
TUNER-compliant error estimation for MIPAS: Methodology
Thomas von Clarmann1, Norbert Glatthor1, Udo Grabowski1, Bernd Funke2, Michael Kiefer1,
Anne Kleinert1, Gabriele P. Stiller1, Andrea Linden1, and Sylvia Kellmann1

1Karlsruhe Institute of Technology, Institute of Meteorology and Climate Research, Karlsruhe, Germany
2Instituto de Astrofísica de Andalucía, CSIC, Spain

Correspondence: Thomas von Clarmann (thomas.clarmann@kit.edu)

Abstract. This paper describes the error estimation for temperature and trace gas mixing ratios retrieved from the Michelson

Interferometer for Passive Atmospheric Sounding (MIPAS) limb emission spectra. The following error sources are taken into

account: measurement noise, propagated temperature and pointing noise, uncertainties of the abundances of spectrally inter-

fering species, instrument line shape errors, and spectroscopic data uncertainties in terms of line intensities and broadening

coefficients. Furthermore, both the direct impact of volatile as well as persistent gain calibration uncertainties, offset calibra-5

tion and spectral calibration uncertainties and their impact through propagated calibration-related temperature and pointing

uncertainties are considered. An error source specific to the MIPAS upper atmospheric observation mode is the propagation

of the smoothing error crosstalk of the combined NO and temperature retrieval. Whenever non-local thermodynamic equilib-

rium modelling is used in the retrieval, also related kinetic constants and mixing ratios of species involved in the modelling

of populations of excitational states contribute to the error budget. Both generalized Gaussian error propagation and perturba-10

tion studies are used to estimate the error components. Error correlations are taken into account. Estimated uncertainties are

provided for a multitude of atmospheric conditions. Some error sources were found to contribute both to the random and the

systematic component of the total estimated error. The sequential nature of the MIPAS retrievals gives rise to entangled errors.

These are caused by error sources that affect the uncertainty of the final data product via multiple pathways, i.e., on the one

hand directly, and on the other hand via errors caused in a preceding retrieval step. These errors tend to partly compensate15

each other. The hard-to-quantify effect of the horizontally non-homogeneous atmosphere and unknown error correlations of

spectroscopic data are considered as the major limitations of the MIPAS error estimation.

1 Introduction

Availability of reliable and traceable uncertainty estimates is a precondition for quantitative scientific work with remotely

sensed atmospheric temperature and composition data. In order to serve this purpose, we present the scheme according to20

which error estimation is performed for the composition data retrieved from version 8 limb emission spectra recorded with the

Michelson Interferometer for Passive Atmospheric Sounding (MIPAS, Fischer et al. 2008) on Envisat. This error estimation

procedure refers to retrievals performed with the data processor developed and operated by the Institute of Meteorology and

Climate Research (IMK) in cooperation with the Instituto de Astrofísica de Andalucía (IAA). A general description of the

processor is found in von Clarmann et al. (2003). The application to non-local thermodynamic equilibrium conditions is25
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documented in Funke et al. (2001, 2012). The processing of MIPAS spectra measured at reduced spectral resolution after an

instrument failure in 2004 is described by von Clarmann et al. (2009). Kiefer et al. (2021) describe the first application to

MIPAS version 8 spectra.

The error estimation of preceding MIPAS retrievals took into account all known major uncertainties but left room for im-

provement with respect to error correlation issues. It is the purpose of this paper to present a scheme that explores all available30

knowledge on the ingoing uncertainties, and, in particular, error correlations. We try to comply as much as possible with the

recommendations on unified error reporting as specified by the SPARC Activity ‘Towards Unified Error Reporting (TUNER)’

presented in von Clarmann et al. (2020).

MIPAS temperature and tangent altitude pointing errors are already described in Kiefer et al. (2021). This paper provides

an update of their temperature error estimation scheme and aims at a general scheme for MIPAS trace gas retrieval error35

estimation. First the notation used is clarified (Section 2) and the error propagation schemes used for MIPAS are introduced

(Section 3). After clarification of terminological issues (Section 4), we select the scenarios for which uncertainty estimates are

carried out and how any arbitrary measurement is linked to these representative uncertainty estimates (Section 5). Then, for all

relevant error sources, the respective error propagation scheme is discussed for the MIPAS temperature and tangent-altitude

pointing retrieval (Section 6) and retrieved mixing ratios of trace constituents (Section 7). The MIPAS ozone retrieval serves as40

an example to illustrate the application of the error estimation scheme (Section 9). In Section 10 we describe how representative

error estimates are built from the sample of analyzed observations. The aggregation of component errors to total, random, and

systematic error budgets is described in Section 11. Technical issues needed to make theory work are presented in Section 12.

Finally, in Section 13 we summarize to which degree we succeeded in providing a robust error estimate and critically identify

issues that could not be solved in a satisfactory manner.45

2 Definitions and notation

In agreement with the general concept by Rodgers (2000) and the notation suggested by von Clarmann et al. (2020) we use the

following retrieval equation for MIPAS.

x̂i+1 = x̂i +
(
KTS−1

y,noiseK+R
)−1

(1)(
KTS−1

y,noise (y−F (x̂i;b))−R(x̂i−xa)
)

50
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where x is the vector of the target variable;

x̂ is its estimate;

i denotes the number of iteration;

K is the Jacobian with elements

∂ym/∂xn;
T denotes transposed matrices;

Sy,noise is the measurement noise covari-

ance matrix;

R is the regularization matrix;

F is the radiative transfer function; in

our case it is the KOPRA radiative

transfer model (Stiller, 2000).

b is a vector representing all other

input parameters except the target

variables of the retrieval;

xa is the vector representing the a pri-

ori knowledge on the target vari-

ables;

and x is the the vector representing the

measurements from the limb scan

under investigation, including all

tangent altitudes and all spectral

points used.
If an inverse a priori covariance matrix, S−1

a is chosen for the regularization matrix R, then this formalism represents the

optimal estimation or maximum a posteriori retrieval scheme endorsed by Rodgers (2000). However, other choices are possible

(see, e.g., Steck and von Clarmann, 2001).

The inverse problem is decomposed species-wise. That is to say, after the retrieval of temperature and pointing information55

(Kiefer et al., 2021), ozone concentrations are retrieved in microwindows where the ozone signal is prominent and where

interferences by other gases are low. As a next step, H2O concentrations are retrieved in spectral microwindows adequate

for the H2O retrieval. In this manner the retrieval proceeds through the list of species, according to their dominance in the

spectrum, where usually the concentrations of the pre-retrieved species are used for the retrieval of the gas currently under

analysis. The latter we call ‘target species’.60

Within linear theory we have the averaging kernel matrix

∂x̂

∂x
= A =

(
KTS−1

y,noiseK+R
)−1

KTS−1
y,noiseK (2)
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and the gain matrix

∂x̂

∂y
= G =

(
KTS−1

y,noiseK+R
)−1

KTS−1
y,noise (3)

For estimated errors, covariances, etc., we use the TUNER notation: the first subscript denotes the quantity to which the65

estimated error refers, and the second subscript denotes the source of the error. For example, SO3;noise is the covariance matrix

characterizing the ozone error component due to measurement noise. Beyond this, we use σq for standard deviations of a

generic variable q, and ∆q for perturbations with a sign, where

|∆bq|= σq;b (4)

and where b denotes the error source.70

3 Error propagation

MIPAS retrievals depend on measured spectra and auxiliary information which both are uncertain. Depending on the uncer-

tainty information available, different schemes to estimate error propagation are in use. All error estimations used for MIPAS

rely on linear error estimation.

Gaussian error propagation is applied to measurement errors of which the complete covariance information in the measure-75

ment domain is available:

Sx;meas = GSy;measG
T , (5)

where Sx;meas is the covariance matrix representing the error of the retrieved variables caused by the measurement error Sy;meas.

In this formulation Sy;meas is a placeholder and will be replaced by the specific type of measurement error under assessment,

e.g., noise, calibration errors, etc.80

The gain matrix G does not only include the sensitivities of the target gas with respect to the measurement but also the

sensitivities of all variables which are fitted along with the target gas in the same inversion, e.g., background continua or

further gases that are simultaneously fitted. These gain matrices are available from the retrieval and do not have to be newly

evaluated. The resulting covariance matrix Sx;meas includes also entries for all joint-fit variables that are fitted along with the

target variables for various reasons.85

For parameter errors whose covariance information in the altitude domain is available, the parameter uncertainties can be

linearly mapped into the measurement domain, and then propagated into the target variable space:

Sx;b = GKbSb;measK
T
b G

T , (6)

where Sx;b is the covariance matrix representing the error in the retrieved variables caused by the parameter error Sb; Kb is the

Jacobian, representing the sensitivities of the radiance in the analysis windows of the target gas x with respect to changes of90

the parameter profile b. If b is obtained in a preceding retrieval of the sequential retrieval chain, it has to be noted that Kb is
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not the same as the Jacobian used in the preceding retrieval of b because it refers to the spectral radiances in the microwindows

used for the retrieval of the target gas x, as opposed to those used in preceding retrieval of b. Thus, it is not available as a

by-product of the temperature and pointing retrieval but needs to be calculated with a dedicated call of the forward model.

Sensitivity studies based on the difference between perturbed spectra (F perturbed) and nominal spectra (F nominal) are an95

alternative when the methods presented above are not applicable or inadequate. Within linear error estimation, the estimated

error is proportional to the spectral difference caused by the erroneous quantity. The effect of a 1σ uncertainty of any parameter

bk affecting the signal y can be estimated by perturbing bk in the input of a run of the forward model F (x,b) by the respective

∆b. The response of the retrieval to this perturbation is then estimated as

∆bkx =−G ∗ (F perturbed−F nominal). (7)100

Here F nominal are the radiances simulated with the input data and results of the retrieval of x, while F perturbed are the spectral

radiances obtained after perturbation of the parameter(s) under assessment by 1 σ. Many applications of Eq. (7) are sign-

sensitive. That is to say, contrary to the application of variances, the signs of the elements of ∆bkx have to be considered. The

negative sign on the right-hand side of Eq. 7 is due to the fact that perturbations are applied to the F (x̂i;b) term in Eq. 1,

which appears with a negative sign there. In order to avoid confusion with respect to signs, we consistently use the convention105

that instrumental uncertainties such as gain calibration or instrument line shape uncertainties are understood as uncertainties

of the related model parameters and thus refer to the F (x̂i;b) rather than the y term in Eq. 1. The sign of the perturbation as

such is arbitrary. Only self-consistence is of concern when a perturbation enters the error estimation in multiple pathways as

discussed in Section 4.4.

Also here, the gain matrix G of the retrieval has to include not only entries considering the target gas x but also those related110

to all joint-fit variables.

The mixing ratios of some species are retrieved in the logarithmic domain. These are H2O, CO, NO, NO2, and in middle

atmosphere (MA), upper atmosphere (UA), and noctilucent cloud (NLC) measurement modes1 also O3. For specific MA

research products also CH4 and N2O) are retrieved in the logarithmic domain. In these cases also the error estimates are

performed in the logarithmic domain and finally mapped into the mixing ratio domain.115

4 Terminology

Since no compelling argument has been provided that ‘uncertainties’ and ‘estimated errors’ connotate different concepts (von

Clarmann et al., 2022a), we use these terms almost as synonyms. The only subtle linguistic difference seems to be that ‘uncer-

tainty’ is an attribute of the measurand, i.e., the atmospheric state, which is not known with certainty, while the ‘error’ is an

attribute of the measurement. Under normal conditions, we know the measurement with certainty, but the measurement is not120

perfectly correct. The error of the measurement causes an uncertainty in our knowledge of the atmospheric state. We kept our

terminology in broad agreement with common language since Gauss (1809), although this is in conflict with the stipulation

1Definitions and details of the measurement modes are compiled in Oelhaf (2008).
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by the Joint Committee for Guides in Metrology (JCGM) (2008). Contrary to the ‘estimated error’, which is a measure of

uncertainty, the ‘error’ (without qualification) is a signed quantity and describes the actual difference between the measured

and the true value of the quantity of interest.125

In agreement with the definitions suggested by TUNER (von Clarmann et al., 2020) we distinguish random errors and

systematic errors. Beyond these, we also have to deal with the so-called headache errors and entangled errors. These concepts

will be introduced in the following. For reasons discussed in von Clarmann (2014), we do not include the smoothing error in

our error budget.

4.1 Random errors130

Random errors are errors that cause a standard deviation of the differences between independent coincident measurements.

Thus, the random error budget exceeds measurement noise and includes randomly varying parameter errors. Chief contributors

are: measurement noise, tangent altitude uncertainties, the volatile component of gain calibration uncertainty, offset calibration

uncertainty, spectral shift uncertainty and uncertainties in the abundances of gases that are kept fixed in the retrieval of the

target gas.135

4.2 Systematic errors

According to TUNER terminology, systematic errors are those errors that cause, in the long run, a bias between independent

measurements of the same state variable at the same time and place. Error correlations in the altitude domain, or between

different error components related to different error sources are irrelevant for the classification as systematic error. Even corre-

lations in the time domain on a short time-scale do not make an error systematic as long as it does not cause a bias in the long140

run.

The advantage of this definition is that, contrary to other definitions of this term, the estimated systematic error is observa-

tionally significant in the sense that it is accessible by observations and thus empirically testable. Other definitions of systematic

errors run risk to lead to theoretical quantities that are recalcitrant against empirical testing. Chief contributors to the MIPAS

systematic error budget are uncertainties in spectroscopic data with respect to the intensities and broadening coefficients of the145

spectral lines used, uncertainties in the MIPAS modulation efficiency that leads to uncertainties in the instrument line shape,

and the persistent part of the gain calibration uncertainty, which is dominated by detector nonlinearity issues (Kleinert et al.,

2018, their Table 3).

4.3 Headache errors

Arguably, the distinction between random and systematic errors is not always quite clear, because, e.g., nonlinear propagation150

of random errors can cause a bias, and a random modulation of a systematic error can cause some scatter. Since related

difficulties can cause some headache, we call these errors ‘headache errors’.
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We assume that MIPAS retrievals are moderately nonlinear and thus linear theory is sufficient for error estimation. Within

this framework, any possible bias due to the nonlinearity of the retrieval – we call this ‘type A headache error’ – is inaccessible.

Conversely, the retrieval may depend in a deterministic way on some uncertain input quantity, which is the same for all155

retrievals. Ideally, this would give rise to a systematic error in the estimate. In the real world, however, the impact of the

uncertain input quantity can depend on further quantities which may vary randomly. This causes a random modulation of the

initially systematic error. The resulting errors causes both a bias and a standard deviation of differences. We call this type of

error ‘type B headache error’. We assess this type of error using statistics over a sample of test cases. An example of a type

B headache error is an initially systematic error due to the spectroscopic data of an interfering species of randomly varying160

concentration2.

In order to avoid propagating the related headache to the data users, the systematic and random components of the headache

errors will be listed separately in the systematic and random error budgets. The random component contains the variability due

to the respective error source across soundings within a reference scenario, while the systematic component contains the bias.

4.4 Entangled errors165

Some errors in the input parameters enter the error budget of the target quantity via multiple pathways. This is because the

MIPAS retrievals are performed sequentially. In the first step, temperature and pointing information are retrieved; in the second

step this information is used for the retrieval of ozone distributions. The retrieved temperature, pointing, and ozone informa-

tion is used for the subsequent retrievals of the concentrations of other gases. Estimated errors have to be propagated through

this retrieval chain. Some uncertainties affect the target retrieval directly, as well as indirectly, because it has already affected170

a quantity retrieved earlier in the retrieval chain. For example, the gain calibration uncertainty has a direct effect on the re-

trieved target gas. A positive perturbation, representing an overestimation of the radiative gain in the radiative transfer forward

modelling, makes the term F perturbed in Eq. (7) larger, resulting typically in a negative error ∆gainx of the target species con-

centration. A positive gain perturbation, however, entails also a smaller retrieved temperature, and the too small temperature

requires a larger amount of the target gas to fit the measured target lines. Formally speaking, the negative temperature per-175

turbation implies a positive error component ∆T,gainx of the target gas due to the propagated gain-induced temperature error.

Thus, the direct gain error and the propagated gain-induced temperature error mutually counteract and tend to compensate each

other. We call these error components which enter the error budget via multiple pathways ‘entangled errors’. They must not be

treated as independent errors because then related error compensation information would be lost.

We distinguish between two kinds of entangled errors. The first variant of the entangled errors affects only spectral signatures180

of the species associated with this error. This is best illustrated by use of an example. The line intensities, as part of the

spectroscopic data used, of a pre-fitted gas may be too low. This typically results in too high concentrations in the retrieval of

this gas. In the microwindows used for the target gas analysis these erroneous line intensities affect only the signal caused by

the pre-fitted species. Within linear theory and with favorable assumptions on the correlations of line intensity errors of the

pre-fitted gas in force (same relative error of line intensities in the whole spectral range), the direct error and the propagated185

2The authors are grateful to N. J. Livesey, who has mentioned this example in a discussion.
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error through the use of the pre-fitted concentration cancel out almost perfectly. We call this variant of entangled errors ‘lazy

entangled errors’. Due to its cancellation characteristics, we do not consider these in the MIPAS error budget, except where

explicitly mentioned otherwise.

The other variant of the entangled errors affects all radiances used in the target gas retrieval, regardless to which gas the

spectral signatures belong. Again we use an example to illustrate this mechanism. Too low assumed CO2 concentrations in190

the temperature retrieval may cause too high retrieved temperatures. The use of these too high temperatures in the target gas

retrieval affects all radiances used in the target gas retrieval, not only the signatures associated with CO2. The compensation

mechanism discussed above is confined to those parts of the signal used for the target gas retrieval where CO2 has some

signal interfering with the target signal, and no full cancellation of the temperature error component induced by erroneous CO2

mixing ratios takes place. We call this variant of entangled errors ‘serious entangled errors’. Since these are the only entangled195

errors considered in the MIPAS error budget, the term ‘entangled error’ always refers to a serious entangled error.

To account for the entangled nature of these errors, their impact is estimated using one single perturbation spectrum per

tangent altitude, where both the direct and the propagated error terms are included.

5 Selected reference scenarios

Due to operational constraints it is not possible to provide full error estimates for each single measurement. Instead, the200

errors are evaluated for representative classes of cases. These include all relevant combinations of latitude band, season and

illumination, and, where relevant, solar activity. Since it is questionable if a single limb scan can safely represent a large

class of measurements, we consider multiple limb sequences for each scenario, and the average estimated errors are used

as representative error estimates. For polar and midlatitudinal conditions the following seasons were considered: northern

spring / austral autumn (Mar, April, May), northern summer / austral winter (June, July, August), northern autumn / austral205

spring (September, October, November), and northern winter /austral summer (December, January, February). For tropical

conditions no distinction according to the season is made. Further, we distinguish between daytime and nighttime situations.

Neither twilight conditions nor latitudes that could not be clearly assigned to a typical scenario were considered. Tables A1–

A5 present the orbits of which reference limb scans were chosen for error estimation, as well as latitude ranges and ranges of

solar zenith angles (SZA) selected for error estimation. Table A1 refers to high resolution (HR, employed from 2002–2004)210

nominal measurements, Table A2 to reduced resolution (RR, employed from 2005–2012) nominal measurements, Table A3 to

RR middle atmosphere measurements, and Tables A4 and A5 to RR upper atmosphere measurements under low and high solar

activity. For the upper-troposphere / lower-stratosphere measurement mode no dedicated error analysis has been made, because

the RR-nominal mode error estimates are deemed well representative also for this particular observation mode. Similarly, MA

error estimates are deemed well representative for NLC mode measurements. The number of orbits selected was chosen such215

that for each scenario at least 33 limb scans with converged retrievals and a low lowermost valid tangent altitude were available.

Each MIPAS measurement has been assigned to a reference class (scenario), for which representative error estimates are

available, following the criteria defined in Tab. A6, in terms of season, latitude, and solar zenith angle. Since all MIPAS
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measurements have to be assigned to a representative case, the respective classes are larger in terms of latitudinal coverage and

solar zenith angle coverage than those used to evaluate the errors.220

Based on this classification, systematic and random error budgets are estimated for each single measurement. For errors of a

multiplicative nature the respective error estimates are obtained by scaling the relative error with the actual constituent profile

retrieved for the geolocation under assessment.

6 Error components of the temperature and pointing retrieval

Temperature is the first atmospheric state variable that is retrieved in the sequential retrieval chain. Temperature is retrieved225

along with line-of-sight pointing information in terms of tangent altitudes from CO2 emissions. Since temperature and pointing

information are retrieved in one step, we represent this information in one single vector TLOS. The retrieval technique and

error estimation is documented in Kiefer et al. (2021). Therefore, for most error sources a cursory discussion must suffice here.

Updates to the temperature and pointing error estimation refer to the uncertainties of the abundances of interfering trace gases,

the treatment of the gain calibration uncertainty, the uncertainty of zero-level calibration in terms of an additive radiance offset,230

and, for measurement modes involving explicit non-local thermodynamic equilibrium (non-LTE) modelling, uncertainties of

related specific parameters, particularly rate constants of the kinetic processes and concentrations of trace gases that govern

non-LTE related processes.

6.1 Measurement noise in temperature retrievals

The noise error covariance matrix STLOS;noise of the combined temperature and pointing information vector TLOS is calcu-235

lated from the gain matrix of the retrieval, GTLOS, and the measurement noise covariance matrix, Sy;noise, using generalized

Gaussian error propagation (Eq. 5). Technically speaking, we use for MIPAS error estimation the following variant of this

equation

STLOS;noise = ATLOS(KT
TLOSS

−1
y;noiseKTLOS +RTLOS)−1, (8)

which is fully equivalent to the application of Eq. (5) to Sy;noise but technically more efficient, because it relies on quantities that240

were stored during the retrieval and thus have not to be calculated again during the error estimation procedure. Here subscript

TLOS indicates that the respective matrices refer to the retrieval of TLOS. Obviously, Sy;noise here and henceforth is under-

stood to contain only variances and covariances referring to spectral gridpoints actually included in the spectral microwindows

used in the retrieval under assessment. Formally, the retrieval vector, gain function, and resulting covariance matrix contain

also entries referring to some further fit variables (see, Kiefer et al., 2021 for details), but finally only the block representing the245

retrieved temperature profile and the retrieved tangent altitudes, as well as covariances between these quantities are relevant.

The measurement noise covariance matrix Sy;noise characterizes the noise in all spectral grid-points used for the retrieval of

trace gas profile x at all tangent altitudes of the limb sequence used. Information on measurement noise is provided by ESA
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along with the measured spectra. It has been estimated from the high-pass filtered imaginary part of the complex calibrated

spectra.250

Originally, measurement noise is independent between all data points, entailing a diagonal Sy;noise matrix. However, since

the IMK/IAA processor uses spectra apodized with the Norton and Beer (1976) ‘strong’ apodization function, the measurement

noise covariance matrix Sy;noise is manipulated accordingly:

Sy;noise = QSy;noise; unapodizedQ
T , (9)

where Q is the rotationally symmetric matrix representing the discrete convolution with the apodization function.255

Measurement noise contributes to the random error. Due to the structure of the gain matrix GTLOS, STLOS;noise typically has

significant non-zero off-diagonal entries characterizing error correlations in the altitude domain. Even for a diagonal Sy;noise

matrix, these entries would not disappear, because the limb sounding geometry implies a G without diagonal structure. For the

non-diagonal Sy;noise matrix of apodized spectra, the non-diagonality of STLOS;noise holds with even more convincing force.

6.2 Uncertainties of interfering species in the temperature retrieval260

The spectral microwindows used for the MIPAS temperature and tangent altitude retrieval are dominated by CO2 lines but

contain some signal of other gases. Both for CO2 and for the interfering gases, the temperature and tangent altitude retrieval has

to rely on assumptions. Related uncertainties propagate onto the retrieved temperatures and tangent altitudes. We have different

sources of information on these trace gas abundances. These are model calculations for CO2, older versions of MIPAS retrievals

for gases included in the MIPAS data product, and the MIPAS first guess database, for gases not included in the MIPAS data265

product but still contributing as interferent (Fig.1).

6.2.1 CO2 information from model runs

For temperature and tangent altitude retrievals, we use CO2 mixing ratios calculated with the Whole Atmosphere Community

Climate Model (WACCM, Marsh 2011; Marsh et al. 2013) version 4, run for specified dynamics (García et al., 2017) and

uncertainties as reported by Kiefer et al. (2021). Related TLOS uncertainties are estimated using Eq. (7) with270

F perturbed = F (TLOS;bCO2 + ∆bCO2), (10)

where bCO2 and ∆bCO2 are the CO2 profiles used and their 1σ perturbations. The perturbation is performed in one step, covering

all altitudes. The mixing ratio of the interfering species under assessment is perturbed at all altitudes by 1 σ of its uncertainty

at this altitude. As a conservative estimate, all these perturbations are applied with the same sign. This is admittedly not ideal

but we have no more specific correlation information available that would allow for a more adequate approach. Our treatment275

usually provides an upper estimate of the propagated errors.

For MIPAS measurements of the nominal and UTLS-1 measurement modes, CO2 mixing ratio uncertainties are deemed

to contribute to the random error, because below about 70 km this error component is thought to be chiefly caused by the

natural variability around the climatological value. At altitudes above about 70 km altitude, CO2 mixing ratio uncertainties
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Figure 1. Data flow diagram of the sequential MIPAS processing chain. Mixing ratio information from the MIPAS initial guess database

(IG, Kiefer et al., 2002, and updates thereof) is used whenever no V5 or V8 MIPAS results of the related species are available. V8P stands

for a preliminary V8 data version.
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are supposed to be dominated by a pronounced systematic component due to model biases, which has to be considered when280

spectra recorded in the middle and upper atmosphere measurement modes are analyzed. No firm statement about related error

correlations in the altitude domain can be made.

6.2.2 Abundance information from previous data versions in temperature retrievals

The MIPAS version 5 data product, the predecessor of the current version V8, includes abundance and uncertainty information

on many species contributing to the infrared spectrum. The respective abundance information of the limb scan under assessment285

is used for the interfering species in the forward calculations of the version V8 retrievals. Although broadly considered to be of

inferior quality compared to V8 data, the V5 data are considered good enough to be used to characterize the small contributions

of the interfering species to the signal in the microwindows of the target gas retrieval (Kiefer et al., 2021). While originally the

mapping of the uncertainties of the interfering species was estimated using perturbation calculations (Eq. (7), we now use the

covariance information Sb;noise that is available from the preceding data retrievals as Sb;meas in Eq. (6). The error components290

due to uncertainties in the concentrations of interfering species from version 5 MIPAS retrievals contribute chiefly to the

random error of the target gas retrieval.

6.2.3 Abundance information from the initial guess data base in temperature retrievals

For interfering gases except CO2 that are not available from preceding MIPAS data versions, the retrievals use mixing ratios

from the initial guess database (Kiefer et al., 2002, and updates thereof). Available uncertainty information is vague, and often295

“educated guesses” or “rational agents’ personal beliefs” have to be used. Typically, no correlation information is available.

Due to this lack of correlation information in the altitude domain, error estimation is approximated by a perturbation calculation

using Eq. (7), as described in Section 6.2.1.

The capability of the radiative transfer model KOPRA to provide Jacobians with respect to gas concentrations helps to avoid

a separate radiative transfer calculation with perturbed concentration data for each trace gas. Instead, the partial derivatives300
∂yi

∂vmrj;g
of spectral radiances yi with respect to the volume mixing ratio of gas g at altitude j are extracted and used for a linear

approximation of the perturbation spectrum F perturbed,g as

F perturbed,g = F nominal +
∑
j

∆vmrg, j
∂y

∂vmrj;g
(11)

In most cases the resulting error components contribute less than one percent to the total error budget and therefore are

deemed negligible. Since the true errors of this category are most likely even smaller than our estimates, this holds with even305

greater reason.

For the category of interferents discussed here, no vertical correlation information is available, and everything said in the

context of CO2 uncertainties applies here, too.

We assume that the error in the retrieved quantities caused by using concentrations from a database is dominated by natural

variability. That is to say, we assume that the database provides, on average, in the long run, the correct values, and that the310
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related error is driven by the difference between the actual state and the mean state. With this supposition in force, related errors

contribute to the random error budget. Admittedly, this supposition can be challenged, but the contribution of this category of

interferents to the total error budget is so small that a more detailed assessment does not seem justified.

6.3 Calibration uncertainties in temperature retrievals

Under calibration uncertainties we summarize gain calibration uncertainties, zero offset calibration uncertainties, frequency315

shift uncertainties and instrument line shape uncertainties.

6.3.1 Gain calibration uncertainties in temperature retrievals

MIPAS gain calibration relies on reference measurements involving an internal blackbody of known temperature and deep

space measurements. Related uncertainties have random and systematic components. The random component includes noise

in the blackbody measurements and gain variation between blackbody measurements. The systematic component includes320

inaccuracies of the calibration blackbody, the errors in the correction of the detector nonlinearity, and the neglect of higher

order artefacts (Kleinert et al., 2018). Table 3 of their paper allows to calculate the random and systematic uncertainties

separately. Estimated random uncertainties are 0.2%, 0.2%, 0.2%, 0.2% and 0.4% for the MIPAS A band (685-980 cm−1), AB

band (1010-1180 cm−1), B band (1205-1510 cm−1), C band (1560-1760 cm−1), and D band (1810-2410 cm−1), respectively.

The corresponding systematic uncertainties are 1.1%, 1.0%, 1.0%, 0.3% and 0.3%, respectively. Apparent discrepancies of the325

values are explained by the fact that the values reported by Kleinert et al. (2018) are to be understood as 2σ uncertainties, while

our error estimation is consistently based on 1σ uncertainties.

Contrary to the approach described in Kiefer et al. (2021), the gain calibration error ∆gainTLOS, of the temperature and

tangent altitude vector TLOS, is now estimated separately for its random and its systematic component by application of

Equation (7). The perturbations are the same for all spectra of the limb sequence under assessment. We get330

∆gainTLOS = −G(F perturbed−F nominal) (12)

= −G
((

1 +

(
∆y

y

)
A

)
F nominal−F nominal

)
,

where F perturbed are the spectral radiances used for the retrieval, of all involved tangent altitudes, with the gain perturbation

applied. The gain uncertainty of the MIPAS A band, which is used for the temperature and tangent altitude retrieval, is rep-

resented by the scalar
(

∆y
y

)
A

. F nominal are the radiances calculated with the radiative transfer model KOPRA for the actual335

limb sequence under assessment. Since gain errors affect spectra at all tangent altitudes of a limb scan in the same way, error

correlations in the altitude domain are present.

6.3.2 Zero offset calibration uncertainties in temperature retrievals

On the face of it, it may seem inadequate to consider the zero offset calibration uncertainty in the error budget, because a

zero offset correction is jointly retrieved along with the target variables (Kiefer et al., 2021). We have, however, to distinguish340
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between two different mechanisms causing offset uncertainty, namely the approximately wavenumber-independent component

and the offset noise.

The approximately wavenumber-independent component of the offset uncertainty is caused by a possible offset drift between

calibration measurements. This error component is indeed accounted for by the retrieval of the offset correction along with

the retrieval of the target quantities, because this additive offset correction assumes wavenumber-independence within each345

microwindow (von Clarmann et al., 2003). Thus, this error component does not need to be considered in the error budget.

The situation is different for the noise in the deep space measurements that are used for the zero-offset calibration. This

noise has a spectral dependence and is thus not fully corrected for by the offset retrieval mentioned above. It is for this reason

that we have updated the error estimation scheme for temperature and tangent altitude retrievals since (Kiefer et al., 2021) to

include also the noise component of the offset calibration. It is estimated using Eq. (5), where STLOS;meas is specified as350

[Sy;offset]i;j = nesri ∗nesrj ∗ ri;j , (13)

where nesri and nesrj are the noise equivalent spectral radiances of the offset measurements at spectral gridpoints i and j

(see Kleinert et al., 2018). Error correlations occur due to apodization, due to the fact that offset calibration measurements are

provided at a shorter maximum optical path difference than the scene measurements, and because the same offset measurement

is used for multiple tangent altitudes. To calculate the respective correlation coefficients ri;j , first the apodization function is355

convolved with sin(iπ∗c)/(iπ∗c)), where i is the index of the spectral gridpoint, and where c is the contrast between maximum

optical path differences of the deep space and the scene measurements. For MIPAS high resolution, reduced resolution bands

A-C and reduced resolution band D we have cHR = 0.1, cRR(AC) = 0.2, and cRR(D) = 0.033, respectively. This convolution

product is convolved with itself and then normalized such that its maximum is 1. The kth value beside the maximum is used as

ri,i±k. For correlations in the altitude domain, it has to be considered that measurements recorded during a forward movement360

of the interferometer mirror, are all offset-calibrated with a deep space measurement with forward movement of the mirror,

and backward scene measurements are calibrated with a backward deep space measurement. This implies that measurements

at every second tangent altitude rely on the same deep-space spectrum for offset calibration. In consequence, the entry in

[Sy;offset]i;j is zero when the indices point at an odd and an even tangent altitude but does not depend on the tangent altitude as

long as i and j both point at even or both at odd tangent altitudes. That is to say, the correlation coefficient ri;j between data365

points of two odd or two even tangent altitudes is the same for all pairings of the same spectral distance, regardless if i and j

belong to the same tangent altitude or not.

Although the same offset calibration measurement is used for a couple of scene spectra, causing some error correlations in the

time domain, in the long run the offset error contributes to the standard deviation of the differences between two independent

measurement systems. Therefore, it is regarded as random error.370

6.3.3 Spectral shift uncertainties in temperature retrievals

Prior to the retrievals, a correction of the frequency calibration of the MIPAS spectra is performed for each limb scan, using

narrow, isolated lines spread over the entire spectrum covered by MIPAS. A linear model is fitted to the individual spectral
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shifts determined for each of these lines, providing a linear relation between the spectral shift and wavenumber. The scatter of

the individual spectral shifts around the regression line serves as an estimate of the residual frequency correction uncertainty375

and was found to be 0.00029 cm−1 (Kiefer et al., 2021). The resulting error in the mixing ratio of the target gas is evaluated

using Eq. 7, where F perturbed is an estimate of the spectral radiances for a spectral shift perturbed by the 1σ frequency correction

uncertainty, and where F nominal are the spectral radiances calculated with the nominal frequency correction.

Errors in the retrieved quantities due to the spectral shift uncertainty contribute to the random error. They are fully correlated

in the altitude domain.380

6.3.4 Instrument line shape uncertainties in temperature retrievals

Errors in the line shape used in the radiative transfer calculation are quantified in terms of modulation efficiency, which is a

key input parameter of the instrument line shape model used (Hase, 2003). The propagation of the modulation efficiency error

is estimated using Eq. (7), where

F perturbed = F (TLOS;e+ ∆e) (14)385

and where

F nominal = F (TLOS;e). (15)

Scalar e is the nominal modulation efficiency and ∆e its perturbation by 1 σ.

Spectral shift errors caused by instrument line shape errors do not need to be considered as part of the instrument line shape

error, because the total spectral shift is empirically corrected as the first step of the data processing chain (see Fig 1) and the390

residual spectral shift uncertainty is propagated as an error source in its own right (see Section 6.3.3).

Since the modulation efficiency parameter is based on a pre-flight study and used for all MIPAS retrievals, the related error

in the target mixing ratio profile is systematic and fully correlated in the altitude domain.

6.4 Uncertainties in spectroscopic data in temperature retrievals

The leading components of uncertainties in spectroscopic data are line intensity uncertainties and uncertainties in the broad-395

ening coefficients. Both error sources are evaluated independently. The fact that no correlation information on spectroscopic

uncertainties is available is a major drawback. For most retrievals from MIPAS data multiple lines are used. If the intensity er-

rors of multiple lines were uncorrelated, e.g., because they are dominated by measurement noise in the lab measurements, then

their effect would partly average out in a multi-line retrieval. Conversely, if the intensity errors were strongly correlated, e.g.,

because they are caused by uncertainties of the amount of gas in the cell in the laboratory measurement, then their effect would400

be systematic and thus survive the implicit averaging taking place in a multi-line retrieval. Similar considerations hold for the

broadening coefficients. Since we have no better information, we consider the spectroscopic uncertainties as fully correlated.

This assumption is conservative with respect to the error budget of the target but optimistic as far as error compensation in the

context of entangled errors may be over-estimated. Since the same spectroscopic parameters are used for all MIPAS retrievals
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of a certain target gas, related concentration errors contribute chiefly to the systematic error budget. They are fully correlated405

in the altitude domain, as far as the same microwindows are used for all altitudes.

6.4.1 Line intensity uncertainties in temperature retrievals

The response of the retrieval of temperature and tangent altitudes to errors of CO2 line intensities is estimated by perturbation

using Eq. (7). F perturbed are the spectral radiances calculated with the intensities of all CO2 lines of the target gas all perturbed

by 1 σ of their individual uncertainty, where all perturbations have the same sign. F nominal are the spectral radiances calculated410

with the nominal line intensities.

6.4.2 Broadening coefficient uncertainties in temperature retrievals

All said for the propagation of line intensity uncertainties holds, with all necessary changes in place, also for the uncertainties

of broadening coefficients. For the evaluation of the error component due to the target gas broadening coefficients according

to Eq. (7), we calculate F perturbed with the broadening coefficients of the target gas all perturbed by 1 σ of their individual415

uncertainty, where all perturbations have the same sign.

7 Error components of the trace constituents retrieval

For MIPAS trace gas retrievals, the following error sources are considered: Measurement noise; uncertainties in temperature

and pointing information (TLOS); uncertainties in the mixing ratios of interfering species which contribute in a sizeable

way to the signal in the analysis window(s) of the target species and are not jointly fitted with the target gas; under certain420

conditions also smoothing error crosstalk can be an issue. Further error sources under consideration are gain, offset, and

frequency calibration errors as well as instrument line shape uncertainties; uncertainties in spectroscopic data in terms of

line intensity and broadening coefficients; and, if applicable, uncertainties of specific parameters to non-local thermodynamic

equilibrium (non-LTE), such as kinetic rate constants or abundances of trace gases that interact via specific non-LTE processes

rather than by spectral interference. In the following sections, the related error propagation schemes are discussed.425

7.1 Measurement noise in the trace constituents retrieval

Noise in retrieved trace gas abundance x is calculated by Gaussian error propagation, using the same method as discussed for

the temperature retrieval in Section 6.1. The noise error covariance matrix Sx;noise of the target gas profile x is calculated from

the gain matrix of the retrieval, G, and the measurement noise covariance matrix, Sy;noise, using generalized Gaussian error

propagation (Eq. 5). Again, we use for MIPAS error estimation the following variant of this equation430

Sx;noise = Ax(KT
xS

−1
y;noiseKx +Rx)−1. (16)

All details mentioned in the context of the mapping of measurement noise on temperature applies also to trace gas retrievals.

The only relevant error correlations refer to the altitude domain within one profile, and between mixing ratios of different
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species that are retrieved in one step, as done, e.g., for CH4 and N2O; related correlation information is provided by the off-

diagonal elements of Sx;noise. No correlations across limb-scans or between sequentially retrieved atmospheric constituents435

have to be considered.

7.2 Propagation of temperature and pointing errors

Temperature and pointing retrieval errors propagate onto the trace gas retrievals. Temperature and pointing retrieval errors are

correlated. These correlations – as well as correlations in the altitude domain – have to be considered for the error estimation

of trace species. The error components of TLOS are, along with the respective correlation information, represented by the440

covariance matrix STLOS;component.

Some components of the temperature and pointing errors contribute to entangled errors. Thus, the respective error compo-

nents contributing to the temperature and pointing error have to be propagated separately for the different sources of TLOS

errors. Some of these components contribute to the random error and others contribute to the systematic error. For this reason,

we report them component-wise. The following temperature and pointing error components are considered: measurement noise,445

gain calibration uncertainty, offset calibration uncertainty, frequency calibration errors, and uncertainties of spectroscopic data.

7.2.1 Propagated temperature and pointing noise

The mapping of noise on temperature and pointing information is characterized by the covariance matrix Sx;TLOS_random and is

evaluated with Eq. (6) where Sb;meas is specified as STLOS;noise. This error covariance matrix represents the noise component of

the retrieved temperatures and tangent altitudes of the limb sequence under evaluation. Here we do not need the full covariance450

matrix of the temperature and pointing retrieval, but only those blocks which refer to temperature and tangent altitude infor-

mation. Entries related to the background continuum and gases fitted jointly with temperature and tangent altitudes play no

role here. The entries of STLOS;noise are available as a by-product of the temperature and tangent altitude retrieval. Due to their

correlated nature, temperature and pointing/tangent altitude errors have to be propagated jointly rather than separately.

Kb in Eq. (6) is specified as the Jacobian KTLOS representing the sensitivities of the radiance in the analysis windows of455

the target gas with respect to changes in temperatures and tangent altitudes. KTLOS is not the same as the Jacobian used in the

temperature and pointing retrieval, because it refers to the spectral radiances in the microwindows used for the retrieval of the

target gas x.

Temperature and pointing noise contribute to the random error of the target gas retrieval in the sense that it is uncorrelated

across limb scans. Resulting trace gas errors are correlated in the altitude domain, and also across species. That is to say, if the460

mixing ratio of one species is retrieved too high due to a temperature assumed too low, then also the mixing ratio of another

species is likely to be retrieved too high.
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7.2.2 Propagated temperature and tangent altitude errors due to spectral shift

A correction of the supposedly less than perfect frequency calibration of the spectra is performed prior to the retrieval of

temperature and tangent altitudes as described in Kiefer et al. (2021). These authors also provide estimates of the response465

of the retrieved temperatures and tangent altitudes to the estimated residual frequency calibration error (See, Section 6.3.3).

Again, the response ∆TLOS;shiftx of the retrieval of trace gas profile x to the temperature and pointing uncertainty due to the

spectral shift uncertainty is estimated by the perturbation approach using Eq. (7), where F perturbed are the spectral radiances

obtained with a radiative transfer calculation using temperatures and pointing perturbed by ∆shiftTLOS, and where F nominal

are the spectral radiances obtained with the spectral shift used for the retrieval.470

∆TLOS;shiftx =−G(F (x;TLOS + ∆shiftTLOS)−F (x;TLOS)) (17)

Since temperature and pointing information in terms of tangent altitudes are jointly retrieved in one inversion step, errors of

these quantities are correlated, and perturbations are made in one step. ∆shiftTLOS vectors are available from Kiefer et al.

(2021), who evaluated this quantity for the representative atmospheric conditions listed in Section 5 by perturbation studies.

Since the spectral shift correction is performed for each limb scan separately, all related errors contribute to the random error475

budget. And since the spectral shift correction provides only one scalar value per limb scan and microwindow, resulting target

mixing ratio errors are fully correlated in the altitude domain, i.e.,

covarshift-tlos;i,j = σshift-tlos;iσshift-tlos;j , (18)

where covarshift-tlos;i,j is the covariance between the errors of the target species due to the propagated shift-induced temperature

and pointing errors, σshift-tlos at altitude levels i and j. All said about error correlations due to temperature and pointing noise480

also applies to temperature and tangent altitude errors due to spectral shift.

7.2.3 Propagation of temperature and tangent altitude errors due to offset calibration uncertainties

Retrieved temperatures and tangent altitudes are susceptible to offset calibration uncertainties (see Sect 6.3.2). The relevant

component of the offset uncertainty that is not removed by joint-fitting the offset along with the target variables is dominated

by noise in the deep space measurements. Related temperature and pointing errors propagate onto the error budget of the target485

species. Their contribution is estimated using Gaussian error propagation according to Eq. (6), where Kb is the sensitivity of

the radiances used for the retrieval of the target gas to temperatures and tangent altitudes and where Sb;meas = STLOS;offset, i.e.,

the covariance matrix of temperature and pointing errors due to offset uncertainties. STLOS;offset has relevant off-diagonal entries

for the following reasons: (1) Offset measurements use interferograms with a shorter maximum optical path difference than the

scene spectra but are finally zero padded to the length of the scene interferograms (corresponding to a Fourier interpolation in490

the spectral domain to achieve the same sampling as the scene spectra), (2) apodization is applied, and (3) offset measurements

are used for multiple tangent altitudes. The offset noise variances are calculated from the noise equivalent spectral radiances

shown in Fig. 8 of Kleinert et al. (2018). Since the offset uncertainties vary randomly in the wavenumber domain, and since
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the spectral analysis windows of temperature along with pointing are generally different from those used for the retrieval of the

target species, this particular calibration uncertainty does not fall into the category of entangled errors but can be treated as an495

independent error component. This error component contributes, in the long run, to the random error of the target gas, because

it causes a scatter rather than a bias when compared to independent data from other instruments. Within shorter timescales

between two offset calibration measurements (less than 300s for HR measurements and less than 700 s for RR measurements),

positive error correlations have to be expected (Kleinert et al., 2018, their Table 3). This error is also positively correlated in

the altitude and across different species.500

7.2.4 Propagated temperature and tangent altitude errors due to gain calibration and spectroscopic data

uncertainties

Further error components contributing to the temperature and pointing random error are gain calibration uncertainties (Sec-

tion 6.3.1) and uncertainties in the spectroscopic data used (Section 6.4). On the supposition that spectroscopic data errors

are fully correlated in the spectral domain, related propagated temperature and tangent altitude errors fall in the category of505

entangled errors and are discussed along with the respective direct propagation of CO2 spectroscopic uncertainties onto the

target gas retrieval (Section 7.5).

If the target gas is chiefly retrieved in the MIPAS A band, used for the temperature and tangent altitude retrieval, also

propagated temperature and tangent altitude errors due to gain calibration belong into the category of entangled errors and are

discussed along with the directly propagated gain calibration errors (Section 7.4.1). The situation is different if the target gas is510

retrieved in another MIPAS band. The dominant gain error components (especially those caused by nonlinearity) are correlated

only within MIPAS bands but not between MIPAS bands (Kleinert et al., 2018). This implies that propagated gain calibration

errors of temperature and tangent altitudes are uncorrelated with the gain calibration error of the target gas and have thus to

be treated as independent error components. In this case, the propagation of the gain-related temperature and tangent altitude

error on the target gas concentration is estimated with Eq. (7), where515

F perturbed = F (x;TLOS + ∆gainTLOS). (19)

Trace gas errors due to gain-related temperature errors are considered to be positively correlated across species, across altitudes

and across limb scans.

7.3 Uncertainties of interfering species

Uncertainties of interfering species, i.e., species that contribute to the signal in the microwindows of the target gas, have,520

broadly speaking, small impact on the retrieved mixing ratios of the target species. This is because (a) the microwindows

have been defined such that the signal of interfering species is minimized, (b) the sequence of operations is such that the

abundances of strong emitters are retrieved first and are thus available when weak emitters are analyzed, (c) for most interfering

species retrieved mixing ratios for the actual conditions are available from earlier MIPAS data versions, and (d) in cases of an

appreciable influence of the interfering gas on the retrieved profile of the target gas, the interfering gas is jointly fitted with525
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the target gas and thus does not contribute to the parameter error budget but is accounted for already in the noise covariance

matrix of the combined target-interferent retrieval. Nevertheless, the propagation of the uncertainties of interfering species is

considered. The error estimation schemes used depend on the source of the information on the interfering species. Sources of

information on these constituents’ abundances and their uncertainties are:

1. Preceding retrievals in the sequential retrieval chain;530

2. MIPAS version 5 data;

3. the MIPAS initial guess database.

In the following, error propagation for these cases is discussed. If a certain constituent is a strong interferent, that is to say,

causes a large signal in the microwindows of the target gas, occasionally this constituent is fitted jointly with the target gas.

In some cases, this approach is chosen even if the abundance is already known from a preceding retrieval step. The reason535

behind this approach is to avoid spectral residuals caused by spectroscopic inconsistencies between the microwindows where

the interfering constituent has been retrieved and the microwindows where the target gas is retrieved. In this case, the effect of

the interferent chiefly is that its consideration in the retrieval slightly increases Sx;noise and no extra treatment of the interferent

is needed in the error budget. In these joint retrievals, the regularization of the interferent is chosen sufficiently weak to ignore

any smoothing error crosstalk between the interferent and the target gas.540

For interfering gases that were not jointly fitted along with the target gas, the error components are evaluated for each

gas separately. The only exception are gases which were jointly retrieved in a preceding retrieval, where therefore inter-gas

covariances have to be considered.

7.3.1 VMR information from preceding retrievals

MIPAS spectra contain contributions of tens of different species. The simultaneous inversion that provides all these mixing ratio545

profiles in one single inversion is not practicable. Instead, the retrieval is decomposed into a series of retrievals, each providing

information on typically only one, occasionally a few, species, and each using spectral microwindows which contain the largest

possible amount of information on the target gas while contributions by interfering gases are kept small. The retrieval chain is

organized in a way that first the mixing ratio profiles of those trace gases are retrieved that make major signal contributions to

the spectrum. When the retrieval of the abundances of minor contributors follows later in the retrieval chain, the concentrations550

of those gases retrieved earlier in the retrieval chain are already known. Also their noise covariance matrix is available from

the preceding retrievals and is used to analyze the error propagation onto the target gas profile, using Eq. (6).

The parameter error covariance matrix Sb;noise is specified as that block of the resulting covariance matrix from the preceding

retrieval that refers to the profile of the interfering gas. In cases when two interfering species were jointly retrieved in the

preceding steps, both related blocks and the respective covariance blocks are needed. Other entries of the covariance matrix of555

the preceding retrieval need not to be considered here, because the entries of the Jacobian Kb operating on them would be zero

anyway. This Jacobian is specified in this application to represent the sensitivities of the spectral radiances used for the target

gas retrieval to the abundancies of the interfering species.
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Other uncertainties in the gas concentrations from preceding retrievals (due to the gain error, spectroscopic data uncertainties

etc.) belong in the category of entangled errors. The direct errors due to the error source under consideration and the propagated560

error due to the impact of the error under consideration on the retrieved abundance of the interfering species have opposite sign

which leads to cancellation. Since, due to the way MIPAS data processing is organized, error contributions by interfering

species are generally small, any net effects of these entangled errors that may survive the error cancellation are considered as

negligible.

The error components due to uncertainties in the concentrations of interfering species from preceding retrieval steps con-565

tribute to the random error of the target gas retrieval, because their systematic components do not effectively propagate due to

the compensation mechanism of the entangled errors.

Resulting errors are uncorrelated across limb scans, and correlated across altitudes according to the entries of the resulting

covariance matrix. On the large and whole, positive correlations of this error component across species sensitive to the error of

a certain pre-fitted gas are to be expected, although these correlations will depend largely on the specific sensitivities, profile570

shapes, etc.

7.3.2 VMR information from MIPAS V5

It is not possible to organize the MIPAS retrievals in a way that all interfering gases are known from retrievals performed

earlier in the retrieval chain. Some minor interferences from species that are retrieved only later in the retrieval chain do occur

in the microwindows of the target gas. However, earlier MIPAS data versions of these species are often available, e.g., from575

MIPAS version 5. Also for these MIPAS retrievals, error covariance matrices Sb;noise are available which can be used as Sb;meas

in Eq. (6). All said in Section 7.3.1 applies, with all necessary changes in place, also to the propagation of uncertainties in the

abundancies of interfering species taken from the version 5 MIPAS analysis.

Also these error components due to uncertainties in the concentrations of interfering species from version 5 MIPAS retrievals

contribute chiefly to the random error of the target gas retrieval. All said about error calculations for propagated V8 mixing580

ratio errors also holds for propagated V5 mixing ratio errors.

7.3.3 VMR information from the MIPAS initial guess database

For interfering gases not yet retrieved from MIPAS spectra, neither version 8 nor V5, mixing ratios and uncertainty estimates

from the initial guess database are used. All said on this issue in the context of temperature and tangent altitude error estimation

(Section 6.2.2) applies to trace gas error budgets as well. No firm statement on error correlations of this error component can585

be made, because the error characteristics of the information in the initial guess database is unknown.

Assumed uncertainties of CO2 mixing ratios, however, deserve an extra treatment, because they lead to (serious) entangled

errors. This is because the retrieval of temperature and tangent altitudes relies on CO2 lines, which causes an entangled error.

The entangled nature of this error component has two consequences: First, the perturbed spectra in Eq. (7) have to be calculated
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as590

F perturbed = F (x;bCO2 + ∆bCO2,TLOS + ∆CO2TLOS), (20)

where bCO2 and ∆bCO2 are the CO2 profiles used and their 1σ perturbations. And second, the propagation of ∆VMR(CO2)TLOS

implies, that this error component has to be considered also for the error budget of target species whose microwindows do not

contain any sizeable CO2 signal. As discussed above, for nominal MIPAS measurements CO2 mixing ratio uncertainties are

deemed to contribute to the random error, while for MA/UA measurements a systematic component has to be considered.595

7.3.4 Smoothing error crosstalk

As already mentioned, in some cases the abundances of interfering species are fitted jointly with those of the target species.

This option has been chosen particularly when the abundances of the interfering species pre-retrieved in an earlier step in the

retrieval chain do not fit the associated lines in the current target microwindow well. A possible cause for such a behaviour are

inconsistencies in the spectroscopic data in the microwindows where the interferents were retrieved, and the microwindows600

of the current retrieval step. The purpose of fitting the interferents again is simply to remove related spectral residuals and to

minimize related error propagation. Since the microwindows of the current retrieval step include only little information on the

interferents, related results are discarded; they do neither supersede nor complement the results from the earlier retrievals when

the interferents were the target species.

Due to the limited amount of information on the interferents, their retrieval has to be heavily regularized in some cases.605

The regularization chosen is a Tikhonov-type smoothing regularization where a squared first order finite difference operator is

included in the cost function (See, e.g. Kiefer et al., 2021, and references therein). Thus, little information in terms of degrees

of freedom is gained. This is tolerable, because the fine structure of the interferents’ profiles are available from the earlier

retrievals, whose results are used as a priori of the subsequent joint retrieval. That is to say, the fine structure of the interferents’

profiles comes from the original retrieval, which is used as a priori, and survives the new joint retrieval, while the information610

on the total amounts, however at poor vertical resolution, comes from the joint retrieval of the current step.

Critical readers might argue that jointly retrieved species can cause an error component of the target species. This is because

the regularization of the jointly fitted interferent will affect also the target species via the off-diagonal blocks of the averaging

kernel matrix. We call this error component ‘smoothing error crosstalk’ (von Clarmann et al., 2020). We argue, however, that

in most of our cases the contribution of the smoothing error crosstalk is negligibly small. The reason is this. The availability of615

the fine structure of the profiles from the original retrieval of the interferents is by far sufficient to avoid any related appreciable

residuals in the spectra, and the total amount lies in the null-space of the Tikhonov regularization matrix block referring to the

interferent and thus cannot cause any smoothing error component. In other words, the regularization term in the cost function

chosen can only smooth the profiles differences x̂−xa but cannot push them as a whole towards larger or smaller values.

An exception is the joint retrieval of temperature and nitric oxide (NO) from MIPAS upper atmosphere observations (Funke620

et al., 2022). In this particular case information on both retrieval variables, temperature and NO, above 105 km is obtained

from the same spectral lines of the NO fundamental band at 5.3 µm. Further, no original – and better resolved – retrievals are
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available a priori for these variables. The impact of smoothing error crosstalk on the combined temperature and NO retrieval

for upper atmospheric observations was extensively investigated by Bermejo-Pantaleón et al. (2011) for MIPAS version V4O

retrievals. In particular, these authors showed that the use of inappropriate nighttime NO a priori profiles in this retrieval version625

led to a pronounced distortion of the retrieved nighttime temperature profiles by up to 50 K in the lower thermosphere. Bermejo-

Pantaleón et al. (2011) therefore recommended to use the full averaging kernel matrices and a priori vectors (covering the full

temperature and NO space and all relevant off-diagonal elements) when model results or correlative measurements are made

comparable to MIPAS results. A drawback of this recipe, however, is that not always both temperature and NO information are

available from model simulations or correlative measurements. And even if they were, such comparisons would be difficult to630

interpret because resulting differences cannot unequivocally be attributed to individual parameters. To overcome these problems

and to enable comparisons in single parameter spaces (temperature only or NO concentrations only), we report for V8 retrievals

crosstalk error estimates that correspond to the mapping of NO a priori uncertainties on the retrieved temperature profile and

vice versa. These error estimates are calculated as (I−A)Sa(I−A)T , where I is the identity matrix of the respective dimension

(Rodgers, 2000), by using a priori covariance matrices Sa manipulated as follows. For the estimation of the smoothing error635

crosstalk components due to the constraint on the NO profile in the retrieval, the only non-zero entries in Sa refer to the NO

concentration, while temperature variances and covariances as well as covariances between temperature and NO are set to zero.

Conversely, for the estimation of the smoothing error crosstalk due to the temperature constraint, the only non-zero block in Sa

is the one which contains the temperature variances and covariances.

7.4 Calibration uncertainties640

The same calibration uncertainties discussed in the context of the temperature and tangent altitude retrieval (Section 6.3) are

also relevant to the retrieval of trace gas abundances. These are gain calibration errors, zero offset calibration errors, frequency

shift uncertainties and instrument line shape uncertainties.

7.4.1 Gain calibration uncertainties

In a similar manner as for the temperature and tangent altitude error estimation, also the propagation of the random and645

systematic gain calibration uncertainties on the retrieved trace gas abundances are estimated using perturbation studies with

∆gainx =−G(F perturbed−F nominal). (21)

Gain calibration errors come into play in trace gas retrievals via two different pathways. Firstly, they affect the trace gas

retrieval directly. And secondly, they affect the trace gas retrieval via the propagation of the gain error of temperature and

tangent altitudes. We have to distinguish between three different cases: The retrieval of the target gas under assessment uses650

(1) only spectral lines in the MIPAS A band, where TLOS has been retrieved; (2) only spectral lines in MIPAS bands AB to D;

and (3) spectral lines both in the A band and in other bands.
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If the target gas is retrieved in the MIPAS A band (Case 1), where also temperature and tangent altitudes are retrieved,

gain and gain-induced temperature and tangent altitude errors belong into the category of entangled errors. We take this into

account by calculating F (perturbed) with temperature and pointing perturbations as resulting from the error estimation of the655

combined temperature and tangent altitude retrieval, using

F perturbed =

(
1 +

(
∆y

y

)
A

)
F (x;TLOS + ∆gainTLOS), (22)

TLOS represents the vector representing the temperature profile and the tangent altitudes retrieved in the preceding step

and used for the target gas retrieval, and ∆gainTLOS is the vector containing the responses of the retrieved temperature

profile and tangent altitudes to a positive gain perturbation.660

For target gases retrieved in any other than the MIPAS A band (Case 2), this entanglement mechanism does not apply. In

this case, the target gas error component due to the gain calibration error is calculated as

F perturbed = (1 + ∆y/y)F (x). (23)

This error component and the mapping of the gain-related temperature and tangent altitude error as estimated with the

perturbation approach as defined in Eq. (19) are treated as independent errors. If the retrieval uses lines from multiple MIPAS665

bands AB, B, C, or D, it is adequate to consider both the systematic and the random components of the gain calibration error of

the different bands as independent errors. This is because the random and systematic components of the gain calibration error

are dominated by components that are highly correlated only within a MIPAS band but uncorrelated between the bands. This

implies that for both the systematic and the random component a perturbation calculation is needed for each band involved.

The situation is more complicated in cases where spectral lines both in the MIPAS A band and one or more of the other670

bands are used (Case 3). Both for the systematic and the random part of the gain error estimate the following approach is used:

The perturbed spectrum is calculated using Eq. (22), but the ∆y/y term is applied only to radiances in the MIPAS A band. The

error component calculated with this perturbation spectrum accounts for the propagated gain-induced temperature and tangent

altitude error as well as the gain error in the A band. Systematic and random components of the error due to gain calibration

uncertainties in the other bands are estimated using Eq. (23) for each band separately.675

Mixing ratio errors due to propagated gain calibration uncertainties are positively correlated in the altitude domain, across

species, and to a large extent also across limb scans.

7.4.2 Zero offset calibration uncertainties

The treatment of zero offset calibration uncertainties in the error estimation of trace gas retrievals follows exactly the scheme

presented for temperature and tangent altitude retrievals in Section 7.2.3. Since the relevant components of the zero offset680

calibration uncertainty are independent between different spectral regions, and since the microwindows for trace gas retrievals

are different from those used for the temperature and tangent altitude retrievals, these zero-offset related errors do not fall into
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the category of entangled errors. This error component contributes to the random error budget, although short term correlations

across limb scans have to be considered as described in Section 7.2.3. Correlations in the altitude domain are characterized by

the entries of the related covariance matrix. Across species, this error component is usually uncorrelated, except for rare cases685

where the selected transitions of the different species are spectrally close together.

7.4.3 Spectral shift uncertainties

Trace gas retrieval errors due to spectral shift errors are estimated by perturbation studies in the same way as for the temperature

and tangent altitude retrieval (Section 6.3.3).

In this context it should be mentioned that target concentration uncertainties directly caused by spectral shift uncertainties690

and target concentration uncertainties due to temperature and pointing errors caused by spectral shift uncertainties do not fall in

the category of entangled errors. This is, because the response of the target concentration to the spectral shift and the response

of the target concentration to shift-induced temperature and pointing errors is erratic rather than systematic.

Errors in the retrieved quantities due to the spectral shift uncertainty contribute to the random error and they are fully

correlated in the altitude domain. Across gases no general statement can be made because correlations depend on the specific695

conditions. At least it can be assumed that for two gases with lines of similar widths and similar vertical distributions the

correlations will more likely be positive than negative.

7.4.4 Instrument line shape uncertainties

As discussed in Section 6.3.4, the only relevant instrument line shape parameter to be considered in the error estimation is the

modulation efficiency of the interferometer. Its propagation onto the retrieved trace gas abundances is estimated using Eq. (7),700

where

F perturbed = F (x;e+ ∆e,TLOS + ∆eTLOS) (24)

and where

F nominal = F (x;e,TLOS). (25)

x is the retrieved profile of the target gas, at which the perturbations are evaluated. Scalar e is the nominal modulation efficiency705

and ∆e its perturbation by 1 σ. ∆eTLOS is the response of the temperature and pointing retrieval to a perturbation of e by

∆e. Since the direct effect of ∆e and its indirect effect via ∆eTLOS are entangled errors, their perturbations are evaluated

in one run of the forward model, in order to get the compensation effects correctly. This error component contributes to the

systematic error and is fully correlated in the altitude domain, and positively correlated across gases.

7.5 Uncertainties in spectroscopic data710

Uncertainties in line intensities and broadening coefficients are fully correlated in the altitude domain, as far as the same

microwindows are used for all altitudes, and they contribute chiefly to the systematic error. The problem of unknown error
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correlations between different lines of the same gas, that has been discussed in Section 6.4 applies also to trace gas retrievals.

Mixing ratio errors due to errors in spectroscopic data are uncorrelated across species but correlations in the altitude domain

have to be considered.715

7.5.1 Line intensities

The response of the retrieval of a target gas to errors in the target gas’ line intensities is estimated by perturbation using Eq. (7),

following the scheme discussed for temperature and tangent altitudes in Section 6.4.1. Errors in the intensities of CO2 lines

deserve special attention in this context. There is no systematic coupling mechanism between the intensity-induced target gas

error and the intensity-induced temperature and pointing error. Therefore, this error component is estimated independently of720

the error component due to the uncertain line intensities of the target species. For this purpose, also Eq. (7) is used, where

F perturbed = F (x;LICO2 + ∆LICO2,TLOS + ∆LI(CO2)TLOS) (26)

and where

F nominal = F (x;LICO2,TLOS). (27)

LICO2 are the intensities of the CO2 lines affecting the signal in the microwindows of the target gas. ∆LICO2 is the vector of725

intensity perturbations, all with the same sign but individual amount. ∆LI(CO2)TLOS is the response of the temperature and

pointing retrieval to CO2 line intensity perturbations by 1 σ. The perturbation is made for the entire TLOS vector in one step,

where the signs of the ∆LI(CO2)TLOS components are considered. Due to the entangled nature of the effects of ∆LICO2 and

∆LI(CO2)TLOS, F perturbed is evaluated for both these effects in one step.

Contrary to temperature and tangent altitude information, errors of pre-retrieved concentrations of interfering gases affect730

only the signal in the lines of these interfering gases. Here the compensation mechanism discussed in Section 4.4 takes place

in full. A too high line intensity of the interfering line will typically cause a too low mixing ratio of the interferent, and the

combination of both these error components will produce a signal of the interfering line fairly close to the true signal. Therefore

we do not consider the line intensity errors of the interfering species in the error budget of the target species.

7.5.2 Broadening coefficients735

The propagation of uncertainties of the broadening coefficients onto trace gas mixing ratios follows the scheme described in

the previous section for line intensities. Also here the entangled nature of the temperature and tangent altitude errors due to

uncertainties of broadening coefficients of CO2 lines has to be taken into account.

For the evaluation of the propagation of temperature and pointing uncertainties due to CO2 broadening coefficients according

to Eq. (7) we use740

F perturbed = F (x;BCO2 + ∆BCO2,TLOS + ∆B(CO2)TLOS) (28)

26



and

F nominal = F (x;BCO2,TLOS), (29)

where BCO2 are the relevant broadening coefficients of the CO2-lines involved, ∆BCO2 is the respective vector of perturbations,

and where ∆B(CO2)TLOS is the net response of the temperature and pointing retrieval to perturbations of CO2 broadening745

coefficients.

For reasons discussed in the previous section, estimated errors of pre-retrieved interferents due to uncertainties in the broad-

ening coefficients are not considered.

8 Further sources of error

In this paper, we concentrate on the assessment of error components that are relevant to temperature, tangent altitudes, and750

all species retrieved from MIPAS spectra. For the retrieval of products from non-nominal observation modes as well as some

gases, observation-mode-specific or gas-specific uncertainties may be relevant, in particular, if non-LTE is considered. The

assessment of these uncertainties will be discussed in the corresponding retrieval papers, where relevant. The same holds

for error sources not discussed so far, such as inaccurate line shape models. The relevance of such effects is deemed highly

dependent on the target gas under analysis. The assessment of these uncertainties will either be based of Eq. (7) or simply on755

sensitivity studies, where the results of retrievals using different retrieval setups are compared.

9 A case study: ozone

The error propagation approach presented above is discussed using an ozone retrieval from a MIPAS nighttime measurement

at 40.09◦N, 11.28◦E during Envisat orbit 38517 on 12 July 2009 as a case study. Details of the underlying retrieval procedure

are reported by Kiefer et al. (2022). Resulting error components for selected altitudes are presented in Fig. 2 and Table B1.760

Since a large number of strong ozone lines is available for the retrieval, noise makes only a moderate contribution to the error

budget of MIPAS ozone. Instead, the error budget is driven by uncertainties in spectroscopic data, namely line intensities and

broadening coefficients. Both spectroscopic data uncertainties of the target gas ozone and those of CO2 are important. The latter

affect the ozone retrieval mainly via tangent altitude errors which propagate onto the ozone retrievals. Further, considerable

errors are caused by calibration uncertainties, associated both with gain and offset calibration. Calibration uncertainties related765

to the MIPAS A band have a much larger effect on the ozone retrieval than those related to the AB band, simply because the

majority of spectral lines used for the ozone retrieval are situated in the MIPAS A band (Kiefer et al., 2022). Also instrument

line shape (ILS) and tangent altitude (LOS) uncertainties make considerable contributions to the MIPAS ozone error budget.

Broadly speaking, spectroscopic uncertainties along with instrument and calibration-related as well as uncertainties in tem-

perature and pointing information outweigh uncertainties in the abundances of interfering species by far. None of these uncer-770

tainties exceeds the contribution of measurement noise.
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Figure 2. The error budget (absolute values) of a MIPAS ozone retrieval from a limb scan recorded at 40.09◦N, 11.28◦E during Envisat orbit

38517 on 12 July 2009, 21:28 UT.

10 Representative error estimates

Since it is hard to decide a priori which limb scans are representative of a certain typical atmospheric situation, error estimates

are calculated for a large number of observations, as discussed in Section 5. The representative errors are estimated differently

for errors inferred using Gaussian error propagation (Eqs. 5 or 6) and errors estimated using perturbation studies (Eq. 7).775

For errors estimated via Gaussian error propagation, the variances – and if available, also the covariances – are averaged over

all limb scans assigned to a given scenario. Since atmospheric state variables retrieved from MIPAS spectra are represented

on a fixed altitude grid, independent of the tangent altitudes of the measurement, this step does not involve any interpolation.

The result is one mean variance profile per error component and per scenario. For error components where covariance infor-

mation is available, the respective covariance matrices are averaged. All these error components are regarded as random error780

components.

Estimates of random error components resulting from perturbation studies are obtained by arithmetical averaging of the

responses to the perturbation. To decide if the error component is chiefly additive or chiefly multiplicative, a linear regression

is performed using the responses to the perturbation over the mixing ratios. A predominant axis intercept indicates an absolute
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(i.e. additive) error component, while a pronounced slope indicates a relative (multiplicative) error component. This empirical785

assessment supersedes the hitherto intuition-based classification of additive versus multiplicative error components.

Due to the headache error problem, the procedure is slightly more complicated for error components that are labelled

‘systematic’ and evaluated on the basis of perturbation studies, because modulation of the error through the randomly varying

atmospheric state may add a random component. When no sizeable latitude or time dependency of these errors is observed, the

systematic part of the error component under investigation is the mean over all limb scans associated with the scenario under790

assessment. The information on the random component of the headache error lies in the scatter around the mean error. When

a sizeable dependency of any explaining variable (latitude, time, whatsoever) is found, a parametric model has to be fitted to

the individual errors. In this case, the bias then can be estimated for the actual condition with this model, and the information

on the random part of the headache error is included in the unexplained variance around this parameterization. The distinction

between additive and multiplicative error components is performed on the basis of a linear regression as described above for795

the random errors. Most of the error sources assessed by perturbation studies result in multiplicative errors; thus the use of

relative rather than absolute errors is adequate for disentangling systematic and random parts of the headache error.

Error covariances of the random components of the headache errors in the altitude domain can be calculated in a straight

forward way along with the averaging procedure. These representative error estimates are reported for the particular species

under investigation along with the publication of the data product, such as Kiefer et al. (2022) for ozone.800

11 Aggregation of error estimates

Both the total random error estimate and the total systematic error estimate are calculated by adding the respective component

error estimates in terms of variances. For this purpose, percentage error estimates are transformed to absolute error estimates

using the respective reference concentration profile. Figure 3 shows an example for the Northern midlatitude summer night

reference scenario. The top left panel shows the error components and the aggregated estimated error (‘total’). In this particular805

example it is dominated by spectroscopic uncertainties. The estimated total error variance is the sum of the random error

variance and the systematic error variance. The top right panel shows the decomposition of the total error into its aggregated

systematic and random components. It does not come unexpected that the aggregated random error exceeds the uncertainty

caused by measurement noise alone. The lower panels show the decomposition of the aggregated systematic (left) and random

(right) errors into their components. Except for the lowermost altitudes, uncertainties of spectroscopic data are the leading810

source of systematic error. It should be mentioned that the estimated bias cannot simply be subtracted from the measurement

in order to correct the measurement, because the bias estimates are based on perturbation studies with an ad hoc choice of

the sign of the perturbation. The systematic uncertainties (instrument line shape, gain calibration, spectroscopic uncertainties)

make also a contribution to the random error budget and thus appear in both panels, due to their ‘headache’ nature that causes

a bias and a scatter around this bias. Below 19 km, the random component of the propagated instrument line shape error even815

dominates the random error budget. Above, measurement noise typically is the leading source of random error.
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Figure 3. Aggregated estimated ozone errors for the Northern midlatitude summer night reference scenario. The top left panel shows the

total error budget and its components (interf = interfering species; ILS = instrument line shape’. The top right panel shows the decomposition

into random and systematic components. The lower panels show the contributions to the systematic (left) and random (right) error budget.

This example was taken from Kiefer et al. (2022).

Since the correlation characteristics in different domains such as time, altitude, among species, etc. can be different for each

error component, there may be cases where it is more adequate to work with the detailed error budget rather than the total error

estimates (see, e.g., Kiefer et al., 2022 and references therein).
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12 Technical realization820

A control program runs over all limb scans associated with the scenario under assessment. For each limb scan, this program calls

the radiative transfer model KOPRA for calculation of the reference spectra F nominal and the perturbed spectra F perturbed needed

for calculation of error components according to Eq. (7). Further it provides the gain functions G and covariance matrices

Sx,noise of the target species and, as far as available, the covariance matrices Sb,noise of parameter errors as well as the required

Jacobians Kb. With this information on the current limb scan available, the error estimator is called. This program extracts the825

relevant information from the available covariance matrices Sx,noise and Sb,noise, reads the difference spectra obtained from the

perturbed and reference spectra, and estimates the error components of the limb scan under analysis. For each limb scan under

consideration, the error estimator provides the error estimates for each error component, based on Eqs. (5–7).

Based on the individual estimated error components, a post processing routine performs all the statistics over the limb scans

in the scenario under assessment including the disentangling of the headache error as described in Section 10. For the reference830

scenarios, the resulting error estimates are reported, component-wise, random and systematic, and are deemed representative of

the scenario they are assigned to. Our data come with an error-class-id for each profile that, based on the information provided

in Table A6, enables the data user to decide for any MIPAS measurement which scenario is applicable. The user who needs

only error budgets for the categories systematic versus random error and absolute versus relative errors has not to refer to

these error-class-ids, because for these categories the related subtotal errors are transformed to and provided for each single835

observation.

13 Conclusions

This paper presents an overview of error estimation scheme used for temperatures and trace gas concentrations retrieved from

MIPAS spectra with the IMK/IAA data processor. It represents a best effort to make the error reporting compliant with the

recommendations by the TUNER activity as summarized in von Clarmann et al. (2020). In this paper we limit ourselves to840

the methodology as far as it is overarching over the different data products of MIPAS, to support gas-specific analyses as

performed, e.g., by Kiefer et al. (2022) for ozone. In particular, the improved separation of systematic versus random error

components will foster bias and precision validation, as performed by Laeng et al. (2014), Plieninger et al. (2016), and Eckert

et al. (2016) for preceding MIPAS data versions of O3, CH4, N2O, CFC-11, and CFC-12.

Arguably, some error components are not specified as accurately as one would like to have them. This holds particularly for845

uncertainties in spectroscopic data, namely, line intensities and broadening coefficients. For many species, these uncertainties

belong to the leading error sources. The main drawback is, that no information on spectroscopic error correlations between

the various lines of a gas is provided. The related target gas error largely depends on this correlation. Further, it is a truism

that unrecognized or unquantified error sources cannot be considered. Validation studies will show how realistic the estimated

random and systematic errors are, how complete the error budget is, and how justified the ingoing assumptions are.850
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Code and data availability. Software and Data are available via the KITopen Repository (von Clarmann et al., 2022b)
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Appendix A: Sample atmospheres
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Table A1. Measurements used for error analysis of nominal HR measurements.

name date(s) latitude range(s) SZA range

YYYYMM degrees degrees

Northern polar winter day [200301,200302] [65,90] [0,90]

Northern polar winter night [200301,200302] [65,90] [95,180]

Northern polar spring day [200303,200305] [65,90] [0,90]

Northern polar spring night [200303,200305] [65,90] [95,180]

Northern polar summer day [200306,200308] [65,90] [0,90]

Northern polar summer night [200306,200308] [65,90] [95,180]

Northern polar autumn day [200309,200311] [65,90] [0,90]

Northern polar autumn night [200309,200311] [65,90] [95,180]

Northern midlatitude winter day [200301,200302] [40,60] [0,90]

Northern midlatitude winter night [200301,200302] [40,60] [95,180]

Northern midlatitude spring day [200303,200305] [40,60] [0,90]

Northern midlatitude spring night [200303,200305] [40,60] [95,180]

Northern midlatitude summer day [200306,200308] [40,60] [0,90]

Northern midlatitude summer night [200306,200308] [40,60] [95,180]

Northern midlatitude autumn day [200309,200311] [40,60] [0,90]

Northern midlatitude autumn night [200309,200311] [40,60] [95,180]

Tropics day [200303,200305] [-20,20] [0,90]

Tropics night [200303,200305] [-20,20] [95,180]

Southern midlatitude winter day [200306,200308] [-60,-40] [0,90]

Southern midlatitude winter night [200306,200308] [-60,-40] [95,180]

Southern midlatitude spring day [200309,200311] [-60,-40] [0,90]

Southern midlatitude spring night [200309,200311] [-60,-40] [95,180]

Southern midlatitude summer day [200301,200302] [-60,-40] [0,90]

Southern midlatitude summer night [200301,200302] [-60,-40] [95,180]

Southern midlatitude autumn day [200303,200305] [-60,-40] [0,90]

Southern midlatitude autumn night [200303,200305] [-60,-40] [95,180]

Southern polar winter day [200306,200308] [-90,-65] [0,90]

Southern polar winter night [200306,200308] [-90,-65] [95,180]

Southern polar spring day [200309,200311] [-90,-65] [0,90]

Southern polar spring night [200309,200311] [-90,-65] [95,180]

Southern polar summer day [200301,200302] [-90,-65] [0,90]

Southern polar summer night [200301,200302] [-90,-65] [95,180]

Southern polar autumn day [200303,200305] [-90,-65] [0,90]

Southern polar autumn night [200303,200305] [-90,-65] [95,180]
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Table A2. Measurements used for error analysis of RR nominal measurements.

name date(s) latitude range(s) SZA range

YYYYMM degrees degrees

Northern polar winter day [200901,200902] [65,90] [0,90]

Northern polar winter night [200901,200902] [65,90] [95,180]

Northern polar spring day [200903,200905] [65,90] [0,90]

Northern polar spring night [200903,200905] [65,90] [95,180]

Northern polar summer day [200906,200908] [65,90] [0,90]

Northern polar summer night [200906,200908] [65,90] [95,180]

Northern polar autumn day [200909,200911] [65,90] [0,90]

Northern polar autumn night [200909,200911] [65,90] [95,180]

Northern midlatitude winter day [200901,200902] [40,60] [0,90]

Northern midlatitude winter night [200901,200902] [40,60] [95,180]

Northern midlatitude spring day [200903,200905] [40,60] [0,90]

Northern midlatitude spring night [200903,200905] [40,60] [95,180]

Northern midlatitude summer day [200906,200908] [40,60] [0,90]

Northern midlatitude summer night [200906,200908] [40,60] [95,180]

Northern midlatitude autumn day [200909,200911] [40,60] [0,90]

Northern midlatitude autumn night [200909,200911] [40,60] [95,180]

Tropics day [200903,200905] [-20,20] [0,90]

Tropics night [200903,200905] [-20,20] [95,180]

Southern midlatitude winter day [200906,200908] [-60,-40] [0,90]

Southern midlatitude winter night [200906,200908] [-60,-40] [95,180]

Southern midlatitude spring day [200909,200911] [-60,-40] [0,90]

Southern midlatitude spring night [200909,200911] [-60,-40] [95,180]

Southern midlatitude summer day [200901,200902] [-60,-40] [0,90]

Southern midlatitude summer night [200901,200902] [-60,-40] [95,180]

Southern midlatitude autumn day [200903,200905] [-60,-40] [0,90]

Southern midlatitude autumn night [200903,200905] [-60,-40] [95,180]

Southern polar winter day [200906,200908] [-90,-65] [0,90]

Southern polar winter night [200906,200908] [-90,-65] [95,180]

Southern polar spring day [200909,200911] [-90,-65] [0,90]

Southern polar spring night [200909,200911] [-90,-65] [95,180]

Southern polar summer day [200901,200902] [-90,-65] [0,90]

Southern polar summer night [200901,200902] [-90,-65] [95,180]

Southern polar autumn day [200903,200905] [-90,-65] [0,90]

Southern polar autumn night [200903,200905] [-90,-65] [95,180]
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Table A3. Measurements used for error analysis of middle atmosphere measurements.

name date(s) latitude range(s) SZA range

YYYYMM degrees degrees

Northern polar winter day [200901,200902] [65,90] [0,90]

Northern polar winter night [200901,200902] [65,90] [98,180]

Northern polar spring day [200903,200905] [65,90] [0,90]

Northern polar spring night [200903,200905] [65,90] [98,180]

Northern polar summer day [200906,200908] [65,90] [0,90]

Northern polar summer night [200906,200908] [65,90] [98,180]

Northern polar autumn day [200909,200911] [65,90] [0,90]

Northern polar autumn night [200909,200911] [65,90] [98,180]

Northern midlatitude winter day [200901,200902] [40,60] [0,90]

Northern midlatitude winter night [200901,200902] [40,60] [98,180]

Northern midlatitude spring day [200903,200905] [40,60] [0,90]

Northern midlatitude spring night [200903,200905] [40,60] [98,180]

Northern midlatitude summer day [200906,200908] [40,60] [0,90]

Northern midlatitude summer night [200906,200908] [40,60] [98,180]

Northern midlatitude autumn day [200909,200911] [40,60] [0,90]

Northern midlatitude autumn night [200909,200911] [40,60] [98,180]

Tropics day [200903,200905] [-20,20] [0,90]

Tropics night [200903,200905] [-20,20] [98,180]

Southern midlatitude winter day [200906,200908] [-60,-40] [0,90]

Southern midlatitude winter night [200906,200908] [-60,-40] [98,180]

Southern midlatitude spring day [200909,200911] [-60,-40] [0,90]

Southern midlatitude spring night [200909,200911] [-60,-40] [98,180]

Southern midlatitude summer day [200901,200902] [-60,-40] [0,90]

Southern midlatitude summer night [200901,200902] [-60,-40] [98,180]

Southern midlatitude autumn day [200903,200905] [-60,-40] [0,90]

Southern midlatitude autumn night [200903,200905] [-60,-40] [98,180]

Southern polar winter day [200906,200908] [-90,-65] [0,90]

Southern polar winter night [200906,200908] [-90,-65] [98,180]

Southern polar spring day [200909,200911] [-90,-65] [0,90]

Southern polar spring night [200909,200911] [-90,-65] [98,180]

Southern polar summer day [200901,200902] [-90,-65] [0,90]

Southern polar summer night [200901,200902] [-90,-65] [98,180]

Southern polar autumn day [200903,200905] [-90,-65] [0,90]

Southern polar autumn night [200903,200905] [-90,-65] [98,180]
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Table A4. Measurements used for error analysis of upper atmosphere measurements, low solar activity.

name date(s) latitude range(s) SZA range
YYYYMM degrees degrees

Northern polar winter day [200901,200902] [65,90] [0,90]
Northern polar winter night [200901,200902] [65,90] [100,180]
Northern polar spring day [200903,200905] [65,90] [0,90]
Northern polar spring night [200804,200804] [65,90] [100,180]

[200903,200905]
[201004,201004]

Northern polar summer day [200906,200908] [65,90] [0,90]
Northern polar summer night [200806,200808] [65,90] [98,180]

[200906,200908]
[201006,201008]

Northern polar autumn day [200909,200911] [65,90] [0,90]
Northern polar autumn night [200909,200911] [65,90] [100,180]
Northern midlatitude winter day [200901,200902] [40,60] [0,90]
Northern midlatitude winter night [200901,200902] [40,60] [100,180]
Northern midlatitude spring day [200903,200905] [40,60] [0,90]
Northern midlatitude spring night [200903,200905] [40,60] [100,180]
Northern midlatitude summer day [200906,200908] [40,60] [0,90]
Northern midlatitude summer night [200906,200908] [40,60] [100,180]
Northern midlatitude autumn day [200909,200911] [40,60] [0,90]
Northern midlatitude autumn night [200909,200911] [40,60] [100,180]
Tropics day [200903,200905] [-20,20] [0,90]
Tropics night [200903,200905] [-20,20] [100,180]
Southern midlatitude winter day [200906,200908] [-60,-40] [0,90]
Southern midlatitude winter night [200906,200908] [-60,-40] [100,180]
Southern midlatitude spring day [200909,200911] [-60,-40] [0,90]
Southern midlatitude spring night [200909,200911] [-60,-40] [100,180]
Southern midlatitude summer day [200901,200902] [-60,-40] [0,90]
Southern midlatitude summer night [200901,200902] [-60,-40] [100,180]
Southern midlatitude autumn day [200903,200905] [-60,-40] [0,90]
Southern midlatitude autumn night [200903,200905] [-60,-40] [100,180]
Southern polar winter day [200906,200908] [-90,-65] [0,90]
Southern polar winter night [200906,200908] [-90,-65] [100,180]
Southern polar spring day [200909,200911] [-90,-65] [0,90]
Southern polar spring night [200909,200911] [-90,-65] [100,180]
Southern polar summer day [200901,200902] [-90,-65] [0,90]
Southern polar summer night [200801,200802] [-90,-65] [100,180]

[200901,200902]
[201001,201002]

Southern polar autumn day [200903,200905] [-90,-65] [0,90]
Southern polar autumn night [200903,200905] [-90,-65] [100,180]
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Table A5. Measurements used for error analysis of upper atmosphere measurements during high solar activity

name date(s) latitude range(s) SZA range

YYYYMM degrees degrees

Northern polar winter day [201201,201202] [60,90] [0,90]

Northern polar winter night [201201,201202] [60,90] [100,180]

Northern polar spring day [201103,201105] [60,90] [0,90]

Northern polar spring night [201103,201105] [60,90] [100,180]

Northern polar summer day [201106,201108] [60,90] [0,90]

Northern polar summer night [201106,201108] [60,90] [98,180]

Northern polar autumn day [201109,201111] [60,90] [0,90]

Northern polar autumn night [201109,201111] [60,90] [100,180]

Northern midlatitude winter day [201201,201202] [40,60] [0,90]

Northern midlatitude winter night [201201,201202] [40,60] [100,180]

Northern midlatitude spring day [201103,201105] [40,60] [0,90]

Northern midlatitude spring night [201103,201105] [40,60] [100,180]

Northern midlatitude summer day [201106,201108] [40,60] [0,90]

Northern midlatitude summer night [201106,201108] [40,60] [100,180]

Northern midlatitude autumn day [201109,201111] [40,60] [0,90]

Northern midlatitude autumn night [201109,201111] [40,60] [100,180]

Tropics day [201103,201105] [-20,20] [0,90]

Tropics night [201103,201105] [-20,20] [100,180]

Southern midlatitude winter day [201106,201108] [-60,-40] [0,90]

Southern midlatitude winter night [201106,201108] [-60,-40] [100,180]

Southern midlatitude spring day [201109,201111] [-60,-40] [0,90]

Southern midlatitude spring night [201109,201111] [-60,-40] [100,180]

Southern midlatitude summer day [201201,201202] [-60,-40] [0,90]

Southern midlatitude summer night [201201,201202] [-60,-40] [100,180]

Southern midlatitude autumn day [201103,201105] [-60,-40] [0,90]

Southern midlatitude autumn night [201103,201105] [-60,-40] [100,180]

Southern polar winter day [201106,201108] [-90,-60] [0,90]

Southern polar winter night [201106,201108] [-90,-60] [100,180]

Southern polar spring day [201109,201111] [-90,-60] [0,90]

Southern polar spring night [201109,201111] [-90,-60] [100,180]

Southern polar summer day [201201,201202] [-90,-60] [0,90]

Southern polar summer night [201201,201202] [-90,-60] [100,180]

Southern polar autumn day [201103,201105] [-90,-60] [0,90]

Southern polar autumn night [201103,201105] [-90,-60] [100,180]
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Table A6. Attribution of measurements to scenarios

Scenario Latitude SZA Month

N polar winter day 60N-90N 0-95 DJF

N polar winter night 60N-90N >95 DJF

N polar spring day 60N-90N 0-95 MAM

N polar spring night 60N-90N >95 MAM

N polar summer day 60N-90N 0-95 JJA

N polar summer night 60N-90N >95 JJA

N polar autumn day 60N-90N 0-95 SON

N polar autumn night 60N-90N >95 SON

N midlat winter day 30N-60N 0-95 DJF

N midlat winter night 30N-60N >95 DJF

N midlat spring day 30N-60N 0-95 MAM

N midlat spring night 30N-60N >95 MAM

N midlat summer day 30N-60N 0-95 JJA

N midlat summer night 30N-60N >95 JJA

N midlat autumn day 30N-60N 0-95 SON

N midlat autumn night 30N-60N >95 SON

tropics day 30S-30N 0-95 all

tropics night 30S-30N >95 all

S midlat winter day 60S-30S 0-95 JJA

S midlat winter night 60S-30S >95 JJA

S midlat spring day 60S-30S 0-95 SON

S midlat spring night 60S-30S >95 SON

S midlat summer day 60S-30S 0-95 DJF

S midlat summer night 60S-30S >95 DJF

S midlat autumn day 60S-30S 0-95 MAM

S midlat autumn night 60S-30S >95 MAM

S polar winter day 90S-60S 0-95 JJA

S polar winter night 90S-60S >95 JJA

S polar spring day 90S-60S 0-95 SON

S polar spring night 90S-60S >95 SON

S polar summer day 90S-60S 0-95 DJF

S polar summer nigt 90S-60S >95 DJF

S polar autumn day 90S-60S 0-95 MAM

S polar autumn night 90S-60S >95 MAM
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Appendix B: Case Study
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Table B1. Estimated errors of an ozone retrieval .

Error source Contribution to the estimated error/ppmv

Altitude/km 10. 15. 20. 25. 30. 35. 40. 45. 50.

Noise 3.60e-02 2.89e-02 4.91e-02 6.72e-02 6.90e-02 6.90e-02 7.46e-02 7.64e-02 5.45e-02
T and LOS 9.87e-03 3.13e-02 1.63e-02 4.06e-02 4.95e-02 5.26e-02 4.63e-02 1.90e-02 1.39e-02
N2O 8.51e-08 1.65e-06 2.21e-07 1.60e-06 1.68e-06 4.20e-07 2.16e-07 1.91e-07 7.80e-08
NO2 1.19e-04 3.97e-05 2.90e-04 6.73e-05 1.06e-04 1.37e-04 2.62e-05 4.20e-05 3.73e-05
HNO3 1.65e-04 7.27e-05 9.51e-05 1.28e-04 1.74e-04 8.41e-05 8.46e-05 7.18e-05 2.02e-05
ClO 8.33e-05 4.29e-05 2.07e-04 1.82e-04 1.28e-04 6.44e-05 4.08e-05 6.83e-06 1.92e-05
OCS 5.07e-07 3.71e-07 4.86e-07 2.26e-07 5.67e-07 3.28e-07 1.87e-07 3.30e-08 9.56e-08
HCN 5.95e-04 2.64e-04 4.33e-04 1.10e-03 2.37e-03 5.23e-04 3.70e-04 4.53e-04 2.13e-04
C2H2 3.34e-04 3.39e-04 8.92e-04 1.04e-03 2.56e-04 1.19e-04 3.81e-04 8.92e-05 7.19e-05
C2H6 4.73e-05 3.05e-05 2.41e-05 7.34e-06 2.35e-05 9.22e-06 6.85e-06 1.81e-06 2.67e-06
CFC-11 4.74e-06 2.85e-07 3.17e-07 6.77e-07 3.50e-07 2.23e-07 1.34e-07 2.46e-08 6.34e-08
HCFC-22 2.09e-04 1.05e-04 1.95e-04 1.76e-04 1.27e-04 3.17e-05 3.35e-05 2.49e-05 1.26e-05
SF6 3.01e-07 8.86e-08 9.77e-08 3.90e-07 1.81e-07 8.08e-08 5.82e-08 3.07e-08 2.31e-08
CCl4 2.53e-04 5.65e-05 6.99e-05 1.76e-05 9.95e-06 1.09e-05 5.81e-06 3.59e-06 2.83e-06
CFC-113 8.52e-05 1.71e-05 2.86e-05 2.91e-05 1.52e-05 8.89e-06 5.81e-06 7.21e-07 2.29e-06
N2O5 1.43e-03 2.52e-03 3.35e-03 2.69e-03 8.32e-04 3.36e-04 2.40e-04 2.12e-04 1.94e-04
ClONO2 1.71e-03 3.50e-04 1.32e-03 1.89e-04 4.49e-04 1.17e-03 5.64e-04 3.16e-04 1.20e-04
Acetone 5.92e-05 3.05e-06 4.44e-06 5.28e-07 1.92e-07 4.61e-08 2.52e-08 1.85e-08 1.75e-08
PAN 4.72e-04 1.97e-04 1.18e-04 1.57e-05 9.89e-06 6.72e-06 3.07e-06 1.98e-06 1.80e-06
CO2 6.30e-04 -1.00e-03 3.41e-04 2.87e-04 4.54e-03 5.19e-04 2.76e-03 4.79e-03 1.92e-03
NH3 1.85e-03 -1.51e-03 2.44e-03 1.25e-03 -2.87e-03 -2.04e-03 -1.08e-03 -3.00e-04 -5.73e-04
COF2 1.66e-04 1.43e-03 4.61e-03 2.63e-03 -4.35e-04 4.67e-04 3.00e-04 -1.92e-04 -1.40e-04
CH3OH -4.97e-25 -1.16e-23 -8.40e-24 -1.02e-23 6.32e-23 9.55e-23 1.58e-22 1.28e-22 3.61e-22
Line intens. -5.67e-04 -7.99e-03 -5.17e-02 -1.71e-01 -2.47e-01 -2.70e-01 -2.13e-01 -1.24e-01 -9.30e-02
Broad. coef. -2.09e-03 -4.66e-03 -3.53e-02 -1.39e-01 -2.28e-01 -2.42e-01 -1.57e-01 -3.86e-02 -9.93e-03
CO2 line intens. -4.49e-04 -7.99e-03 1.13e-02 5.58e-02 9.93e-02 2.03e-01 1.65e-01 7.07e-02 4.59e-02
CO2 broad. coef. -2.55e-03 7.17e-03 -1.94e-02 1.48e-01 4.09e-01 3.10e-01 2.83e-01 1.24e-01 7.13e-02
T LOS shift -2.88e-04 2.39e-03 6.97e-04 -3.65e-03 6.45e-04 1.55e-03 9.86e-04 -6.33e-03 -1.23e-03
T LOS offset 3.33e-04 9.88e-03 9.03e-04 -3.23e-03 -9.83e-03 -2.04e-02 -3.73e-03 -7.12e-03 -4.79e-03
Freq. shift 1.47e-03 1.41e-03 3.31e-04 -4.68e-03 -4.85e-03 -6.14e-03 -3.03e-03 6.49e-04 -1.23e-03
Gain calib. sys. (A) 5.34e-03 4.91e-02 8.30e-03 -4.43e-02 -1.22e-01 -1.57e-01 -9.40e-02 -4.28e-02 5.20e-03
Gain calib. sys. (AB) -4.03e-06 -3.39e-05 1.37e-05 1.09e-04 2.75e-04 4.36e-04 9.81e-04 2.02e-03 -1.33e-02
Gain calib. rand. (A) 9.03e-04 8.94e-03 1.32e-03 -8.13e-03 -2.24e-02 -2.88e-02 -1.73e-02 -7.94e-03 9.28e-04
Gain calib. rand. (AB) -6.32e-07 -5.32e-06 2.14e-06 1.71e-05 4.32e-05 6.84e-05 1.54e-04 3.16e-04 -2.09e-03
ILS -1.66e-02 -1.08e-01 -4.52e-02 -1.29e-01 -1.90e-01 -1.93e-01 -1.26e-01 -9.44e-02 -4.99e-02
Offset 1.07e-02 7.20e-03 8.16e-03 1.58e-02 1.31e-02 1.10e-02 9.43e-03 1.47e-02 9.19e-03
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