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Abstract.

Onboard the Deep Space Climate Observatory (DSCOVR), the first Earth-observing satellite at the L1 point (the first La-
grangian point in the Earth-Sun system), the Earth Polychromatic Imaging Camera (EPIC) observes the entire sunlit face of
the Earth continuously. EPIC measures the solar backscattered and reflected radiances in ten discrete spectral channels, four of
which are in the ultraviolet (UV) range. These UV bands are selected primarily for total ozone (O3) and aerosol retrievals based
on heritage algorithms developed for the series of Total Ozone Mapping Spectrometer (TOMS). These UV measurements also
provide sensitive detection of sulfur dioxide (SO3) and volcanic ash, both of which may be episodically injected into the at-
mosphere during explosive volcanic eruptions. This paper presents the theoretical basis and mathematical procedures for the
direct vertical column fitting (DVCF) algorithm used for retrieving total vertical columns of O3 and SOy from DSCOVR EPIC.
This paper describes algorithm advances, including an improved Og profile representation that enables profile adjustments
from multiple spectral measurements and the spatial optimal estimation (SOE) scheme that reduces Oj3 artifacts resulted from
EPIC’s band-to-band misregistrations. Furthermore, this paper discusses detailed error analyses and presents inter-comparisons

with correlative data to validate O3 and SO retrievals from EPIC.
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1 Introduction

The Deep Space Climate Observatory (DSCOVR) was launched on the 11*" of February 2015, and after a 116-day journey
maneuvered successfully into its Lissajous orbit around the first Earth-Sun system Lagrangian (L1) point, which is about
1.5x105 km from the Earth and located the-between the Sun and the Earth on the ecliptic plane. At the L1 point, where the
net gravitational forces equal the centrifugal force, DSCOVR orbits the Sun at the same rate as the Earth, staying close in line
along the Sun and the Earth and thus allowing the Earth-pointing EPIC to monitor the entire sunlit planet continuously.

The Earth Polychromatic Imaging Camera (EPIC) measures the solar backscattered and reflected radiances from the Earth
using a 2-dimensional (2048x2048) charged-coupled device (CCD), recording a set of ten spectral images using different

narrowband filters successively. While EPIC may observe the Earth continuously from the vicinity of the L1 point, only a
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number of spectral image sets are taken in a day, limited by accessible contact windows of the two ground stations located in
Wallops island (Virginia) and Fairbanks (Alaska). Currently, between 13 and 22 spectral image sets, recorded at a sampling
rate of one set in every 110 minutes during boreal winter and every 65 minutes during boreal summer, are transmitted back to
the ground stations in a day.

EPIC takes about six and a half minutes to complete an image set. The first in the set is the blue band (centered at 443 nm),
which takes ~2 minutes to complete the imaging at native resolution (2048 <2048 pixels). The images of the nine remaining
bands are recorded sequentially at a reduced resolution (1024 x1024 pixels, achieved through an onboard average of 2x2
pixels), separating by a time cadence of ~30 seconds between adjacent bands. Due to the Earth rotation and spacecraft jitter,
each spectral image records a slightly different (i.e., rotated) sunlit hemisphere. As a result, the images of two different channels
appear to be displaced from each other, usually by a distance of about one to a few native pixels, depending on their observation
time difference.

Each native pixel has a ~1 arc second or 2.778x10 * degree angular instantaneous field of view (IFOV), yielding a geo-
metric ground footprint size of ~8x8 km? at the image center of the sunlit disk. The effective footprint size is about 10x 10
km?, which is larger than the geometric one due to the effect of the optical point-spread function of the EPIC imaging system.
For a reduced resolution image (1024 x 1024 pixels), the effective central ground IFOV size is about 18 x 18 km?, which is
significantly smaller than the nadir footprints of some past and present satellite instruments that provided global ozone map-
ping from the low Earth orbit (LEO), such as the Total Ozone Mapping Spectrometer (TOMS, nadir pixel size 50x50 km?)
on a series of satellites, the Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY, 60x30
km?, Bovensmann et al. 1999) on ESA’s ENVIronmental SATellite (ENVISAT), the Ozone Mapping and Profiler Suite Nadir
Mapper (OMPS-NM, 50 x50 km?, Flynn et al. 2014) on Suomi National Polar Partnership (SNPP), the Global Ozone Monitor-
ing Experiment—2 (GOME-2, Callies et al. 2000; Munro et al. 2016) on Metop-A (40x40 kmg)aﬁekz, Metop-B (80x40 kmg):

13x24 km?, Levelt et al. 2006) on Aura and the OMPS-NM (17 x 13 km?, Flynn et al. 2016) on NOAA-20, and much bigger
than that of the TROPOspheric Monitoring Instrument (TROPOMI, 5.5x%3.5 km?, Veefkind et al. 2012) on the ESA Sentinel-5
Precursor (S5P), EPIC’s spatial resolution are sufficiently high to map small-scale O3 natural variations and observe many
volcanic emissions, from degassing to eruption.

EPIC, combining moderate spatial resolution with high temporal cadences from the unique vantage point of L1, provides
unprecedented Earth observations, from sunrise to sunset simultaneously (see Fig. 1). This synoptic (i.e., concurrent, globally
unified, and spatially resolved) perspective is quite distinctive from satellite observations from an-a LEO or a geostationary
Earth orbit (GEO): LEO observations are often made within a narrow range of local time with a small number of samplings at a
location per day, while GEO observations have limited spatial coverage, constrained to roughly 60 away from its position. The
EPIC observations can have simultaneous co-located observations with measurements from any contemporaneous LEO and
GEO platforms, allowing direct comparisons and synergistic use of data acquired from different perspectives. This overlapping
feature has been exploited to calibrate some EPIC channels by matching its measured albedo values to those of OMPS-NM on

SNPP (Herman et al., 2017).
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marked on the map with a yellow dot. The area shaded with midnight blue is in the dark, i.e., without direct sunlight, while the unshaded

area is the sunlit hemisphere, with sunrise on the left (west of subsolar point) and sunset on the right (east of subsolar point). Contours of
solar zenith angles (SZAs, blue dashed lines) and viewing zenith angles (VZAs, red dashed lines), going from 10 to 80 with astep 10 , are
shown in the sunlit area. Note that the SZA ( s) and VZA ( v) of an EPIC IFOV have similar values and both angles increase as the [FOV

moves from the center towards the edge of the sunlit disk.

The ten narrow bands of EPIC, spanning ultra-violet (UV), visible, and near-infrared wavelengths, are selected to yield
diverse information about the Earth, from atmospheric compositions to surface reflectivity and vegetation. Four of the ten
bands measure UV spectral radiances, which are used primarily for total ozone (O3) retrievals. These UV bands also provide
sensitive detection of sulfur dioxide (SO3) and volcanic ash, both of which may be episodically injected into the atmosphere
during explosive volcanic eruptions.

This paper describes algorithm physics, model assumptions, mathematical procedures, and error analyses for the direct
vertical fitting (DVCF) algorithm. We show examples to illustrate the high accuracy of O3 and SO, retrievals achieved by
applying the DVCEF algorithm to spectral UV radiance measurements of DSCOVR EPIC. Lastly, we validate the DSCOVR

EPIC O3 and SO through inter-comparisons with correlative data.

2 Algorithm Physics

Algorithm physics is a term first used by Chance (2006) to denote the physical processes contributing to the spaceborne
measurement of radiance spectra. A measured radiance L, (in units of W -sr 1-m 2.nm 1) from space consists of sunlight

photons within a narrow spectral range (typically < 2 nm), specified by the instrument spectral response function S (ISRF,
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Figure 2. Filter transmission functions for the four EPIC UV channels. The widths are 1 nm for EPIC bands 1 and 2, similar to those for
TOMS and OMPS-NM. Note that the filter transmissions as functions of wavelength are measured in the air (see Figure 1 in Herman et al.
2017). Here we have converted the wavelength in the air to wavelength in vacuum using the formula of Edlén (1966). The filter values are

normalized to 1 at band centers (noted on top of each panel with uncertainty).

e.g., EPIC UV filter transmissions shown in Fig. 2), and is modeled as

R
S( )lroa( )F( )d

RS( )d

ey

LM:

where F () (in units of W -m 2.nm 1) is the monochromatic spectral solar irradiance, and l704( ) the sun-normalized
monochromatic top-of-the-atmosphere (TOA) radiance (in units of sr 1) for a wavelength  (in units of nm). The sun-
normalized measured radiance 1, for a spectral band is defined as |, = L=F,7, where Fpy = S()F( )d = S( )d ,
and the integrations in these equations are performed over the valid range of the ISRF S for the spectral band. Hereafter
we drop ‘sun-normalized’ when referring to | ,;, which is simply called measured radiance. Quantities for a spectral band are
flux-weighted bandpass averages to account for the differential contributions from individual wavelengths within the band-
pass. Without loss of generality, 70 4( ) and other spectral-dependent quantities are hereafter used to denote flux-weighted
bandpass averages, with  representing the characterized wavelength of the spectral band.

To reach a sensor at TOA, sunlight photons are either back-scattered by air molecules or particles or reflected by the under-
lying Earth surface. As these photons traverse through the atmosphere along many possible optical paths connecting the Sun to

the sensor, they may be absorbed by the underlying surface or by some atmospheric constituents, such as trace gases (e.g. O3
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and SOs) and light-absorbing particles (e.g. dust and smoke). The photons that complete the journey carry information about
atmospheric absorbers along their paths. The accumulation of photons from each contributing path yields the TOA radiance,
which may be modeled with radiative transfer (RT) simulation if the properties of surface reflection and atmospheric absorption
and scattering are known explicitly. The ability to model the TOA radiance accurately is the prerequisite for interpreting the
observations and relating the gas absorptions with TOA radiance measurements.

We describe next the characteristics of UV photon sampling of the atmosphere, and the construction of surface and atmo-
spheric models to enable proper simulation of the photon sampling of the atmosphere. Dividing the atmosphere into infinites-
imal thin layers, the quantity that specifies the photon sampling is the mean path length of photons traversing through a layer.
This mean path length normalized by the geometric thickness of the layer is the local or altitude-resolved air mass factor (AMF,
M ). The proper simulation of photon sampling requires that the modeled mean path length through each layer closely matches
that in the actual observing condition.

In theory, a TOA radiance, l7o 4, depends on the viewing-illumination geometry, the optical properties of the atmospheric
constituents (both absorbers and non-absorbers), and their amounts and vertical distributions, as well as on the reflective

properties of the underlying surface. For a wavelength , I 4 can be expressed as the sum of two contributions,
ITOA:|a+Is; (2)

where 1, consists of solar photons scattered once or more by molecules and particles in the atmosphere without interacting

with the underlying surface, and | are solar photons reflected at least once or multiple times by the underlying surface.
2.1 Path Radiance

1, is also known as the atmospheric path radiance, i.e., photons backscattered to the sensor along a path without any intersection
with the underlying surface. Conceptually it is the accumulation of TOA photons that are last backscattered toward the sensor

along the line of sight from atmospheric layers at different levels of extinction optical depths. Algebraically it is expressed as

the path integration of virtual emission J (t) (Dave 1964) in the direction specified by the view zenith angle (—=-¢€6s—— a)s
attenuated (e */#, where. . = c0s. ,) by atmospheric scattering and absorption, over the extinction optical depth t along the

path of line of sight from the top (t = 0) to the bottom (t = ) of the atmosphere:
zr
l,= J() e Yru(t) dt=: (3)
0
The source of virtual emission, J (t), consists of all the photons scattered towards to the sensor, including photons of the direct
solar radiation being scattered once only and photons of diffuse radiation (i.e. photons scattered to level t) being scattered
once more at t. The strength of the virtual emission of a thin layer at t is proportional to its scattering optical thickness, which
is equal to the product of the layer total optical thickness (dt) and the single scattering albedo ! (t) (defined as the ratio of
layer scattering optical thickness over the layer total optical thickness). Here we use  (t) = J(t)e */#1(t)= to represent the

radiance contribution per unit optical thickness to 1, from a layer at t. Eq. (3) describes how the solar photons sample the
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Figure 3. Sample results from RT simulations for a molecular atmosphere withr@®les X, andX , in panel (a). BothX ; andX , are
mid-latitude zone (30 latitude 60 ) climatological Q pro les with the same total vertical column of 275 Dobson units, where 1 DU =
2.69 10" molecules/crh. RT simulations are performed for two viewing-illumination geometries: 1) low zenith angles, , =5 and
relative azimuthal angle (RAA), =45 and 2) high zenith angless = y =70 and =45 . (b) Path radiances, (X 1) for the low and
high zenith geometries, and their fractional changek:€1.) when G pro le is changed toX . (c) Normalized RCFs, for EPIC bands 1
and 2. Here (t) is converted into (InP) by the multiplication of factodt=dInP . (d) Mean photon path lengthmg) of EPIC bands 1 and

2 as functions of altitude for the low and high zenith geometries, normalized by the respective geometric air mass fagtors,

atmosphere from top to bottom and how atmospheric absorption is directly imprinted (via the atteau&tioron the path
radiance.

A path radiancé , for a molecular (i.e., an aerosol- and cloud-free) atmosphere with absorption from trace gases can be
accurately determined with RT simulations. For example, the path radiances for the low and high zenith angle geometries
(see Fig. 3b) are calculated with a vector RT code (e.g., TOMRAD, Dave 1964, or VLIDORT, Spurr 2006) as a function of
wavelength for a molecular atmosphere with thepgdo le X ; in Fig. 3a, and the corresponding radiance contributions to the
path radiances at EPIC bands 1 and 2 are shown in Fig. 3c. The radiance contribution function (RCF) for a wavelength in the
UV range (300 — 400 nm) is determined by Rayleigh scattering and absorption by trace gases (prigha@lyi©ubiquitous
in the atmosphere, with the bulk of it located in the stratosphere (e.g., Fig. 3a or Fig. 11), and its absorption cross-sections

(O3) increase rapidly with shorter wavelengths in the UV range (see Fig. 13). Rayleigh scattering, whose cross-sections are
proportional to;, also increase with shorter wavelength. The stroggisorption and large Rayleigh cross-sections at short
wavelengths greatly reduce the number of solar photons reaching the lower atmosphere. Conversely, at longer wavelengths
weaker Q absorption and smaller Rayleigh cross-sections allow more solar photons to reach the lower atmosphere where
higher air density increases the intensity of backscattering. Similar to the effect of reducing wavelength, lengthening the slant
path (by increasing solar or viewing or both zenith angles) would enhance ozone absorption and Rayleigh scattering along the
slant path, raising the altitude pro le of RCF. These spectral and angular characteristics of RCF are illustrated in Fig. 3¢, which
shows the normalized RCFs € =l,) of EPIC bands 1 and 2 for two different observation geometries and a mid-latigude O
pro le labeled asX ; in Fig. 3a. The results in Fig. 3c show that at longer wavelengths and lower zenith angles, path radiance
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contains more photons that are backscattered from the lower atmosphere. The RCF peak rb&ohedtitude for band 2 at
5 zenith angle, while at shorter wavelength and higher zenith angle, the RCF peak moves to the higher altitude, and it rises
to 10 km for band 1 at 70zenith angle. The shifting shapes of RCF shown in Fig. 3c illustrate the changes in the photon
sampling of the atmosphere with different wavelengths and zenith angles. The rising RCF peak position signi es diminishing
sensitivity to absorptions below the peak while favoring those above it.

The measurement sensitivity to a thin molecular absorber layer is equal to the product of the absorption cross-sections
() and the mean path lengtm{) of photons passing through the layer, wherg= @nl,=@;, and ; is the absorption
optical depth at the layer center altituzleNote that the photon path length is equal to the geometric AME= 1=cos( )+
1=cos( y), for a plane-parallel atmosphere if there is no scattering. Figure 3d shows the mean optical path lengths of EPIC
bands 1 and 2 as a function of altitude for the low and high zenith viewing-illumination geometries, showing thetreases
rapidly as the layer descends nearing the surface due to fewer photons reaching the lower atmosphmeeappiieachemg
as the layer rises towards TOA due to fewer path altering scatterings resulted from lower air density. In the upper troposphere
and lower stratosphere (UTLS)), of the low zenith geometry usually exceatlg due to a signi cant fraction of photons
undergo multiple scattering below and within UTLS, whitg of the high zenith geometry drops continuously from TOA down
to the surface in the case when the RCF peak is suf ciently high that fewer multiple scatterings contribute to the path radiance.
In general, the mean path length, is shorter for a wavelength with strongeg @bsorption, which reduces the number of
photons reaching the lower atmosphere. The variatiam ofvith a changing altitude signi es the path radiance dependence
on the absorber pro le. The path radiance fractional change due to pro le change=(X, X ) can be expressed as

la_ LaX2) laX2) _ 2

|a Ia(xl)

X(2) (T;) madz; (4)

whereT, is the atmospheric temperature aXe(z) andX ,(z) are absorber concentration at altitudd=igure 3b illustrates

the change in path radiance caused by;ap le change while keeping its total vertical column the same: lowering the O

prole (e.g., X 1 to X 7 in Fig. 3a) tend to increase the path radiance. Path radiance changes more with shorter wavelengths at

higher zenith angles, thus becoming more sensitive to the shape of the@. At low zenith angles, the change may have

the opposite sign of the change at large zenith angle for certain wavelengths (e.g., the changes plotted as red solid lines fo
> 316 nm in Fig. 3b), but the magnitude of change is much smaller, indicating the path radiances under these conditions are

primarily functions of total columns, since they are less sensitive to the pro le shapes. The differential responses of the spectral

path radiance to pro le changes imply that more than one piece of information aBeua®be contained in the multi-spectral

measurements. Retrieval constrained by multi-spectral radiances instead of a single spectral band may achieve a more accura

O3 measurement.
2.2 Surface Re ection

The path radianck, includes backscattered photons that are independent of the underlying surface, while the surface contribu-
tion to TOA radiancel s (referred to as surface radiance hereafter), consists of photons re ected once or more from the surface.
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For a molecular atmosphere bounded by a surface with well-characterized optical re ection properties, the surfacd gadiance
can be accurately predicted with RT modeling. For a Lambertian surface, which re ects radiation isotropically independent of
the incident direction, the surface radiaigecan be expressed as (Dave, 1964)

TursTe

ls= ﬁssb; (%)

wherer g is the re ectance or albedo of the Lambertian surfaGeis the total (direct and diffuse) transmittance from the Sun
to the surface along the direction of incoming solar irradiationBnftom the surface to the TOA along the viewing direction,
andS;, is the atmospheric spherical albedo, which is the fraction of the re ected radiation backscattered from the overlaying
atmosphere to the surface. The surface contribution from the Lambertian slitfacey be described as the once-re ected
radiance TxrsT-), enhanced by the series of interactions: backscattering from the overlaying atmosphere and re ection from
the underlying surface, which are accumulated to produce the ampli cation fbetbr rsSp).

The re ection property of a surface is represented by a bidirectional re ectance distribution function (BRDF), which spec-
i es the angular distribution of re ected radiance as a fraction of directional incident spectral irradiance. Field measurements
(Brennan and Bandeen, 1970) demonstrate that the re ection from natural surfaces (such as cloud, water, and land surfaces
are anisotropic in the UV, exhibiting different apparent re ectances when viewed from different directions. For instance, a
water surface looks bright when viewed from the direction near the specular re ection, but is much darker outside the glitter
(e.g., see Fig. 4a). Here the apparent re ectance is the Lambertian-Equivalent re ectivity (LER), i.e., the isotropic re ectance
rs that reproduces the radiancefrom a surface with an anisotropic BRDF at a viewing-illumination geometry. This LER is
also referred to as geometry-dependent surface LER (GLER) to indicate its dependence on the viewing-illumination geometry.

Re ection of UV sunlight from natural surfaces has long been measured by instruments onboard satellites in sun-synchronous
polar orbits (e.g. Eck et al., 1987). Since BRDFs for most natural surfaces (except for water surfaces) have not been adequately
characterized in the UV, satellite measurements provide scene re ectivities that are quanti ed with LERs at wavelengths in
the range of weak gaseous absorption. To derive LERom a measured radiandg , the atmospheric path radiantg
transmissiondy andT-, and re ectances,, for a spectral band are calculated for a molecular atmosphere and the inversion of
Eq. (5) yields

— IS .
TS ©

wherels = Iy |4. A vast majority of scene LERs derived from satellite observations contain contributions from scattering
from clouds or aerosols or both (see section 2.3 for their treatment). To characterize re ective properties of natural surfaces,
many investigations have devoted to creating global LER climatologies by selecting gridded LERSs that are minimally affected
by clouds or aerosols from the repeated observations over a period of time (typically a calendar month). These climatologies
include spectral surface LER databases constructed from the TOMS radiance measurements between 340-380 nm from 1978
1993 (Herman and Celarier, 1997), GOME-1 between 335-772 nm from 1995-2000 (Koelemeijer, 2003), SCIAMACHY
between 335-1670 nm from 2002—-2012 (Tilstra et al., 2017), OMI between 328-499 nm from 2005-2009 (Kleipool et al.,
2008), and GOME-2 between 335-772 nm from 2007-2013 (Tilstra et al., 2017). Inter-comparisons of these spectral LERs
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from different satellite missions show good agreement among corresponding measurements (Tilstra et al., 2017) despite dif-
ferences in observation time periods, viewing-illumination geometry, and footprint size. For a location on Earth, its surface is
usually observed at nearly the same local solar time from a sun-synchronous orbit, thus the sampling of its surface BRDF is
limited to a small range of SZAs. Furthermore, the selection of cloud- and aerosol-free LERSs tends to favor low LER values,
thus likely excluding the LERs at high VZAs. LER values of natural surfaces tend to be quite close when SZAs fall within a
small range and large VZAs are excluded, hence these LER climatologies are presented as independent of viewing-illumination
geometry. The low LER sensitivity to varying viewing-illumination geometry (within limited ranges of SZA and VZA) indi-
cates that natural surfaces (excluding glittering water surface) have weak anisotropy and can be treated as Lambertian surface:
These climatological data reveal that the surface LER in the UV for snow- and ice-free areas vary within the range of 0.02-0.1
for most land and (off-glint) water surfaces, except for a few places on Earth, such as the Saharan desert and the salt at in
Bolivia, where surface LERs may exceed 0.1. These low surface LER values derived from satellite observations have been
validated in eld experiments (Coulson and Reynolds 1971; Doda and Green 1980, 1981; Feister and Grewe 1995), which
have found that the spectral re ectances of natural surfaces, such as the open ocean, forest, grassland, and desert, fall withi
the same range of satellite LER measurements. These eld experiments have also demonstrated that the spectral re ectance
of natural surfaces vary slowly and smoothly with changing wavelengths. The spectrally smooth GLER of natural surfaces
permits accurate estimation of GLER within the UV range with measurements at two or more wavelengths, and speci cally,
the extrapolation of GLERs determined at the long (wegkafsorption) wavelengths to estimate the GLERSs at short (strong

O3 absorption) wavelengths.

Figure 4. Apparent re ectances of an ocean surface, described by a Cox-Munk BRDF (Cox and Munk 1954a, b) for a wind speed of 6 m/s,
viewed along the plane of incidence with the Sun at a zenith angle #fLl5 . (a) GLER at four EPIC UV bands vs viewing zenith angle

v. Here positive y denotes =0 and negative, for =180 . (b) GLER at several viewing zenith angles vs. wavelength

Based on the re ective characteristics of natural surfaces described above, the forward model for retrieval treats the re ec-
tions from a surface as Lambertian, whose re ectance is determined from the radiance measurement of the spectral band witf

weak gaseous absorption or is extrapolated from the weak to the strong absorption band. We use the re ection from an ocear
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Figure 5. Mean path lengtha1fs) of EPIC band 1 re ective photons from an ocean surface (with the same BRDF described in Fig. 4) and its
Lambertian equivalent surfaces. Here the mean path lemg¢thsormalized by the respective geometric air mass factogs)( are plotted

as functions of altitude for two viewing-illumination geometries: one view from the direction of specular re ectigrs 15 ; =180 ,

and the other at, =50 ; =0 , while the Sun ats =15 for both geometries.

surface as an example to illustrate the success and de ciency of the isotropic surface treatment and the GLER extrapolation,
since a water surface is likely the most anisotropic surface encountered in satellite remote sensing. Figure 4a displays the
GLERs of an ocean surface at the four EPIC UV bands as a function of VZA along the incident plane with thesSuh&at.

Viewing in the specular direction { =15 and =180 ), the GLER decreases with longer wavelengths but the reverse is
true when viewing in directions 25 or greater away on either side of it. In other words, the re ection appears to be less
anisotropic at shorter wavelengths. This is due to less direct beam, thus more diffuse radiation (resulted from more photons
are Rayleigh scattered by air molecules) at the shorter wavelengths. While the re ection of a direct beam yields anisotropic
outgoing radiation according to the BRDF, the diffuse radiation impinges on the surface from every possible direction of the
hemisphere above, usually resulting in a much less anisotropic re ected radiation, which follows the angular distribution spec-

i ed by the hemispherically averaged BRDF. Figure 4b shows the spectral dependence of GLER on wavelength, illustrating
that linear extrapolation of GLER at longer wavelengths (340.0 nm and 388.0 nm) yields highly accurate GLER estimations at

shorter wavelengths (317.5 nm and 325.0 nm), usually with errors much less than 1%.

10
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The Lambertian surface treatment enables an accurate estimation of the surface tadiatincrit the knowledge of the ac-
tual BRDF, provided that the GLERSs estimated at some (usually the weak absorbing) wavelengths can be extended (linearly ex-
trapolated) to other wavelengths accurately. However, the paths traversed by photons re ected from a Lambertian surface differ
from those from an anisotropic one, as illustrated in Fig. 5, which displays the mean optical path lergths,@n =@,
of EPIC band 1 as a function of altitude for two viewing-illumination geometries. As shown in Fig. 5, the path lengths dif-
fer the most just above the surface, but the difference decreases with higher altitudes due to less course-altering atmospheri
scattering resulting from lower air density and vanishes around 25 km above the surface. Thus the Lambertian treatment of an
anisotropically re ective surface may introduce an error, called the AMF error, in accounting for atmospheric absorption due to
the difference in the photon sampling of the atmosphere. Since this difference is larger in the lower troposphere, but becomes
negligible in the stratosphere, implying that the effect of anisotropic re ection, i.e., the BRDF effect, has a larger impact on
the quanti cation of trace gas absorption in the troposphere, but a smaller one for trace gases in the stratosphere. Because th
bulk O3 ( 90%) is located in the stratosphere, the Lambertian treatment does not introduce a signi cant AMF error in total
O3 absorption.

As described above, UV re ectivities for most natural surfaces are quite low (GLERL), therefore the surface contri-
butionsl s are typically much smaller than (< 10% at 317.5 nm) the path radibp¢see Fig. 6). In modeling a measured
radiancel , , an error in surface radiandg is compensated for with the path radiarige The uncertainty of extrapolated
GLER is usually less than 1%, corresponding to a less than 1% erk@r rence less than 0.1% error in the path radiance
| 5. Furthermore, the AMF error due to the Lambertian treatment of an anisotropic surface is insigni cant, since the combined

mean photon path lengths,
m; = @lyoa=@; =(lama+ Isms)=ltoa; (7

contain minor contributions from surface radiamge

Natural surfaces with high UV re ectivities (GLERO0.2) are surfaces covered with snow or ice or both. The highest GLER
values are found over Antarctica and Greenland, where typical GLER values are higher than 0.9, as shown in Fig. 7). Figure 7
shows sample results of a climatological GLER database for Antarctic ice constructed from the observations of polar-orbiting
instruments, including Aura OMI and SNPP OMPS, and it reveals a sizeable dependence of ice GLER values on the viewing-
illumination geometry, indicating that the re ection from ice is signi cantly anisotropic. Since the much higher surface radiance
Is (e.g., Fig. 6 blue line), the Lambertian treatment of ice surface can lead to large AMF errors. However, the ice GLER varies
within a small range (0.94 to 0.98) and hence ice re ection has weak anisotropy for low SZA and ¥ZA (). Because the
stronger Q absorption and Rayleigh scattering at shorter wavelengths reduce the fraction of direct solar beam but increase
that of the diffuse radiation reaching the surface, further weakening the BRDF effect, the error of Lambertian treatment of ice

surface in the sampling of atmospherig @bsorption is suppressed for the low SZA and VZA observations.
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Figure 6. Example path radiancé,, and surface radiande for s =45 , y =40 ,and =135 .|, is the middle line in black, anbk

for LER = 0.1 and LER =0.94 are the lower (red) and upper (blue) lines, respectively.

Figure 7. Climatological Antarctic GLER values at 331 nm as functions of SZA {or three viewing geometries, revealing a signi cant

dependence of ice GLER on the viewing-illumination geometry.

2.3 Particle Scattering and Absorption

Atmospheric particles, including clouds and aerosols, reside mostly in the troposphere and cover a large @My
265 clouds alone, King et al. 2013) of the Earth's surface. Radiative transfer modeling of sunlight through a particle-laden atmo-
sphere can be performed to quantify the TOA contributions from possible light paths, provided that the optical (scattering and

absorption) properties of these particles, their amounts, and vertical distributions are speci ed. However, for UV remote sens-
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ing observations, the quantitative information about particles needed for radiative transfer modeling is in general not known
suf ciently, precluding their explicit treatment. In this section, we describe an implicit treatment of atmospheric particles
for the simulation of measured radiances with the mean photon path approximately matching that through the particle-laden
atmosphere.

Atmospheric particles scatter and possibly absorb UV photons, thus can signi cantly alter their paths through layers from
closely above the particles down to the ground surface, usually shortening the path lengths below while lengthening those
above the particles. Observing from space, the apparent effect of atmospheric particles is the enhancement of the TOA radianc
contributed by backscattering from them. Since this effect is very similar to the consequence of an increased surface albedo, it is
often referred to as the albedo effect. The albedo effect can be modeled by placing in a molecular atmosphere an elevated brigh
surface that partially covers an IFOV. This treatment is called the mixed Lambertian-equivalent re ectivity (MLER) model,
which is frequently employed by many algorithms for trace gas retrievals. Based on the MLER model, the TOA radiance for

an IFOV is expressed as

Itoa = Ig(Rg;pg)(1  fo)+ Ic(Reipe)fe; 8)

the weighted sum of two independent contributibpsindl . Herel 4 is the radiance from the cloud-free portion of the IFOV,
containing a Lambertian surface of re ectivilyy at pressur@y. Similarly, | ¢ is from the cloudy portion, ant); is the cloud
fraction andR the re ectivity of the Lambertian surface at presspge

The MLER model can reproduce measured radiahgeshrough the determination of cloud fractidg. First, the scene
LER s at surface pressuig is estimated using Eq. (6). t§ is less than or equal to the climatological LER vaRig (e.g.
Kleipool et al., 2008), this IFQV is treated as particle-free scépe Q). If rg is greater than or equal to the LER value for
cloudR. = 0:8 (Koelemeijer and Stammes, 1999; Ahmad et al., 2004), this IFOV is treated as fully cloud cdveret])(
Whenrs is in betweerRy andR¢, the cloud fraction is inverted from Eq. (8), which yields
fo= ©
In case offc = 0 or 1, surface LER or cloud LERr is determined using Eqg. (6) to ensure that modeled radiangg

is equal to the measuremelny; . Figure 8 shows cloud fraction§ ) as a function of wavelength for several examples of
particle-laden atmospheres.

The radiance intensity scattered from atmospheric particles varies with wavelength smoothly without high-frequency spectral
structures. For instance, the contributions to TOA radiantesa() from backscattering by meteorological clouds change
smoothly and slowly with wavelength (see Fig. 8, the CLD curve). The selecti®a of0:8 facilitates the MLER model to
closely simulate the spectral variation of clouds observed from space (Ahmad et al., 2004), such that fethagea small
spectral variation (i.ef. nearly the same for different wavelengths) for most cloudy observations. The small and smooth
change of ¢ with wavelengths allows its extrapolation to provide a reliable estimate af shorter wavelengths from those
determined at longer wavelengths.

Certain types of aerosols, such as continental aerosols containing soot, smoke from res, mineral dust from deserts, and
ash from volcanic eruptions, both scatter and absorb UV photons passing through them. Usually, aerosol absorptions caust
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Figure 8. Four examples of cloud fraction§) derived from explicitly modeled TOA radiances for particle-laden atmospheres. The rst

of these is the atmosphere with a 1.5-km-thick layer of C1 cloud (CLD, Deirmendjian 1969) with a single scatterind athedmmd an

optical thickness =5 at 340 nm centered at 5 km altitude (or pressure level of 545 hPa). The others are atmospheres with a 1-km-thick
layer of aerosols, including SLF (= 0:996), BIO (! =0:921), and DST [ =0:900) aerosols (SLF, BIO, and DST models are taken from
Torres et al. 2007), with an optical thickness 1:5 at 340 nm centered at 3 km altitude (or pressure level of 703 hPa). The insets list the

MLER parametersRg, pg, Rc, andpc, as well as the anglesy, v, and ) that specify the viewing-illumination geometry.

the underlylng surface (mcludlng clouds) to appear darker, more so at shorter Wavelengtae@me*nﬂeaeﬂﬂe—rhe

for weakly absorbmg sulfate-based aerosols (SLF), carbonaceous aerosols from biomass burnlng (BIO) and mineral dust

(DST){Ferres-et-ak;200/]T

mined at longer wavelengths where atmospherlc absorptlon is weak, maybe linearly extrapola,teémslm/e wavelengths

for estimation of contributions to TOA radiance from surface re ection and particle backscattering (referred ta gis the
extrapolation method hereafter).

The UV aerosol index (Al) (Herman et al., 1997; Torres et al., 1998), which measures the deviation of spectral variation of
TOA radiance from that of a pure molecular atmosphere, is proportional to the spectrat;slised in the 4f . extrapolation
scheme. Algebraically, Al is calculated as the N-value (de ned &60 log | ) difference between the modeldd 6, ) and
the measured {, ) radiances at a wavelength

_ Im ()
Al =100 |og10m (10)
=100 g @Ogm'é@os GR) (11)
R=Re
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Here, the modeled radianteoa ( ;R ¢) is calculated for a molecular atmosphere with an estimated re ectivity paraRgter

which may be the LER valug, or the MLER cloud fractioffi; determined at a well-separated wavelength (). The pair of
wavelengths used for the Al calculation are in the UV spectral range with weak molecular absorption and their separation
should be suf ciently largeX 10 nm) to capture the spectral contrast of Rayleigh scattering. Wgiig) = Itoa (;R m) =

Itoa (;R e+ R), since the re ectivity parameteR, is derived fromly ( ) and R= R, Re=¢ , we arrive at

Eqg. (11) from the de nition of Al, Eqg. (10). In short, the spectral slapeis equivalent to the Al, which is signi cantly
positive for particles (such as smoke, dust, and volcanic ash) with large absorption and slightly positive to negative for non-
absorbing and weakly absorbing particles (such as clouds and sulfate aerosols). Note that for the conventional Al (a.k.a. LER
Al) calculation, radiancéroa is modeled for a Rayleigh scattering-only atmosphere over a Lambertian surface. To capture
the spectral slope of thef. extrapolation scheme, we switch the LER treatment with the MLER modeling&f for Al
calculation. The resulting MLER Al is usually higher than the corresponding LER Al whenO, but otherwise can be
similarly used to indicate the presence of UV-absorbing aerosol.

The MLER treatment enables the modeling of measured radiances without the knowledge of the optical properties or the full
vertical distributions of atmospheric particles. The accuracy of the modeled radiances at the extrapolated wavelengths depend
on how close the MLER parameteg (or f ) follows the linear relationship among different wavelengths. In reality, the spectral
dependence of natural surface re ectiag)(or particle scattering and absorptidiz) are nonlinear, though moderately as
exempli ed in Figs. 4b and 8, therefomgf . extrapolation yields small errors iy or f at the extrapolated wavelengths.

The radiance uncertainties associated withrijfe extrapolation error are below 1% for the vast majority of remote sensing
observations. Higher radiance uncertainties usually occur in the presence of highly elevated or strongly absorbing aerosols.
These observations may be agged with high Al values.

In addition to the mostly small radiance errors at the extrapolated wavelengths, the MLER treatment can simulate the
photon sampling of particle-laden atmospheres with a diverse range of particle types and vertical distributions. Figure 9 shows
comparisons of mean photon path lengths of particle-laden atmospheres with those from the corresponding MLER treatments.
These comparisons illustrate that the layer mean photon paths based on the MLER model deviate from those of the particle-
laden atmospheres, mostly in the region immediately above the particles down to the underlying surface. These deviations
diminish with higher altitudes where lower air density reduces the chance of photons being scattered. Since the vast majority
of clouds and aerosols are in the lower tropospherel0 km), the MLER treatment does not introduce signi cant AMF errors
in accounting for @ absorption, which occurs mostly in the stratosphere. This is similar to how the Lambertian treatment of
surface re ection works for the estimation of totay @bsorption (see section 2.2).

The MLER treatment relies on a few adjustable parameters, including the cloud fractiod cloud pressung;, to model
a vast range of conditions encountered in remote sensing of Earth's atmosphere. The cloudfffachtained directly from
radiance measurements using Eq. (9), provides an estimate of the cloud amount in an IFOV. The pyedsheeelevated
Lambertian surface needs to be set at a proper level to best approximate the layer mean photon paths of a particle-lader
atmosphere. As seen in Fig. 9, the optimal placement of the elevated Lambertian surface is within the particle payer, as
locates too high or too low from the optical centroid pressure (OCP) (Joiner and Vasilkov, 2006; Vasilkov et al., 2008) would
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Figure 9. Mean photon path length®s,, normalized by the geometric AMf g, of EPIC bands 1 and 2 as functions of altituziéor
particle-laden atmospheres and their MLER treatments. See the caption of Fig. 8 for the description of aerosol characterizations, MLER
treatments, and the viewing-illumination geometry.

make layer mean photon paths deviate further from those of the particle-laden atmosphere. The effective cloud pressures
retrieved from the EPIC measurements of &band (Y.Yang et al. 2019) are usually located within the particle vertical
distributions and therefore used to set the cloud presgqdries processing EPIC observations.

The use of OCP fop, enables the MLER model to account for the measurement sensitivity change when a layer of particles
is introduced into the atmosphere: enhancing the photon attenuation by absorbers inside and above the layer, while reducing
them below, as the mean photon paths or AMFs from the MLER model lengthen ghde shorten below it, as illustrated in
Fig. 9. Since the MLER model captures the enhancement and shielding effects on trace gas absorption by atmospheric particles
it is widely adopted due to its simplicity for retrievals of trace gases besidesu@h as N@ and SQ in the troposphere.
However, sizeable AMF errors are prevalent for modeling tropospheric absorptions based on the MLER treatment, which

usually yields signi cantly different mean photon paths from those of explicit treatment in the troposphere.
2.4 Inelastic Molecular Scattering

The scattering of sunlight with atmospheric constituents is mostly elastic, i.e., the energy and thus the wavelength of a photon
remain the same before and after the interaction. But a small portid#o] of molecular scattering is inelastic, resulting in
energy gain or loss of the scattered photons. Speci cally, the rotational Raman scattering (RRS) from air molecules (such as
nitrogen and oxygen) can alter the wavelengths of scattered photons, with UV wavelength skifts 2 nm (Joiner et al.,

1995; Chance and Spurr, 1997; Vountas et al., 1998). These inelastic scatterings cause the lling-in of telluric lines (i.e., trace
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ATM and pg = 1:0 ATM, with a surface albedo af; =0:1.

Figure 10. Filling-in factors @44=_'8s_lewa 100) for EPIC UV bands as a function zenith angle at two surface prespyre® :7

gas absorption features) and solar Fraunhofer lines (also known as the Ring effect, which was rst noticed by Grainger and
Ring 1962).

The lling-in effect is a function of wavelength and depends on the optical properties of the atmosphere, the viewing and
illumination geometry, and the surface re ectivity and pressure. The lling-in effect also depends on the ISRF, especially on the
instrument spectral resolution, which is the width of its ISRF, since the measured radiance of a band is a convolution of spectral
radiance and the ISRF (see Eq. 1). This effect is quanti ed with the lling-in factors, de ned=a6lrrs  leLa )=leLA ,
wherelg 5 is the TOA radiance calculated assuming all molecular scattering is elastic, Mghdeincludes the inelastic
(RRS) contributions. To illustrate the signi cance of RRS, we show in Fig. 10 examples of the lling-in factors, calculated
for EPIC bands using the scalar LIDORT-RRS radiative transfer code (Spurr et al., 2008). Since RRS is weakly dependent
on polarization, a scalar radiative transfer model, from which bptlh andlrrs are calculated without including radiation
polarization, can accurately provide lling-in factors (Landgraf et al., 2004; Wagner et al., 2010).

The lling-in factors provide estimates of the modeling errord #iya When RRS contributions are neglected, and results
in Fig. 10 show variations of modeling errors with different observing conditions. These errors are usually systematic for a
spectral band and are between half to one percent for measurements of EPIC bands 1 and 2. These errors are suf ciently larg
that corrections are required for achieving highL6) O; retrieval accuracy. The lling-in factor€, modeled using a scaler
code (like LIDORT-RRS), may be used to correct the results ) from vector radiative transfer codes (e.g. Dave, 1964;
Spurr, 2006) that perform elastic modeling only, i.e., the RRS corrected TOA radiahgga (%o+ 1) .
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3 O3 and Temperature Vertical Pro les

As shown in section 2.1, thesQvertical distribution or pro le directly affects the magnitude of a measured radiance in the
spectral region with signi cant @absorption. Hence the interpretation of radiance change dug ab€drption requires some
knowledge of its pro le. In general, the retrieval of quantitative information about a gaseous absorber (sycanasSD)
requires a model to prescribe its vertical distribution. The skill of this model in representing the actual vertical distribution
of the absorber contributes signi cantly to the quanti cation accuracy. In this section, we describe a recently developed O
pro le model for remote sensing retrieval algorithms and its improvements over the model commonly used by other total O
algorithms.

Ozone is naturally present throughout the atmosphere and its spatial and temporal distribution controlled by atmospheric
processes of @production, destruction, and transport. Thedstribution exhibits a high abundance of @ the stratosphere
and a minor portion (10%) in the troposphere, with the peak €oncentration occurring at a lower altitude as the latitude
increases towards the poles. These characteristics are well capturgghby I© climatologies (e.g. Fortuin and Kelder, 1998;
McPeters et al., 2007; McPeters and Labow, 2012), which provide the mean and variangeerti€al distribution as a
function of latitude and calendar month. These climatologies also reveal $h@b@e has the highest variability in the upper
troposphere and lower stratosphere (UTLS), contributing the most to the natural variations i tataishigh Q variability
is the consequence of atmospheric movements that blend air masses with diffecemo@ntrations, such as uplifting 0O
poor air in the troposphere or lowering ok @ich air in the stratosphere resulting from the rise and fall of the tropopause.
Predictors of @ pro le shape, including tropopause pressure and totat@umns, are developed to capture the dynamical
in uences on Q vertical distributions, resulting in the construction of tropopause-sensitive (Wei et al., 2010; Bak et al., 2013;
So eva et al., 2014) and total-column-dependent (Wellemeyer et al., 1997; Bhartia and Wellemeyer, 2002; Lamsal et al., 2004;
Labow et al., 2015) @pro le climatologies.

The G; pro le model for the Total Ozone Mapping Spectrometer Version 8 (TOMS-V8) totahlgorithm combines the
latitude-dependent monthly mean Labow-Logan-McPeters (LLM) climatology (McPeters et al., 2007) with the latitude- and
total-column-dependent annual mean climatology (Bhartia and Wellemeyer, 2002) to determigetbdeas a function of
latitude, time (day of year, DOY), and totak@olumn. This model has been adopted by nearly all the contemporary tptal O
algorithms (e.g. Bhartia and Wellemeyer, 2002; Eskes et al., 2005; Veefkind et al., 2006; Van Roozendael et al., 2006; Lerot
etal., 2010; Loyola et al., 2011; Van Roozendael et al., 2012; Lerot et al., 2014; Wassmann et al., 2015), owing to its capability
of characterizing @ pro le variation with the total column.

To improve the representation of;ro le, we construct both tropopause-dependent and total-column-dependent clima-
tologies using the Modern-Era Retrospective Analysis for Research and Applications version 2 (MERRA-2, Bosilovich et al.
2015; Gelaro et al. 2017) £record between 2005 and 2016. The total-column-dependent climatology, named M2TCO3, is
more appropriate for use as the Pro le model needed by a total £algorithm, as it is generally more reliable than the

tropopause-dependent version in prescribing realistipi©O les (Yang and Liu, 2019).
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Figure 11. Pro le comparisons between M2TCO3 and TOMS-V8 for two months (March and September) and four latitude zo8es: 60
50 S, 30S-20S, 20 N-30 N, and 50N-60 N. Colored solid lines represent M2TCO3 pro les, while the dotted ones for TOMS-V8
pro les. The color of a solid line indicates the percentage occurrence of the climatological pro le, and its line legend displays the mean
tropopause altitude and the mean total columro©the pro le. The solid black lines represent the downgraded M2TCQO3 (i.e., the monthly
zonal mean) pro les and dotted lines are TOMS-V8 monthly zonal mean (i.e., the LLM climatological) pro les. Here pressure altitude is

denedasZ =16 log 10[%5], wherep is pressure level (in hPa) apd = 1013:25 hPa.
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Figure 12. Examples of M2TCO3 climatological pro les for the southern midlatitude zone in March (panel a) and the northern midlatitude
zone in September (panel b), the associated correlation matrices (panels ¢ and f), and the corresponding pnodiedé (panels b and

e). The blue shaded areas in panels a and d are within one standard deviation of the mean. The correlation matrices in panels c and f ar
standardized (i.e., diagonal element normalized to 1) covariance matrices. The ve modal pro les in panels b and e are the rst ve ordered
eigenvectors (also known as empirical orthogonal functions or EOFs) of the corresponding covariance matrices, with percentages of the
pro le variance explained by the EOFs displayed in the line legends. The text box in each panel displays the average tropopause altitude (in

km) and the average totak@olumn (in DU) for the climatological pro le.

Figure 11 compares daytime M2TCO3 (Yang and Liu 2019, referred to as M2TCO3 hereafter) and TOMS-V8 pro les for
two months and four latitude zones, illustrating the similarities and differences between thg tmed®ls. Both show north-
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south asymmetry, i.e., pro les in the northern hemisphere differ from those in the southern hemisphere for the corresponding
months and latitude zones (e.g., September an&-680 S vs. March and 50N—60 N in Fig. 11), substantial seasonal vari-
ations (e.g., 605-50 S, March vs. September in Fig. 11), strong dependence on latitude, exhibiting lower altitudes of O
concentration peaks at higher latitudes for similar total columns, and characteristic dependence on the total column, which gets
smaller with a higher @ peak altitude (e.g., March and 30-60 N in Fig. 11). Figure 11 shows good agreements of zonal
mean pro les (e.g., close matches between solid black and dotted black curves in each panel of this gure), but signi cant dif-
ferences between M2TCO3 and TOMS-V8 pro les for similar total columns. These differences are due to TOMS-V8's use of
annual mean column-dependent climatology to account for pro le variations with the total column throughout the year (Bhartia
and Wellemeyer, 2002), thus ignoring the signi cant seasonal dependence. An additional de ciency of TOMS-V8 contributing
to the differences is its inadequate representation of latitude-depenggmb@ variation with the total column, including
broad (30) latitude zones and omission of north-south asymmetry. These de ciencies are eliminated with M2TCO3, which
improves the realism of £pro le representation.

In short, M2TCO3 better captures the dynamical changes and spatiotemporal variatigngrml€s with higher resolu-
atmospheric @over a long time, M2TCO3 is more accurate to represent atmosphgsier@cal distribution from recent past
to near future than the TOMS-V8 model, which was compiled from earlier satellite and ozonesonde data (mostly from the
1980s and 1990s, Wellemeyer et al. 1997; McPeters et al. 2007). Hence we use the M2TCO3 climatology; ggdHe O
model for total Q retrieval from EPIC.

The M2TCO3 climatology contains not only mean pro les that represent the likglya®tical distributions, but also the
modal G adjustment pro les that specify the probable deviations from the means. These modal pro les are determined from
the G; pro le covariance statistics, as illustrated in Fig. 12, showing examples of M2TCO3 climatologicatddes and
the associated modal pro les, which are the eigenvectors (also known as the Empirical Orthogonal Functions or EOFs) of the
pro le covariance matrices. Algebraically the representation of aipK@ le X is expressed as

XP
X =Xm(v)+ k ek(V); (12)
k=1

whereX , (v) is a climatological pro le that depends on a set of variabes/hich for M2TCO3 consists of the total column

( o), time, and locationey (v) is thek™ modal pro le,  thek™ coef cient, andn-p the number o& (v), with a maximum

equal to the number of levels used to represent api@ le in the climatology. Usually, a few modal pro les are suf cient

to account for the majority of pro le variance. For example in Fig. 12, the rst ve EOFs (panels b and e) of the covariance
matrices (panels ¢ and f) account for 80% pro le variances (blue shaded area in panels a and d). Ansauruéd & , which
deviates invariably from the meaty, , can be accurately represented using Eq. (12) with a small number of expansion coef -
cientst . Much like the mean the pro I&X , represents the most probable vertical distribution ef 9e modal pro les,
fex;k=1:::g, describe the most, the second most, and so on, likely vertical patterns of deviations from the mean pro le.
Each modal pro le describes a rearrangement, like shifting, shrinking, or broadening, of the mean pro le without substantially
changing the total column. With these modal pro les constraining how a pro le can be adjusted, the retrieval algorithm can
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exploit the Q pro le information contained in multi-spectral measurements to improve thero le representation by de-
termining one or more linear expansion coef cientg{k = 1 :::}. Note that for most total ozone algorithms, thg @ro le

The total column is a good predictor of any @ro le, especially accurate for the shape in the stratosphere, but less so
in the troposphere. Tropospherig @xhibits characteristic spatiotemporal distribution, which is captured in the MERRA-2

column-dependent M2TCO3 pro leX 1, is scaled with the ratio of the MERRA-2 climatological tropospheric column to

the tropospheric column integrated from the downgraded M2TCO3 pro le (see Fig. 11 for sample M2TCO3 and downgraded
M2TCO3 pro les). In other words, the pro l&X , in Eq. (12) has its tropospheric part tied to the spatiotemporally varying
climatological tropospheric column, to which the tropospheric column of the KMgarpro le (obtained by averaging over

the different column amounts) is matched.

In addition to knowledge of pro les of light-absorbing trace gases, suchzaard SQ, radiative transfer modeling of
measured radiance requires knowledge of the atmospheric temperature pro le because the absorption cross-sections of thes
trace gases depend on temperature signi cantly. For tojade@ieval from EPIC, this knowledge is taken from the tempera-
ture pro le climatology created from MERRA-2 data together with the ozone pro le climatlogy (Yang and Liu, 2019). This
temperature climatology provides mean temperature pro les corresponding to the climatologiped @s, capturing the
dependence of temperature pro le on season and location, as well as the variation of temperatugepritteQlt is an im-
provement over the TOMS-V8 temperature pro le climatology, which provides latitude-month dependent temperature pro les,

but without accounting for the strong correlation between temperature apddes.

4 Inversion Technique

Section 2 describes algorithm physics treatments of interactions of solar radiation with atmospheric particles and surfaces to
enable RT modeling of photons traversing through a molecular atmosphere to reproduce the measured TOA radiances with
photons that follow the paths similar to those through the actual atmosphere and therefore establish the relationship betweer
spectral measurements and the atmospheric state, as well as surface re ectivity and instrumental parameters. At its core, the R
modeling sets up a forward mapping from the vertical distributions of gaseous absorbers and the surface re ectivity parameters
to measured TOA radiances. The retrieval of gas absorbers, suchasdGQ, is the inverse of this mapping, i.e., to nd
their vertical distributions and the surface re ectivity parameters for which forward modeling closely reproduces the measured
TOA radiances. However, this inverse mapping is inherently an ill-posed problem, as the solution is not unique, i.e., more than
one set of pro les and surface parameters can yield the same measurements. This problem is made worse with measuremer
uncertainties, which expand the pro le and surface combinations that can reproduce, within error bars, the measured spectra.
For successful inversion, analytical constraints are placed on the pro les of gas absorbers and the spectral variations of
ground re ectivity and atmospheric particle (aerosol and cloud) back-scattering sHetr@val, Eq. (12) embodies the pro le

constraint, while the MLER model withsf ; extrapolation regulates the surface re ection and particle back-scattering. These
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constraints control théie-dimension of the inverse mapping space and manifest themselves as the retrieval (i.e., adjustable)
parameters, which, in the case of @trieval, consist of total @column , a number |§) of modal expansion coef cients

f k;k=1:::pg, surface LERKs) or cloud fraction {), and a numberd) of polynomial coef cientsf¢;;| =1 :::qg of the

rsf¢c extrapolation. The set of adjustable parameters forms the state vertwh@se lengthrf) is the dimension of inverse
mapping space. Proper selection of adjustable parameters by limiting the number of the modal coefciefifsaqd the
polynomial coef cients 1) ensures the inverse problem is well-posed and simultaneously maximizes the amount of infor-
mation collected from the spectral measurements. Her@ indicates no modal expansion, equivalent to restricting the pro le

to a climatological column-dependent Pro le, and g =0 for the spectral invariant re ectivity parameter.
4.1 Exact Solution

Conceptually, the inversion is to nd the state vectoy {hat satis es a set ah simultaneous equatiorfs, y; =0;i =1 :::mg,
one for each spectral band differencey; =In Iy ( i) Inltoa (X; i), between the radiance measuremigpt and the
forward modelind toa . Here ; the wavelength that characterizes tle(1 i m) spectral band andy; the residual of
this band. In matrix form, then simultaneous equations can be expressed as

y =0; (13)

where vy is residual column vectdr y;;i =1:::mg. Since the forward mappinigroa (X) is a nonlinear function of the
state vectok and has no analytical inverse, the solution to Eq. (13) is usually obtained iteratively. The iteration is started with
an initial (i.e., iteration numbdr = 0) state vectok to linearize the equation between residuals and the state vector

X .
yi=intu () Inlroa(xi i) (X ij)@Q”'Tég}f"') ;

j=1 X= XL

(14)

wherex; andx; are thej t" components ok andx, respectively, Xj = Xj  XLj thej " components of state adjustment

— @nltoa (X; i)
@x X=X\

spectral band;. Them residual elements, each written in Eq. (14), can be expressed in matrix form as

vector, andKj; the Jacobian, also known as the weighting function for the retrieval param)etdr

y= y. K x (15)

where y, isthe columnvectofinly ( i) Inltoa (XL; i);i=1:::mg, Xx=Xx X_ the state adjustment vector, aikd
them n Jacobian matrix with theéK; ;i =1:::m;j =1:::ngas its elements. Putting Eq. (15) into Eq. (13) yields

yL = K Xx; (16)

which may be solved exactly (under strict conditions) to determine state adjustment vectdkfter each iteration, the
linearization state vector is updated to

XL+1 = X+ X: a7
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The nal statex is found when the iteration converges, i.e., when the absolute change of state vedsdnelow a threshold.

The linear equation (Eq. 16) may be solved exactly only when the number of measurements is equal to the number of retrieval
parameters (i.em = n) and the Jacobian matrik is invertible (i.e., non-singular matrix), as exempli ed in the well-known
TOMS-V8 total @3 algorithm (Bhartia and Wellemeyer, 2002). The TOMS-V8 algorithm determines the two-component state
vector,x = f ;rg or f.g, from radiance measurements of two spectral bands: one with lpweBsitivity to estimate the
MLER parameterr(s or f ¢), and the other with high ©sensitivity to derive total @column . However, few other algorithms
adopt this inversion method, since it requires= n andK being a nonsingular matrix. Even if both these conditions are met,
inverting Eq. (16) to obtain exact solutions tends to enhance the impact of measurement uncertainties (noises) on the retrievec
results, as in cases thatmatrices are nearly but not quite singular. These cases occur when the spectral variation of a Jacobian
has some similarity or a high degree of correlation with that of another retrieval parameter, leading to algorithm dif culty in
distinguishing two retrieval parameters corresponding to the two Jacobians, thus yielding unstable retrieval results, such as in

the case of simultaneous retrieval of total @&nd SQ columns from EPIC UV measurements.
4.2 Direct Fitting

Since spectral measurements have errorsradn in general, the inversion is achieved by nding the solutiothat mini-
mizes the cost function
2

(x)= 87y = y'sty (18)

; (19)

whereS is the measurement error covariance matrix, withiftsdiagonal element equal to?. Here ; is the fractional

standard deviation of radiance error of tHeband. In case of independent measurement error, i.e., no error correlation between

different spectral bands, Eq. (18) can then be explicitly written as Eq. (19), which is the formulation of the least-squares method.
The minimization of the cost function can be started by linearizing the residuals with an initial (i.e., iteration number

L =0) state vectok . Substituting y (Eqg. 15) into Eq. (18), we minimize this cost function to obtainttiestate adjustment

vector
x=(KTS '’K) *K's ' y =Gpr yi; (20)

which is the solution of linear weighted least-square regression. Bejie=(KTS 'K) 'K TS !isthe direct tting (DF)
gain matrix.

This procedure of iterative minimization of the difference between measurements and modelings to determine the bulk pa-
rameters is called the direct vertical column tting (DVCF) algorithm. The DVCF algorithm is quite general and valid for both
discrete-wavelength and hyperspectral measurements, as wellassfgplicablefor-different types of retrieval parameters,
such as MLER parameters, layer partial columns of various absorbing trace gases, and their total vertical columns. This algo-
rithm has been applied to retrievals of total @rtical colum i
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, combo of total @ and SQ vertical columns (Yang et al., 2007, 2009a, 2013), combopaad altitude-resolved SQver-
tical columns (Yang et al., 2009b, 2010), and stratospheric and troposphesigettizal columns (Yang et al., 2014). This
algorithm is named DVCF to contrast with the DOAS (the Differential Optical Absorption Spectroscopy) method (Platt, 2017),
which derives a slant column and then uses an air mass factor (AMF) at a single wavelgndthdonverts it to a vertical
column.

In general, the DVCF algorithm works well when the changes in radiance measurements responding to changes in the
state vectors are signi cantly different between any two retrieval parameters, i.e., that coluking/bich are the Jacobians
of a retrieval parameter at different wavelengths, exhibit signi cantly different spectral dependence from one another. This
is usually true for any two bulk retrieval parameters over a suf ciently broad spectral range, such as;to@li@n ( )
and an expansion coef cient ) of differential pro le ex (see Eqg. 12), or the SOvertical column and its layer altitude.
With measurements from a broad spectral range, the DVCF algorithm can discriminate subtle spectral features contained in
hyperspectral measurements to enhance the retrieval accuracy (e.g., Yang et al. 2009b, 2010). Besides contrasting with th
DOAS method, the name DVCF emphasizes vertical column because this algorithm is usually not suitable for traditional
pro le retrieval, due to the high similarity of partial column Jacobians between adjacent layers and hence the dif culty in
distinguishing their partial columns.

4.3 Optimal Estimation

In many cases, such as sparse spectral sampling or narrow spectral range, the performance of the direct tting inversion methoc
may decline as a result of limited information contained in the spectral measurements. For stabilizing the retrieved results, the
inversion process can be regulated with an additional constraint, which is frequently basedcgritre knowledge of the

retrieval parameters. Algebraically, addingapriori constraint to Eq. (18) yields a new cost function
(x)= y'S ! y+(x xa)'S,ix xa); (21)

wherex, is thea priori state vector an®, the a priori state vector covariance matrix. The rst term on the right-hand side
(r.h.s) of Eqg. (21) strives to diminish the difference between measured and modeled radiances, performing the same function a:
the direct tting retrieval, while the second r.h.s term seeks to reduce the deviation of retxidx@a thea priori X,. Thisa

priori constraint effectively stabilizes the retrieval by guiding the state vector adjustment when the measurements contain little
information to differentiate the contributions from different components of the state vector. Using the optimal estimation (OE)
technique (Rodgers, 2000) to minimize the cost function Eq. (21) yields a posterior state adjustment vectdf atetaibn

x=(S,1+KTs *K) ¥KTs ! y . +S, 1 xq) (22)
=(S,1+KTS '’K) ' KTS '(KGpr yL+S,' xa (23)
= Xa + SaK71(KSaKT+S) '( yu K Xa); (24)

where Xa = Xa X_ and the primed quantities are de ned in section 4.2. Inseitting (K™S *K)(KTS K) 1, an
n n identity matrix in front of the ternK TS 1y, in Eq. (22) yields Eq. (23). At iteration = 0, a state vector close to
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the actual one is sought to be the initial state vegtgrand a frequent selection is thepriori state vectorxg = X,. This is
a more robust inversion scheme that worksrfor n , m = n, andm < n . Eq. (24) is often used in the caserof< n, as the
inversion deals witham m (i.e., a smaller) matrix.

Eqg. (23) describes the difference between the current and previous state vextassa combination of the direct tting
solutionGpr Yy, (see Eq. 20, which is derived without aaypriori constraint) and the difference between ¢éhpriori and
the previous state vectorsx,_ weighted by matrice& 'S 1K andS, ! respectively. For the state vector component with
a stronga priori constraint, i.e., a small variance 8, the retrieved result gravitates towards the value ofaleiori state
vector, while for the one with a weak constraint, i.e., a high varian& jrits retrieved value is primarily determined from the
measurements.

The variance of a retrieved parameter is equal to the corresponding diagonal element of the covariandesatrix
KTS 1K) ! (see Eqg.23), thus less or equal to the corresponaimgori variance in the priori S, matrix. In other words,
the change magnitude of a retrieval parameter at each iteration is usually smaller thanats standard deviation. Conse-
quently the OE method can be used as an inversion scheme to ensure retrieval stability and preserve the dependence of tt
retrieved results on the measurements, through a careful constructionaptiei covariance matrixS,. To further reduce
the dependence on tleepriori state vector, it is updated at each iteration with the linearization point, settisgx, , and

hence Eq. (22) becomes
x=(S,*+KT's )K) )KTs ! y =G y; (25)

whereG =(S,1+ KTS 1K) !KTS ! is the optimal estimation gain matrix. This setting oats the anchor point of the
retrieval, allowing the measurements to drive the iteration to its nal state, with {r@ori covariance to limit the deviation
from the anchor.

By relaxing thea priori constraints through increasing the diagonal terms (i.e., the varianc8g)safch thais, *! 0, G
become$ pr and Eq. (22), as well as Eq. (25), becomes Eqg. (20). In other words, the direct tting inversion is a special case of
the OE inversion scheme, which is more appropriately called the regulated direct tting inversion. Using the knowledge of their
variances$,) to limit some of their ranges while allowing others to change freely, the DVCF algorithm with regulated inversion
scheme is suitable for retrieving multiple parameters from discrete measurements . It is applied to EPIC UV observations for
simultaneous @and SQ retrievals.

5 Retrieval from EPIC UV Bands

EPIC have four UV channels (see Fig. 2), referred to as B1, B2, B3, and B4 and characterized by wavelengths:5 nm,
2=325:0 nm, 3=340:0 nm, and 4 =388:0 nm, respectively. The radiance measurements from shorter UV channels,

EPIC B1 and B2, are sensitive to both @d SQ absorptions (see Fig. 13), containing information that allow the retrieval of

total O; and SQ vertical columns, provided that the re ectivity of the underlying surface is known. This knowledge is obtained

from the radiance measurements of EPIC B3 and B4, the longer wavelength channels. These channels provide informatior
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Figure 13. EPIC bandpass-averaged cross sectioftx O; and SQ at 280 Kelvin and their ratio,= (SQ,)/ (Os).

about the surface re ection and particle back-scattering and have very low sensitivitigsatedC5Q absorption, such that
changes in @ and SQ amounts result in little difference in the radiance measurements of these two bands. The re ectivity
determined from B3 and B4 is used to estimate the re ectivity at the shorter wavelengdie(®itive) channels, accomplished
with thersf ¢ extrapolation scheme (see section 2.3). The re ectivity spectral slapfehis extrapolation is proportional to the
Al (see Eq. 11). The re ectivity parameteR] is either the LER values estimated from Eq. (6) or the MLER cloud fraction
f¢ from Eq. (9) depending on the valuefof R = rg whenf. =0, R = f, whenf. > 0, and its spectral slope is calculated as
a=(Rs R3)=( 4 3).

In this section, we describe the application of the DVCF algorithm to EPIC UV measurements, the scheme to solve the
dif culty arisen from the non-coincidence among the different EPIC spectral observations, and examples to illustrate the
success of this application.

5.1 Re ectivity Correction by Spatial Optimal Estimation (SOE)

The estimation of @ column from EPIC radiance measurements requires accurate re ectivity information of the underlying
surface, which is extrapolated from the re ectivity determined at the longer wavelength bands (B3 and B4), but the uncer-
tainty of this extrapolation becomes large due to EPIC's asynchronous spectral measurements. Unlike most space-borne UV
instruments which provide coincident measurements from different spectral bands, EPIC takes the spectral images sequen
tially, separating by a time delay of 30 seconds between adjacent UV bands. Due to the Earth's self-rotation and space-

craft jitter, different spectral images record slightly different (i.e., rotated) sunlit hemispheres. The geolocation procedure of
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Figure 14. Retrieved Q from EPIC measurements of bands B1, B3, and B4 on December 3, 2015. (a) Optimized<ite5; =0:5)
O3 map based on SOE method; (b) a comparison of optimized (orange) and independent-pixel #dye, = 1) O3 along the horizontal
line (left-to-right) across the middle of thes@nap in (a); (c) the @ difference map:O 3 = O 3(Optimized)  Oz(IndependentPixel) ;
(d) the @@ difference along the horizontal line across the middle of the map in (c); () a zoom-in of the independent;pixap ()
the optimized @ corresponding to the rectangle in (a); (g) cloud fractigrcorresponding to (e) and (f); (h)sQlifference (Optimized —
Independent-pixel), a zoom-in corresponding to the rectangle in (c).

image correlation technique (Yang et al., 2000), which is estimated to provide better than 0.1-pixel (a pixel refers to an IFOV)
registration accuracy for EPIC bands. Despite this high registration accugbggxtrapolation (see section 2i3ecomes less
accurate for a signi cant fraction of EPIC IFOVs as substantial re ectivity changes may occur with small shifts in viewing
and solar zenith angles since near the direct backscattering direction the particle scattering phase functions have a high angule
sensitivity and the shadow areas of structured scenes change non-linearly with viewing-illumination geometry. This dif culty
is unlikely to improve even with better alignment and requires a new approach to correct the extrapolated re ectivity.

The basic idea to obtain a more accurate re ectivity at gareénsitive band is to derive it from the radiance measurement of
this band with an optimally estimated tota4 @olumn from the nearby £distribution. This Q estimation is attainable because

an actual spatial distribution of total@olumn is a smooth function of geolocation and exhibits a high degree of close-range

at EPIC band B by minimizing the cost function that embodiesatpeiori knowledge ofRg and G spatial distribution. The
rst part of cost function supports a smooth (i.e., homogeneoudji§iribution, while the second part penalizes the difference
betweerRg and itsa priori value, which is the extrapolated re ectivitRg ) from the longer wavelength EPIC bands. Hence
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the cost function is written as

xn . L2 X0 . N 2
= gy LT, T Rel) Re® (26)
i=1 i=1
i=1
x X N0y 2 - NER
i=1 j=1 E i=1

subject to the measurement constrairitg ( g;i)= ltoa (( 1);Rs(i); 8), IOFV indexi =1:::n, the size of the IFOV
groupm, which is linearized to become

@nltoa @nltoa
= Re)+ ——— - R R
( E) @R Re =REe @ =( Re) ( ° E)
@
= ( Re)+ @R (Re Re)= ( Re)+ S(Re Re) (28)
RB:RE
whereS = @@—% . The IFOV index is dropped in Eqg. (28) without losing clarity. Heras also an index, labeling the

RB=RE

pairing (or other) IFOV in the group anwit(i;j ) is the weighting factor that depends on the distance betwedyj tipair.h i
is the average ©column for the group. GiveRg , which is the band B re ectivity extrapolated from the longer wavelength
bands, the total ©@column ( Rg) is retrieved from band B radiance measurement using the exact solution method (see
section 4.1), and the associateg |@o le is the column-dependent M2TCOS3 climatological proX¥e, () . The equation of
measurement constraint (Eq. 28) describes a positive (Sirc@ usually) linear relationship between totad @lumn and
the surface re ectivity (in the neighborhood Bf: ), increasingRg requires more @absorption to maintaity, = ltoa -
Minimizing only the rstr.h.s term of Eq. (26) leads to the samgd@lumn for all the IFOVs (i.ef, ( i)= h i;i =1:::ng),
while minimizing only the second term makBg = Rg for each IFOVs. The constantsand are weights to emphasize
respectively the smoothness of Gpatial distribution and the closeness of re ectivity between extrapolation and estimation.
In the SOE scheme, weights are= 0 and =1 for the traditional Q retrieval, also referred to as independent-pixel retrieval,
while for optimized retrieval, equal weights= = 0:5 are used.
For optimized retrieval, the minimization of the cost functio(Eg. 26) can be accomplished by iteratively ndiRg (i)
to minimizing each component;. The solutionRg (i) that minimizes ; is found by solving this equation

@i _ Re() Re(), X (i) (i)S__.
@R  RZ() jﬂW“”) hiz O (29)
which yields
. . . P n0 .
,  REMS n(ERe() {4 (D)
Rg (i) = Re (i) ; (30)

hi2+ nORZ(i)S?

From Eq. (29) to Eq. (30), only the® nearby IFOVs are included, i.ewt(i;j ) =1 for i-j separation within a few<( 4)
adjacent IFOVs, otherwiset(i;j ) = 0. At the start of iterationf ( j)= ( j;Rg);1:::ng, and they are then updated using
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Eq. (28) withRg (i) from Eq. (30) for the next iteration, which stops until changesRi (i);i =1 :::ng becomes suf ciently
small. In practice, no more than a couple of iterations are needed to reach convergence.

Figure 14 shows an example of simultaneous retrieval from the IFOVs of an EPIC hemispheric view using the SOE method.
The high variability Q@ map (Fig. 14e) from the independent pixel retrieval contains many artifacts (high spikes and low dips

670 in Oz columns), which are substantially reduced using the SOE method, resulting in a much more realistic (smowh) O
(Fig. 14f). The Q differences () between optimized and independent-pixel retrievals (see Fig. 14c, d, and h) illustrate the
guantitative improvements, with a small meagd¥ference (mean  within 0:5DU) and a sizeable reduction ins@oise
level (standard deviation of 7 DU). The corresponding re ectivity corrections are quite signi can0:02 on average,
with a maximum of 0:1 deviation from the sf ; extrapolations.

675 In summary, the SOE method performs single band (B1 or B2) multiple IFOVs (or image-based) retrieval, yielding re ec-
tivity (R) and total @Q column ( ), with the associated pro le determined by thg @odel (Eq. 12) that retains only the
column-dependent M2TCO3 climatological pro &,. The a priori knowledge of the @ distribution, which is spatially
smooth, provides the extra information to correct the initial re ectivity estimation extrapolated from the characterization based
on the longer wavelength bands.

680 5.2 Total O3 Column

Radiance measurements of EPIC B1 and B2 radiances hapeoQe sensitivity, which is higher at B1 than at B2, especially
at high zenith (SZA or VZA or both) angles (as illustrated in Fig. 3). Compared to the measurement of a gisglesifive
band, both bands jointly provide more information that allows the re nement of climatological representation gfticel@
This re nement is performed by adjusting the climatological pro le with the most probable modal preylesée Eq. 12) so
685 that both B1 and B2 yield the same totaj Glumn.
For retrieval from EPIC, the full state vector to be inverte&is f o; 1; ;R1;R20, where g is the total @ column,
1 the G; pro le adjustment factor, the total vertical S@ column,R;, R, the MLER parameters at EPIC B1 and B2. The
regulated direct tting of EPIC B1 and B2 radiances is applied to obtain retrieved full state wector
For each IFOV of EPIC, the Pvertical column is estimated rst assuming there is no,SThe iteration starts with an
690 initial state vectoxo=f o= ; 1=0; =0 ;R;= R?;R, = R3g, where . is the climatological total column selected
from the M2TCO3 climatology based on time and locatig§. andR3 are the corrected MLER parameters at B1 and B2
respectively using the SOE method (see section 5.1).
Since EPIC radiance measurement errors between any two bands are not correlated, the measurement error covariance mati
is diagonal'S =diag( 3,=0:0034%; 2,=0:0034%), estimated from the random errors of the radiafgg)(measure-
695 ments (see section 6.2).
There is no correlation among retrieval parameters: totat@umn ( o), the deviation(;) of O3 pro le from the mean,
SO, column (), and the MLER parameteR, except betweeR; andR;. The diagonal elements of tlaepriori covariance
matrix areS, =diag("? =102 DU?;"2 =22 DU?;"2 =0:000¥ DU?; "4, =0:00%;"%, = 0:00%). The off-diagonal

elements are equal to zerfd3,(i;j ) =0;wheni 6 jg, except for the elements associated with and R, which may be

30






