim of maximizing the depth and width of the network while240

keeping the time required for processing an orbit low. Symmetric padding is performed before all convolution operations with

a kernel size larger than one in order to conserve the input size.

Figure 4. The effect of GMIs conical viewing geometry on observed features. Panel (a) displays geolocated observations of the 10.6 GHz

channel (colored background). Grey squares mark equilaterals with a side length of 200km oriented along the swath. The highlighted stripe

located at the swath center marks the region where the values of the retrieved variables are known. Panel (b) shows the same observations

viewed as an image on a uniform grid. Panel (c) shows six synthetically generated training inputs based on two input regions marked in Panel

(b). The first row shows three synthetic samples that simulate the effect of viewing the input in region A at a different position across the

GMI swath. The second row shows the corresponding transformations for the input in region B.

Additional complexity in the training of the GPROF-NN 3D retrieval derives from the requirement to operate on the same

data as GPROF, which means that input and output data must be on the native observation grid of each sensor. This is prob-

lematic because the viewing geometries of PMW sensors break the translational symmetry of digital images that constitutes245

one of the inductive biases of CNNs (Goodfellow et al., 2016). For example, geo-located pixels of conical scanners do not lie

on a rectangular grid, which causes shapes to appear differently depending on their position in the swath. Fig. 4 illustrates this
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for GMI observations. The rectangular shapes shown in panel (a) are distorted when the observations are plotted on a uniform

grid (panel (b)).

Moreover, because GPROF currently only uses the central 21 pixels of the CMB product for the generation of the retrieval250

database, the values of the retrieval targets in the GPROF database are known only at the central pixels of the GMI swath.

The location of these pixels is marked by the light stripe in Fig. 4. The neural network can thus learn the spatial structure of

precipitation only from the central part of the GMI observations.

The training of the GPROF-NN 3D retrieval employs a customized data augmentation scheme to account for the aforemen-

tioned characteristics of the training data. Training samples for the GPROF-NN 3D retrieval are transformed to simulate the255

effect of observing each training scene at varying locations of the sensor swath. The transformations are applied randomly

when a training sample is loaded, thus ensuring that the network rarely or never sees a training scene from the same perspec-

tive. The transformations also vary the relative location of the pixels at which values of retrieval variables are known across the

full width of the swath instead of always being located at its center. Examples of transformed inputs for GMI are displayed in

Fig. 4 (c).260

A detailed description of the training and the retrieval processing for the GPROF-NN 3D retrieval are provided in Sec. B2

and Sec. B3, respectively.

2.3.4 Extension to other sensors

The GPROF retrieval for GMI is special because it is the only sensor of the GPM constellation for which the retrieval inputs

used in the database correspond to real observations. For the other sensors, the observations used to construct the retrieval265

database are simulated. Since the simulations take into account the effect of the different viewing geometries and resolutions,

GPROF-NN 1D inherits its ability to handle observations from different sensors directly from the design of retrieval database.

For the GPROF-NN 3D algorithm this is not the case. The problem for sensors other than GMI is that the retrieval database

contains simulated observations only at the central pixels of the GMI swath (the highlighted pixels in Fig. 4 (a)). To obtain

two-dimensional training scenes that are sufficiently wide to train a CNN, we make use of an intermediate CNN based model270

to ’retrieve’ simulated brightness temperatures across the full GMI swath. The extended simulated brightness temperatures are

then remapped from the GMI viewing geometry to the viewing geometry of the target sensor. While this approach is certainly

not ideal with respect to the realism of the generated scenes, it was the simplest and currently only feasible way to extend

the GPROF-NN 3D retrieval to other sensors than GMI using only currently available data from the GPROF database. A

detailed description of the procedures involved in generating the training data for different sensors is provided in Sec. B1 in275

the appendix.

Moreover, since the databases for other sensors rely on simulations, it is not guaranteed that the distribution of brightness

temperatures in the database matches those of actual observations. The simulations are therefore corrected using a surface type

and total TCWV-dependent correction that matches the quantiles of the conditional distributions of simulated and real obser-

vations. The GPROF algorithm’s correction distinguishes three different surface types. However, the GPROF-NN algorithms280
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use a correction with all 18 surface types because the correction used by GPROF was found to be too crude over land surfaces

leading to artifacts in the retrieval results.

3 Results

This section presents the results of the evaluation of GPROF and the novel GPROF-NN algorithms. The first part evaluates

the retrievals using a held-out test data set. The remainder of this section presents a case study of precipitation retrievals from285

hurricane Harvey followed by a brief assessment of the processing times of the different algorithms.

3.1 Assessment on held-out test data

The held-out test data comprises observations from the retrieval database from the first three days of every month. This data

has not been used for training the neural network retrievals. It is, however, derived from the same data sources and thus stems

from the same distribution as the training data.290

Tab. 3 lists the number of pixels with precipitation information used for testing the retrievals. The evaluation of the GPROF-

NN 3D retrieval uses spatially contiguous scenes of the same size as the ones used during its training. Since these scenes

typically do not cover all of the pixels with precipitation information, the test data for the GPROF-NN 3D retrievals contain

fewer pixels that can be used for evaluation. The lower number of test pixels for MHS is due to the coarser resolution of the

observations, which leads to a smaller number of observations over sea-ice and snow and an additional reduction of the pixels295

available for evaluation of the GPROF-NN 3D retrieval.

Table 3. Number of pixels with precipitation information in the test datasets used to evaluate the retrievals.

Sensor GPROF & GPROF-NN 1D GPROF-NN 3D

GMI 50435584 14218203

MHS 24975877 4945165

3.1.1 Precipitation and hydrometeor paths

As described in Tab. 1, the scalar variables retrieved by GPROF are surface and convective precipitation as well as the column-

integrated concentrations of cloud droplets, rain and snow. They are denoted as cloud water path (CWP), rain water path (RWP)

and ice water path (IWP), respectively. Scatter plots of the retrieval results for these five quantities evaluated over all surfaces300

are displayed in Fig. 5 for GMI and Fig. 6 for MHS. The frequencies in all plots have been normalized column-wise to ensure

that results for high reference values remain visible.

Consistent improvements in the accuracy of the surface precipitation retrieved by GMI are observed between GPROF and

GPROF-NN 1D as well as GPROF-NN 1D and GPROF-NN 3D. The improvements are most pronounced for light rates

between 10−2 and 10−1 mm h−1 but are consistent across the full range of values. The comparably bad performance of305
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Figure 5. Scatter plots of scalar retrieval targets for the three retrieval algorithms for GMI. Rows display the results for the GPROF, GPROF-

NN 1D and GPROF-NN 3D algorithms, respectively. Columns display the results for different retrieval targets. Frequencies in the plots have

been normalized column-wise, i.e. per bin of the reference value.

GPROF for light precipitation is likely due to the tuning of the assigned uncertainties to yield good results for heavier rain that

is more relevant for rainfall accumulation.

For convective precipitation, the results of GPROF deviate noticeably from the diagonal. The results of GPROF-NN 1D

slightly improve upon those of GPROF. Although the mode of the distribution is still displaced from the diagonal, the GPROF-

NN 3D algorithm yields the best agreement with the reference data. For the path-integrated quantities, similar improvements310

between GPROF and GPROF-NN 1D as well as GPROF-NN 1D and GPROF-NN 3D are observed. Large cloud water path

values are underestimated by all retrievals which is likely because these values are associated with precipitation but difficult

to distinguish from it. Due to the lack of a cloud water path signal in raining profiles, all algorithms resort to predicting the

climatology in the presence of significant rain.

The results for MHS, displayed in Fig 6, paint a similar picture. Although the overall accuracy of all retrievals is lower than315

for GMI, GPROF-NN 1D consistently yields more accurate results than GPROF. Also here the GPROF-NN 3D retrieval yields

further, consistent improvements compared to the GPROF-NN 1D retrieval.
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Figure 6. Like Fig. 5 but for MHS.

Quantitative measures of the retrieval accuracy for surface precipitation of the three retrieval algorithms are displayed in

Tab. 4 for GMI and Tab. 5 for MHS. Similar tables for the other retrieval quantities are provided in Tab. A1-A8 in the appendix.

Each table displays bias, mean absolute error (MAE), mean squared error (MSE), the symmetric mean absolute percentage error320

(SMAPEt) for all test samples with a reference value that exceeds a quantity-specific threshold t and the correlation. The error

metrics confirm the qualitative findings from Fig. 5 and 6: The neural network implementations outperform GPROF in terms

of all considered metrics. Moreover, the GPROF-NN 3D algorithm further improves upon the performance of the GPROF-NN

1D algorithm. The same tendency is observed for MHS, albeit with lower overall accuracy.

Since the surface type has a considerable effect on the lower-frequency observations used in the retrieval, its impact on325

the retrieval of surface precipitation is assessed in Fig. 7. The figure displays bias, MSE, MAE, SMAPE, and correlation for

principal surface types. For the analysis, original GPROF surface types have been grouped into ocean (surface type 1), dense

vegetation (surface types 3 - 5), sparse vegetation (6 - 7), snow (surface types 8-11), and coast (surface types 12-15). Even when

the different surface types are considered separately, the results of the surface precipitation retrieval show the same pattern as

the scatter plots in Fig. 5. The results of the GPROF-NN 1D retrieval are generally more accurate than those of GPROF, and330

the results of the GPROF-NN 3D algorithm are more accurate than those of the GPROF-NN 1D algorithm. These findings
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Table 4. Mean error metrics and estimated standard deviation for surface precipitation retrieved from GMI observations.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0029± 0.0001 −0.0024± 0.0001 −0.0006± 0.0001

MAE [mm h−1] 0.0788± 0.0001 0.0585± 0.0001 0.0444± 0.0001

MSE [mm h−1] 0.1965± 0.0001 0.1379± 0.0001 0.0983± 0.0001

SMAPE0.01 [%] 76.0598± 0.0139 69.5382± 0.0127 56.0040± 0.0181

Correlation 0.7971 0.8470 0.8966

Table 5. Mean error metrics and estimated standard deviation for surface precipitation retrieved from MHS observations.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0110± 0.0001 −0.0066± 0.0001 −0.0018± 0.0001

MAE [mm h−1] 0.0846± 0.0001 0.0609± 0.0001 0.0487± 0.0001

MSE [mm h−1] 0.2317± 0.0001 0.1682± 0.0001 0.1087± 0.0001

SMAPE0.01 [%] 80.8641± 0.0190 68.4961± 0.0185 62.3086± 0.0377

Correlation 0.7239± 0.0000 0.8040± 0.0000 0.8400± 0.0000

are mostly consistent across the considered surface types and both sensors. Exceptions are the biases of the GPROF-NN 1D

algorithm for GMI over densely vegetated surfaces and for MHS over snow, which are larger than those of GPROF, and the

MSE of the GPROF-NN 3D algorithm for MHS over snow, which is slightly larger than that of the GPROF-NN 1D retrieval.

We suspect this is caused by the relative scarcity of the observations in the retrieval database.335

Figure 8 displays the geographical distribution of bias, MSE and SMAPE for GMI in 5 ◦× 5 ◦ boxes. As could be expected

from the previous results, the magnitudes of the biases of GPROF are considerably larger than for the other two algorithms.

Furthermore, GPROF exhibits consistent biases across geographical regions such as the Northwest Atlantic and Northwest

Pacific, which is less the case for the neural network algorithms. Although spatial distribution of the MSE mostly reflects the

global distribution of precipitation, a gradual decrease in MSE can be observed between the results of GPROF and GPROF-340

NN 1D as well as GPROF-NN 1D and GPROF-NN 3D. More consistent patterns are visible in the SMAPE: The largest errors

for all three retrievals occur over land surfaces, which likely reflects the decrease in information content due to the reduced

contrast in the lower frequency channels. Over Ocean, errors are generally higher in the sub-tropics and tropics compared to

higher latitudes. Although these patterns are observed in the results of all algorithms, a clear and globally consistent decrease

in SMAPE can be observed between the GPROF, GPROF-NN 1D and GPROF-NN 3D retrievals.345

The corresponding results for MHS are provided in Fig. A1. Again, although the errors are slightly larger, the results are

qualitatively similar.
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Figure 7. Bias, MSE, MAE and SMAPE0.01 and correlation of the retrieved surface precipitation w.r.t. surface type and retrieval algorithm.

The results for the GMI sensor are displayed in the first column, results for the MHS sensor in the second column. Error bars mark one

standard deviation around the mean.

3.1.2 Predicted retrieval uncertainties and probabilistic rain detection

In addition to quantitative precipitation estimates, GPROF produces estimates of the first and second tercile of the posterior

distribution of surface precipitation, which provide an uncertainty estimate for the retrieved mean surface precipitation, as well350

as a probabilistic classification of pixels into raining and non-raining pixels based on an estimated probability of precipitation.

Due to their probabilistic nature, similar results can be produced using the GPROF-NN algorithms. From the predicted quan-

tiles, the terciles can be inferred by interpolating them to the fractions 1
3 and 2

3 , respectively. The probability of precipitation is

calculated by using the predicted posterior distribution to calculate the probability of the retrieved surface precipitation to be

larger than the smallest non-zero rain rate in the training data.355

To assess the accuracy of the uncertainty estimates from GPROF and the GPROF-NN algorithms, Tab. 6 lists the calibration,

i.e. the frequency with which each predicted tercile was larger than the true surface precipitation. The evaluation of the results
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Figure 8. Spatial distributions of bias (Column 1), MSE (Column 2), SMAPE0.01 (Column 3), and the counts in each 5 ◦ × 5 ◦ degree box

(Column 4) for the GPROF (Row 1), GPROF-NN 1D (Row 2), GPROF-NN 3D (Row 3) algorithms for GMI.

Table 6. Calibration of the predicted terciles of the posterior distribution of surface precipitation for the three retrieval algorithms and the

GMI and MHS sensors.

Tercile Nominal
GMI MHS

GPROF GPROF-NN 1D GPROF-NN 3D GPROF GPROF-NN 1D GPROF-NN 3D

First 0.333 0.461 0.351 0.349 0.274 0.34 0.326

Second 0.667 0.514 0.652 0.654 0.480 0.664 0.649

for the GPROF-NN algorithms was performed with the replacement of non-raining values described in Sec. 2.3.1, which

allows to account for degenerate quantiles. Since no such mechanism is available for GPROF it is not possible to evaluate the

calibration of the predicted terciles without their effect. At least partially because of this, the calibration of GPROF deviates360

from the nominal frequencies. For the GPROF-NN algorithms, however, both algorithms yield frequencies that are close to the

expected frequencies of 1
3 and 2

3 , respectively.

The quality of the raining/non-raining classification is assessed in Fig. 9, which displays the calibration of the predicted

probability and the receiver-operating characteristic (ROC) curve. The predicted probabilities are fairly well calibrated for

all algorithms and sensors. Nonetheless, the GPROF-NN algorithms yield results that are slightly closer to the diagonal. The365

results for the ROC curves are analogous: The GPROF-NN 1D algorithm yields better precipitation detection than GPROF

and the GPROF-NN 3D retrieval in turn yields slightly better performance than the 1D version. In terms of classification skill,

worse performance is achieved for GMI than for MHS by all algorithms, but again the relative performance of the retrievals is

the same.
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Figure 9. Calibration (Panel (a)) and receiver-operating characteristic (ROC, Panel(b)) for the predicted probability of precipitation.

3.1.3 Effective resolution370

Next, we aim to assess the impact of the retrieval method on the effective resolution of the retrieved precipitation fields which

is important for hydrologic applications. For this, we adopt the approach from Guilloteau et al. (2017), who have studied the

effective resolution of the previous version of GPROF for the GMI and the TRMM Microwave Imager sensors. A 1-dimensional

Haar wavelet decomposition in along-track direction over all 128 pixel long sequences in the test data is performed to calculate

the effective resolution. We do not consider observations for different surface types separately. Following, Guilloteau et al.375

(2017) we examine energy spectra as well as correlation coefficients and Nash-Sutcliffe (NS) efficiency of the coefficients of

the wavelet decomposition for the reference and retrieved surface precipitation. The results are displayed in Fig. 10.
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Figure 10. Spatial variability of retrieved and reference fields. Panel (a) shows the average of the total energy defined as the sum of the squared

wavelet coefficients at different length scales for the reference and retrieved surface precipitation fields. Panel (b) shows the correlation

coefficient between the coefficients of the reference and the retrieved precipitation field. Panel (c) shows the corresponding Nash-Sutcliffe

efficiency.

An obvious difference to the results from Guilloteau et al. (2017) is that the energy spectrum of the reference precipitation

field is not monotonically decreasing. The reason for this is that the reference precipitation field in the retrieval database is
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smoothed using an averaging filter adapted to the footprint size of the respective sensor. For GMI, the GPROF-NN 3D algorithm380

has the highest variability in the retrieved precipitation field, followed by the GPROF-NN 1D algorithm and GPROF. However,

the variability of all retrievals remains lower than that of the reference field. The correlation of the wavelet coefficients at

different scales (Panel (b)) is highest for the GPROF-NN 3D algorithm, followed by the GPROF-NN 1D algorithm and GPROF.

The same pattern is observed for the NS efficiency. In terms of effective resolution, defined, following Guilloteau et al. (2017),

as the smallest scale at which the NS efficiency exceeds 0.5, the GPROF-NN 3D algorithm for the GMI sensor achieves a385

resolution solution of 13.5 km, which is the distance between consecutive pixels in along-track direction and thus the smallest

spatial scale that can be resolved in this analysis. The effective resolutions for the GPROF-NN 1D algorithm is 14.1 km and

for GPROF 23.1 km.

For MHS, the effective resolutions of GPROF and GPROF-NN 1D with 104 km and 73 km, respectively, is significantly

higher than for GMI. Since the resolution is averaged over the viewing angles of the cross track scanner and because of its390

generally lower sensitivity to precipitation, a certain degradation of the resolution was expected. Despite this, the GPROF-NN

3D algorithm achieves a resolution of 22.3 km, which is close to that of GPROF for GMI.

3.1.4 Profile retrieval variables

In addition to precipitation fields and path-integrated hydrometeor concentrations, GPROF retrieves concentration profiles of

rain, snow and cloud water. The retrieval database also contains latent heating rates as target variable but there is currently no395

plan to include them in the operational output of GPROF 2021. For this study, latent heating rates were nonetheless included

in the output of the GPROF-NN retrievals to investigate the feasibility of the retrieval.

The error statistics for the profile retrievals are displayed in Fig. 11. For GMI, the results are qualitatively similar to those

observed for the scalar retrieval variables: The GPROF-NN 1D retrieval has slightly lower biases than than GPROF with

the GPROF-NN 3D algorithm yielding the lowest biases. Similar patterns are observed for MSE, SMAPE and correlation400

throughout most of the atmosphere. For rain and snow water content the SMAPE of the GPROF-NN 3D retrieval increases

and even exceeds that of GPROF-NN 1D at the topmost levels where the hydrometeors are present. This is presumably due the

scarcity of profiles with hydrometeors at these altitudes, leading to decreased accuracy for the more complex neural network

model employed by the GPROF-NN 3D algorithm.

For MHS, the retrievals exhibit slightly lower accuracy but qualitatively the results are very similar to those from GMI.405

One exception are the biases for cloud water content which are slightly larger than those of GPROF. It is not quite clear what

causes this but given that the biases remain comparable to those of GPROF and the results for GMI, we do not consider these

deviations critical.

3.2 Case study: Hurricane Harvey

All of the results presented above were based on a test dataset with the same statistics as the retrieval database. While for GMI410

the observations can be expected to be consistent with those in the database, this is not necessarily the case for sensors for which

the retrieval database contains mostly simulated observations. While a comprehensive analysis of the retrieval performance on
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Figure 11. Error statistics of the retrieved profile variables. Columns show the errors for the different retrieved variables, whereas rows show

altitude averaged bias, RMSE, SMAPE, and correlation, respectively.
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real observations is outside the scope of this study, this section presents retrieval results from two overpasses over hurricane

Harvey to provide an indication as to whether the performance characteristics of the retrieval algorithm can be expected to

carry over to real observations.415

Figure 12. Surface precipitation in hurricane Harvey on 2017-08-25 at 11:50:00 UTC retrieved from GMI. Panel (a) shows a GOES 16

Night IR composite (generated using the night_ir_with_background_hires composite in Satpy (Raspaud et al., 2021)), which

merges infrared observations from the Advanced Baseline Imager (ABI, Schmit et al., 2005) on GOES 16 and NASA black marble imagery

(NASA, 2022). Panel shows (b) ground-based precipitation measurements from MRMS for which the radar quality index exceeds 0.8. Panel

(c) shows retrieved surface precipitation from the CMB product. Panel (d), (e) and (f) show the retrieved surface precipitation fields from

GPROF, GPROF-NN 1D and GPROF-NN 3D, respectively.

Table 7. Accuracy metrics for surface precipitation retrieved from GMI PMW observations of hurricane Harvey for the overpass on 2017-

08-25 at 11:50:00 UTC. Each metric is calculated with respect to the surface precipitation from the CMB product as well as the surface

precipitation from MRMS as reference.

Retrieval Bias [mm h−1] MSE [(mm h−1)2] Correlation Precision Recall

CMB MRMS CMB MRMS CMB MRMS CMB MRMS CMB MRMS

GPROF 0.346 0.355 2.691 8.299 0.892 0.651 0.9 0.82 0.82 0.81

GPROF-NN 1D 0.245 0.145 1.944 4.927 0.914 0.701 0.95 0.9 0.90 0.75

GPROF-NN 3D 0.248 0.184 1.953 6.12 0.923 0.676 0.95 0.9 0.90 0.87
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The first considered overpass is from the GPM Core Observatory over hurricane Harvey and occurred on August 25, 2017, at

11:50 UTC. Fig. 12 shows the retrieved surface precipitation and reference measurements from the CMB product and MRMS.

The retrieved precipitation fields exhibit marked differences in structure: The GPROF retrieval produces large areas of low

precipitation covering large parts of the scene but not present in the CMB or MRMS measurements. This is consistent with

the overestimation of light precipitation observed in Fig. 5. These artifacts are reduced in the results of the GPROF-NN 1D420

algorithm and practically absent in the results of the GPROF-NN 3D retrieval.

A quantitative assessment of the retrieval results is provided in Tab. 7, which shows bias, MSE, and correlation, as well as

the precision and recall of the retrieved precipitation flag. The precision is the fraction of correctly detected raining pixels of

all pixels predicted to be raining, and the recall is the fraction of all truly raining that is correctly detected.

All statistics were calculated using the CMB product and the MRMS ground-based measurements as a reference. The425

reference measurements were averaged to the footprint of the GMI 18.7 GHz channel, taking into account the rotation of the

pixels across the swath. Only measurements with a radar quality index is at least 0.8 were used for the comparison against

MRMS retrievals.

The accuracy of all retrievals is lower when compared to MRMS than when compared to CMB. This is likely because all

GPROF retrievals are designed to reproduce the retrieval database, which is to a large extent derived from the CMB product.430

The GPROF-NN retrievals yield more accurate results than GPROF across all considered metrics except for the recall, which

is lower for GPROF-NN 1D than for GPROF. Interestingly, GPROF-NN 1D achieves lower MAE, MSE, and bias as well as

higher correlation in the comparison against MRMS, while the two perform similarly in the comparison against CMB.

Table 8. Accuracy metrics for surface precipitation retrieved from MHS PMW observations of hurricane Harvey for the overpass on 2017-

08-25 at 13:58 UTC. The metrics calculated against the MRMS surface precipitation estimates.

Retrieval Bias [mm h−1] MSE [(mm h−1)2] Correlation Precision Recall

GPROF 0.11 2.602 0.749 0.88 0.12

GPROF-NN 1D 0.259 4.031 0.751 0.9057 0.094

GPROF-NN 3D 0.152 3.168 0.759 0.948 0.052

Fig. 13 presents retrieved surface precipitation from an overpass of the MHS sensor on board the NOAA-18 satellite over

the same storm at 13:58 UTC. Because no co-located CMB measurements are available for this overpass, only the MRMS435

measurements are shown as reference measurements. GPROF predicts low precipitation rates across large parts of the scene and

even in cloud-free areas. This tendency is reduced in the results of the GPROF-NN 1D retrieval and even more so in the results

of GPROF-NN 3D. The GPROF-NN retrievals also generally yield better agreement with MRMS over land. Furthermore,

the rain bands of the hurricane are better defined in the results of the GPROF-NN 3D retrievals, which is consistent with the

increased effective resolution of the retrievals.440

Accuracy metrics for comparing the MHS retrievals with MRMS are shown in Tab. 8. The MRMS measurements were

averaged to the MHS observation footprints taking into account the changes in footprint size and shape across the swath. For
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Figure 13. Surface precipitation in hurricane Harvey on 2017-08-25 at 13:58:00 UTC retrieved from MHS on NOAA-18. Panel (a) shows

a natural color composite from the ABI on GOES 16 (generated using the natural_color composite in Satpy (Raspaud et al., 2021)).

Panel shows (b) ground-based precipitation measurements from MRMS for which the radar quality index is at least 0.8. Panel (c) shows

retrieved surface precipitation from the CMB product. Panel (d), (e) and (f) show the retrieved surface precipitation fields from GPROF,

GPROF-NN 1D and GPROF-NN 3D, respectively.

MHS, GPROF has the lowest Bias, MAE, and MSE and higher recall than GPROF-NN 1D. These results do not show any

clear improvements for the GPROF-NN retrievals. However, the GPROF-NN 3D retrievals improve the retrieval in terms of

all metrics compared to GPROF-NN 1D, suggesting that the GPROF-NN 3D can make use of the spatial information in the445

observations despite being trained on simulated observations.

3.3 Processing time

GPROF is used to process PMW observations from a constellation of sensors spanning several decades of observations. There-

fore, the processing time must not be excessively high. Although neural networks are generally efficient to evaluate, this often

assumes dedicated hardware, which can not yet be expected to be available at the processing centers.450

We measure the processing time required for retrieving precipitation from a full orbit of observations using a single CPU

core of an Intel Xeon Gold 6234 CPU to assess the computational complexity of the three retrievals. The processing time here

includes all steps from reading a GPROF input file to writing the corresponding output file. The input and output files are the

same for all three algorithms, excluding, of course, differences in the retrieval results.
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The results are displayed in Fig. 14. The processing of a single GMI file takes about 4 minutes for GPROF but only about 2455

minutes for the GPROF-NN retrievals. Because of the lower number of pixels in a single orbit, all retrievals are significantly

faster for MHS. However, also here the GPROF-NN retrievals are significantly faster than GPROF. This shows that, even in

the absence of dedicated hardware, the GPROF-NN retrievals process observations faster than the current implementation.
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Figure 14. Single CPU core processing time for an orbit of observations for the three retrieval algorithms for GMI and MHS. Error bars

show the range of one standard deviation around the mean for five executions of each retrieval.

4 Discussion

This study presented two novel, neural network based implementations of the GPROF retrieval algorithm and evaluated their460

performance for the GMI and MHS sensors against the current implementation.

4.1 Retrieval performance

The evaluation of the GPROF-NN 1D algorithm against GPROF, showed that retrieval accuracy as well as effective resolution

can be improved by replacing the current retrieval method with a fully-connected neural network. Although both GPROF and

the GPROF-NN 1D algorithm are based on the same retrieval database and use the same information as retrieval input, the465

neural network provides more accurate results. A potential explanation for this may lie in the way the two algorithms handle

observation uncertainties, which were shown by Elsaesser and Kummerow (2015) to have a significant effect on the retrieval

accuracy. For GPROF, these uncertainties must be specified manually. Apart from sensor noise, observations from other sensors

than GMI are affected by modeling errors in the simulated observations, which are difficult to estimate and unlikely to be well

described by the assumed Gaussian error model. In addition to this, uncertainties are inflated to account for the sparsity of the470

retrieval database and the effects of clustering. Since samples with low precipitation rates are generally better represented in

the database, this likely makes the uncertainties too large for the retrieval of low precipitation rates, which may explain the
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inferior performance of GPROF for low precipitation rates observed in Fig. 5 and Fig. 6. The neural network based algorithms

infer observation errors directly from the data, and can thus handle arbitrary observation errors, given that they are accurately

represented in the training data.475

Another advantage of the neural network retrievals that may explain the improved accuracy is that they scale more easily to

large retrieval databases. While the GPROF algorithm requires compressing the retrieval database in a way that causes informa-

tion loss, the training of the neural networks uses the full database. However, even in the absence of clustering, Pfreundschuh

et al. (2018) provided empirical evidence that neural network based retrievals are less affected by the curse of dimensionality,

which means they yield more accurate results when limited data is available. Although the GPROF database is fairly large,480

heavy precipitation events are likely still underrepresented, which may be exacerbated by the clustering performed by GPROF.

In this context, it may also be worth pointing out that, since the database size influences only the training time of the GPROF-

NN algorithms, they can potentially be applied with even larger retrieval databases than the one currently used, which may

help to further improve the retrieval accuracy in the future.

The second important finding from this study is that by extending the retrieval to incorporate structural information, its ac-485

curacy can be further improved by about 20 % in terms of MAE, MSE and SMAPE and 5 % in terms of correlation compared

to the GPROF-NN 1D retrieval at the same time as the effective resolution in along track direction is decreased to its lower

limit of 13.5 km for GMI and improved by 70 % for MHS. Because precipitation exhibits distinct spatial patterns in satellite

observations, many algorithms make use of this information to improve precipitation retrievals (Kummerow and Giglio, 1994a;

Sorooshian et al., 2000; Hong et al., 2004; Gopalan et al., 2010). Our results confirm that CNNs learn to leverage this infor-490

mation directly from the satellite imagery and that it can notably improve the retrieval accuracy, which is in agreement with

the findings from other precipitation retrievals that employ CNNs (Tang et al., 2018; Sadeghi et al., 2019; Gorooh et al., 2022;

Sanò et al., 2018).

As a concluding remark regarding the retrieval performance, it should also be noted that this study focused on the develop-

ment of a generic retrieval algorithm applicable to all sensors of the GPM constellation within the operational constraints of495

the current GPROF retrieval. This means that the used neural network models were not optimized exhaustively and that the

performance of neural network based PMW precipitation retrievals can likely be improved further by dedicated tuning of the

architecture.

4.2 Limitations

It is important to consider the limitations of the results presented in this study. We have deliberately limited the evaluation500

of the retrieval accuracy to test data with the same statistical properties as the retrieval database. This was done to isolate the

effect of the retrieval method from potential aliasing effects that would be introduced by the use of external validation data. The

presented retrieval accuracy should therefore be interpreted as an upper bound on the accuracy that can be achieved with respect

to external validation data. Since the GMI retrieval is trained using real observations, the performance on real observations can

be expected to be close to the results presented, which was confirmed by the results from the GMI overpass over Hurricane505

Harvey (Fig. 12).
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For other sensors, however, the observations in the database can only be simulated and may deviate significantly from true

observations. As described in Sec. B1.2, the training of the GPROF-NN 3D retrieval requires an additional neural network

model to generate simulated observations of sufficiently large extent to train a CNN. The results presented in Sec. 3.1 should

therefore be seen as an assessment of the potential benefits of a CNN-based retrieval given a perfect retrieval database rather510

than the real-world retrieval accuracy.

The quantitative assessment of the accuracy of the MHS retrievals of hurricane Harvey did not show any clear improvements

for the GPROF-NN retrievals compared to GPROF. This can be due to multiple reasons. Firstly, the hurricane constitutes an

extreme event and it is likely that the instantaneous MRMS precipitation rates used as reference measurements are themselves

affected by considerable uncertainties. Secondly, given that the bulk of the precipitation in the considered scene is intense515

and over ocean, GPROF can be expected to work quite well. This makes it less likely to find clear improvements in this

particular scenario. Finally, the accuracy of the neural-network based retrievals may be limited by the modeling error of the

simulations in the retrieval database. In principle, simulation errors could even cause the GPROF-NN retrievals to be less

accurate than GPROF for real observations. Should this really be the case, the demonstrated potential of the GPROF-NN

retrievals would imply that the quality of the simulations in the GPROF database limits the accuracy of the GPM PMW520

precipitation measurements and that future work to should focus on improving the simulations.

5 Conclusions

The results presented in this study clearly demonstrate the potential of a neural-network-based implementation of GPROF to

improve accuracy and effective resolution of retrievals of precipitation and hydrometeor profiles. Both GPROF-NN retrievals

have been designed as a drop-in replacement for GPROF and can be directly used in the operational GPM processing pipeline.525

The results presented in this study show that, given a perfect retrieval database, considerable improvements in the accuracy

of GPROF can be achieved by replacing the current Bayesian scheme with a deep neural network that processes pixels inde-

pendently. In addition to that, further improvements of similar magnitude can be achieved with a CNN-based implementation,

which incorporates structural information into the retrieval.

Although the results presented here cannot fully answer the question to what extent the improvements observed for the530

GPROF-NN algorithms carry over to operational application of the retrievals, they show the potential of the neural-network-

based PMW retrievals. Upgrading GPROF to a neural-network-based retrieval thus has the potential of being a very cost

efficient way to improve global measurements of precipitation with the added advantage of being applicable even to historical

observations. Furthermore, the results provide an important reference point, which, together with a future evaluation of the

retrievals against independent measurements, is required to inform further development aiming to improve the accuracy of535

GPM PMW retrievals.

The GPROF implementations presented in this study constitute a first step towards a potential upgrade of GPROF to a

neural-network-based implementation. The next step will be to run the GPROF-NN retrievals along side GPROF 2021 for all

sensors of the GPM constellation and to validate the retrieval results against independent validation data. The Python based
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software package that implements the retrieval and training framework is made available together with all trained models as540

free software (Pfreundschuh, 2022).

Although the effective improvements that will be achieved in operational use still remain to be investigated, we take the

results presented here as a promising indication of the potential of the GPROF-NN retrievals to improve PMW retrievals from

the sensors of the GPM constellation. These algorithms may thus constitute a step towards improving our ability to measure

the global hydrological cycle and its changes in a warming climate.545

Code availability. The implementation of the GPROF-NN retrievals is published is as free software online (Pfreundschuh, 2022).

Appendix A: The GPROF Bayesian retrieval scheme

At the base of the GPROF is a Bayesian retrieval method based on Monte Carlo integration of the profiles in the retrieval

database. The database is split into bins using the ancillary data to reduce the number of profiles that must be processed for

each pixel and better constrain the retrieval. Moreover, the profiles are clustered to further reduce the number of profiles to550

process. Fig. A1 illustrates the three components of the GPROF retrieval.

T2m

TCWV
Surface type

Airlifting index

(a) Stratified database (b) Clustering (c) Bayesian retrieval scheme

Figure A1. Components of the GPROF retrieval algorithm. Panel (a) illustrates the binning of the database with respect to the ancillary data,

which consists of two meter temperature (T2m), total column water vapor (TCWV), surface type and airlifting index. Panel (b) illustrates the

clustering of each database bin into self-similar clusters with the size of the markers representing the number of profiles in each cluster. Panel

(c) illustrates the Bayesian scheme that is used to approximate the posterior distribution of the retrieval, which corresponds to the filled curve

to the right, by weighting the samples in the database.

The binning of the profiles in the database is performed with respect to all ancillary variables, that is T2m, TCWV, surface

type and airlifting index (Fig. A1 (a)). Each bin covers a range of 1 K in T2m and 1 kgm−2 in TCWV around the closest,

corresponding integral value. If a bin contains less than 30 000 profiles, its profiles are combined with those from bins with

neighboring T2m and TCWV values.555
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The profiles in each bin are combined into self-similar clusters and only the mean of the observations and retrieval tar-

gets as well as the number of observations is retained (Fig. A1 (b)). The hierarchical clustering merges profiles with similar

observations until the number of clusters per bin is less than 800.

The binning and clustering of the database is performed offline, i.e. during the development phase of the retrieval. The

following scheme is applied to retrieve precipitation and hydrometeor profiles from the clustered database bins. The first step560

in the retrieval is the determination of the database bins to be used. The central bin is found from the surface type and airlifting

index and the rounded input T2m and TCWV values. Profiles from this central bin and the two neighboring T2m bins are

considered for the retrieval.

Let (y1,x1,n1), . . . ,(yN ,xN ,nN ) denote the profile clusters in the selected database bin, where yi and xi are, respectively,

the centroids of the observation and state vector and ni the corresponding number of profiles in the ith cluster . Assuming that565

the profiles in the database bins are distributed according to the a priori distribution p(x), the expected value of x with respect

to the corresponding posterior distribution p(x|y) can be approximated using∫
x

xp(x|y) dx=

∫
x

x
p(y|x)p(x)

p(y)
dx≈

∑
i p(y|xi)xi∑
i p(y|xi)

. (A1)

The conditional probability p(y|xi) of the input observation y given atmospheric state xi is taken as the probability of the

deviations of y from the observations yi to be caused by the random error in the observations, which is assumed to be unbiased570

and Gaussian:

p(y|xi) =
ni√

det(2πS)
exp

{
−1

2
(y−yi)

TS−1(y−yi)

}
(A2)

where S is a diagonal covariance matrix. The observation error includes sensor noise as well as other causes of deviations of

real observation from the observations in the database, such as calibration errors or modeling errors. It should be noted here,

that the assumption of Gaussian errors with state independent, diagonal covariance matrix is made for simplicity but likely575

insufficient to accurately describe modeling errors that are state dependent and correlated between channels. As illustrated

in Fig A1 (c), Eq. A1 corresponds to a resampling of the states in the database with case-specific weights calculated using

Eq. A2. This approach can be extended to approximate the probability density function of the posterior distribution or to derive

probabilities of certain characteristics of the a posteriori state such as the presence of precipitation in a given observation.

Appendix B: Implementation of the GPROF-NN retrievals580

B1 Training data

B1.1 Structure

The training data for the GPROF-NN retrievals is stored in an intermediate format to simplify the loading of the data during

the training process. The data is organized into scenes measuring 221 contiguous GMI pixels in both along- and across-track
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Table B1. Sizes of neural network models and the training data.

Model parameters (GMI) Training samples

GPROF-NN 1D 5453056 2136604660 pixels

GPROF-NN 3D 23855792 86350 scenes

directions. Each scene contains the GMI L1C brightness temperatures and the corresponding values of the retrieval quantities585

at the center of the GMI swath. For sensors other than GMI, each scene also contains the simulated brightness temperatures of

the corresponding sensor.

B1.2 Generation

An overview of the data flow for the training data generation for the GPROF-NN retrievals is displayed in Fig. B1. The training

data originates from four primary sources: The GPROF simulator files, which contain surface precipitation, hydrometeor590

profiles, and simulated brightness temperatures for an orbit of the GPM combined product. Surface precipitation over snow

surfaces and sea-ice are derived from MRMS and ERA5 data, respectively. This data is matched with GMI L1C-R brightness

temperatures. The data is split into non-overlapping scenes measuring 221 scans and 221 pixels. For sensors other than GMI,

the brightness temperature differences between actual and simulated GMI observations are included and added to the simulated

observations to provide a first-order correction for the modeling error in the observations.595

Simulated brightness temperatures are only available where the hydrometeor profiles and surface precipitation is known,

i.e., at the center of the training scenes. Because this is insufficient to train a CNN with 2D convolutions for sensors other

than GMI, an intermediate simulator retrieval is trained to retrieve simulated brightness temperatures from GMI observations.

This retrieval the applied to the training data to fill in the simulated brightness temperatures across the entire GMI swath. The

simulator neural network uses the same architecture as GPROF-NN 3D retrieval.600

B2 Training

Tab. B1 lists the number of parameters of the neural networks used in the GPROF-NN retrievals together with the number of

samples in the training data. Owing to its more complex network architecture, the neural network employed by GPROF-NN

3D has a larger number of parameters. The training data comprises 86350 scenes of 221×221 GMI pixels. From those scenes,

only the pixels with known surface precipitation are used for the training of the GPROF-NN 1D retrieval. The total number of605

those amounts to 2136604660. The

B2.1 GPROF-NN 1D

The GPROF-NN 1D network is trained by simultaneously minimizing the sum of the losses of all retrieval variables. The

training is performed over 70 epochs using the Adam optimizer (Kingma and Ba, 2014) with an initial learning rate of 5 ·10−4
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Figure B1. Data flow diagram for the generation and organization of the GPROF-NN training data. Grey rectangles represent datasets, and

colored rectangles with rounded corners represent algorithms.

and a cosine annealing learning rate schedule (Loshchilov and Hutter, 2016). Warm restarts are performed after 10, 30 and, 50610

epochs.

The following pre-processing steps are performed when the training data for the GPROF-NN 1D retrieval are loaded. The

steps are performed anew for each training epoch. A detailed explanation follows.

1. Extract pixels with known surface-precipitation

2. For cross-track scanners: Sample earth-incidence angle and interpolate in- and outputs615

3. For sensors other than GMI: Application of the brightness temperature correction

4. Input normalization and encoding

5. Replacement of zeros

6. For sensors other than GMI: Addition of thermal noise

7. Shuffle training samples620
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The retrieval outputs in the GPROF-NN training data are known only at a limited number of pixels at the center of each

scene. Only these pixels are extracted from each scene in step (2). For cross-track scanning sensors, the training data contains

retrieval in- and output for a sequence of discrete earth-incidence angles. A random earth-incidence angle is generated for each

training sample, and the in- and outputs are interpolated to that angle (2). If the sensor relies on simulations, the brightness

temperatures are corrected using the method described in Sec. 2.3.4. The retrieval inputs are then encoded and normalized (4,625

see Sec. B2.4). Zero values of non-negative retrieval quantities are replaced by very small, random values to avoid degenerate

quantiles and problems with the application of the log-linear transformation Eq. (3) (5). Finally, thermal noise according to

sensor specification is added to simulated observations for sensors other than GMI (6) and the loaded samples are shuffled (7).

B2.2 GPROF-NN 3D

The training of the GPROF-NN 3D retrieval is performed over 70 epochs using the Adam optimizer (Kingma and Ba, 2014)630

with an initial learning rate of 5 · 10−4 and a cosine annealing learning rate schedule (Loshchilov and Hutter, 2016). Warm

restarts are performed after 10, 30 and 50 epochs.

The following pre-processing steps are performed when the training data for the GPROF-NN 3D retrieval are loaded. These

steps are performed anew for each training epoch. A detailed explanation follows.

1. Remapping of observations to viewing geometry of sensor635

2. For sensors other than GMI: Application of the brightness temperature correction

3. Input normalization and encoding

4. Replacement of zeros

5. For sensors other than GMI: Addition of thermal noise and simulator error

6. Shuffle training samples640

Each training scene is randomly remapped from the GMI swath to the viewing geometry of the sensor for which the training

is performed (1, see Sec. B2.3). If the sensor relies on simulations, the correction described in Sec. 2.3.4 is applied to the

brightness temperatures. The input for each scene is then encoded and normalized (3., see Sec. B2.4). Zero values of non-

negative retrieval quantities are replaced by very small, random values to avoid degenerate quantiles and avoid problems with

the application of the log-linear transformation Eq. (3) (4). Thermal noise and a simulator error are added to the simulated645

observations for sensors other than GMI (5). The simulator error is modeled to be constant across each scene and determined

from the MSE of the simulator network on the training data. Finally, the samples are shuffled (7).

B2.3 Viewing geometry remapping

Because the largest part of the GPROF retrieval database is derived from collocations of GMI observations with the GPM CMB

product, the spatial sampling of most training scenes corresponds to that of the GMI L1C-R product regardless of the sensor650
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for which the database was generated. The viewing geometry of the observations in the database does therefore not match that

of the other sensors of the GPM constellation. In addition to that, the values of the retrieval targets are only known at the center

of the GMI swath. The distortions that occur towards the sides of the swath of GMI and the other sensors are therefore not well

represented in the training data.

A custom data augmentation scheme is applied to overcome these limitations, which consists of a random remapping of the655

scenes to the viewing geometry of the target sensor. The remapping is implemented as follows.

1. A random center location cout in the swath of the target sensor is sampled.

2. The approximate positions pout of h×w pixels in the swath of the target sensor in a two-dimensional Euclidean coordinate

system centered on cout are calculated.

3. A random center location cin in the GMI swath is sampled.660

4. The approximate positions pin of all GMI pixels in the training scene in a two-dimensional Euclidean coordinate system

centered on cin are calculated.

5. The retrieval in- and outputs are interpolated from the positions pin to the positions pout.

6. For cross-track scanning sensors, the simulated brightness temperatures and retrieval outputs are interpolated to the

earth-incidence angles corresponding to the positions pout in the output window.665

The height h and w of the output window for GMI is 128 in the along-track direction and 96 in the across-track direction.

Since many sensors have considerably wider swaths than GMI, the size of the output window is adapted to avoid that too many

pixels lie outside the GMI swath. The width of the output window in across-track direction for MHS was set to 32 pixels.

B2.4 Input normalization and encoding

The brightness temperatures and scalar ancillary data that constitute the input to the retrieval are normalized using minimum-670

maximum normalization. For each scalar input x, the minimum xmin and maximum xmax values in the training data are calcu-

lated. The values are then normalized to the range [−1,1] using

xnormalized =
x−xmin

xmax −xmin
. (B1)

Missing values in the input are set to the value -1.5. Categorical ancillary data, i. e, the surface type and air-lifting index, are

encoded using one-hot encoding.675

B3 Retrieval processing

The data flow for the application of the GPROF and GPROF-NN retrievals is displayed in Fig. B2. The first step, which is

common for all three retrievals, is the augmentation of the GPM L1C data with ancillary data. This process is performed by
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Figure B2. Data flow diagram for the application of the GPROF and GPROF-NN retrievals. The input for all retrieval is a GPROF prepro-

cessor file, which is a binary file that contains the brightness temperatures and corresponding ancillary data. From this input all retrievals

produce the retrieval results, which are stored in a common binary format before being converted to HDF5 files.

the GPROF preprocessor application. A detailed description of the ancillary data and its derivation can be found in the GPROF

ATBD (Passive Microwave Algorithm Team Facility, 2022). The GPROF preprocessor produces a binary file containing the680

observations and ancillary data. This file serves as input for both GPROF and the GPROF-NN retrievals.

B3.1 GPROF-NN 1D

The processing of input observations for the GPROF-NN 1D retrieval involves the following steps.

1. Flattening of retrieval inputs

2. Input normalization and encoding685

3. Batch-wise evaluation of network and calculation of posterior statistics
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4. Re-assembly into swath structure

5. Writing of GPROF binary output file

The observations and corresponding ancillary data are flattened into a list of inputs (1). All inputs are normalized and the

categorical input variables are one-hot encoded using the same statistics as during training (2). The GPROF-NN 1D network is690

then used to calculate the posterior distributions of the retrieval targets from which the relevant posterior statistics are derived

(3). Finally, the results for each pixel are re-assembled into the original swath structure and written to the GPROF binary output

format, which is converted to HDF5 format in a separate step.

B3.2 GPROF-NN 3D

The processing of input observations for the GPROF-NN 3D retrieval involves the following steps.695

1. Input normalization and encoding

2. Input padding

3. Evaluation of network and calculation of the posterior statistics

4. Removal of padding

The input observations and ancillary data are normalized and encoded using the same statistics as during the training. The700

input observations are then padded using symmetric padding so that the dimension of the input data are a multiple of 32,

which is required to ensure of symmetry requirements of the down- and up-sampling transformation in the neural network.

The GPROF-NN 3D network is then evaluated and the posterior statistics are calculated. Because the GPROF-NN 3D network

employs a fully-convolutional architecture, the results can be calculated for a full orbit of observations at once. However,

since this may require excessive amounts of memory, the processing allows for optional tiling of the processing in along-track705

direction. After removal of the padding, the retrieval results are written to the same binary format that is used by GPROF-NN

1D and GPROF.

Appendix C: Error metrics
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Figure A1. Like Fig. 8 but for MHS

Table A1. Like Tab. 4 but for convective precipitation.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0007± 0.0001 −0.0015± 0.0001 −0.0011± 0.0001

MAE [mm h−1] 0.0322± 0.0001 0.0239± 0.0001 0.0204± 0.0001

MSE [mm h−1] 0.1927± 0.0001 0.1298± 0.0001 0.0854± 0.0001

MAPE0.01 [%] 118.151± 0.0391 107.1976± 0.0378 92.8343± 0.0542

Correlation 0.6380 0.7467 0.8152

Table A2. Like Tab. 4 but for RWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] 0.0016± 0.0000 −0.0005± 0.0000 −0.0003± 0.0000

MAE [mm h−1] 0.0185± 0.0000 0.0127± 0.0000 0.0094± 0.0000

MSE [mm h−1] 0.0120± 0.0000 0.0086± 0.0000 0.0047± 0.0000

MAPE0.001 [%] 84.072± 0.0287 69.6918± 0.0284 61.8979± 0.0315

Correlation 0.8308 0.8777 0.9241
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Table A3. Like Tab. 4 but for IWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0022± 0.0000 −0.0006± 0.0000 −0.0002± 0.0000

MAE [mm h−1] 0.0204± 0.0000 0.0123± 0.0000 0.0085± 0.0000

MSE [mm h−1] 0.0186± 0.0000 0.0123± 0.0000 0.0053± 0.0000

MAPE0.001 [%] 88.26± 0.0312 67.3705± 0.0305 58.5831± 0.0334

Correlation 0.7897 0.8637 0.9350
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Table A4. Like Tab. 4 but for CWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0019± 0.0000 −0.0005± 0.0000 −0.0005± 0.0000

MAE [mm h−1] 0.0268± 0.0000 0.0157± 0.0000 0.0115± 0.0000

MSE [mm h−1] 0.0027± 0.0000 0.0015± 0.0000 0.0009± 0.0000

MAPE0.001 [%] 62.2267± 0.0100 36.6584± 0.0078 27.9016± 0.0087

Correlation 0.8709 0.9265 0.9531
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Table A5. Like Tab. 5 but for convective precipitation.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0046± 0.0001 −0.0023± 0.0001 −0.0012± 0.0001

MAE [mm h−1] 0.0330± 0.0001 0.0281± 0.0001 0.0210± 0.0001

MSE [mm h−1] 0.1674± 0.0001 0.1337± 0.0001 0.0824± 0.0001

SMAPE0.01 [%] 108.8755± 0.0480 104.2921± 0.0507 94.0801± 0.1057

Correlation 0.5927 0.6839 0.7336
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Table A6. Like Tab. 5 but for RWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0002± 0.0000 −0.0015± 0.0000 −0.0005± 0.0000

MAE [mm h−1] 0.0210± 0.0000 0.0144± 0.0000 0.0116± 0.0000

MSE [mm h−1] 0.0143± 0.0000 0.0102± 0.0000 0.0060± 0.0000

SMAPE0.001 [%] 88.1093± 0.0327 75.4804± 0.0335 72.0101± 0.0703

Correlation 0.7591 0.8346 0.8785
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Table A7. Like Tab. 5 but for IWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0035± 0.0000 −0.0009± 0.0000 −0.0008± 0.0000

MAE [mm h−1] 0.0222± 0.0000 0.0123± 0.0000 0.0100± 0.0000

MSE [mm h−1] 0.0137± 0.0000 0.0093± 0.0000 0.0060± 0.0000

SMAPE0.001 [%] 92.0949± 0.0357 74.1056± 0.0362 69.5782± 0.0762

Correlation 0.8372 0.8878 0.9129
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Table A8. Like Tab. 5 but for CWP.

Metric GPROF GPROF-NN 1D GPROF-NN 3D

Bias [mm h−1] −0.0019± 0.0000 0.0000± 0.0000 −0.0004± 0.0000

MAE [mm h−1] 0.0268± 0.0000 0.0195± 0.0000 0.0149± 0.0000

MSE [mm h−1] 0.0027± 0.0000 0.0016± 0.0000 0.0011± 0.0000

SMAPE0.001 [%] 62.219± 0.0130 47.2591± 0.0114 38.3892± 0.0237

Correlation 0.8701 0.9194 0.9369
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