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Summary

This paper by B. Raut, S. Collis, N. Ferrier, P. Muradyan, R. Sankaran, R. Jackson, S.
Shahkarami, S. Park, D. Dematties, Y. Kim, J. Swantek, N. Conrad, W. Gerlach, S.
Shemyakin, and P. Beckman discusses the retrieval of cloud motion vectors from
distributed sensor systems (called sage nodes) equipped with a sky-facing camera.
The paper discusses both total-sky imager (TSI) and Sage cameras. The idea is to use
the phase-correlation (PC) method, which relies on fast Fourier transforms to obtain
cloud displacements in predefined block cells, computing cross-correlations on
successive images; a big advantage of this kind of method being that it is not
computationally intensive. This very last point is strongly emphasised in the article, as
the analysis is to be run on embedded computers. Discussions that follow are then
meant to help decide how to optimise the retrieval algorithm to obtain the best results.

The original idea is good and sound, and it is also good that the paper presents field
data that have been taken at the ARM research facility: "To validate the estimates of the
CMV in our work, measurements from the co-located ceilometer and the wind profiling
radar (...) were used from the SGP C1 site from October 14, 2017, to August 14, 2019."
(lines 88-90).

We appreciate a thorough review of the paper. The major suggestions by the reviewer, which
considerably improved the content of the paper, will be incorporated into the revised manuscript.

The reviewer's main concerns are related to the wind data comparison (sec 3.3) and the validation of
the algorithm. We are showing validation of the algorithm using synthetic data in this response. The
data generated from existing images will also be shown in the paper. We hope the issues highlighted
by the reviewer are properly addressed by this. Furthermore, we would like to clarify the following
points in the context of the response.

1. The main objective of the paper is to study the sensitivity of the block-wise PC algorithm to the
block size, time interval, color channel, and resolution of the images for better adaptation of the
algorithm. Another important result is that it provides an auxiliary method to detect the raindrops
on the mirror with the help of these motion vectors in a TSI camera, which should be applicable
with any motion estimation algorithm.

2. As suggested by the reviewer, a separate section will be added for the validation of the PC
method with synthetic data. We will also incorporate additional mathematical descriptions of the
FFT-PC and NMF. This paper focuses on the better adaptation of the block-wise PC method
which will guide many readers already using the method. Considering that both the optical flow
and the PC methods have been used for several decades, the literature is also available
regarding the validation, comparison, and limitations of the algorithms. Citations for the same
are in the introduction and additional relevant citations will be added as well (See the reference
section of the response).



3. Please note that wind retrieval is not an objective of the paper. In addition to accurate cloud
motion vector (CMV) estimation, wind retrievals from the camera images also require good
estimations of the cloud heights which itself has significant uncertainty without Lidar based
approach. Despite assuming the perfect estimation of CMV and cloud-base height, the winds
would not perfectly match the cloud motion as the cumulus clouds have significant depth and
their motion is influenced by the wind shear in the entire depth of the cloud. In addition, the
growth and decay of the clouds have an additional cloud motion component that is not related to
the wind. Considering these factors wind retrieval is not in the scope of the current study.

4. We differ from the reviewer's opinion that correlations are not as quantitative as the metrics
used by other studies (mainly RMSE). The correlation and the RMSE are related quantities and
have one-to-one relations for standardized datasets over the same datasets (Barnston, 1992).
Therefore, the correlations shown in this study accompanied by the significance test are a
quantitative metric for accessing the errors in the CMV. Additionally, wind and CMV are not the
same variables (as explained above) hence correlation is a suitable way to find the strength of
association between them.

We will also clarify the above points in the text.

While this sounds promising, as it stands this work remains far too qualitative, however.
Notably, when comes the time for validation, which should be of utmost importance,
lines 194-195 actually read "(...) this comparison may not be interpreted as a
quantitative validation of the algorithm (...)".

Lines 194-195 refer to the wind data comparison and the reason for this is given in the same
paragraph of the paper and also above in point 3. In that section, we compared approximately 876
hours (selected for cloudiness) of valid wind data to show the long-term stability of the method. The
uncertainties involved in such comparison are mentioned in the same paragraph of the paper. We have
now clarified this in the following sentence.

"Therefore, this comparison may not be interpreted as a quantitative validation of the algorithm for
wind retrievals, however, significant correlations of the magnitudes indicate that the estimates of the
instantaneous CMVs from the camera images are stable over a long period."

By the end of the paper, the reader is left wondering how good those retrievals actually
are. The same remark holds regarding how one could meaningfully tune an algorithm
that is never quantitatively compared to something else.

More work and quantitative results are therefore needed before | can recommend its
publication in Atmospheric Measurement Techniques.

We accept the reviewer's suggestion of adding a separate validation section in the paper.

However, the validation part is not completely missing in the current version of the paper. We stated in
section 3.2.1 that cloud motion should be stable on a minute-by-minute scale and hence random
fluctuations in the CMV are due to the algorithm's errors. Zhen et al. also used the same assumption
for validation and they counted large random fluctuations as an error. The lagged autocorrelation is a
widely accepted method of quantifying randomness. In our case, if the algorithm were to produce
completely noisy values (i.e. zero skill) the correlation (in Fig 7) would have fallen to insignificant levels
at lag-1.



Allowing that the FFT-PC algorithm is widely used in cloud motion estimation for decades, several
other studies have reported the results (e.g. Leese et al. 1971, Schmetz et al. 1993; Kishtawal et al.
2009) as well as a comparison of the method (e.g. Zhen et al. 2019, Sawant et al. 2021 and references

therein).

We are now providing preliminary validation in the response (See appendix) and we are also testing a
synthetic dataset generated using a combination of additive noise, and color separation, followed by a
known translation (This will be added in the revised paper). Please refer to Figure 1 below showing the
early results of the synthetic data for 20-pix translation in 180x180 pixel image pairs. Our preliminary
results are showing the expected distribution of the motion and also contamination due to spurious
motion vectors peaking at zero. The peak around zero is also mentioned by Zhen et al 2019 as a
failure of the PC method to detect motion. Removal of the spurious vectors requires post-processing
depending on the application. Our method of choice for real-time correction is discussed in section
2.3 (Westerweel & Scarano, 2005). Thresholding of high-magnitude vectors and restricting near-zero
values is necessary to improve the results.
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Fig. 1: Distribution of the Motion vectors computed using FFT-PC for images translated by 20 pixels
for 2000 images, not filtered for all clear sky images. These motion vectors are uncorrected.

Response to Reviewer's comments

The main issue is that, beyond the mere existence of correlations, there must be more
work to provide quantitative assessments in the validation (Sec. 3.3). How good are the
retrieved wind components U and V? This must be clearly communicated. It cannot just
end on a quick qualitative note. The strategy to derive trustworthy winds from this
should be spelled out.

We understand that our comparison with the wind vectors caused a misunderstanding. As noted
before (in point 3) the study does not attempt to retrieve the wind vectors and it will be clarified in the
text.

Section 3.3 'Comparison with Wind Data' uses 551 days of wind data with 876 cloudy hours with
stable cloud-base height identified from the ceilometer. Using such data we extract the winds at the
appropriate heights for CMV comparison and presented correlations, their significance level, and the
heightwise slope of the relationship. This is more than a quick qualitative note. We realized that the
use of the word qualitative mislead the reader's interpretation hence we will to remove it.



Other similar peer-reviewed papers are not satisfied with autocorrelations and a
qualitative comparison. They do compare against other methods, use synthetic
datasets, use quantitative metrics, ...

A new subsection (validation using synthetic data) will be added to alleviate this concern of the
reviewer. However, it should be noted that the major objective of the other papers mentioned by the
reviewer is to compare the methods. The focus of our paper is on presenting the sensitivity study for
the PC method.

Figure 9 is not really readable and not convincing. The units for both the x and y axes
must be displayed. Moreover, in the text the attention of the reader should be brought
to the fact that the ranges spanned in x and y are widely different, which can be
misleading.

We thank the reviewer for this suggestion. We will mention the units and ranges in the revised version.

The accompanying discussion should address the issues that appear in Figure 9, e.qg. if
all was perfect, should these be comparable (i.e. essentially follow ay = x line)? If yes,
then it should be discussed.

The wind vectors and CMV are not exactly the same variables and they do not match one-to-one even
in the ideal situation. This is due to the factors mentioned above in point 3. Therefore, we provided a
cautionary statement to the effect that this is not a validation of wind retrieval. However, winds and
CMV should correlate. We will clarify it in the text.

The rain points are deemed problematic, but the remaining points do not seem much
better.

We agree with the reviewer's concern. We could only remove rain points using the rotation of the
vectors. However, completely snow-covered images can not be removed with this method as the
rotation is not seen under the snow. Despite using stable cloud-based data from the ceilometer, clear
sky periods have contaminated the data during which cloud motions are near zero. The discussion of
this aspect will be added in the text and we will replot the figure to check if additional quality control
improves the results near the origin. It should be noted that this comparison is made with a 30-sec
image interval for approximately 500 days that involves several types of weather conditions and real-
life issues such as birds and dirt on the mirror which can not be removed with the current method.
Considering the above contaminations the shown correlations are encouraging. We will emphasize on
the contamination issue in the revised manuscript.

More quantitative information must also be given and discussed together with the
figure, for instance in the form of root-mean-squared-differences and biases, applied
to the difference between the value obtained from the algorithm and the expected one
used for validation. This should come with a discussion, especially if the discrepancies
are large.



We agree with the reviewer that RMSE and bias are better comparisons for the same variables.
However, as mentioned before the wind vectors comparison with the CMV is not the same variable
comparison. The purpose of the wind comparison is to show that the CMV is well-correlated with the
wind suggesting that the algorithm is stable over varied situations over a long time and not just good
in specific cloudy conditions. As referred to in point 4 above, the correlations are quantitatively related
to RMSE and in addition, the slopes suggest the biases.

Several other peer-reviewed works similarly dedicated to cloud motion, sky-looking
cameras, TSI, and using various techniques (both block-matching and optical flow;
both from the images themselves, or going to Fourier space) do compare their results
against other established methods. Those include for instance Zhen et al. (2019)
(which is cited in the current paper) and Peng et al. (2016). Depending on the
approach, a number of evaluation metrics are also given e.g. in Peng et al. (2016).
Something along such lines is possible for the current paper. Such a comparison could
be done on a more powerful machine, since the idea is to validate. To be recommended
for publication, the paper should at least clearly show that the retrievals make sense.

Alternatively, they could also use synthetic datasets, once again as done in other similar
works such as Zhen et al. (2019) and Peng et al. (2016).

Thank you for making this suggestion. We have presented the validation results above which have
improved the manuscript. We did not compare the results with the other methods as the main
objective of the paper is to show the sensitivity of the block sizes, interval, color, and resolution of the
images to the PC algorithm. We hope that our response to the earlier suggestions clarifies this issue.

Response to further key issues and comments:

1. The paper should explicitly discuss the well-known issue of multilayer clouds,
which is currently not mentioned though it is discussed among other problems in
Leese et al. (1971) and Zhen et al. (2019), which are both cited as PC-method
references in the current paper (lines 19-20).

We thank the reviewer for bringing up this point. This is an interesting issue that the tracking
algorithms have to deal with. The introduction section of the paper referred to the clouds moving in
different directions (multilayer). Therefore the block-wise algorithm is suggested to mitigate the issue.
We will further discuss this in the introduction section.

-- This is from Zhen et al. (2019) (their page 2): "However, as shown in the prior work,
FPCT [Fourier phase correlation theory] is unable to recognize multiple motion
displacement vectors from different cloud layers because it can merely extract one
displacement value for a global image [46].

This is true when FFTPC is used over the entire image (as in Zhen et al) and this issue can be
effectively mitigated using the blockwise method which is discussed in this paper.

Interferences such as sky background effect, pixel superposition, the motion of
multiple cloud layers, and irregular cloud deformation can all cause random noise
leading to significant displacement calculation errors.".



We agree with the reviewer. These issues are true for any cloud tracking algorithm. Such errors usually
appear as fluctuations from the surrounding motion vectors and can be removed by various methods.
Fig 10 in Zhen et al shows that the performance of the pure FFTPC on global images is as good as
other preprocessing methods but with not considering the outliers that can be easily removed, except
for the optical flow underperforming FFTPC. Their Fig 11 also shows outliers in transformed CMVs
which are cleared thanks to the ensemble method.

We used Westerweel & Scarano (2005), the details of which will be added in the revised version.

-- Zhen et al. (2019) also add, on their page 3: "According to the algorithm principle
of FPCT, the cloud displacement calculation result is either correct or unacceptable.
The probability for correct result depends on the noise intensity." Note that they then
move on and discuss the "low robustness of the FPCT method".

Thank you for quoting this from Zhen et al. We have seen similar behavior (See above figure 1). This is
now discussed in the synthetic data section.

However, a direct comparison between the methodology of Zhen et al with our work is not justified as
they used a different approach. Zhen's methodology differs from this paper in some key aspects.
They have an ensemble approach. Therefore, several methods and their variations by changing
parameters are used to get the ensemble of predictions and the mean of the Gaussian distribution
fitted to the ensemble is the best estimate. Note that the similarity indices are used in assessing the
quality of the transformed images, not for the quality of the vectors.

Our approach, on the other hand, is to use the blockwise estimation of the motion which gives
multiple vectors and then remove the outliers before taking the mean.

Zhen et al., also computed global shift for the entire image which only works best in case of the
homogeneous motion over the entire domain, and the block-wise PC method is always recommended
(discussed in sec 1). The unreliable results from the PC method in Zhen et al can be attributed to this
assumption of homogeneity of the motion. Our experience with global shift estimation is similar to
Zhen et al. Moreover, the frequency of extremely large CMD values in their paper can also be due to
the noisy CC matrix, where the peak is found at the boundaries, we also encountered this but less
frequently than Zhen et al., due to the blocks-wise implementation. This was the reason to use Vmax
to remove the outliers. See sec.

The second quote moreover emphasises the issue of not performing preprocessing in
the current paper and seems to contradict the claim that "The PC method can be
implemented without preprocessing images" (lines 36-37). Again, | do stress that Zhen
et al. (2019) is a reference of the current paper for the PC method.

We tried preprocessing using openCV background removal and found no improvement in the quality
during the development process. This is due to the independence of the phase shift to the lighting
conditions and the Gaussian smoothing of the correlation matrix. The position of the peaks in the
correlation matrix is related to the changes in the larger textures and not to the change in magnitudes.
We have now added Zhen et al as a reference to the FFT-PC method as it also shows a comparison
with the other methods. However, they are not using the blockwise algorithm.



2. The authors should also add some discussion in the paper on the issue of image
distortion and how it can quantitatively affect their retrieved winds. Indeed, for TSI
(also used in this work), "image distortion compromises the accuracy of the
detected motion vectors, especially around the boundary of an image" (Peng et
al. (2016)). With the PC method, the distortion issue does not vanish once we go
to Fourier space. From the images and animations from the current paper, no
filtering seems to be performed on the edges though (in fact, arrows are even
derived for the TSI supporting arm).

We couldn't agree more with the reviewer's concerns. The distortion at the boundaries can not be
simply removed by regridding the hemispheric data to a square image. The boundary of the images is
excluded from the mean calculation for the same reason.

3. The need for a not-too-heavy algorithm is emphasised: e.g. 'computational
overhead complicating their use in real-time applications' (line 23),
'computational efficiency of the algorithm is critical' (line 36), '[FFT] is
computationally efficient, and hence a natural choice' (line 40). However, it would
seem that the objective should at least be to obtain usable retrieved winds (a too
simplistic algorithm could easily lead to poor retrievals, as already stressed).
While the authors do not give the technical specifications of the sage nodes in the
paper (e.g. CPU number of cores and clock speeds; RAM), the Sage website
actually reads "Cyberinfrastructure for Al at the Edge" and the associated
proceedings, Beckman et al. (2016), which is both cited in and shares authors
with the current paper, talks about computer vision (5 times) and OpenCV (2
times), which are quite heavy tools. Therefore, following on the preceding
remarks, it seems likely that a more sophisticated algorithm that would at least
properly take into account the caveats commonly discussed and addressed in
earlier peer-reviewed works on the subject might be both needed to obtain
satisfactory results, while being achievable in practice. Has this been attempted,
and if not why?

We agree with the reviewer. However, the Sage nodes run many applications using OpenCV and deep
learning models, some of them are critical, for example, traffic estimators in the city and wildfire
detection in the forests. These applications take the bulk of the processing powers due to the deep
learning models. Therefore, it is important to try for low processing for most applications. In the future,
we may use more complicated algorithms by adapting an advanced machine learning approach to
estimate the cloud motion after accessing their value addition to the final product such as solar
irradiance estimators.

4. Compared to similar peer-reviewed works, the paper is bit light on the
mathematical front regarding the techniques employed. It would be good for the
unfamiliar reader if the article was more self-contained.

Thank you for suggesting this. We did not give the mathematical description of the PC method or
median fluctuation method in the paper as it is available in the referred papers. However, we will add it
in the revised version.



5. Note: The size in megabytes of Figure 2 in the paper should absolutely be
reduced. In the pdf, page 6 alone is indeed responsible for more than 20 MB in
the final document file size.

Done. Thank you so much for bringing this to our attention.

6. For the references, it would be preferable to also include a peer-reviewed work
whenever it makes sense and is possible, and not only proceedings as is currently
the case for optical flow.

Thank you for the suggestion. We will review the journal publications on optical flow relevant to cloud
motion and cite them appropriately.
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Appendix: Testing with Synthetic Data

To test this, make two dummy images with uniform noise and add an object with irregular structures
for tracking.

Tracking a Single Rigid Object
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e shift in this image is (5, 0)



Tracking a Changing Object
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Tracking Multiple Objects with Incoherent Motion
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Tracking Multiple Objects with new Object

M0 15 20 25 30

5

10 15 20 25 30

5

image 2
15
8 20
[T+]
10 L
g 15
5§ =
- 10
0 2
5
[Ts]
-5
5 10 15 20 25 30 § 10 15 20 25 30
X X
Raw covariance matrix Gaussian Blur covariance matrix
£
0.2 w 0.00:
=
01 0.00;
> e
0.0 = 0.001
-0.1 =
* —0.0
§ 10 15 20 25 30 § 10 15 20 25 30
X b3

shift from noisy crossCov is (2, -4)
shift from smooth crossCov is (3, -4)
real shift: object1=(2, -5) and object2=(1, -3)

Average shiftis (1, -4)



Real cloud element significantly changed between the images after long interval.
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