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Abstract. TS2This paper describes the error estimation for
temperature and trace gas mixing ratios retrieved from the
Michelson Interferometer for Passive Atmospheric Sounding
(MIPAS) limb emission spectra. The following error sources
are taken into account: measurement noise, propagated tem-5

perature and pointing noise, uncertainties in the abundances
of spectrally interfering species, instrument line shape errors,
and spectroscopic data uncertainties in terms of line intensi-
ties and broadening coefficients. Furthermore, both the direct
impact of volatile and persistent gain calibration uncertain-10

ties, offset calibration, and spectral calibration uncertainties,
as well as their impact through propagated calibration-related
temperature and pointing uncertainties, are considered. An
error source specific to the MIPAS upper atmospheric ob-
servation mode is the propagation of the smoothing error15

crosstalk of the combined NO and temperature retrieval.
Whenever non-local thermodynamic equilibrium modelling
is used in the retrieval, related kinetic constants and mix-
ing ratios of species involved in the modelling of popula-
tions of excitational states also contribute to the error budget.20

Both generalized Gaussian error propagation and perturba-
tion studies are used to estimate the error components. Er-
ror correlations are taken into account. Estimated uncertain-
ties are provided for a multitude of atmospheric conditions.
Some error sources were found to contribute both to the ran-25

dom and the systematic component of the total estimated er-
ror. The sequential nature of the MIPAS retrievals gives rise
to entangled errors. These are caused by error sources that
affect the uncertainty in the final data product via multiple
pathways, i.e., on the one hand, directly, and, on the other30

hand, via errors caused in a preceding retrieval step. These
errors tend to partly compensate for each other. The hard-to-
quantify effect of the horizontally non-homogeneous atmo-

sphere and unknown error correlations of spectroscopic data
are considered to be the major limitations of the MIPAS error 35

estimation.

1 Introduction

The availability of reliable and traceable uncertainty esti-
mates is a precondition for quantitative scientific work with
remotely sensed atmospheric temperature and composition 40

data. In order to serve this purpose, we present the scheme ac-
cording to which error estimation is performed for the com-
position data retrieved from version 8 limb emission spectra
recorded with the Michelson Interferometer for Passive At-
mospheric Sounding (MIPAS; Fischer et al., 2008) on En- 45

visat. This error estimation procedure refers to retrievals per-
formed with the data processor developed and operated by
the Institute of Meteorology and Climate Research (IMK) in
cooperation with the Instituto de Astrofísica de Andalucía
(IAA). A general description of the processor is found in von 50

Clarmann et al. (2003). The application to non-local ther-
modynamic equilibrium conditions is documented in Funke
et al. (2001, 2012). The processing of MIPAS spectra mea-
sured at reduced spectral resolution after an instrument fail-
ure in 2004 is described by von Clarmann et al. (2009). 55

Kiefer et al. (2021) describe the first application to MIPAS
version 8 spectra.

The error estimation of the preceding MIPAS retrievals
took into account all known major uncertainties but left room
for improvement with respect to error correlation issues. It is 60

the purpose of this paper to present a scheme that explores
all available knowledge on the ingoing uncertainties, and, in
particular, error correlations. We try to comply as much as

1
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possible with the recommendations on unified error report-
ing as specified by the Stratosphere–troposphere Processes
And their Role in Climate (SPARC)CE2 activity, Towards
Unified Error Reporting (TUNER), as presented in von Clar-
mann et al. (2020).5

MIPAS temperature and tangent altitude pointing errors
are already described in Kiefer et al. (2021). This paper pro-
vides an update of their temperature error estimation scheme
and aims at having a general scheme for MIPAS trace gas
retrieval error estimation. First, the notation used is clari-10

fied (Sect. 2), and the error propagation schemes used for
MIPAS are introduced (Sect. 3). After the clarification of
terminological issues (Sect. 4), we select the scenarios for
which uncertainty estimates are carried out and how any ar-
bitrary measurement is linked to these representative uncer-15

tainty estimates (Sect. 5). Then, for all relevant error sources,
the respective error propagation scheme is discussed for the
MIPAS temperature and tangent altitude pointing retrieval
(Sect. 6) and retrieved mixing ratios of trace constituents
(Sect. 7). The MIPAS ozone retrieval serves as an example20

to illustrate the application of the error estimation scheme
(Sect. 9). In Sect. 10, we describe how representative er-
ror estimates are built from the sample of analysed obser-
vations. The aggregation of component errors to total, ran-
dom, and systematic error budgets is described in Sect. 11.25

Technical issues needed to make theory work are presented
in Sect. 12. Finally, in Sect. 13, we summarize to which de-
gree we succeeded in providing a robust error estimate and
critically identify issues that could not be solved in a satis-
factory manner.30

2 Definitions and notation

In agreement with the general concept by Rodgers (2000)
and the notation suggested by von Clarmann et al. (2020),
we use the following retrieval equation for MIPAS:TS3

x̂i+1 = x̂i +
(

KT S−1
y,noiseK+R

)−1(
KT S−1

y,noise
(
y−F (x̂i;b)

)
−R(x̂i − xa)

)
,

(1)35

where x is the vector of the target variable,
x̂ is its estimate,
i denotes the number of iteration,
K is the Jacobian with elements

∂ym/∂xn,
T denotes transposed matrices,
Sy,noise is the measurement noise covari-

ance matrix,
R is the regularization matrix,
F is the radiative transfer function. In

our case, it is the Karlsruhe Opti-
mized and Precise Radiative trans-
fer Algorithm (KOPRA) radiative
transfer model (Stiller, 2000).

b is a vector representing all other
input parameters except the target
variables of the retrieval,

xa is the vector representing the a pri-
ori knowledge on the target vari-
ables,

and x is the vector representing the mea-
surements from the limb scan un-
der investigation, including all tan-
gent altitudes and all spectral points
used.

If an inverse a priori covariance matrix, S−1
a , is chosen for

the regularization matrix, R, then this formalism represents
the optimal estimation or maximum a posteriori retrieval 40

scheme endorsed by Rodgers (2000). However, other choices
are possible (see, e.g., Steck and von Clarmann, 2001).

The inverse problem is decomposed species-wise. That is
to say, after the retrieval of the temperature and pointing in-
formation (Kiefer et al., 2021), ozone concentrations are re- 45

trieved in microwindows, where the ozone signal is promi-
nent and where interferences by other gases are low. As a
next step, H2O concentrations are retrieved in spectral mi-
crowindows adequate for the H2O retrieval. In this manner,
the retrieval proceeds through the list of species, according 50

to their dominance in the spectrum, where the concentrations
of the pre-retrieved species are usually used for the retrieval
of the gas currently under analysis. The latter we call target
species.

Within linear theory, we have the averaging kernel matrix, 55

∂x̂

∂x
= A=

(
KT S−1

y,noiseK+R
)−1

KT S−1
y,noiseK, (2)

and the gain matrix,

∂x̂

∂y
=G=

(
KT S−1

y,noiseK+R
)−1

KT S−1
y,noise. (3)

For estimated errors, covariances, and so on, we use the
TUNER notation. The first subscript denotes the quantity to 60

which the estimated error refers, and the second subscript
denotes the source of the error. For example, SO3; noise is the
covariance matrix characterizing the ozone error component
due to measurement noise. Beyond this, we use σq for stan-
dard deviations of a generic variable q and 1q for perturba- 65

tions with a sign, where

|1bq| = σq;b, (4)

and where b denotes the error source.

3 Error propagation

MIPAS retrievals depend on measured spectra and auxiliary 70

information which both are uncertain. Depending on the un-
certainty information available, different schemes to estimate
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error propagation are in use. All error estimations used for
MIPAS rely on linear error estimation.

Gaussian error propagation is applied to measurement er-
rors for which the complete covariance information in the
measurement domain is available, as follows:5

Sx;meas =GSy;measGT , (5)

where Sx;meas is the covariance matrix representing the error
in the retrieved variables caused by the measurement error
Sy;meas. In this formulation, Sy;meas is a placeholder and will
be replaced by the specific type of measurement error under10

assessment, e.g. noise and calibration errors.
The gain matrix G does not only include the sensitivities

of the target gas with respect to the measurement but also the
sensitivities of all variables which are fitted along with the
target gas in the same inversion, e.g. background continua15

or further gases that are simultaneously fitted. These gain
matrices are available from the retrieval and do not have to
be newly evaluated. The resulting covariance matrix Sx;meas
includes also entries for all joint fit variables that are fitted
along with the target variables for various reasons.20

For parameter errors whose covariance information in the
altitude domain is available, the parameter uncertainties can
be linearly mapped into the measurement domain and then
propagated into the target variable space as follows:

Sx;b =GKbSb;measKT
b GT , (6)25

where Sx;b is the covariance matrix representing the error
in the retrieved variables caused by the parameter error Sb,
and Kb is the Jacobian, representing the sensitivities of the
radiance in the analysis windows of the target gas x with
respect to changes in the parameter profile b. If b is obtained30

in a preceding retrieval of the sequential retrieval chain, then
it has to be noted that Kb is not the same as the Jacobian
used in the preceding retrieval of b because it refers to the
spectral radiances in the microwindows used for the retrieval
of the target gas x, as opposed to those used in preceding35

retrieval of b. Thus, it is not available as a byproduct of the
temperature and pointing retrieval but needs to be calculated
with a dedicated call of the forward model.

Sensitivity studies based on the difference between per-
turbed spectra (F perturbed) and nominal spectra (F nominal) are40

an alternative when the methods presented above are not ap-
plicable or inadequate. Within linear error estimation, the es-
timated error is proportional to the spectral difference caused
by the erroneous quantity. The effect of a 1σ uncertainty
in any parameter bk affecting the signal y can be estimated45

by perturbing bk in the input of a run of the forward model
F (x,b) by the respective 1b. The response of the retrieval
to this perturbation is then estimated as follows:

1bkx =−G · (F perturbed−F nominal). (7)

Here F nominal are the radiances simulated with the input data50

and results of the retrieval of x, while F perturbed are the spec-
tral radiances obtained after perturbation of the parameter(s)

under assessment by 1σ . Many applications of Eq. (7) are
sign sensitive. That is to say, contrary to the application of
variances, the signs of the elements of 1bkx have to be con- 55

sidered. The negative sign on the right-hand side of Eq. (7) is
due to the fact that perturbations are applied to the F (x̂i;b)

term in Eq. (1), which appears with a negative sign there. In
order to avoid confusion with respect to the signs, we con-
sistently use the convention that instrumental uncertainties 60

such as gain calibration or instrument line shape uncertain-
ties are understood as uncertainties in the related model pa-
rameters and thus refer to the F (x̂i;b) rather than the y term
in Eq. (1). The sign of the perturbation, as such, is arbitrary.
Only self-consistence is of concern when a perturbation en- 65

ters the error estimation in multiple pathways, as discussed
in Sect. 4.4.

In addition, the gain matrix G of the retrieval has to include
not only entries considering the target gas x but also those
related to all joint fit variables. 70

The mixing ratios of some species are retrieved in the log-
arithmic domain. These are H2O, CO, NO, and NO2 in the
middle atmosphere (MA), upper atmosphere (UA), and noc-
tilucent cloud (NLC) measurement modes1, in addition to
O3. For specific MA research products, CH4 and N2O are 75

also retrieved in the logarithmic domain. In these cases, the
error estimates are also performed in the logarithmic domain
and finally mapped into the mixing ratio domain.

4 Terminology

Since no compelling argument has been provided that un- 80

certainties and estimated errors connote different concepts
(von Clarmann et al., 2022a), we use these terms almost as
synonyms. The only subtle linguistic difference seems to be
that “uncertainty” is an attribute of the measurand, i.e. the
atmospheric state, which is not known with certainty, while 85

the “error” is an attribute of the measurement. Under nor-
mal conditions, we know the measurement with certainty,
but the measurement is not perfectly correct. The error in the
measurement causes an uncertainty in our knowledge of the
atmospheric state. We kept our terminology in broad agree- 90

ment with common language used by Gauss (1809), although
this is in conflict with the stipulation by the Joint Committee
for Guides in Metrology (JCGM) (2008). Contrary to the “es-
timated error”, which is a measure of uncertainty, the “error”
(without qualification) is a signed quantity and describes the 95

actual difference between the measured and the true value of
the quantity of interest.

In agreement with the definitions suggested by TUNER
(von Clarmann et al., 2020), we distinguish between random
errors and systematic errors. Beyond these, we also have to 100

deal with the so-called headache errors and entangled errors.
These concepts will be introduced in the following sections.

1The definitions and details of the measurement modes are
found in Oelhaf (2008).
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For reasons discussed in von Clarmann (2014), we do not
include the smoothing error in our error budget.

4.1 Random errors

Random errors are errors that cause a standard deviation
of the differences between independent coincident measure-5

ments. Thus, the random error budget exceeds measure-
ment noise and includes randomly varying parameter errors.
Chief contributors are measurement noise, tangent altitude
uncertainties, the volatile component of gain calibration un-
certainty, offset calibration uncertainty, spectral shift uncer-10

tainty, and uncertainties in the abundances of gases that are
kept fixed in the retrieval of the target gas.

4.2 Systematic errors

According to TUNER terminology, systematic errors are
those errors that cause, in the long run, a bias between inde-15

pendent measurements of the same state variable at the same
time and place. Error correlations in the altitude domain, or
between different error components related to different error
sources, are irrelevant for the classification as systematic er-
ror. Even correlations in the time domain on a short timescale20

do not make an error systematic, as long as it does not cause
a bias in the long run.

The advantage of this definition is that, contrary to other
definitions of this term, the estimated systematic error is ob-
servationally significant in the sense that it is accessible by25

observations and thus empirically testable. Other definitions
of systematic errors run the risk of leading to theoretical
quantities that are recalcitrant against empirical testing. Chief
contributors to the MIPAS systematic error budget are uncer-
tainties in spectroscopic data with respect to the intensities30

and broadening coefficients of the spectral lines used, un-
certainties in the MIPAS modulation efficiency that leads to
uncertainties in the instrument line shape, and the persistent
part of the gain calibration uncertainty, which is dominated
by detector nonlinearity issues (Kleinert et al., 2018, their35

Table 3).

4.3 Headache errors

Arguably, the distinction between random and systematic er-
rors is not always quite clear because, for example, the non-
linear propagation of random errors can cause a bias, and40

a random modulation of a systematic error can cause some
scatter. Since related difficulties can cause some headaches,
we call these errors headache errors.

We assume that MIPAS retrievals are moderately nonlin-
ear, and thus, linear theory is sufficient for error estimation.45

Within this framework, any possible bias due to the nonlin-
earity of the retrieval – we call this a type-A headache error
– is inaccessible.

Conversely, the retrieval may depend in a deterministic
way on some uncertain input quantity, which is the same for50

all retrievals. Ideally, this would give rise to a systematic er-
ror in the estimate. In the real world, however, the impact of
the uncertain input quantity can depend on further quantities
which may vary randomly. This causes a random modulation
of the initially systematic error. The resulting errors causes 55

both a bias and a standard deviation of differences. We call
this type of error a type-B headache error. We assess this type
of error using statistics over a sample of test cases. An exam-
ple of a type-B headache error is an initially systematic error
due to the spectroscopic data of an interfering species of ran- 60

domly varying concentration2.
In order to avoid propagating the related headache to the

data users, the systematic and random components of the
headache errors will be listed separately in the systematic and
random error budgets. The random component contains the 65

variability due to the respective error source across soundings
within a reference scenario, while the systematic component
contains the bias.

4.4 Entangled errors

Some errors in the input parameters enter the error budget of 70

the target quantity via multiple pathways. This is because the
MIPAS retrievals are performed sequentially. In the first step,
temperature and pointing information are retrieved; in the
second step, this information is used for the retrieval of ozone
distributions. The retrieved temperature, pointing, and ozone 75

information are used for the subsequent retrievals of the con-
centrations of other gases. Estimated errors have to be prop-
agated through this retrieval chain. Some uncertainties affect
the target retrieval directly, and indirectly, because they have
already affected a quantity retrieved earlier in the retrieval 80

chain. For example, the gain calibration uncertainty has a di-
rect effect on the retrieved target gas. A positive perturbation,
representing an overestimation of the radiative gain in the ra-
diative transfer forward modelling, makes the term F perturbed
in Eq. (7) larger, typically resulting in a negative error1gainx 85

of the target species concentration. A positive gain perturba-
tion, however, also entails a smaller retrieved temperature,
and the too small temperature requires a larger amount of the
target gas to fit the measured target lines. Formally speaking,
the negative temperature perturbation implies a positive error 90

component 1T,gainx of the target gas due to the propagated-
gain-induced temperature error. Thus, the direct gain error
and the propagated-gain-induced temperature error mutually
counteract and tend to compensate for each other. We call
these error components which enter the error budget via mul- 95

tiple pathways entangled errors. They must not be treated as
independent errors because then related error compensation
information would be lost.

We distinguish between two kinds of entangled errors. The
first variant of the entangled errors affects only spectral sig- 100

2The authors are grateful to N. J. LiveseyTS4 , who has men-
tioned this example in a discussion.
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natures of the species associated with this error. This is best
illustrated by use of an example. The line intensities, as part
of the spectroscopic data used, of a pre-fitted gas may be too
low. This typically results in too high concentrations in the
retrieval of this gas. In the microwindows used for the tar-5

get gas analysis, these erroneous line intensities affect only
the signal caused by the pre-fitted species. Within linear the-
ory and with favourable assumptions on the correlations of
line intensity errors in the pre-fitted gas in force (same rel-
ative error in line intensities in the whole spectral range),10

the direct error and the propagated error through the use of
the pre-fitted concentration cancel each other out almost per-
fectly. We call this variant of entangled errors lazy entangled
errors. Due to its cancellation characteristics, we do not con-
sider these in the MIPAS error budget, except where explic-15

itly mentioned otherwise.
The other variant of the entangled errors affects all radi-

ances used in the target gas retrieval, regardless of which gas
the spectral signatures belong to. Again we use an example
to illustrate this mechanism. Too low assumed CO2 concen-20

trations in the temperature retrieval may cause too high re-
trieved temperatures. The use of these too high temperatures
in the target gas retrieval affects all radiances used in the tar-
get gas retrieval and not only the signatures associated with
CO2. The compensation mechanism discussed above is con-25

fined to those parts of the signal used for the target gas re-
trieval, where CO2 has some signal interfering with the target
signal and no full cancellation of the temperature error com-
ponent induced by erroneous CO2 mixing ratios takes place.
We call this variant of entangled errors serious entangled er-30

rors. Since these are the only entangled errors considered in
the MIPAS error budget, the term “entangled error” always
refers to a serious entangled error.

To account for the entangled nature of these errors, their
impact is estimated using one single perturbation spectrum35

per tangent altitude, where both the direct and the propagated
error terms are included.

5 Selected reference scenarios

Due to operational constraints, it is not possible to provide
full error estimates for each single measurement. Instead, the40

errors are evaluated for representative classes of cases. These
include all relevant combinations of latitude band, season,
and illumination and, where relevant, solar activity. Since it is
questionable as to whether a single limb scan can safely rep-
resent a large class of measurements, we consider multiple45

limb sequences for each scenario, and the average estimated
errors are used as representative error estimates. For polar
and midlatitudinal conditions, the following seasons were
considered: northern spring/austral autumn (March, April,
and May), northern summer/austral winter (June, July, and50

August), northern autumn/austral spring (September, Octo-
ber, and November), and northern winter/austral summer

(December, January, and February). For tropical conditions
no distinction according to the season is made. Further-
more, we distinguish between daytime and nighttime situ- 55

ations. Neither twilight conditions nor latitudes that could
not be clearly assigned to a typical scenario were consid-
ered. Tables A1–A5 present the orbits of which reference
limb scans were chosen for error estimation and the latitude
ranges and ranges of solar zenith angles (SZAs) selected for 60

error estimation. Table A1 refers to high-resolution (HR; em-
ployed from 2002–2004) nominal measurements, Table A2
to reduced-resolution (RR; employed from 2005–2012) nom-
inal measurements, Table A3 to RR middle atmosphere mea-
surements, and Tables A4 and A5 to RR upper atmosphere 65

measurements under low and high solar activity. For the up-
per troposphere/lower stratosphere CE3 measurement mode,
no dedicated error analysis has been made because the RR
nominal mode error estimates are also deemed well repre-
sentative for this particular observation mode. Similarly, MA 70

error estimates are deemed to be well representative of the
NLC mode measurements. The number of orbits selected
was chosen such that, for each scenario, at least 33 limb scans
with converged retrievals and a low lowermost valid tangent
altitude were available. 75

Each MIPAS measurement has been assigned to a refer-
ence class (scenario) for which representative error estimates
are available, following the criteria defined in Table A6, in
terms of season, latitude, and solar zenith angle. Since all
MIPAS measurements have to be assigned to a representative 80

case, the respective classes are larger in terms of latitudinal
coverage and solar zenith angle coverage than those used to
evaluate the errors.

Based on this classification, systematic and random error
budgets are estimated for each single measurement. For er- 85

rors of a multiplicative nature, the respective error estimates
are obtained by scaling the relative error with the actual con-
stituent profile retrieved for the geolocation under assess-
ment.

6 Error components of the temperature and pointing 90

retrieval

Temperature is the first atmospheric state variable that is re-
trieved in the sequential retrieval chain. Temperature is re-
trieved along with line-of-sight pointing information in terms
of tangent altitudes from CO2 emissions. Since temperature 95

and pointing information are retrieved in one step, we rep-
resent this information in one single vector T LOS. The
retrieval technique and error estimation is documented in
Kiefer et al. (2021). Therefore, for most error sources, a cur-
sory discussion must suffice here. Updates to the tempera- 100

ture and pointing error estimation refer to the uncertainties
in the abundances of interfering trace gases, the treatment
of the gain calibration uncertainty, the uncertainty in zero-
level calibration in terms of an additive radiance offset, and,
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for measurement modes involving explicit non-local thermo-
dynamic equilibrium (non-LTE) modelling, uncertainties in
related specific parameters, particularly rate constants of the
kinetic processes and concentrations of trace gases that gov-
ern non-LTE-related processes.5

6.1 Measurement noise in temperature retrievals

The noise error covariance matrix STLOS;noise of the com-
bined temperature and pointing information vector T LOS

is calculated from the gain matrix of the retrieval, GTLOS,
and the measurement noise covariance matrix, Sy;noise, using10

generalized Gaussian error propagation (Eq. 5). Technically
speaking, we use, for MIPAS error estimation, the following
variant of this equation:

STLOS;noise = ATLOS(KT
TLOSS−1

y;noiseKTLOS+RTLOS)
−1, (8)

which is fully equivalent to the application of Eq. (5) to15

Sy;noise, but technically more efficient, because it relies on
quantities that were stored during the retrieval and thus have
not had to be calculated again during the error estimation pro-
cedure. Here the subscript TLOS indicates that the respective
matrices refer to the retrieval of T LOS. Obviously, Sy;noise20

here and henceforth is understood to contain only variances
and covariances referring to spectral grid points actually in-
cluded in the spectral microwindows used in the retrieval un-
der assessment. Formally, the retrieval vector, gain function,
and resulting covariance matrix contain also entries referring25

to some further fit variables (see Kiefer et al., 2021, for de-
tails), but, finally, only the block representing the retrieved
temperature profile and the retrieved tangent altitudes, in ad-
dition to covariances between these quantities, is relevant.

The measurement noise covariance matrix Sy;noise charac-30

terizes the noise in all spectral grid points used for the re-
trieval of the trace gas profile x at all tangent altitudes for
the limb sequence used. Information on measurement noise
is provided by ESA along with the measured spectra. It has
been estimated from the high-pass filtered imaginary part of35

the complex calibrated spectra.
Originally, measurement noise is independent between all

data points, entailing a diagonal Sy;noise matrix. However,
since the IMK/IAA processor uses spectra apodized with
the Norton and Beer (1976) strong apodization function, the40

measurement noise covariance matrix Sy;noise is manipulated
accordingly.

Sy;noise =QSy;noise; unapodizedQT , (9)

where Q is the rotationally symmetric matrix representing
the discrete convolution with the apodization function.45

Measurement noise contributes to the random error. Due to
the structure of the gain matrix GTLOS, STLOS;noise typically
has significant non-zero off-diagonal entries characterizing
error correlations in the altitude domain. Even for a diago-
nal Sy;noise matrix, these entries would not disappear because50

the limb sounding geometry implies a G without a diagonal
structure. For the non-diagonal Sy;noise matrix of apodized
spectra, the non-diagonality of STLOS;noise holds with even
more convincing force.

6.2 Uncertainties in interfering species in the 55

temperature retrieval

The spectral microwindows used for the MIPAS temperature
and tangent altitude retrieval are dominated by CO2 lines
but contain some signals of other gases. Both for CO2 and
for the interfering gases, the temperature and tangent alti- 60

tude retrieval has to rely on assumptions. Related uncertain-
ties propagate onto the retrieved temperatures and tangent
altitudes. We have different sources of information on these
trace gas abundances. These are model calculations for CO2,
older versions of MIPAS retrievals for gases included in the 65

MIPAS data product, and the MIPAS first-guess database, for
gases not included in the MIPAS data product but still con-
tributing as interference (Fig.1).

6.2.1 CO2 information from model runs

For temperature and tangent altitude retrievals, we use CO2 70

mixing ratios calculated with the Whole Atmosphere Com-
munity Climate Model (WACCM; Marsh, 2011; Marsh et al.,
2013), version 4, run for specified dynamics (García et al.,
2017) and uncertainties, as reported by Kiefer et al. (2021).
Related T LOS uncertainties are estimated using Eq. (7) 75

with the following:

F perturbed = F (T LOS;bCO2 +1bCO2), (10)

where bCO2 and 1bCO2 are the CO2 profiles used and their
1σ perturbations. The perturbation is performed in one step,
covering all altitudes. The mixing ratio of the interfering 80

species under assessment is perturbed at all altitudes by 1 σ
of its uncertainty at this altitude. As a conservative estimate,
all these perturbations are applied with the same sign. This is
admittedly not ideal, but we have no more specific correlation
information available that would allow for a more adequate 85

approach. Our treatment usually provides an upper estimate
of the propagated errors.

For MIPAS measurements of the nominal and UTLS-
1CE4 measurement modes, CO2 mixing ratio uncertainties
are deemed to contribute to the random error because, below 90

about 70 km, this error component is thought to be chiefly
caused by the natural variability around the climatological
value. At altitudes above about 70 km altitude, CO2 mixing
ratio uncertainties are supposed to be dominated by a pro-
nounced systematic component due to model biases, which 95

has to be considered when spectra recorded in the middle
and upper atmosphere measurement modes are analysed. No
firm statement about related error correlations in the altitude
domain can be made.
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Figure 1. Data flow diagram of the sequential MIPAS process-
ing chain. Mixing ratio information from the MIPAS initial guess
database (IG; Kiefer et al., 2002, and updates thereof) is used when-
ever no V5 or V8 MIPAS results of the related species are available.
V8P stands for a preliminary V8 data version.

6.2.2 Abundance information from previous data
versions in temperature retrievals

The MIPAS version 5 data product, the predecessor of the
current version V8, includes abundance and uncertainty in-
formation on many species contributing to the infrared spec-5

trum. The respective abundance information of the limb scan
under assessment is used for the interfering species in the
forward calculations of the version V8 retrievals. Although
broadly considered to be of inferior quality compared to V8
data, the V5 data are considered to be good enough to be10

used to characterize the small contributions of the interfering
species to the signal in the microwindows of the target gas
retrieval (Kiefer et al., 2021). While the mapping of the un-
certainties in the interfering species was originally estimated
using perturbation calculations (Eq. 7), we now use the co-15

variance information Sb;noise that is available from the pre-
ceding data retrievals as Sb;meas in Eq. (6). The error compo-

nents due to uncertainties in the concentrations of interfering
species from version 5 MIPAS retrievals contribute chiefly to
the random error in the target gas retrieval. 20

6.2.3 Abundance information from the initial guess
database in temperature retrievals

For interfering gases except CO2 that are not available from
preceding MIPAS data versions, the retrievals use mixing
ratios from the initial guess database (Kiefer et al., 2002, 25

and updates thereof). Available uncertainty information is
vague, and often educated guesses or rational agents’ per-
sonal beliefs have to be used. Typically, no correlation infor-
mation is available. Due to this lack of correlation informa-
tion in the altitude domain, error estimation is approximated 30

by a perturbation calculation using Eq. (7), as described in
Sect. 6.2.1.

The capability of the radiative transfer model KOPRA to
provide Jacobians with respect to gas concentrations helps
to avoid a separate radiative transfer calculation with per- 35

turbed concentration data for each trace gas. Instead, the par-
tial derivatives ∂yi

∂vmrj ;g
of spectral radiances yi with respect

to the volume mixing ratio of gas g at altitude j are extracted
and used for a linear approximation of the perturbation spec-
trum F perturbed,g as follows: 40

F perturbed,g = F nominal+
∑
j

1vmrg,j
∂y

∂vmrj ;g
. (11)

In most cases, the resulting error components contribute
less than 1 % to the total error budget and therefore are
deemed negligible. Since the true errors in this category are
most likely even smaller than our estimates, this holds with 45

even greater reason.
For the category of interferents discussed here, no vertical

correlation information is available, and all the information
given in the context of CO2 uncertainties applies here too.

We assume that the error in the retrieved quantities caused 50

by using concentrations from a database is dominated by nat-
ural variability. That is to say, we assume that the database
provides, on average, in the long run, the correct values and
that the related error is driven by the difference between the
actual state and the mean state. With this supposition in force, 55

related errors contribute to the random error budget. Admit-
tedly, this supposition can be challenged, but the contribution
of this category of interferents to the total error budget is so
small that a more detailed assessment does not seem justified.

6.3 Calibration uncertainties in temperature retrievals 60

Under calibration uncertainties we summarize gain calibra-
tion uncertainties, zero offset calibration uncertainties, fre-
quency shift uncertainties, and instrument line shape uncer-
tainties.
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6.3.1 Gain calibration uncertainties in temperature
retrievals

MIPAS gain calibration relies on reference measurements
involving an internal blackbody of known temperature and
deep space measurements. Related uncertainties have ran-5

dom and systematic components. The random component
includes noise in the blackbody measurements and gain
variation between blackbody measurements. The systematic
component includes inaccuracies of the calibration black-
body, the errors in the correction of the detector nonlinear-10

ity, and the neglect of higher-order artefacts (Kleinert et al.,
2018). Table 3 of the paper by Kleinert et al. (2018)CE5 al-
lows the calculation of the random and systematic uncer-
tainties separately. Estimated random uncertainties are 0.2 %,
0.2 %, 0.2 %, 0.2 %, and 0.4 % for the MIPAS A band (685–15

980 cm−1), AB band (1010–1180 cm−1), B band (1205–
1510 cm−1), C band (1560–1760 cm−1), and D band (1810–
2410 cm−1), respectively. The corresponding systematic un-
certainties are 1.1 %, 1.0 %, 1.0 %, 0.3 %, and 0.3 %, respec-
tively. Apparent discrepancies of the values are explained by20

the fact that the values reported by Kleinert et al. (2018) are
to be understood as 2σ uncertainties, while our error estima-
tion is consistently based on 1σ uncertainties.

Contrary to the approach described in Kiefer et al. (2021),
the gain calibration error, 1gainT LOS, of the temperature25

and tangent altitude vector, T LOS, is now estimated sep-
arately for its random and its systematic component by the
application of Eq. (7). The perturbations are the same for all
spectra of the limb sequence under assessment. We obtain the
following:30

1gain T LOS =−G(F perturbed−F nominal)

=−G
((

1+
(
1y
y

)
A

)
F nominal−F nominal

)
,

(12)

where F perturbed are the spectral radiances used for the re-
trieval, of all involved tangent altitudes, with the gain pertur-
bation applied. The gain uncertainty in the MIPAS A band,
which is used for the temperature and tangent altitude re-35

trieval, is represented by the scalar
(
1y
y

)
A

. F nominal are the
radiances calculated with the radiative transfer model KO-
PRA for the actual limb sequence under assessment. Since
gain errors affect spectra at all tangent altitudes of a limb
scan in the same way, error correlations in the altitude do-40

main are present.

6.3.2 Zero offset calibration uncertainties in
temperature retrievals

On the face of it, it may seem inadequate to consider the
zero-offset calibration uncertainty in the error budget be-45

cause a zero-offset correction is jointly retrieved along with
the target variables (Kiefer et al., 2021). We have to, how-
ever, distinguish between two different mechanisms causing
offset uncertainty, namely the approximately wavenumber-
independent component and the offset noise.50

The approximately wavenumber-independent component
of the offset uncertainty is caused by a possible offset drift
between calibration measurements. This error component is
indeed accounted for by the retrieval of the offset correc-
tion along with the retrieval of the target quantities because 55

this additive offset correction assumes wavenumber indepen-
dence within each microwindow (von Clarmann et al., 2003).
Thus, this error component does not need to be considered in
the error budget.

The situation is different for the noise in the deep space 60

measurements that are used for the zero-offset calibration.
This noise has a spectral dependence and is thus not fully
corrected for by the offset retrieval mentioned above. It is
for this reason that we have updated the error estimation
scheme for temperature and tangent altitude retrievals used 65

since the work of Kiefer et al. (2021) to include also the noise
component of the offset calibration.CE6 It is estimated, using
Eq. (5), where STLOS;meas is specified as follows:

[Sy;offset]i;j = nesri ∗ nesrj ∗ ri;j , (13)

where nesri and nesrj are the noise equivalent spectral ra- 70

diances of the offset measurements at spectral grid points
i and j (see Kleinert et al., 2018). Error correlations oc-
cur due to apodization, due to the fact that offset calibra-
tion measurements are provided at a shorter maximum op-
tical path difference than the scene measurements and be- 75

cause the same offset measurement is used for multiple tan-
gent altitudes. To calculate the respective correlation coeffi-
cients ri;j , first the apodization function is convolved with
sin(iπ ∗c)/(iπ ∗c)), where i is the index of the spectral grid
point, and where c is the contrast between maximum optical 80

path differences in the deep space and the scene measure-
ments. For MIPAS high resolution, reduced-resolution bands
A–C, and reduced-resolution band D, we have cHR = 0.1,
cRR(AC) = 0.2, and cRR(D) = 0.033, respectively. This con-
volution product is convolved with itself and then normal- 85

ized such that its maximum is 1. The kth value beside the
maximum is used as ri,i±k . For correlations in the altitude
domain, it has to be considered that measurements recorded
during a forward movement of the interferometer mirror are
all offset calibrated with a deep space measurement with for- 90

ward movement of the mirror, and backward scene measure-
ments are calibrated with a backward deep space measure-
ment. This implies that measurements at every second tan-
gent altitude rely on the same deep space spectrum for off-
set calibration. As a consequence, the entry in [Sy;offset]i;j is 95

zero when the indices point at an odd and an even tangent
altitude but does not depend on the tangent altitude as long
as i and j both point at even or both point at odd tangent alti-
tudes. That is to say, the correlation coefficient ri;j between
data points of two odd or two even tangent altitudes is the 100

same for all pairings of the same spectral distance, regard-
less of whether i and j belong to the same tangent altitude or
not.
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Although the same offset calibration measurement is used
for a couple of scene spectra, causing some error correlations
in the time domain, in the long run the offset error contributes
to the standard deviation of the differences between two in-
dependent measurement systems. Therefore, it is regarded as5

random error.

6.3.3 Spectral shift uncertainties in temperature
retrievals

Prior to the retrievals, a correction of the frequency calibra-
tion of the MIPAS spectra is performed for each limb scan,10

using narrow, isolated lines spread over the entire spectrum
covered by MIPAS. A linear model is fitted to the individual
spectral shifts determined for each of these lines, providing
a linear relation between the spectral shift and wavenumber.
The scatter of the individual spectral shifts around the re-15

gression line serves as an estimate of the residual frequency
correction uncertainty and was found to be 0.00029 cm−1

(Kiefer et al., 2021). The resulting error in the mixing ratio of
the target gas is evaluated using Eq. (7), where F perturbed is
an estimate of the spectral radiances for a spectral shift per-20

turbed by the 1σ frequency correction uncertainty, and where
F nominal are the spectral radiances calculated with the nomi-
nal frequency correction.

Errors in the retrieved quantities due to the spectral shift
uncertainty contribute to the random error. They are fully cor-25

related in the altitude domain.

6.3.4 Instrument line shape uncertainties in
temperature retrievals

Errors in the line shape used in the radiative transfer calcula-
tion are quantified in terms of modulation efficiency, which30

is a key input parameter of the instrument line shape model
used (Hase, 2003). The propagation of the modulation effi-
ciency error is estimated using Eq. (7), where

F perturbed = F (T LOS;e+1e), (14)

and where35

F nominal = F (T LOS;e). (15)

The scalar e is the nominal modulation efficiency and 1e its
perturbation by 1σ .

Spectral shift errors caused by instrument line shape errors
do not need to be considered to be part of the instrument line40

shape error because the total spectral shift is empirically cor-
rected as the first step of the data processing chain (see Fig. 1)
and the residual spectral shift uncertainty is propagated as an
error source in its own right (see Sect. 6.3.3).

Since the modulation efficiency parameter is based on a45

pre-flight study and used for all MIPAS retrievals, the related
error in the target mixing ratio profile is systematic and fully
correlated in the altitude domain.

6.4 Uncertainties in spectroscopic data in temperature
retrievals 50

The leading components of uncertainties in spectroscopic
data are line intensity uncertainties and uncertainties in the
broadening coefficients. Both error sources are evaluated
independently. The fact that no correlation information on
spectroscopic uncertainties is available is a major drawback. 55

For most retrievals from MIPAS data, multiple lines are used.
If the intensity errors in multiple lines were uncorrelated,
e.g. because they are dominated by measurement noise in the
lab measurements, then their effect would partly average out
in a multi-line retrieval. Conversely, if the intensity errors 60

were strongly correlated, e.g. because they are caused by un-
certainties in the amount of gas in the cell in the laboratory
measurement, then their effect would be systematic and thus
survive the implicit averaging taking place in a multi-line re-
trieval. Similar considerations hold for the broadening co- 65

efficients. Since we have no better information, we consider
the spectroscopic uncertainties to be fully correlated. This as-
sumption is conservative with respect to the error budget of
the target but optimistic insofar as the error compensation in
the context of entangled errors may be overestimated. Since 70

the same spectroscopic parameters are used for all MIPAS
retrievals of a certain target gas, related concentration errors
contribute chiefly to the systematic error budget. They are
fully correlated in the altitude domain insofar as the same
microwindows are used for all altitudes. 75

6.4.1 Line intensity uncertainties in temperature
retrievals

The response of the retrieval of temperature and tangent al-
titudes to errors in CO2 line intensities is estimated by per-
turbation using Eq. (7). F perturbed are the spectral radiances 80

calculated with the intensities of all CO2 lines of the target
gas, which are all perturbed by 1 σ of their individual uncer-
tainty, where all perturbations have the same sign. F nominal
are the spectral radiances calculated with the nominal line
intensities. 85

6.4.2 Broadening coefficient uncertainties in
temperature retrievals

All the information given for the propagation of line inten-
sity uncertainties holds, with all necessary changes in place,
and also for the uncertainties in broadening coefficients. For 90

the evaluation of the error component due to the target gas
broadening coefficients according to Eq. (7), we calculate
F perturbed with the broadening coefficients of the target gas,
all perturbed by 1 σ of their individual uncertainty, where all
perturbations have the same sign. 95
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7 Error components of the trace constituents retrieval

For MIPAS trace gas retrievals, the following error sources
are considered: measurement noise, uncertainties in temper-
ature and pointing information (T LOS), and uncertainties
in the mixing ratios of interfering species, which contribute5

in a sizeable way to the signal in the analysis window(s) of
the target species and are not jointly fitted with the target
gas. Under certain conditions, smoothing error crosstalk can
also be an issue. Further error sources under consideration
are gain, offset, and frequency calibration errors, as well as10

instrument line shape uncertainties, uncertainties in spectro-
scopic data in terms of line intensity and broadening coeffi-
cients, and, if applicable, uncertainties in specific parameters
to non-local thermodynamic equilibrium (non-LTE), such as
kinetic rate constants or abundances of trace gases that in-15

teract via specific non-LTE processes rather than by spectral
interference. In the following sections, the related error prop-
agation schemes are discussed.

7.1 Measurement noise in the trace constituents
retrieval20

Noise in retrieved trace gas abundance x is calculated by
Gaussian error propagation, using the same method as dis-
cussed for the temperature retrieval in Sect. 6.1. The noise
error covariance matrix Sx;noise of the target gas profile x is
calculated from the gain matrix of the retrieval, G, and the25

measurement noise covariance matrix, Sy;noise, using gener-
alized Gaussian error propagation (Eq. 5). Again, we use for
MIPAS error estimation the following variant of this equa-
tion:

Sx;noise = Ax(KT
x S−1

y;noiseKx +Rx)−1. (16)30

All details mentioned in the context of the mapping of mea-
surement noise on temperature also applies to trace gas re-
trievals. The only relevant error correlations refer to the al-
titude domain within one profile and between mixing ratios
of different species that are retrieved in one step, as done, for35

example, for CH4 and N2O; related correlation information
is provided by the off-diagonal elements of Sx;noise. No cor-
relations across limb scans or between sequentially retrieved
atmospheric constituents have to be considered.

7.2 Propagation of temperature and pointing errors40

Temperature and pointing retrieval errors propagate onto the
trace gas retrievals. Temperature and pointing retrieval errors
are correlated. These correlations – and correlations in the al-
titude domain – have to be considered for the error estimation
of trace species. The error components of T LOS are, along45

with the respective correlation information, represented by
the covariance matrix STLOS;component.

Some components of the temperature and pointing er-
rors contribute to entangled errors. Thus, the respective error

components contributing to the temperature and pointing er- 50

ror have to be propagated separately for the different sources
of T LOS errors. Some of these components contribute to
the random error, and others contribute to the systematic er-
ror. For this reason, we report them component-wise. The fol-
lowing temperature and pointing error components are con- 55

sidered: measurement noise, gain calibration uncertainty, off-
set calibration uncertainty, frequency calibration errors, and
uncertainties in spectroscopic data.

7.2.1 Propagated temperature and pointing noise

The mapping of noise on temperature and pointing informa- 60

tion is characterized by the covariance matrix Sx;TLOS_random
and is evaluated with Eq. (6), where Sb;meas is specified as
STLOS;noise. This error covariance matrix represents the noise
component of the retrieved temperatures and tangent alti-
tudes of the limb sequence under evaluation. Here we do 65

not need the full covariance matrix of the temperature and
pointing retrieval but only those blocks which refer to tem-
perature and tangent altitude information. Entries related to
the background continuum and gases fitted jointly with tem-
perature and tangent altitudes play no role here. The entries 70

of STLOS;noise are available as a byproduct of the temperature
and tangent altitude retrieval. Due to their correlated nature,
temperature and pointing/tangent altitude errors have to be
propagated jointly rather than separately.

Kb in Eq. (6) is specified as the Jacobian KTLOS represent- 75

ing the sensitivities of the radiance in the analysis windows
of the target gas with respect to changes in temperatures and
tangent altitudes. KTLOS is not the same as the Jacobian used
in the temperature and pointing retrieval because it refers to
the spectral radiances in the microwindows used for the re- 80

trieval of the target gas x.
Temperature and pointing noise contribute to the random

error in the target gas retrieval in the sense that it is uncorre-
lated across limb scans. Resulting trace gas errors are corre-
lated in the altitude domain and also across species. That is to 85

say, if the mixing ratio of one species is retrieved at too high
a level due to a temperature assumed to be too low, then the
mixing ratio of another species is also likely to be retrieved
too high.CE7

7.2.2 Propagated temperature and tangent altitude 90

errors due to spectral shift

A correction of the supposedly less-than-perfect frequency
calibration of the spectra is performed prior to the retrieval
of temperature and tangent altitudes, as described in Kiefer
et al. (2021). These authors also provide estimates of the re- 95

sponse of the retrieved temperatures and tangent altitudes
to the estimated residual frequency calibration error (see
Sect. 6.3.3). Again, the response 1TLOS;shiftx of the retrieval
of trace gas profile x to the temperature and pointing un-
certainty due to the spectral shift uncertainty is estimated 100
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by the perturbation approach using Eq. (7), where F perturbed
are the spectral radiances obtained with a radiative trans-
fer calculation using temperatures and pointing perturbed by
1shiftT LOS, and where F nominal are the spectral radiances
obtained with the spectral shift used for the retrieval.5

1TLOS;shiftx =−G(F (x;T LOS+1shiftT LOS)

−F (x;T LOS)) . (17)

Since temperature and pointing information in terms of tan-
gent altitudes are jointly retrieved in one inversion step, er-
rors in these quantities are correlated, and perturbations are
made in one step. 1shiftT LOS vectors are available from10

Kiefer et al. (2021), who evaluated this quantity for the rep-
resentative atmospheric conditions listed in Sect. 5 by per-
turbation studies. Since the spectral shift correction is per-
formed for each limb scan separately, all related errors con-
tribute to the random error budget. And since the spectral15

shift correction provides only one scalar value per limb scan
and microwindow, the resulting target mixing ratio errors are
fully correlated in the altitude domain, as follows:

covarshift-tlos;i,j = σshift-tlos;iσshift-tlos;j , (18)

where covarshift-tlos;i,j is the covariance between the errors in20

the target species due to the propagated-shift-induced tem-
perature and pointing errors, σshift-tlos, at altitude levels i and
j . All the information given about error correlations due to
temperature and pointing noise also applies to temperature
and tangent altitude errors due to spectral shift.25

7.2.3 Propagation of temperature and tangent altitude
errors due to offset calibration uncertainties

Retrieved temperatures and tangent altitudes are susceptible
to offset calibration uncertainties (see Sect. 6.3.2). The rele-
vant component of the offset uncertainty that is not removed30

by joint-fitting the offset along with the target variables is
dominated by noise in the deep space measurements. Related
temperature and pointing errors propagate onto the error bud-
get of the target species. Their contribution is estimated us-
ing Gaussian error propagation, according to Eq. (6), where35

Kb is the sensitivity of the radiances used for the retrieval
of the target gas to temperatures and tangent altitudes, and
where Sb;meas = STLOS;offset, i.e. the covariance matrix of
temperature and pointing errors due to offset uncertainties.
STLOS;offset has relevant off-diagonal entries for the following40

reasons: (1) offset measurements use interferograms with a
shorter maximum optical path difference than the scene spec-
tra but are finally zero padded to the length of the scene in-
terferograms (corresponding to a Fourier interpolation in the
spectral domain to achieve the same sampling as the scene45

spectra), (2) apodization is applied, and (3) offset measure-
ments are used for multiple tangent altitudes. The offset noise
variances are calculated from the noise equivalent spectral
radiances, as shown in Fig. 8 of Kleinert et al. (2018). Since

the offset uncertainties vary randomly in the wavenumber do- 50

main, and since the spectral analysis windows of temperature
along with pointing are generally different from those used
for the retrieval of the target species, this particular calibra-
tion uncertainty does not fall into the category of entangled
errors but can be treated as an independent error component. 55

This error component contributes, in the long run, to the ran-
dom error in the target gas because it causes a scatter rather
than a bias when compared to independent data from other
instruments. Within shorter timescales between two offset
calibration measurements (less than 300 s for HR measure- 60

ments and less than 700 s for RR measurements), positive
error correlations have to be expected (Kleinert et al., 2018,
their Table 3). This error is also positively correlated in the
altitude and across different species.

7.2.4 Propagated temperature and tangent altitude 65

errors due to gain calibration and spectroscopic
data uncertainties

Further error components contributing to the temperature
and pointing random error are gain calibration uncertainties
(Sect. 6.3.1) and uncertainties in the spectroscopic data used 70

(Sect. 6.4). On the supposition that spectroscopic data errors
are fully correlated in the spectral domain, related propagated
temperature and tangent altitude errors fall in the category of
entangled errors and are discussed along with the respective
direct propagation of CO2 spectroscopic uncertainties onto 75

the target gas retrieval (Sect. 7.5).
If the target gas is chiefly retrieved in the MIPAS A band,

used for the temperature and tangent altitude retrieval, then
propagated temperature and tangent altitude errors due to
gain calibration also belong in the category of entangled er- 80

rors and are discussed along with the directly propagated
gain calibration errors (Sect. 7.4.1). The situation is differ-
ent if the target gas is retrieved in another MIPAS band. The
dominant gain error components (especially those caused by
nonlinearity) are correlated only within MIPAS bands but not 85

between MIPAS bands (Kleinert et al., 2018). This implies
that propagated gain calibration errors in temperature and
tangent altitudes are uncorrelated with the gain calibration
error in the target gas and have thus to be treated as inde-
pendent error components. In this case, the propagation of 90

the gain-related temperature and tangent altitude error in the
target gas concentration is estimated with Eq. (7), where

F perturbed = F (x;T LOS+1gainT LOS). (19)

Trace gas errors due to gain-related temperature errors are
considered to be positively correlated across species, across 95

altitudes, and across limb scans.

7.3 Uncertainties in interfering species

Uncertainties in interfering species, i.e. species that con-
tribute to the signal in the microwindows of the target gas,
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have, broadly speaking, a small impact on the retrieved mix-
ing ratios of the target species. This is because (a) the mi-
crowindows have been defined such that the signal of in-
terfering species is minimized, (b) the sequence of opera-
tions is such that the abundances of strong emitters are re-5

trieved first and are thus available when weak emitters are
analysed, (c) for most interfering species, retrieved mixing
ratios for the actual conditions are available from earlier MI-
PAS data versions, and (d) in cases of an appreciable influ-
ence of the interfering gas on the retrieved profile of the tar-10

get gas, the interfering gas is jointly fitted with the target gas
and thus does not contribute to the parameter error budget
but is accounted for already in the noise covariance matrix of
the combined target–interferent retrieval. Nevertheless, the
propagation of the uncertainties in interfering species is con-15

sidered. The error estimation schemes used depend on the
source of the information on the interfering species. Sources
of information on these constituents’ abundances and their
uncertainties are as follows:

1. preceding retrievals in the sequential retrieval chain,20

2. MIPAS version 5 data, and

3. the MIPAS initial guess database.

In the following, the error propagation for these cases is dis-
cussed. If a certain constituent is a strong interferent, that is
to say, it causes a large signal in the microwindows of the tar-25

get gas, then occasionally this constituent is fitted jointly with
the target gas. In some cases, this approach is chosen even if
the abundance is already known from a preceding retrieval
step. The reason behind this approach is to avoid spectral
residuals caused by spectroscopic inconsistencies between30

the microwindows where the interfering constituent has been
retrieved and the microwindows where the target gas is re-
trieved. In this case, the effect of the interferent chiefly is that
its consideration in the retrieval slightly increases Sx;noise,
and no extra treatment of the interferent is needed in the er-35

ror budget. In these joint retrievals, the regularization of the
interferent is chosen to be sufficiently weak to ignore any
smoothing error crosstalk between the interferent and the tar-
get gas.

For interfering gases that were not jointly fitted along with40

the target gas, the error components are evaluated for each
gas separately. The only exception are gases which were
jointly retrieved in a preceding retrieval, where, therefore,
inter-gas covariances have to be considered.

7.3.1 VMR information from preceding retrievals45

CE8MIPAS spectra contain contributions of tens of different
species. The simultaneous inversion that provides all these
mixing ratio profiles in one single inversion is not prac-
ticable. Instead, the retrieval is decomposed into a series
of retrievals, each providing information on typically only50

one, occasionally a few, species and each using spectral mi-
crowindows which contain the largest possible amount of in-
formation on the target gas, while contributions by interfer-
ing gases are kept small. The retrieval chain is organized in a
way that first the mixing ratio profiles of those trace gases are 55

retrieved that make major signal contributions to the spec-
trum. When the retrieval of the abundances of minor contrib-
utors follows later in the retrieval chain, the concentrations
of those gases retrieved earlier in the retrieval chain are al-
ready known. Also, their noise covariance matrix is available 60

from the preceding retrievals and is used to analyse the error
propagation onto the target gas profile, using Eq. (6).

The parameter error covariance matrix Sb;noise is specified
as that block of the resulting covariance matrix from the pre-
ceding retrieval that refers to the profile of the interfering 65

gas. In cases when two interfering species were jointly re-
trieved in the preceding steps, both related blocks and the
respective covariance blocks are needed. Other entries of the
covariance matrix of the preceding retrieval need not be con-
sidered here because the entries of the Jacobian Kb operating 70

on them would be zero anyway. This Jacobian is specified in
this application to represent the sensitivities of the spectral
radiances used for the target gas retrieval to the abundances
of the interfering species.

Other uncertainties in the gas concentrations from preced- 75

ing retrievals (due to the gain error, spectroscopic data un-
certainties, etc.) belong in the category of entangled errors.
The direct errors due to the error source under consideration
and the propagated error due to the impact of the error under
consideration on the retrieved abundance of the interfering 80

species have an opposite sign, which leads to cancellation.
Since, due to the way MIPAS data processing is organized,
error contributions by interfering species are generally small,
any net effects of these entangled errors that may survive the
error cancellation are considered to be negligible. 85

The error components due to uncertainties in the concen-
trations of interfering species from preceding retrieval steps
contribute to the random error in the target gas retrieval be-
cause their systematic components do not effectively prop-
agate due to the compensation mechanism of the entangled 90

errors.
Resulting errors are uncorrelated across limb scans and

correlated across altitudes according to the entries of the re-
sulting covariance matrix. On the whole, positive correla-
tions of this error component across species sensitive to the 95

error in a certain pre-fitted gas are to be expected, although
these correlations will depend largely on the specific sensi-
tivities, profile shapes, etc.

7.3.2 VMR information from MIPAS V5

It is not possible to organize the MIPAS retrievals in a way 100

that all interfering gases are known from retrievals performed
earlier in the retrieval chain. Some minor interferences from
species that are retrieved only later in the retrieval chain do
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occur in the microwindows of the target gas. However, ear-
lier MIPAS data versions of these species are often available,
e.g. from MIPAS version 5. Also, for these MIPAS retrievals,
error covariance matrices Sb;noise are available, which can
be used as Sb;meas in Eq. (6). All the information given in5

Sect. 7.3.1 applies, with all necessary changes in place, and
also with regard to the propagation of uncertainties in the
abundances of interfering species taken from the version 5
MIPAS analysis.

These error components due to uncertainties in the con-10

centrations of interfering species from version 5 MIPAS re-
trievals also contribute chiefly to the random error in the tar-
get gas retrieval. All the information given about the error
calculations for propagated V8 mixing ratio errors holds for
the propagated V5 mixing ratio errors.15

7.3.3 VMR information from the MIPAS initial guess
database

For interfering gases not yet retrieved from MIPAS spectra,
i.e. neither version 8 nor V5, mixing ratios and uncertainty
estimates from the initial guess database are used. All the20

information given on this issue in the context of temperature
and tangent altitude error estimation (Sect. 6.2.2) applies to
trace gas error budgets as well. No firm statement on error
correlations of this error component can be made because
the error characteristics of the information in the initial guess25

database is unknown.
Assumed uncertainties in CO2 mixing ratios, however, de-

serve an extra treatment because they lead to (serious) entan-
gled errors. This is because the retrieval of temperature and
tangent altitudes relies on CO2 lines, which causes an entan-30

gled error. The entangled nature of this error component has
two consequences. First, the perturbed spectra in Eq. (7) have
to be calculated as follows:

F perturbed = F
(
x;bCO2 +1bCO2 ,T LOS

+1CO2T LOS
)
, (20)

where bCO2 and 1bCO2 are the CO2 profiles used and35

their 1σ perturbations. And, second, the propagation of
1VMR(CO2)T LOS implies that this error component has to
be considered also for the error budget of target species
whose microwindows do not contain any sizeable CO2 sig-
nal. As discussed above, for nominal MIPAS measurements,40

the CO2 mixing ratio uncertainties are deemed to contribute
to the random error, while for MA/UA measurements a sys-
tematic component has to be considered.

7.3.4 Smoothing error crosstalk

As already mentioned, in some cases the abundances of in-45

terfering species are fitted jointly with those of the target
species. This option has been chosen particularly when the
abundances of the interfering species pre-retrieved in an ear-
lier step in the retrieval chain do not fit the associated lines

in the current target microwindow well. Possible causes for 50

such behaviour are the inconsistencies in the spectroscopic
data in the microwindows where the interferents were re-
trieved and the microwindows of the current retrieval step.
The purpose of fitting the interferents again is simply to re-
move the related spectral residuals and to minimize the re- 55

lated error propagation. Since the microwindows of the cur-
rent retrieval step include only limited information on the in-
terferents, the related results are discarded, as they neither su-
persede nor complement the results from the earlier retrievals
when the interferents were the target species. 60

Due to the limited amount of information on the inter-
ferents, their retrieval has to be heavily regularized in some
cases. The regularization chosen is a Tikhonov-type smooth-
ing regularization where a squared first-order finite differ-
ence operator is included in the cost function (see, e.g., 65

Kiefer et al., 2021, and references therein). Thus, limited
information in terms of the degrees of freedom is gained.
This is tolerable because the fine structure of the interfer-
ent profiles is available from the earlier retrievals, the results
of which are used a priori of the subsequent joint retrieval. 70

That is to say, the fine structure of the interferent profiles
comes from the original retrieval, which is used a priori and
survives the new joint retrieval, while the information on the
total amounts, however poor the vertical resolution, comes
from the joint retrieval of the current step. 75

Critical readers might argue that jointly retrieved species
can cause an error component of the target species. This is
because the regularization of the jointly fitted interferent will
affect also the target species via the off-diagonal blocks of
the averaging kernel matrix. We call this error component 80

smoothing error crosstalk (von Clarmann et al., 2020). We
argue, however, that in most of our cases, the contribution of
the smoothing error crosstalk is negligibly small. The reason
is that the availability of the fine structure of the profiles from
the original retrieval of the interferents is by far sufficient to 85

avoid any related appreciable residuals in the spectra, and the
total amount lies in the null space of the Tikhonov regular-
ization matrix block referring to the interferent and thus can-
not cause any smoothing error component. In other words,
the regularization term in the cost function chosen can only 90

smooth the profile differences x̂− xa but cannot push them
as a whole towards larger or smaller values.

An exception is the joint retrieval of temperature and ni-
tric oxide (NO) from the MIPAS upper atmosphere observa-
tions (Funke et al., 2022). In this particular case, information 95

on retrieval variables, temperature, and NO above 105 km is
obtained from the same spectral lines of the NO fundamen-
tal band at 5.3 µm. Furthermore, no original – and better re-
solved – retrievals are available a priori for these variables.
The impact of the smoothing error crosstalk on the combined 100

temperature and NO retrieval for upper atmospheric obser-
vations was extensively investigated by Bermejo-Pantaleón
et al. (2011) for MIPAS version V4O retrievals. In particu-
lar, these authors showed that the use of inappropriate night-



14 T. von Clarmann et al.: MIPAS uncertainty estimation

time NO a priori profiles in this retrieval version led to a
pronounced distortion of the retrieved nighttime temperature
profiles by up to 50 K in the lower thermosphere. Bermejo-
Pantaleón et al. (2011) therefore recommended using the full
averaging kernel matrices and a priori vectors (covering the5

full temperature and NO space and all relevant off-diagonal
elements) when model results or correlative measurements
are made comparable to MIPAS results. A drawback of this
recipe, however, is that temperature and NO information are
not always both available from model simulations or correla-10

tive measurements. And, even if they were, such comparisons
would be difficult to interpret because resulting differences
cannot be unequivocally attributed to individual parameters.
To overcome these problems and to enable comparisons in
single parameter spaces (temperature only or NO concen-15

trations only), we report V8 retrievals crosstalk error esti-
mates that correspond to the mapping of NO a priori uncer-
tainties in the retrieved temperature profile, and vice versa.
These error estimates are calculated as (I−A)Sa(I−A)T ,
where I is the identity matrix of the respective dimension20

(Rodgers, 2000) by using a priori covariance matrices Sa ma-
nipulated as follows. For the estimation of the smoothing er-
ror crosstalk components due to the constraint on the NO
profile in the retrieval, the only non-zero entries in Sa refer to
the NO concentration, while temperature variances and co-25

variances and covariances between temperature and NO are
set to zero. Conversely, for the estimation of the smoothing
error crosstalk due to the temperature constraint, the only
non-zero block in Sa is the one which contains the temper-
ature variances and covariances.30

7.4 Calibration uncertainties

The same calibration uncertainties discussed in the context of
the temperature and tangent altitude retrieval (Sect. 6.3) are
also relevant to the retrieval of trace gas abundances. These
are gain calibration errors, zero offset calibration errors, fre-35

quency shift uncertainties, and instrument line shape uncer-
tainties.

7.4.1 Gain calibration uncertainties

In a similar manner as for the temperature and tangent al-
titude error estimation, the propagation of the random and40

systematic gain calibration uncertainties in the retrieved trace
gas abundances are also estimated using perturbation studies
with the following:

1gainx =−G(F perturbed−F nominal). (21)

Gain calibration errors come into play in trace gas re-45

trievals via two different pathways. First, they affect the trace
gas retrieval directly. And, second, they affect the trace gas
retrieval via the propagation of the gain error in temperature
and tangent altitudes. We have to distinguish between three
different cases. The retrieval of the target gas under assess-50

ment uses (1) only spectral lines in the MIPAS A band, where
TLOSCE9 has been retrieved, (2) only spectral lines in MI-
PAS bands AB to D, and (3) spectral lines both in the A band
and in other bands.

If the target gas is retrieved in the MIPAS A band (case 1), 55

where temperature and tangent altitudes are also retrieved,
gain and gain-induced temperature and tangent altitude er-
rors belong in the category of entangled errors. We take this
into account by calculating F (perturbed) with temperature
and pointing perturbations as resulting from the error esti- 60

mation of the combined temperature and tangent altitude re-
trieval, using the following:

F perturbed =

(
1+

(
1y

y

)
A

)
F (x;T LOS

+1gainT LOS
)
. (22)

T LOS represents the vector representing the temperature
profile and the tangent altitudes retrieved in the preceding 65

step and is used for the target gas retrieval, and 1gainT LOS

is the vector containing the responses of the retrieved tem-
perature profile and tangent altitudes to a positive gain per-
turbation.

For target gases retrieved in any band other than the MI- 70

PAS A band (case 2), this entanglement mechanism does not
apply. In this case, the target gas error component due to the
gain calibration error is calculated as follows:

F perturbed = (1+1y/y)F (x). (23)

This error component and the mapping of the gain-related 75

temperature and tangent altitude error, as estimated with the
perturbation approach as defined in Eq. (19), are treated as
independent errors. If the retrieval uses lines from multiple
MIPAS bands AB, B, C, or D, then it is adequate to consider
both the systematic and the random components of the gain 80

calibration error in the different bands as independent errors.
This is because the random and systematic components of the
gain calibration error are dominated by components that are
highly correlated only within a MIPAS band but uncorrelated
between the bands. This implies that, for both the system- 85

atic and the random component, a perturbation calculation is
needed for each band involved.

The situation is more complicated in cases where spectral
lines both in the MIPAS A band and one or more of the other
bands are used (Case 3). For both the systematic and the ran- 90

dom part of the gain error estimate, the following approach
is used. The perturbed spectrum is calculated using Eq. (22),
but the1y/y term is applied only to radiances in the MIPAS
A band. The error component calculated with this perturba-
tion spectrum accounts for the propagated gain-induced tem- 95

perature and tangent altitude error and the gain error in the A
band. Systematic and random components of the error due to
gain calibration uncertainties in the other bands are estimated
using Eq. (23) for each band separately.
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Mixing ratio errors due to propagated gain calibration un-
certainties are positively correlated in the altitude domain,
across species, and, to a large extent, also across limb scans.

7.4.2 Zero-offset calibration uncertainties

The treatment of zero-offset calibration uncertainties in the5

error estimation of trace gas retrievals follows exactly the
scheme presented for temperature and tangent altitude re-
trievals in Sect. 7.2.3. Since the relevant components of the
zero-offset calibration uncertainty are independent between
different spectral regions, and since the microwindows for10

trace gas retrievals are different from those used for the
temperature and tangent altitude retrievals, these zero-offset-
related errors do not fall into the category of entangled errors.
This error component contributes to the random error bud-
get, although short-term correlations across limb scans have15

to be considered, as described in Sect. 7.2.3. Correlations in
the altitude domain are characterized by the entries of the re-
lated covariance matrix. Across species, this error component
is usually uncorrelated, except for rare cases where the se-
lected transitions of the different species are spectrally close20

together.

7.4.3 Spectral shift uncertainties

Trace gas retrieval errors due to spectral shift errors are es-
timated by perturbation studies in the same way as for the
temperature and tangent altitude retrieval (Sect. 6.3.3).25

In this context, it should be mentioned that target concen-
tration uncertainties directly caused by spectral shift uncer-
tainties and target concentration uncertainties due to temper-
ature and pointing errors caused by spectral shift uncertain-
ties do not fall in the category of entangled errors. This is30

because the response of the target concentration to the spec-
tral shift and the response of the target concentration to shift-
induced temperature and pointing errors is erratic rather than
systematic.

Errors in the retrieved quantities due to the spectral shift35

uncertainty contribute to the random error, and they are fully
correlated in the altitude domain. Across gases, no general
statement can be made because correlations depend on the
specific conditions. At least it can be assumed that for two
gases with lines of similar widths and similar vertical dis-40

tributions the correlations will more likely be positive than
negative.

7.4.4 Instrument line shape uncertainties

As discussed in Sect. 6.3.4, the only relevant instrument line
shape parameter to be considered in the error estimation is45

the modulation efficiency of the interferometer. Its propaga-
tion onto the retrieved trace gas abundances is estimated us-
ing Eq. (7), where

F perturbed = F (x;e+1e,T LOS+1eT LOS), (24)

and where 50

F nominal = F (x;e,T LOS). (25)

x is the retrieved profile of the target gas where the pertur-
bations are evaluated. Scalar e is the nominal modulation ef-
ficiency and 1e its perturbation by 1 σ . 1eT LOS is the
response of the temperature and pointing retrieval to a per- 55

turbation of e by 1e. Since the direct effect of 1e and its
indirect effect via 1eT LOS are entangled errors, their per-
turbations are evaluated in one run of the forward model in
order to obtain the compensation effects correctly. This error
component contributes to the systematic error, is fully cor- 60

related in the altitude domain, and is positively correlated
across gases.

7.5 Uncertainties in spectroscopic data

Uncertainties in line intensities and broadening coefficients
are fully correlated in the altitude domain, insofar as the same 65

microwindows are used for all altitudes, and they contribute
chiefly to the systematic error. The problem of unknown error
correlations between different lines of the same gas that has
been discussed in Sect. 6.4 also applies to trace gas retrievals.
Mixing ratio errors due to errors in spectroscopic data are 70

uncorrelated across species, but correlations in the altitude
domain have to be considered.

7.5.1 Line intensities

The response of the retrieval of a target gas to errors in the
target gas line intensities is estimated by perturbation using 75

Eq. (7), following the scheme discussed for temperature and
tangent altitudes in Sect. 6.4.1. Errors in the intensities of
CO2 lines deserve special attention in this context. There
is no systematic coupling mechanism between the intensity-
induced target gas error and the intensity-induced tempera- 80

ture and pointing error. Therefore, this error component is
estimated independently of the error component due to the
uncertain line intensities of the target species. For this pur-
pose, Eq. (7) is also used, where

F perturbed = F (x;LICO2 +1LICO2 ,T LOS

+1LI(CO2)T LOS), (26) 85

and where

F nominal = F (x;LICO2 ,T LOS). (27)

LICO2 are the intensities of the CO2 lines affecting the
signal in the microwindows of the target gas. 1LICO2 is
the vector of intensity perturbations, all with the same sign 90

but with an individual amount. 1LI(CO2)T LOS is the re-
sponse of the temperature and pointing retrieval to CO2
line intensity perturbations by 1σ . The perturbation is made
for the entire T LOS vector in one step, where the signs
of the 1LI(CO2)T LOS components are considered. Due 95
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to the entangled nature of the effects of 1LICO2 and
1LI(CO2)T LOS, F perturbed is evaluated for both of these
effects in one step.

Contrary to temperature and tangent altitude information,
errors in pre-retrieved concentrations of interfering gases af-5

fect only the signal in the lines of these interfering gases.
Here the compensation mechanism discussed in Sect. 4.4
takes place in full. A too high line intensity of the interfer-
ing line will typically cause a too low mixing ratio of the
interferent, and the combination of both these error compo-10

nents will produce a signal of the interfering line fairly close
to the true signal. Therefore, we do not consider the line in-
tensity errors in the interfering species in the error budget of
the target species.

7.5.2 Broadening coefficients15

The propagation of uncertainties in the broadening coeffi-
cients onto trace gas mixing ratios follows the scheme de-
scribed in the previous section for line intensities. Here the
entangled nature of the temperature and tangent altitude er-
rors due to uncertainties in broadening coefficients of CO220

lines also has to be taken into account.
For the evaluation of the propagation of temperature and

pointing uncertainties due to CO2 broadening coefficients ac-
cording to Eq. (7), we use the following:

F perturbed = F
(
x;BCO2 +1BCO2 ,T LOS

+1B(CO2)T LOS
)

(28)25

and

F nominal = F (x;BCO2 ,T LOS), (29)

where BCO2 are the relevant broadening coefficients of the
CO2 lines involved, 1BCO2 is the respective vector of the
perturbations, and 1B(CO2)T LOS is the net response of the30

temperature and pointing retrieval to perturbations of CO2
broadening coefficients.

For reasons discussed in the previous section, estimated
errors in the pre-retrieved interferents due to uncertainties in
the broadening coefficients are not considered.35

8 Further sources of error

In this paper, we concentrate on the assessment of error com-
ponents that are relevant to temperature, tangent altitudes,
and all species retrieved from MIPAS spectra. For the re-
trieval of products from non-nominal observation modes, and40

some gases, observation-mode-specific or gas-specific uncer-
tainties may be relevant, in particular, if non-LTE is consid-
ered. The assessment of these uncertainties will be discussed
in the corresponding retrievalCE10 papers, where relevant.
The same holds for error sources not discussed so far, such as45

inaccurate line shape models. The relevance of such effects

Figure 2. The error budget (absolute values) of a MIPAS ozone
retrieval from a limb scan recorded at 40.09◦ N, 11.28◦ E during
Envisat orbit 38517 on 12 July 2009 at 21:28 UT.

is deemed highly dependent on the target gas under analysis.
The assessment of these uncertainties will either be based on
Eq. (7) or simply on sensitivity studies, where the results of
retrievals using different retrieval set-ups are compared. 50

9 A case study: ozone

The error propagation approach presented above is discussed
using an ozone retrieval from a MIPAS nighttime measure-
ment at 40.09◦ N, 11.28◦ E during Envisat orbit 38517 on
12 July 2009 as a case study. Details of the underlying re- 55

trieval procedure are reported by Kiefer et al. (2022). The re-
sulting error components for selected altitudes are presented
in Fig. 2 and Table B1.

Since a large number of strong ozone lines is available for
the retrieval, noise makes only a moderate contribution to 60

the error budget of MIPAS ozone. Instead, the error budget
is driven by uncertainties in spectroscopic data, namely line
intensities and broadening coefficients. Both spectroscopic
data uncertainties in the target gas ozone and those of CO2
are important. The latter affect the ozone retrieval mainly via 65

tangent altitude errors which propagate onto the ozone re-
trievals. Furthermore, considerable errors are caused by cal-
ibration uncertainties, associated both with gain and offset
calibration. Calibration uncertainties related to the MIPAS A
band have a much larger effect on the ozone retrieval than 70

those related to the AB band, simply because the majority
of spectral lines used for the ozone retrieval are situated in
the MIPAS A band (Kiefer et al., 2022). Moreover, instru-
ment line shape (ILS) and tangent altitude (LOS) uncertain-
ties make considerable contributions to the MIPAS ozone er- 75

ror budget.
Broadly speaking, spectroscopic uncertainties along with

instrument and calibration-related as well as uncertainties in
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temperature and pointing information outweigh uncertainties
in the abundances of interfering species by far. None of these
uncertainties exceeds the contribution of measurement noise.

10 Representative error estimates

Since it is hard to decide a priori which limb scans are repre-5

sentative of a certain typical atmospheric situation, error es-
timates are calculated for a large number of observations, as
discussed in Sect. 5. The representative errors are estimated
differently for errors inferred using Gaussian error propaga-
tion (Eqs. 5 or 6) and errors estimated using perturbation10

studies (Eq. 7).
For errors estimated via Gaussian error propagation, the

variances – and, if available, also the covariances – are aver-
aged over all limb scans assigned to a given scenario. Since
atmospheric state variables retrieved from MIPAS spectra are15

represented on a fixed altitude grid, independent of the tan-
gent altitudes of the measurement, this step does not involve
any interpolation. The result is one mean variance profile
per error component and per scenario. For error components
where covariance information is available, the respective co-20

variance matrices are averaged. All these error components
are regarded as random error components.

Estimates of random error components resulting from per-
turbation studies are obtained by the arithmetical averaging
of the responses to the perturbation. To decide if the error25

component is chiefly additive or chiefly multiplicative, a lin-
ear regression is performed using the responses to the pertur-
bation over the mixing ratios. A predominant axis intercept
indicates an absolute (i.e. additive) error component, while
a pronounced slope indicates a relative (multiplicative) error30

component. This empirical assessment supersedes the hith-
erto intuition-based classification of additive versus multi-
plicative error components.

Due to the headache error problem, the procedure is
slightly more complicated for error components that are la-35

belled systematic and evaluated on the basis of perturbation
studies because modulation of the error through the randomly
varying atmospheric state may add a random component.
When no sizeable latitude or time dependency of these er-
rors is observed, the systematic part of the error component40

under investigation is the mean over all limb scans associ-
ated with the scenario under assessment. The information on
the random component of the headache error lies in the scat-
ter around the mean error. When a sizeable dependency of
any explaining variable (latitude, time, etc.) is found, a para-45

metric model has to be fitted to the individual errors. In this
case, the bias then can be estimated for the actual condition
with this model, and the information on the random part of
the headache error is included in the unexplained variance
around this parameterization. The distinction between addi-50

tive and multiplicative error components is performed on the
basis of a linear regression as described above for the ran-

dom errors. Most of the error sources assessed by perturba-
tion studies result in multiplicative errors; thus, the use of
relative rather than absolute errors is adequate for disentan- 55

gling systematic and random parts of the headache error.
Error covariances of the random components of the

headache errors in the altitude domain can be calculated in
a straight forward way along with the averaging procedure.
These representative error estimates are reported for the par- 60

ticular species under investigation along with the publication
of the data product, such as Kiefer et al. (2022) for ozone.

11 Aggregation of error estimates

Both the total random error estimate and the total systematic
error estimate are calculated by adding the respective compo- 65

nent error estimates in terms of variances. For this purpose,
percentage error estimates are transformed to absolute error
estimates using the respective reference concentration pro-
file. Figure 3 shows an example for the northern midlatitude
summer night reference scenario. The top left panel shows 70

the error components and the aggregated estimated error (to-
tal). In this particular example, it is dominated by spectro-
scopic uncertainties. The estimated total error variance is the
sum of the random error variance and the systematic error
variance. The top right panel shows the decomposition of the 75

total error into its aggregated systematic and random compo-
nents. It does not come unexpectedCE11 that the aggregated
random error exceeds the uncertainty caused by measure-
ment noise alone. The lower panels show the decomposition
of the aggregated systematic (left) and random (right) errors 80

into their components. Except for the lowermost altitudes,
uncertainties in spectroscopic data are the leading source of
systematic error. It should be mentioned that the estimated
bias cannot simply be subtracted from the measurement in
order to correct the measurement because the bias estimates 85

are based on perturbation studies with an ad hoc choice of the
sign of the perturbation. The systematic uncertainties (instru-
ment line shape, gain calibration, and spectroscopic uncer-
tainties) also contribute to the random error budget and thus
appear in both panels, due to their headache-type nature that 90

causes a bias and a scatter around this bias. Below 19 km, the
random component of the propagated instrument line shape
error even dominates the random error budget. Above this
level, measurement noise typically is the leading source of
random error. 95

Since the correlation characteristics in different domains,
such as time, altitude, among species, etc., can be different
for each error component, there may be cases where it is
more adequate to work with the detailed error budget rather
than the total error estimates (see, e.g. Kiefer et al., 2022, and 100

references therein).
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Figure 3. Aggregated estimated ozone errors for the northern midlatitude summer night reference scenario. (a) The total error budget and
its components (interf is the interfering species, and ILS is the instrument line shape). (b) The decomposition into random and systematic
components. (c, d) The contributions to the systematic (a, b) and random (c, d) error budgets. This example was taken from Kiefer et al.
(2022).

12 Technical realization

A control programCE12 runs over all limb scans associated
with the scenario under assessment. For each limb scan, this
program calls the radiative transfer model KOPRA for the
calculation of the reference spectra F nominal and the per-5

turbed spectra F perturbed needed for calculation of error com-
ponents according to Eq. (7). Furthermore, it provides the
gain functions G and covariance matrices Sx,noise of the tar-
get species and, as far as available, the covariance matrices
Sb,noise of parameter errors and the required Jacobians Kb.10

With this information on the current limb scan available, the
error estimator is called. This program extracts the relevant
information from the available covariance matrices Sx,noise
and Sb,noise, reads the difference spectra obtained from the
perturbed and reference spectra, and estimates the error com-15

ponents of the limb scan under analysis. For each limb scan
under consideration, the error estimator provides the error es-
timates for each error component, based on Eqs. (5)–(7).

Based on the individual estimated error components, a
post-processing routine performs all the statistics over the20

limb scans in the scenario under assessment, including the
disentangling of the headache error, as described in Sect. 10.
For the reference scenarios, the resulting error estimates are
reported, component-wise, random, and systematic, and are
deemed representative of the scenario they are assigned to.25

Our data come with an error class idCE13 for each profile
that, based on the information provided in Table A6, enables
the data user to decide, for any MIPAS measurement, which
scenario is applicable. The user who needs only error bud-
gets for the categories of systematic versus random error and 30

absolute versus relative errors does not have to refer to these
error class id’sCE14 because, for these categories, the related
subtotal errors are transformed to and provided for each sin-
gle observation.

13 Conclusions 35

This paper presents an overview of an error estimation
scheme used for temperatures and trace gas concentrations
retrieved from MIPAS spectra with the IMK/IAA data pro-
cessor. It represents a best effort to make the error reporting
compliant with the recommendations by the TUNER activity, 40

as summarized in von Clarmann et al. (2020). In this paper,
we limit ourselves to the methodology, insofar as it is overar-
ching over the different data products of MIPAS, to support
gas-specific analyses as performed, for example, by Kiefer
et al. (2022) for ozone. In particular, the improved separa- 45

tion of systematic versus random error components will fos-
ter bias and precision validation, as performed by Laeng et al.
(2014), Plieninger et al. (2016), and Eckert et al. (2016) for
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preceding MIPAS data versions of O3, CH4, N2O, CFC-11,
and CFC-12.

Arguably, some error components are not specified as ac-
curately as one would like to have them. This holds true par-
ticularly for uncertainties in spectroscopic data, namely line5

intensities and broadening coefficients. For many species,
these uncertainties belong to the leading error sources. The
main drawback is that no information on spectroscopic error
correlations between the various lines of a gas is provided.
The related target gas error largely depends on this correla-10

tion. Furthermore, it is a truism that unrecognized or unquan-
tified error sources cannot be considered. Validation studies
will show how realistic the estimated random and systematic
errors are, how complete the error budget is, and how justi-
fied the ingoing assumptions are.15
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Appendix A: Sample atmospheres

Table A1. Measurements used for error analysis of nominal HR measurements.TS5

Name Date(s) Latitude range(s) SZA range
(YYYYMM) (◦) (◦)

Northern polar winter day [200301,200302] [65,90] [0,90]
Northern polar winter night [200301,200302] [65,90] [95,180]
Northern polar spring day [200303,200305] [65,90] [0,90]
Northern polar spring night [200303,200305] [65,90] [95,180]
Northern polar summer day [200306,200308] [65,90] [0,90]
Northern polar summer night [200306,200308] [65,90] [95,180]
Northern polar autumn day [200309,200311] [65,90] [0,90]
Northern polar autumn night [200309,200311] [65,90] [95,180]
Northern midlatitude winter day [200301,200302] [40,60] [0,90]
Northern midlatitude winter night [200301,200302] [40,60] [95,180]
Northern midlatitude spring day [200303,200305] [40,60] [0,90]
Northern midlatitude spring night [200303,200305] [40,60] [95,180]
Northern midlatitude summer day [200306,200308] [40,60] [0,90]
Northern midlatitude summer night [200306,200308] [40,60] [95,180]
Northern midlatitude autumn day [200309,200311] [40,60] [0,90]
Northern midlatitude autumn night [200309,200311] [40,60] [95,180]
Tropics day [200303,200305] [−20,20] [0,90]
Tropics night [200303,200305] [−20,20] [95,180]
Southern midlatitude winter day [200306,200308] [−60,−40] [0,90]
Southern midlatitude winter night [200306,200308] [−60,−40] [95,180]
Southern midlatitude spring day [200309,200311] [−60,−40] [0,90]
Southern midlatitude spring night [200309,200311] [−60,−40] [95,180]
Southern midlatitude summer day [200301,200302] [−60,−40] [0,90]
Southern midlatitude summer night [200301,200302] [−60,−40] [95,180]
Southern midlatitude autumn day [200303,200305] [−60,−40] [0,90]
Southern midlatitude autumn night [200303,200305] [−60,−40] [95,180]
Southern polar winter day [200306,200308] [−90,−65] [0,90]
Southern polar winter night [200306,200308] [−90,−65] [95,180]
Southern polar spring day [200309,200311] [−90,−65] [0,90]
Southern polar spring night [200309,200311] [−90,−65] [95,180]
Southern polar summer day [200301,200302] [−90,−65] [0,90]
Southern polar summer night [200301,200302] [−90,−65] [95,180]
Southern polar autumn day [200303,200305] [−90,−65] [0,90]
Southern polar autumn night [200303,200305] [−90,−65] [95,180]
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Table A2. Measurements used for error analysis of RR nominal measurements.

Name Date(s) Latitude range(s) SZA range
(YYYYMM) (◦) (◦)

Northern polar winter day [200901,200902] [65,90] [0,90]
Northern polar winter night [200901,200902] [65,90] [95,180]
Northern polar spring day [200903,200905] [65,90] [0,90]
Northern polar spring night [200903,200905] [65,90] [95,180]
Northern polar summer day [200906,200908] [65,90] [0,90]
Northern polar summer night [200906,200908] [65,90] [95,180]
Northern polar autumn day [200909,200911] [65,90] [0,90]
Northern polar autumn night [200909,200911] [65,90] [95,180]
Northern midlatitude winter day [200901,200902] [40,60] [0,90]
Northern midlatitude winter night [200901,200902] [40,60] [95,180]
Northern midlatitude spring day [200903,200905] [40,60] [0,90]
Northern midlatitude spring night [200903,200905] [40,60] [95,180]
Northern midlatitude summer day [200906,200908] [40,60] [0,90]
Northern midlatitude summer night [200906,200908] [40,60] [95,180]
Northern midlatitude autumn day [200909,200911] [40,60] [0,90]
Northern midlatitude autumn night [200909,200911] [40,60] [95,180]
Tropics day [200903,200905] [−20,20] [0,90]
Tropics night [200903,200905] [−20,20] [95,180]
Southern midlatitude winter day [200906,200908] [−60,−40] [0,90]
Southern midlatitude winter night [200906,200908] [−60,−40] [95,180]
Southern midlatitude spring day [200909,200911] [−60,−40] [0,90]
Southern midlatitude spring night [200909,200911] [−60,−40] [95,180]
Southern midlatitude summer day [200901,200902] [−60,−40] [0,90]
Southern midlatitude summer night [200901,200902] [−60,−40] [95,180]
Southern midlatitude autumn day [200903,200905] [−60,−40] [0,90]
Southern midlatitude autumn night [200903,200905] [−60,−40] [95,180]
Southern polar winter day [200906,200908] [−90,−65] [0,90]
Southern polar winter night [200906,200908] [−90,−65] [95,180]
Southern polar spring day [200909,200911] [−90,−65] [0,90]
Southern polar spring night [200909,200911] [−90,−65] [95,180]
Southern polar summer day [200901,200902] [−90,−65] [0,90]
Southern polar summer night [200901,200902] [−90,−65] [95,180]
Southern polar autumn day [200903,200905] [−90,−65] [0,90]
Southern polar autumn night [200903,200905] [−90,−65] [95,180]
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Table A3. Measurements used for error analysis of middle atmosphere measurements.

Name Date(s) Latitude range(s) SZA range
(YYYYMM) (◦) (◦)

Northern polar winter day [200901,200902] [65,90] [0,90]
Northern polar winter night [200901,200902] [65,90] [98,180]
Northern polar spring day [200903,200905] [65,90] [0,90]
Northern polar spring night [200903,200905] [65,90] [98,180]
Northern polar summer day [200906,200908] [65,90] [0,90]
Northern polar summer night [200906,200908] [65,90] [98,180]
Northern polar autumn day [200909,200911] [65,90] [0,90]
Northern polar autumn night [200909,200911] [65,90] [98,180]
Northern midlatitude winter day [200901,200902] [40,60] [0,90]
Northern midlatitude winter night [200901,200902] [40,60] [98,180]
Northern midlatitude spring day [200903,200905] [40,60] [0,90]
Northern midlatitude spring night [200903,200905] [40,60] [98,180]
Northern midlatitude summer day [200906,200908] [40,60] [0,90]
Northern midlatitude summer night [200906,200908] [40,60] [98,180]
Northern midlatitude autumn day [200909,200911] [40,60] [0,90]
Northern midlatitude autumn night [200909,200911] [40,60] [98,180]
Tropics day [200903,200905] [−20,20] [0,90]
Tropics night [200903,200905] [−20,20] [98,180]
Southern midlatitude winter day [200906,200908] [−60,−40] [0,90]
Southern midlatitude winter night [200906,200908] [−60,−40] [98,180]
Southern midlatitude spring day [200909,200911] [−60,−40] [0,90]
Southern midlatitude spring night [200909,200911] [−60,−40] [98,180]
Southern midlatitude summer day [200901,200902] [−60,−40] [0,90]
Southern midlatitude summer night [200901,200902] [−60,−40] [98,180]
Southern midlatitude autumn day [200903,200905] [−60,−40] [0,90]
Southern midlatitude autumn night [200903,200905] [−60,−40] [98,180]
Southern polar winter day [200906,200908] [−90,−65] [0,90]
Southern polar winter night [200906,200908] [−90,−65] [98,180]
Southern polar spring day [200909,200911] [−90,−65] [0,90]
Southern polar spring night [200909,200911] [−90,−65] [98,180]
Southern polar summer day [200901,200902] [−90,−65] [0,90]
Southern polar summer night [200901,200902] [−90,−65] [98,180]
Southern polar autumn day [200903,200905] [−90,−65] [0,90]
Southern polar autumn night [200903,200905] [−90,−65] [98,180]
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Table A4. Measurements used for error analysis of upper atmosphere measurements and low solar activity.

Name Date(s) Latitude range(s) SZA range
(YYYYMM) (◦) (◦)

Northern polar winter day [200901,200902] [65,90] [0,90]
Northern polar winter night [200901,200902] [65,90] [100,180]
Northern polar spring day [200903,200905] [65,90] [0,90]
Northern polar spring night [200804,200804] [65,90] [100,180]

[200903,200905]
[201004,201004]

Northern polar summer day [200906,200908] [65,90] [0,90]
Northern polar summer night [200806,200808] [65,90] [98,180]

[200906,200908]
[201006,201008]

Northern polar autumn day [200909,200911] [65,90] [0,90]
Northern polar autumn night [200909,200911] [65,90] [100,180]
Northern midlatitude winter day [200901,200902] [40,60] [0,90]
Northern midlatitude winter night [200901,200902] [40,60] [100,180]
Northern midlatitude spring day [200903,200905] [40,60] [0,90]
Northern midlatitude spring night [200903,200905] [40,60] [100,180]
Northern midlatitude summer day [200906,200908] [40,60] [0,90]
Northern midlatitude summer night [200906,200908] [40,60] [100,180]
Northern midlatitude autumn day [200909,200911] [40,60] [0,90]
Northern midlatitude autumn night [200909,200911] [40,60] [100,180]
Tropics day [200903,200905] [−20,20] [0,90]
Tropics night [200903,200905] [−20,20] [100,180]
Southern midlatitude winter day [200906,200908] [−60,−40] [0,90]
Southern midlatitude winter night [200906,200908] [−60,−40] [100,180]
Southern midlatitude spring day [200909,200911] [−60,−40] [0,90]
Southern midlatitude spring night [200909,200911] [−60,−40] [100,180]
Southern midlatitude summer day [200901,200902] [−60,−40] [0,90]
Southern midlatitude summer night [200901,200902] [−60,−40] [100,180]
Southern midlatitude autumn day [200903,200905] [−60,−40] [0,90]
Southern midlatitude autumn night [200903,200905] [−60,−40] [100,180]
Southern polar winter day [200906,200908] [−90,−65] [0,90]
Southern polar winter night [200906,200908] [−90,−65] [100,180]
Southern polar spring day [200909,200911] [−90,−65] [0,90]
Southern polar spring night [200909,200911] [−90,−65] [100,180]
Southern polar summer day [200901,200902] [−90,−65] [0,90]
Southern polar summer night [200801,200802] [−90,−65] [100,180]

[200901,200902]
[201001,201002]

Southern polar autumn day [200903,200905] [−90,−65] [0,90]
Southern polar autumn night [200903,200905] [−90,−65] [100,180]
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Table A5. Measurements used for error analysis of upper atmosphere measurements during high solar activity.

Name Date(s) Latitude range(s) SZA range
(YYYYMM) (◦) (◦)

Northern polar winter day [201201,201202] [60,90] [0,90]
Northern polar winter night [201201,201202] [60,90] [100,180]
Northern polar spring day [201103,201105] [60,90] [0,90]
Northern polar spring night [201103,201105] [60,90] [100,180]
Northern polar summer day [201106,201108] [60,90] [0,90]
Northern polar summer night [201106,201108] [60,90] [98,180]
Northern polar autumn day [201109,201111] [60,90] [0,90]
Northern polar autumn night [201109,201111] [60,90] [100,180]
Northern midlatitude winter day [201201,201202] [40,60] [0,90]
Northern midlatitude winter night [201201,201202] [40,60] [100,180]
Northern midlatitude spring day [201103,201105] [40,60] [0,90]
Northern midlatitude spring night [201103,201105] [40,60] [100,180]
Northern midlatitude summer day [201106,201108] [40,60] [0,90]
Northern midlatitude summer night [201106,201108] [40,60] [100,180]
Northern midlatitude autumn day [201109,201111] [40,60] [0,90]
Northern midlatitude autumn night [201109,201111] [40,60] [100,180]
Tropics day [201103,201105] [−20,20] [0,90]
Tropics night [201103,201105] [−20,20] [100,180]
Southern midlatitude winter day [201106,201108] [−60,−40] [0,90]
Southern midlatitude winter night [201106,201108] [−60,−40] [100,180]
Southern midlatitude spring day [201109,201111] [−60,−40] [0,90]
Southern midlatitude spring night [201109,201111] [−60,−40] [100,180]
Southern midlatitude summer day [201201,201202] [−60,−40] [0,90]
Southern midlatitude summer night [201201,201202] [−60,−40] [100,180]
Southern midlatitude autumn day [201103,201105] [−60,−40] [0,90]
Southern midlatitude autumn night [201103,201105] [−60,−40] [100,180]
Southern polar winter day [201106,201108] [−90,−60] [0,90]
Southern polar winter night [201106,201108] [−90,−60] [100,180]
Southern polar spring day [201109,201111] [−90,−60] [0,90]
Southern polar spring night [201109,201111] [−90,−60] [100,180]
Southern polar summer day [201201,201202] [−90,−60] [0,90]
Southern polar summer night [201201,201202] [−90,−60] [100,180]
Southern polar autumn day [201103,201105] [−90,−60] [0,90]
Southern polar autumn night [201103,201105] [−90,−60] [100,180]
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Table A6. Attribution of measurements to scenarios. Note: DJF is December–February, MAM is March–May, JJA is June–August, and SON
is September–November.

Scenario Latitude SZA Months

N polar winter day 60–90◦ N 0–95 DJF
N polar winter night 60–90◦ N > 95 DJF
N polar spring day 60–90◦ N 0–95 MAM
N polar spring night 60–90◦ N > 95 MAM
N polar summer day 60–90◦ N 0–95 JJA
N polar summer night 60–90◦ N > 95 JJA
N polar autumn day 60–90◦ N 0–95 SON
N polar autumn night 60–90◦ N > 95 SON
N midlat winter day 30–60◦ N 0–95 DJF
N midlat winter night 30–60◦ N > 95 DJF
N midlat spring day 30–60◦ N 0–95 MAM
N midlat spring night 30–60◦ N > 95 MAM
N midlat summer day 30–60◦ N 0–95 JJA
N midlat summer night 30–60◦ N > 95 JJA
N midlat autumn day 30–60◦ N 0–95 SON
N midlat autumn night 30–60◦ N > 95 SON
Tropics day 30◦ S–30◦ N 0–95 All
Tropics night 30◦ S–30◦ N > 95 All
S midlat winter day 60–30◦ S 0–95 JJA
S midlat winter night 60–30◦ S > 95 JJA
S midlat spring day 60–30◦ S 0–95 SON
S midlat spring night 60–30◦ S > 95 SON
S midlat summer day 60–30◦ S 0–95 DJF
S midlat summer night 60–30◦ S > 95 DJF
S midlat autumn day 60–30◦ S 0–95 MAM
S midlat autumn night 60–30◦ S > 95 MAM
S polar winter day 90–60◦ S 0–95 JJA
S polar winter night 90–60◦ S > 95 JJA
S polar spring day 90–60◦ S 0–95 SON
S polar spring night 90–60◦ S > 95 SON
S polar summer day 90–60◦ S 0–95 DJF
S polar summer night 90–60◦ S > 95 DJF
S polar autumn day 90–60◦ S 0–95 MAM
S polar autumn night 90–60◦ S > 95 MAM
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Appendix B: Case study
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