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Abstract. Phase Correlation (PC) is a well-known method
for estimating cloud motion vectors (CMV) from infrared
and visible spectrum images. Commonly phase-shift

::::
phase

::::
shift is computed in the small blocks of the images using
the fast Fourier transform. In this study, we investigate the5

performance and the stability of the block-wise PC method
by changing the block size, the frame interval, and combina-
tions of red, green, and blue (RGB) channels from the total
sky imager (TSI) at the United States Atmospheric Radia-
tion Measurement user facility’s Southern Great Plains site.10

We find that shorter frame intervals, followed by larger block
sizes, are responsible for stable estimates of the CMV as sug-
gested by the higher autocorrelations. The choice of RGB
channels has a limited effect on the quality of CMV, and
the red and the grayscale images are marginally more re-15

liable than the other combinations during rapidly evolving
low-level clouds. The stability of CMV was tested at dif-
ferent image resolutions with an implementation of the op-
timized algorithm on the Sage cyberinfrastructure testbed.
We find that doubling the frame rate outperforms quadru-20

pling the image resolution in achieving CMV stability. The
correlations of CMV with the wind data are significant in
the range of 0.38–0.59 with

:
a
:
95% confidence interval, de-

spite the uncertainties and limitations of both datasets. The
raindrop contaminated images were excluded by identifying25

:
A
::::::::::

comparison
:::

of
:::
the

:::
PC

:::::::
method

::::
with

::::::::::
constructed

::::
data

:::
and

::
the

::::::
optical

:::::
flow

::::::
method

:::::::
suggests

::::
that

:::
the

:::::::::::::
post-processing

::
of

::
the

::::::
vector

::::
field

::::
has

:
a
:::::::::
significant

:::::
effect

:::
on

:::
the

::::::
quality

::
of

:::
the

:::::
CMV.

::::
The

:::::::::::::::::::
raindrop-contaminated

::::::
images

:::
can

:::
be

::::::::
identified

::
by

:
the rotation of the raindrop contaminated TSI mirror in30

the motion field. The results of this study are critical to op-

timizing algorithms for edge-computing enabled sensor sys-
tems.

1 Introduction

Converting cloud images captured by a ground- 35

based sky-facing camera into a time series of mo-
tion vectors has implications for reporting local
weather and short-term forecasting of solar irradiance
(Jiang et al., 2020)

::::::::::::::::::::::::::::::::
(Jiang et al., 2020; Radovan et al., 2021).

Phase Correlation (PC) estimates
:::::
global

::
translative 40

shift between two similar images by detecting a
peak in their cross-correlation matrix which is used
to estimate the cloud motion vectors (CMV) from
the satellite and ground-based sky camera images
(Leese et al., 1971; Dissawa et al., 2017; Zhen et al., 2019). 45

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Leese et al., 1971; Dissawa et al., 2017, 2021; Zhen et al., 2019; Huang et al., 2011).

::
On

:::::
the

::::::
other

:::::::
hand,

:::::::
optical

::::::
flow

::::::
(OF)

:::::::::
estimates

::
the

:::::::::::
pixel-wise

::::::::
motion

::::::::::
assuming

:::::
the

::::::::::::
conservation

::
of

::::::::::
brightness

:::
of

:::::
the

::::::
object

:::::::
pixels

:::
in

:::::
two

:::::::
frames

::::::::::::::::::::::::::::::::::::::::::::::::::
(Apke et al., 2022; Mondragón et al., 2020; Peng et al., 2016). 50

::::::::
However,

:::
OF

::
is

:::::::
sensitive

::
to

::::::
image

::::
noise

::::
and

:::
the

:::::::
variation

::
in

:::::::
lighting.

::::
Both

:::
OF

::::
and

:::
PC

:::::::
methods

:::
fail

::
to

::::::
detect

:::::::::
texture-less

::::::
motion.

:
Other object-based cloud tracking methods used

in radar and satellite meteorology require cloud identifi-
cation before the tracking stage. The cloud identification 55

approaches vary from threshold-based to texture-based
methods and machine learning methods (Steiner et al., 1995;
Raut et al., 2008; Park et al., 2021).
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The texture-based methods and the machine learning mod-
els add computational overhead complicating their use in
real-time applications. In infrared and microwave satellite
images, and radar images, the threshold of brightness tem-
peratures and reflectivity, mark a physical distinction of
the features in the scene. However, for the cloud images5

in the visible spectrum, thresholds of RGB values may
not be a meaningful criterion to distinguish the proper-
ties of the clouds because they are affected by the light-
ing conditions and time of the day. The texture-based tech-
niques are also susceptible to detection errors due to re-10

flections and shadows caused by solar zenith angle
:::::
angles.

While the optical flow method can also estimate dense
field motion

:::
(OF)

::::::::
method

::::::::
estimates

::::::
dense

:::::::
motion

::::
field

::::::::::::::::::::::::::::::::::::
(Horn and Schunck, 1981; Chow et al., 2015), it also suffers
from the limitations in visible camera images and requires15

:::
may

:::::::
require

:
segmentation or background subtraction be-

fore the images are processed (Denman et al., 2009; Wood-
Bradley et al., 2012; El Jaouhari et al., 2015).

The Sage Project is designing and building a new kind
of reusable cyberinfrastructure composed of geographically20

distributed sensor systems (sage nodes
::::
Sage

:::::::
Waggle

:::::
nodes

:::::
shown

:::
in

::::::
Figure

:::
1a) that include cameras, microphones,

and weather and air quality sensors generating large vol-
umes of data that are efficiently analyzed by an embedded
computer connected directly to the sensor at the network25

edge (Beckman et al., 2016, https://sagecontinuum.org/). An
edge device rapidly analyzes the data in real-time at the
location where it is collected, and continuously sends and
receives feedback from connected remote computing sys-
tems and other similar devices. In such networks including30

Sage, the computational efficiency of the algorithm is criti-
cal. The PC method can be implemented without preprocess-
ing images and is robust to noise and changes in illumina-
tion as it works by only correlating the phase information
(Chalasinska-Macukow et al., 1993; Turon et al., 1997). This35

eliminates the burden of separating the background from the
objects to be tracked. A straightforward implementation of
the PC method in the frequency domain using the fast Fourier
transform (FFT) is computationally efficient, and hence a
natural choice to detect the cloud motion vectors from the40

hemispheric camera images at the edge.
The PC method is efficient for uniform rigid body motion,

i.e. when an object’s shape and size are preserved, and mul-
tiple objects in the scene are moving with the same velocity.
There are a few limitations to the PC method that can affect45

the applicability of using it to track
::::
affect

:::
its

::::::::::
applicability

::
in

:::::::
tracking cloud motions in a sky-facing camera. First, the PC
method is less efficient when multiple peaks in the correla-
tion matrix are observed. This occurs when cloud features
are moving with different velocities as each peak is associ-50

ated with the motion of one or more independent features
in the images. This limitation is overcome by dividing the
image into sufficiently smaller subregions or blocks and em-
ploying the PC separately for each block (Leese et al., 1971).

::
As

:::
the

::::::::::
multi-layer

::::::
clouds

::::
with

::::::::
different

:::::
cloud

::::
base

::::::
heights55

::::
move

:::::::::::::
independently,

::::::::::::::::::
Peng et al. (2016) used

::::::::
adaptive

:::::
blocks

::
for

::::
each

:::::
cloud

:::::
type.

Second, the changing cloud texture and geometries may
cause incoherent motion vectors in some image blocks.
Therefore, additional quality control measures are applied to 60

remove the spurious CMVs, usually assuming that a spuri-
ous CMV substantially deviates from its surrounding CMVs
in the presumably smooth velocity field (Westerweel and
Scarano, 2005). For the assumption of the coherent veloc-
ity field, smaller block sizes are preferred. The optimal block 65

size is determined by the maximum expected displacement
during the frame interval.

Third, the ground-based cameras frequently encounter
contamination on the mirror dome or hemispherical lens,
obscuring the clouds during and after a precipitation event 70

and automated identification and removal of precipitation-
contaminated images are critical (Heinle et al., 2010;
Kazantzidis et al., 2012; Gacal et al., 2018; Voronych et al.,
2019). The distortion of images caused by the presence of
raindrops and the edge detection methods are used to identify 75

raindrop contamination (Kazantzidis et al., 2012; Voronych
et al., 2019). In this paper, we propose the use of motion vec-
tors for detecting raindrop contamination on the rotating TSI
mirror.

Finally, while it is common for cameras to produce high- 80

resolution three-channel images, the PC method utilized only
a single channel. Hence, either the grayscale image or one of
the RGB channels is used. The dependence of CMV stability
on the choice of image channels is undocumented.

Investigating the sensitivity of the motion vectors to the
block sizes, the frame frequency, and its response to differ-
ent spectral channels will help in the effective implemen-
tation of the method. Therefore, in this paper, we evalu-
ate the performance of the block-wise PC with three visible5

channels, the grayscale, and the red to the blue ratio in two
blocksizes

::::
block

:::::
sizes and two frame rates. We also demon-

strate the effect of change in the image resolution and the
change in frame rate on the CMV quality.

:::
We

::::
also

:::::::
validated

::
the

::::
PC

::::::
method

::::
with

::::::::::
constructed

::::
data

::::
and

::::::::
compared

::
it
::::
with10

:::
OF

:::::::
method. The data, methodologyand the ,

::::
and

:
algorithm

are described in section 2. The results are shown in section 3,
and their implications for the Sage edge-computing platform
are discussed in section 4.

2 Data and Methods15

2.1 Data

In this paper, we mainly used data from the Atmospheric Ra-
diation Measurement (ARM) user facility’s Southern Great
Plains (SGP) atmospheric observatory (36.7◦N, 97.5◦W), in
particular, at the supplemental S1 and central C1 facilities in20

Lamont, OK, due to long-term data availability from colo-
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Figure 1.
::
a)

::::
Sage

:::::
node

:::::::::
deployment

::
at
:::

the
:::::

ARM
::::

user
::::::

facility

:
in
:::::::

Lamont,
:::::

OK.,
::::
with

:
a
::::::

fisheye
::::::

camera
:::

for
::::

sky
:::::::::
monitoring.

::
b)

::::::::::::::
Downward-looking

::::
Total

:::
Sky

::::::
Imager

::::
with

::::::
rotating

:::::
mirror

::::::
sunband

:::
and

::::
setup.

cated instruments for wind and cloud base height measure-
ments. The Sage camera images are used in section 3.3.2.

2.1.1 Total Sky Imager

The Total Sky Imager (TSI) is a mounted full-color digital25

camera looking downward toward a rotating hemispherical
mirror

::::::
(Figure

:::
1b). Daytime full-color hemispheric sky im-

ages are obtained from TSIs operational at the ARM SGP
atmospheric observatory (Morris, 2005; Slater et al., 2001).
The images recorded over the S1 site every 30 seconds (Mor-30

ris, 2000) during the day on July 26, 2016, are used to
demonstrate the sensitivity of the method described later on.
The central sky region of 400 × 400 pixels is used to com-
pute the CMV during the 06:36 to 20:35 CDT window. The
data over the C1 site

:::::::
between

:::::::
October

:::
14,

:::::
2017,

:::
and

::::::
August35

:::
14,

:::::
2019, are used for comparison of CMVs with the wind

data.

2.1.2 Sage Camera

Hanwha Techwin America’s fish-eye camera (XNF-8010RV
X series), hosted on the atop a Sage node and pointed toward40

the sky at the Argonne Testbed for Multiscale Observational
Studies (ATMOS) (41.70◦N, 87.99◦W), has a 6 MP CMOS
sensor providing 2048×2048 pixels full-color images. Un-
like the TSI camera, the Sage fish-eye camera lacks a sun-
band and a rotating mirror

:::::
(Figure

:::
1). Images recorded from45

this camera every 30 seconds from 06:00 to 17:00 CDT on
February 13 and 14, 2022, are used to demonstrate the effect
of camera resolution and frame rate on the sensitivity of the
method.

2.1.3 WPR
:::::
Wind

::::::::
Profiling

::::::
Radar and CEIL

:::::::::
Ceilometer 50

To validate the estimates of the CMV in our
work, measurements

::::
cloud

::::::
base

::::::
height

::::::::
(CBH)

::::
and

::::
wind

::::::::::::::
measurements

:::::
are

:::::::::
obtained

:::
from the co-

located ceilometer and the wind profiling radar
(WPR)(Muradyan and Coulter, 1998; Morris et al., 1996) were55

used from the SGP C1 site from October 14,
2017, to August 14, 2019. We used the cloud
base height (CBH) estimates for the same period
from the laser ceilometer, with its measurements
extending up to 7.7 km in 10 m resolution

:::::::::
respectively 60

::::::::::::::::::::::::::::::::::::::::
(Muradyan and Coulter, 1998; Morris et al., 1996). The
ceilometer is an autonomous, ground-based active remote
sensing instrument, that transmits near-infrared pulses
of light and detects multi-layer clouds from the signal
backscattered from cloud droplets that reflect a portion of 65

the energy back toward the ground. (Morris, 2016). The

::::
laser

:::::::::
ceilometer

::::::::::::
measurements

:::::::
extend

:::
up

::
to

:::
7.7

::::
km

::::
with

::
10

::
m

:::::::
vertical

:::::::::
resolution.

::::
The

:
wind profiles for comparison

were obtained from the 915 MHz WPR, which transmits
electromagnetic pulses in vertical and multiple tilted di- 70

rections (3-beam configuration is used at SGP) to measure
the Doppler shift of the returned signal due to atmospheric
turbulence from all heights (Muradyan and Coulter, 2020).
The consensus-averaged winds are estimated at an hourly
interval and are available from 0.36 km to about 4 km 75

at 60 m vertical resolution.
:::
We

::::
used

::::
the

:::::
CBH

:::
and

:::::
wind

:::::::
estimates

:::::
over

:::
the

::::
SGP

:::
C1

::::
site

::::
from

::::::::
October

:::
14,

:::::
2017,

::
to

::::::
August

:::
14,

:::::
2019.

2.2 Phase Correlation using FFT

:::
The

:::::
phase

::::::::::
correlation

::::::
method

::::
for

:::::::::
estimating

::::::
motion

::
in

:::
the 80

::::::
images

::
is

:::::
based

::
on

::
a
:::::::
property

:::
of

:::
the

::::::
Fourier

:::::::::
transform

:::
that

:
a
:::::::::::
translational

::::
shift

::
in

::::
two

::::::
images

::::::::
produces

::
a
:::::
linear

:::::
phase

::::::::
difference

::
in

:::
the

:::::::::
frequency

::::::
domain

:::
of

:::
the

::::::
Fourier

::::::::
transform

::
of

:::
the

::::::
images

::::::::::::::::
(Leese et al., 1971).

::
In

:::::
other

:::::
words,

::
a
:::::
signal

::
f2

:::
that

::
is

::::::
related

:::
to

:::::
signal

:::
f1 ::

by
::

a
:::::::::
translation

::::::
vector

:::::::
(dx,dy), 85

:::
then

:::::
their

:::::::
Fourier

:::::::::
transforms

:::::::
denoted

:::
by

:::
F1::::

and
:::
F2::::

have

::::
equal

::::::::::
magnitudes

::::
but

::::
with

::
a
:::::
phase

:::::
shift

::
of

:::::::
related

::
to

:::
the

:::::::::
normalized

:::::
cross

:::::
power

::::::::
spectrum

::
as

:::::::
follows.

:

The PC in each image block

e−i2π(µdx+νdy) =
F1(µ,ν)F ∗

2 (µ,ν)

|F1(µ,ν)F2(µ,ν)|
::::::::::::::::::::::::::::::

(1) 90

:::::
where

::::
F ∗
2 ::

is
::::

the
::::::::
complex

:::::::::
conjugate

::
of
::::
F2.

:::::
The

:::::
phase

::::
shift

::::
term

:::::::::::::
e−i2π(µdx+νdy)

:::
is

:::
the

:::::::
Fourier

::::::::
transform

:::
of

:::
the

:::::
shifted

::::::
Dirac

:::::
delta

::::::::
function.

::::::
Hence,

::::
we

:::
can

::::::::
calculate

:::
dx

:::
and

:::
dy:::

by
::::::::::

computing
::::

the
:::::::
inverse

:::::::
Fourier

:::::::::
transform

::
of

::
the

:::::::::::
cross-power

::::::::
spectrum

::::
and

:::::::
finding

:::
the

:::::::
location

:::
of

:::
the 95

::::
peak

:::::::::::::::::::::::::::::::
(Leese et al., 1971; Tong et al., 2019).

::::::::::
Therefore,

:::
PC

::
in

:::::
small

:::::
image

::::::
blocks, between the subsequent images, is

::::::
rapidly computed using FFT(Leese et al., 1971).

:
.
:::::::
Because
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::
the

::::::
phase

::::::::::
correlation

::
is

::::::::
executed

::::
only

:::
for

::
a
::::::

small
:::::
image

:::::
block,

:
it
::
is
:::::::
possible

::
to

:::::::
employ

::::::
parallel

:::::::::::
computation

:
to
::::::
further5

:::::
speed

::
up

:::
the

:::::::::
estimation

::
of

::::::
motion

:::
for

:
a
:::::
large

::::::
dataset.

:

The following procedure is used
::::::::
describes

:::
the

:::::
steps

::
in

:::::::::::
implementing

::::
PC to estimate the shift in images I1(i, j)

at time t1 and I2(i, j) at time t2:
:::::::
I1(x,y) ::

at
::::
time

:::
t1 :::

and

::::::
I2(x,y)::

at
:::::

time
:::
t2.

:::
Let

::::::
image

::
I2:::

be
:::::::
spatially

:::::::::
translated

::
by10

::::::::::
d= (dx,dy)::::

with
::::::
respect

::
to

:::
the

:::::
image

:::
I1,

:

1. Obtain FFT of the images I1(i, j) and I2(i, j) ::::::
I1(x,y)

:::
and

:::::::
I2(x,y) as I1(µ,ν) and I2(µ,ν).

2. Compute C(µ,ν) by multiplying
:::
the FFT of the first

image and
::
the

:
complex conjugate of the second image.15

::::::
C(µ,ν)

::
is

:::
the

::::::::::::::
cross-covariance

::::::
matrix

::
in

::::::
Fourier

:::::
space.

3. Obtain an inverse FFT of C(µ,ν)/|C(µ,ν)|

:
. The real part of the outcome gives

:
a
:
covariance ma-

trix Cov(p,q) . An example of the procedure is given in20

Raut et al. (2021).
::
in

:::::
image

:::::
space.

:

:::
The

:::::
above

:::::::::::::
implementation

::
of

:::
the

:::
PC

::::::::
algorithm

::
is

:::::::
available

::
in

::::::
several

::::::::::::
programming

:::::::::
languages,

:::::::
notably

:::::
C++,

:::::::
Python,

:::
and

::
R
:::

in
:::::::::

packages
::::::::
openCV

:::::::::::::::
(mulSpectrums),

::::::::
SkImage

::::::::::::::::::::::
(phase_cross_correlation),

::::
and

:::::::
imagefx

:::::::::
(pcorr3d).

:::
For

:::
this25

:::::
study,

:::
we

::::
used

::
a
:::::::

custom
::::::
Python

::::::::::::::
implementation

:::::
same

::
as

::::::::::::::::::::::::::::::
Picel et al. (2018); Raut et al. (2021).

::::
(See

:::::
code

:::::::::
availability

:::::::
section).

:
If
:::::::

image
:::
I2 ::

is
::

a
::::::::

spatially
::::::::::

translated
:::::::
version

:::
of

:::
the

:::::
image

:::
I1,

:::::
then

:::
the

:::::
phase

::::::::::
covariance

::::::
matrix

:::::::::
Cov(p,q)

::
is30

:::
zero

:::::::::::
everywhere

::::::
except

:::
for

::
a
:::::

sharp
:::::

peak
:::

at
:::
the

:::::::
location

:::::::::::
corresponding

:::
to

:::
the

:::::::::::
displacement

:::::::
between

:::
the

::::
two

::::::
images.

:::
The

:::::
peak

:::::::
intensity

::
is
::
a
:::::
good

:::::::
measure

::
of

::::
the

::::::
quality

::
of

:::
the

::::::
motion

::::::
vector.

::::
Due

::
to

:::
the

:::::::
reasons

:::::::::
mentioned

::
in
:::::::

Section
::
1,

::
the

::::::
actual

:::::
peak

::
in

:::
the

:::::::::
covariance

::::::
matrix

::::
can

:::
be

:::::
fuzzy

:::
and35

:
it
::::::::::
corresponds

:::
to

:::
the

:::::::::
best-fitting

:::::::::::
translational

::::::
motion

::
in

:::
the

::::::
images.

:
Sharp single-pixel peaks can

:::::::::
sometimes occur in

the correlation
:::::::::
covariance matrix, due to the high-frequency

noise and artifacts in the images, which are flattened using
Gaussian smoothing on Cov(p,q) with σ = 3.

::
An

:::::::
example

::
of40

::
the

:::::::::
procedure

::
is

:::::
given

::
in

:::::::::::::::
Raut et al. (2021).

:::
For

::::
each

::::::
image

::::::
block,

:::
the

:::::
peak

::::::::::
covariance

:::::::
location

::
is

:::::::
assigned

:::
as

:::
the

::::::
local

::::::
motion

:::::::
vector

::
in
:::::::

image
:::
I2 ::::

with

:::::::
reference

::::::
image

::
I1.

:::
As

:::
per

:::
the

::::::::::::
meteorological

::::::::::
convention

::
for

:::::
winds,

:::
the

::
U

:::::::::
component

::
is
:::::::
positive

:::
for

::
an

::::::::
eastward

::::
flow,

:::
and45

::
the

:::
V

:::::::::
component

::
is
:::::::

positive
:::

for
::

a
:::::::::
northward

:::::
flow. The lo-

cation of the peak covariance
:::
from

::::
the

:::::
center

::
of

::::
the

:::::
matrix

gives the shift in the images
:::::
image

:::::::
features

::::::
during

:::
the

:::::
image

::::::
interval

:::::
along

::::
the

::
X,

::::
and

::
Y

::::::::::
dimensions

:::
of

:::
the

::::::
image.

:::
We

::::
saved

:::
X

:::
and

::
Y

:::::
shifts

::::
and

::::::::
computed

:::
the

:::::::
motion

::::::
vectors

:::
per50

::::::
minute.

::::
The

::::::
image

:::
top

:::
is

:::::::
oriented

:::::::
towards

:::
the

::::::
north

:::
and

:::::::
therefore

:::
in

:::
the

::::::::::
subsequent

::::::::
sections,

:::
the

::::::
motion

:::
in

:::
the

::
X

:::
and

::
Y

:::::::::
directions

:::
are

:::::::
referred

:::
to

::
as

::
U
::::

and
::
V
:::::::::::

components,

::::::::::
respectively.

2.3
::::::::::

Constructed
:::::
Data

:::
for

:::::::::
Validation 55

:::
For

:::::::
studying

:::
the

::::::::
accuracy

::::
and

::::::::::
quantitative

::::
error

:::::::
analysis

::
of

::
the

:::::::
method,

::
a
::::::
dataset

::::
with

:::
the

:::::
known

:::::::::::
displacement

:::::::
vectors

:
is

::::::
needed.

::::::::
Synthetic

::
or

::::::::::::
reconstructed

:::::
image

:::::::::
sequences

:::
are

:::
best

:::::
suited

:::
for

:::
this

::::
task

:::
as

::::::::
managing

::::
the

:::::::::::
displacement

::
is

:::::
trivial

::
in

::::
such

:
a
::::::
dataset

:::::::::
compared

::
to

:::
the

::::
real

::::::
dataset.

::::::::
However,

:::
the 60

:::::::::
constructed

::::::
dataset

::::::
should

::
be

:::::
made

::::
with

::::
care

::
to

:::::
avoid

:::::
unreal

::::::::::::
augmentations

::::
and

:::::::
artifacts

::::::
while

::::::::::::
incorporating

:::::::
possible

::::::::
variations

:::
of

:::
the

:::::::
features

:::::
from

::::::
image

:::
to

::::::
image.

:::::
Such

::
a

::::::
dataset,

::::::::
although

::::::::
possibly

:::
not

::
a
::::::
perfect

:::::::::::::
representation

::
of

::
the

::::
real

:::::
data,

::::
can

:::
be

::::
used

:::
to

:::::
study

:::
the

:::::::::
properties

:::
of

:::
the 65

:::::::::
algorithms.

:

:::::
These

:::::::
images

::::
can

::::
then

:::
be

:::::::::
translated

::::
by

:::
the

:::::::
desired

::::::
amount

::
to

::::::
achieve

:::
the

:::::
cloud

::::::
motion

::::::
effect.

:::
We

::::::
created

:::::
image

::::
pairs

:::
by

::::::::::::
reconstructing

:::
the

:::::
2060

:::::::
samples

:::
of

:::::
Sage

::::::
camera

::::::
images

::::::::
classified

::
as

:::::::
cloudy

:::
by

:::
the

::::::::
algorithm

:::::::::
described

::
in 70

::::::::::::::::::::
Dematties et al. (2022) in

:::::
their

::::::
cluster

:
3
::::

and
::
8.

::::
The

::::::
images

::::
were

:::::::
selected

::
to

:::::
have

:::::::::
cloudiness

::
in

:::
the

:::::::
central

:::
200

:::
×

:::
200

::::
pixel

:::::::
region.

::::
The

::::
pair

:::
of

::::::
images

:::::
were

:::::::
created

::::
and

::::
then

::::::::
subjected

::
to

:::
the

::::::::
following

:::::::::::
modifications

:::::
using

:::
an

::::
edge

::::
filter

::
A

:::
and

:
a
:::
flat

:::::
filter

::
B. 75

Kernel A=

 0 −1 0
−1 5 −1
0 −1 0


::::::::::::::::::::::::

(2)

Kernel B =

1 1 1
1 1 1
1 1 1


::::::::::::::::::::

(3)

:::
The

::::
first

:::::
image

::::
was

::::::
created

::::
with

:::
the

::::::::
following

:::::::::
operations.

1.
:::
The

:::::::
original

:::::
image

::::
was

::::::::
converted

::
to

:::::::::
grayscale. 80

2.
:::::::
Addition

::
of

::::::::
Gaussian

::::
noise

::::
with

:::::
mean

::::
zero

:::
and

:::::::
standard

:::::::
deviation

::
1.
:

3.
::::::::::
Convolution

::::
with

::::::
Kernel

::
A.

:

4.
:::
Two

:::::::::
iterations

::
of

:::::::
Erosion

::::::::
followed

::
by

::::::::
Dilation

::
by

:::
the

:::::
Kernel

:::
B.

:::
i.e.,

:::::::::::::
Morphological

:::::::
opening

::
of

:::
the

:::::
image.

:
85

5.
:::::::
Cropped

::::::
images

::
to

:::::::
achieve

:::
the

::::::
desired

:::::::::::
displacement.

:

:::
The

::::::
second

::::::
image

::
of

:::
the

::::
pair

:::
was

::::::
created

:::
by

:::::::::
modifying

:
a

:::
few

:::::::::
operations.

:

1.
:::::::
Reversed

:::
the

:::::
RGB

::::::
colors

::
in

:::
the

:::::::
original

::::::
image

:::::
before

::::::::
converting

::
it
::
to

:::::::::
grayscale.

::::
This

::::::::
reversing

::
of

:::::::::
operations

:::
also

::::::
known

:::
as

::::
color

::::::::::::
augmentation

::::::
creates

::
a
::::::::
spectrally

:::::::
different

:::::
image

::::
with

:::
the

:::::
same

::::::::
structure.5

2.
:::::::
Addition

::
of

::::::::
Gaussian

::::
noise

::::
with

:::::
mean

::::
zero

:::
and

:::::::
standard

:::::::
deviation

::
1.
:
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3.
::::::::::
Convolution

::::
with

::::::
Kernel

::
A.

:

4.
:::
One

:::::::
iteration

:::
of

::::::::::::
morphological

:::::::
opening

::
by

::::::
Kernel

::
B.

:

5.
::::::::
Translated

:::::
and

::::::::
cropped

::::::::
images

::::
for

::::
the

:::::::
desired10

:::::::::::
displacement.

:

:::
We

::::::::
translated

:::
the

::::::
images

::
by

::
5,
:::
10,

::::
and

::
20

:::::
pixels

::
in
::::
both

::
X

:::
and

::
Y

::::::::
directions

:::
for

::::
ease

::
of

::::::::::
comparison

:::
and

:::::::::::
interpretation

::
of

::
the

::::::
results

::::
(see

::::::
section

::::
3.1).

:

2.4 Outliers in the CMV Field15

When the image block belongs to the clear sky or the scene
has changed beyond recognition by the correlation, the peak
in the covariance matrix is usually near the boundaries of
the block, thus giving artificially large displacements. Such
vectors are easily identified using a maximum velocity limit20

Vmax. For this analysis, we used Vmax = block length
3 . If the

Vmax is smaller than the expected maximum speed, then a
larger block size is recommended.

Removing large magnitude vectors smooths the field, how-
ever some motion vectors of reasonable magnitude but spuri-25

ous directions remain. Such spurious vectors can be removed
by comparing them with the surrounding motion vectors.

We compared each vector with the normalized me-
dian fluctuation of the neighboring blocks as described
in Westerweel and Scarano (2005) and Huang et al. (2011).30

The
::::::::::::::::::::::::::
(Westerweel and Scarano, 2005).

::::::::
Consider

::
a
::::
3×3

::::
data

::::
with

:::
u0 ::

as
::::

the
:::::::::::
displacement

::::::
vector

:::
at

:::
the

::::::
center

::::::
block,

:::::::::::
u1,u2, ...,u8,

::
as

:::::::::::
displacement

::::::
vectors

:::
of

:::
the

:::::::::
neighbors,

:::
and

:::
um ::

as
:::

the
:::::::

median
:::

of
:::::::::
neighbors,

:::
not

:::::::::
including

:::
the

::::::
central

:::::
vector.

:::::
Then

:::
the

:::::::
residual

:::
(ri)::

of
:::
all

:::::::::
neighbours

:::
are

::::::::
computed35

::
as

::::::::::::
ri = |ui−um|:::

to
:::::
obtain

::::
the

::::::
median

:::::::
residual

:::::
(rm).

::::
The

:::::::::
normalized

::::::
median

:::::::::
fluctuation

:::
r0 ::

is
::::
given

:::
by

r0 =
|u0−um|
rm+ ε

::::::::::::

(4)

:
ε
::
is

:::
the

:::::::::
minimum

::::::::::::
normalization

:::::
level

::::
that

:::::::::
represents

:::
the

::::::::
acceptable

::::::::::
fluctuation,

:::::::
usually

:::::::
0.1–0.2.

::::
The

:
CMV vectors40

with normalized median fluctuation values over 6 are dis-
carded

:
as
:::::::
outliers.

2.5 Identification of Raindrop Contamination

The CMV is not valid when rainwater present on the
reflecting mirror obscures the clouds. However, in such45

a scenario, the rotation of the raindrop contaminated

::::::::::::::::::
raindrop-contaminated

:
mirror produces a rotating vector

field as shown in Fig. 2a. We correlated the estimated CMV
fields with the mean of manually identified contaminated
CMV fields and found that the correlation coefficient, r > 0.4 50

is associated with the rotation of the raindrop contaminated

::::::::::::::::::
raindrop-contaminated

:
mirror (Fig. 2b). Because of the sharp

edges of the raindrops, the rotational pattern is efficiently

captured with few raindrops contaminating the mirror. How-
ever, it struggles to detect contamination when the drops are 55

concentrated at the center of the dome. Therefore, after the
rotation is detected, the next 10 minutes of data are flagged
as contaminated even if no subsequent rotation is detected.

2.6 Setup for Sensitivity Analysis

To test the algorithm’s sensitivity to the block size, we di- 60

vided the 400 × 400-pixel sky area into a grid of 10 × 10
and 20× 20 blocks and referred to as block length 40 and 20
pixels, respectively in Figures 5–8. Note that the choices for
the number or size of blocks are restricted by the Vmax on
one end and the neighborhood criteria on the other. For ex- 65

ample, if the expected Vmax is 7 pixels/min then the blocks
should be at least 21 pixels wide (section 2.4). On the other
hand, for the 10 × 10 grid (block width 40 pixels) with one
pixel

:
a
::::::::
one-pixel

:
neighborhood, the correction applies to the

central region of 8 × 8 blocks only. Therefore, increasing 70

block sizes reduces the number of blocks in the sky region,
which reduces the scope for

::
of

:
the neighborhood method in

the error correction stage. To test the sensitivity to the frame
interval, CMVs are also computed at 30 and 60-second inter-
vals. The 30-second CMVs are accumulated over one minute 75

for comparison. As the PC uses monochromatic images, the
CMVs were computed separately for the three BGR channels
(abbreviated to Bu, Gn, Rd in Figures), the red to the blue ra-
tio (RB, Slater et al., 2001), and grayscale (Gy) images.

2.7
::::::

Optical
:::::
Flow

:::::::::
Algorithm

:::
for

:::::::::::
Comparison 80

:::
Let

:::::::
I(x,y, t)

:::
be

:::
the

:::
first

::::::
image

:::::::
defining

:::
the

:::::
pixel

::::::::
intensities

:
at
::::

the
::::
time

::
t.
::::::::::

Therefore,
:::
the

::::
first

::::
and

::::::
second

:::::::
images

:::
are

:::::
related

:::
as

I(x,y, t) = I(x+ δx,y+ δy, t+ δt)
:::::::::::::::::::::::::::::

(5)

::
In

:::
the

:::::::::::
computation

::
of

::::
OF,

:::
we

:::::::
assume

::::
that

:::
the

:::::::::
intensities 85

::
of

:::
the

::::::
pixels,

::::
that

::::::
belong

::
to

:::
the

:::::
exact

:::::::
object,

::::::
change

::::
only

:::
due

:::
to

:::
the

::::::::::::
displacement

:::::::::::::::::::::::
(Horn and Schunck, 1981).

::::
This

:::::::::
assumption

::::::
allows

:::
for

:::
all

:::::::
changes

::::::::
detected

::
in

:::
the

::
x
::::
and

:
y

::::::::
directions

::
of

:::
the

::::::
image

:::
are

::
to

::
be

:::::::::
associated

::::
with

:::
the

::::::
motion

::::
only.

::::
The

::::::::
first-order

::::::::::::
approximation

::
of

:::
the

::::::
Taylor

:::::::::
polynomial 90

:
is
:

∂I

∂x
u+

∂I

∂y
v+

∂I

∂t
= 0

::::::::::::::::::

(6)

:::::
where

::::::::
u= dx

dt ,
:::::::
v = dy

dt .
:::::::::

However,
:::

to
:::::

find
:::
the

::::::
dense

::::::
motion

::::::
vector

::::::
field,

:::
we

:::::
used

::::::::::::::::::::::
Farnebäck (2003) method

::::
from

::::::::
OpenCV

::::::
which

::::::::::::
approximates

:::
the

:::::::::::::
neighborhood

::
of

::::
both

::::::
frames

::::
by

:::::::
higher

:::::
order

:::::::::::
(quadratic)

:::::::::::
polynomials,

::::::::::::::::::::
I(x)∼ xTAx+ bTx+ c.

:::::
This

:::::::::
algorithm

::::::
works

:::::
with

:::
an

:::::
image

:::::::
pyramid

:::::
with

:
a
::::::

lower
:::::::::
resolution

::
at

::::
each

:::::
next

::::
level5

::
to

::::
track

:::
the

:::::::
features

::
at
::::::::

multiple
::::::::::
resolutions.

:::::
Faster

:::::::
motions
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Figure 2. a) An example of the circular motion field generated every 2-4 minutes by
::
the

:
rotation of the raindrop contaminated

::::::::::::::::
raindrop-contaminated

:
mirror of TSI. b) Histogram of the correlation coefficient between the mean rotational vector field and CMV fields

on January 2, 2017,
:
shows a

:
robust separation of raindrop contaminated

:::::::::::::::::
raindrop-contaminated frames from the clean frames.

Table 1.
:::::
Mean,

:::::::
standard

::::::::
deviation

:::::
(SD),

::::
root

:::::
mean

::::::
square

:::
error

:::::::
(RMSE)

::::
and

::::
root

::::
mean

::::::
square

::::::
percent

::::
error

::::::::
(RMSPE)

::
of

::::
cloud

::::::
motion

::::::::
estimated

::::
from

:::::::::::
reconstructed

::::::
images

:::
for

::::::
constant

::::::::::
displacements

::
of

::
5,

:::
10,

:::
and

::
20

:::::
pixels.

::::::::::::
(u=uncorrected,

:::::::::
c=corrected

:::
with

:
a
:::::::::
threshold.)

::::::::::
Displacement

:
[
::
pix] Mean SD RMSE RMSPE %

:
5
:::
(u)

::
5.5

:::
1.02

: :::
1.13

::::
22.6

::
10

::
(u)

: ::
8.2

:::
2.63

: :::
3.19

::::
31.9

::
20

::
(u)

: :::
15.4

::
8.7

: :::
9.83

::::
49.1

::
10

::
(c)

::
9.2

::
1.4

: :::
1.7

::::
11.4

::
20

::
(c)

:::
20.5

::
2.1

: :::
2.1

:::
4.4

::
are

::::::::
captured

::::
with

::::
the

::::::::
increased

:::::
levels

::
of
::::

the
::::::::
pyramid.

:::
The

::::::::
algorithm

:::::::
provides

:
a
::::::
motion

::::::
vector

:::
for

::::
each

::::
pixel

::
of

:::
the

::::
input

:::::
image.

::::
The

::::::
motion

::::
field

:::
can

::
be

:::::::
smooth

::
or

:::::::
detailed

::::::::
depending

::
on

:::
the

:::::
given

::::::::::::
neighborhood

::::
size

::::
and

:::
the

:::::::
standard

::::::::
deviation10

::::
used

::
for

:::
the

::::::::::
polynomial

:::::::::
expansion.

:

3 Results

3.1
::::::::
Validation

:::::
with

:::::::::::
Constructed

::::::
Images

::
To

:::::
show

::::
the

::::::::
validation

:::
of

::::
our

:::::::::::::
implementation

:::
of

:::
the

:::
PC

:::::::
method,

::::
we

::::
used

:::
the

:::::::
images

::::::::::::
reconstructed

::::
from

::::
the

::::
Sage 15

::::::
camera

::::
data

::
as

::::::::
described

:::
in

::::::
section

::::
2.3.

::::::
Finally,

:::::
2060

::::
pairs

::
of

::::::
cloudy

::::::
images

::::::::
translated

:::
by

::
5,

:::
10,

::::
and

::
20

::::::
pixels,

::
in

::::
both

:
X
::::

and
::
Y

:::::::::
directions,

::::
were

:::::
used

::
to

:::::::
estimate

:::
the

:::::::::::
displacement

::::
using

::::
the

:::
PC

:::::::
method

:::::::::
described

:::
in

:::
the

:::::::
section

::::
2.2.

::::
The

::::::::::
distributions

::
of

::::
the

::::::::
estimated

:::::::
motion

:::
are

::::::
shown

::
in

::::::
Figure 20

:
3
::::
and

::::
their

::::::::::
comparison

:::::::
statistics

::::
are

:::::
shown

:::
in

:::::
Table

::
1.

:::
For

::::::
smaller

:::::::::::
displacement

::
of

::
5

:::::
pixels,

:::
the

:::::::::
algorithm

:::::::
estimates

:::
the

:::::
values

::::
with

::::::
22.6%

::::
root

:::::
mean

:::::
square

:::::::
percent

:::::
error.

::::
With

:::
the

::::::::
increasing

::::::::::::
displacement

::
of

:::
10

::::
and

:::
20

::::::
pixels,

:::
the

:::::::
RMSPE

:::::::
increases

:::
to

::::::::::::
approximately

::
32

::::
and

:::
49

:::
%,

::::::::::
respectively.

::::
This 25

:
is
:::::::::

consistent
:::::

with
:::
the

::::::::::
increasing

::::::
spread

::
in
::::

the
::::::::
estimates

::::
with

::::::::
increasing

::::::::::::
displacement

::
as

::::
seen

::
in

::::::
Figure

::
3.

::::::::
However,

::
the

:::::::::
algorithm

:::::
tends

::
to

:::::::
produce

::
a
::::
peak

:::::
near

:::
the

::::
zero

:::::
value,

:::::
except

::::
for

::::
very

::::::
small

::::::::::::
displacements

::::::
(D=5),

::::
and

:::::::
another

::::
peak

::
at

:::
the

:::::
given

::::::::::::
displacement.

:::::
These

::::::
results

:::
are

::::::::
consistent5

::::
with

:::::::::::::::
Zhen et al. (2019).

::::
The

:::::::::
proportion

::
of

::::::
vectors

::::
near

::::
zero

::::
value

:::::::
increase

::::
with

:::
the

:::::::::::
displacement

::::::::
however,

::
in

:::::
most

::::
cases

:::
they

::::
are

:::::::::
estimating

::::
the

::::::
correct

::::::::
quadrant

:::
of

:::
the

::::::::
direction

::
of

:::
the

:::::::
motion.

::::::::
However,

:::::
these

::::::
values

:::::
need

::
to

:::
be

:::::::
removed

::
to

:::
get

::
a

::::
good

::::::::::
estimation

::
of

:::
the

::::::
speed

::
of

::::
the

:::::::
motion.

:::
For10

:::::::::::
demonstration

:::::::::
purposes,

:::
we

:::::
used

:::
the

::::::::
threshold

:::
to

::::::
remove

::
the

:::::::::
near-zero

:::::
values

::::::
which

::::::::::
significantly

:::::::
reduced

:::
the

::::::
RMSE.

::::::::
However,

::
in

:::
the

::::
real

:::::::
images,

:::
the

:::::::
method

:::::::::
described

::
in

:::
the

::::::
section

:::
2.4

::
is

:::::::
effective

:::::
when

:::
the

::::::::
majority

::
of

:::
the

::::::
vectors

:::
are

::::::
correct.

::::
For

::::::
D=20,

::::::::::::
approximately

::
a

::::::
quarter

:::
of

:::
the

::::::
vectors 15

::::
were

::::
near

::::
zero

:::::::
vectors.

3.2 Cloud Motion and Sensitivity Results

Changing sky conditions captured by TSI on July 26, 2016,
during the 06:36 to 20:35 CDT are shown in Fig. 4 at 100
minutes intervals for reference. The sequence of images 20

shows the movement of stratiform clouds from the southwest
for over two hours (∼ 150 min), with the occasional presence
of low-level cumulus clouds. After about 3 hours, the cumu-
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Figure 3.
:::::::::
Distribution

::
of

:::
the

:::::
motion

:::::::
estimated

:::
by

::
the

:::
PC

::::::
method

::
in

::::::::::
reconstructed

:::::
images

:::
for

::::::::::
displacement

:::::
values

::
5,

::
10,

:::
and

:::
20

:::::
pixels.

Figure 4. Varying sky conditions on 26 July 2016, during
:::
from

06:36 to 20:35 CDT (11:36-01:35
::
the next day in UTC) at 100 min-

utes interval
::::::
intervals

:
over Lamont, OK.

:
A
:
Sky area of 400x400

pixels is cropped and used for CMV computation. The top of the
images

::::
image point to the north and the red arrow shows

::
the direc-

tion of motion for that frame.

lus cloud development covered the sky (see the 200-minute
snapshot) moving predominantly from the east/northeast, as 25

shown by the red arrow. Rapidly moving low-level clouds
had less coherent motion at the block level than the altostra-
tus. In addition, the low-level clouds intermittently traveled
in patches with the altostratus aloft moving from the south-
west. The time series of U and V components of CMV, shown 30

in Fig. 5 and Fig. 6, respectively, are smoothed using cubic

splines for easily discernible visualizations. The raw output

:
U
::::::::::

component
:
is shown in Fig. ?? and ??

::
12

:::
for

::::::::
reference.

The U and V plots suggest that the PC method successfully
captured the direction of the motion and the reversal of the 35

direction in all configurations. As described above, the mid-
level clouds moving from the west and transition to low-level
clouds moving from the east at around 150 minutes are seen
in Fig. 5.

The turbulent motion characterized the episodes of cumu- 40

lus growth from 150 to 450 minutes, as evidenced by the
fluctuations in the CMV during this phase in all channels,
however, more pronounced in the RB channel. Between 500
and 600 minutes, cumulus and altostratus cleared, and high-
level cirrus clouds became visible, flowing from the west. 45

Additional late-afternoon cumulus movement (see the 700
min snapshot) and the clear sky with high-level cirrus or
occasional westward-moving low-level cloud patches were
present until sunset.

The frequency distribution of the CMV components (Fig. 50

7) also shows two peaks of positive eastward component (U)
distinguishing the rapidly moving mid-level and slow high-
level clouds from the camera viewpoint. The larger blocks
(40 pixels wide) and the shorter frame interval (30-sec) have
a wider range than the rest of the configuration, which shows 55

their efficiency at capturing the low-level cumulus motion.
It is important to note that July 26, 2016, was accompanied
by a variety of cloud conditions and individual episodes of
the low, medium, and high-level cloud motion, each lasting
for at least an hour. Thus, the short-term fluctuations of CMV 60

are mainly caused by the algorithm’s instability. To assess the
stability of CMVs for various configurations, we compare the
autocorrelation of the CMV in the following subsection.

3.3 Stability of CMV

The stability of the CMV was tested by changing the block
size, the frame interval, and combinations of red, green, and
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Figure 5. Smoothed time series of U component of domain averaged CMV [pixel ·min−1] on 26 July 2016, 06:36 to 20:35 CDT (11:36-
01:35 next day in UTC) over Lamont, OK. Variation

::::::::
Variations with block size (20 pixels and 40 pixels) and frame intervals (30 sec and 60

sec) are shown for 5 channels.

blue (RGB) channels from the total sky imager (TSI) and
by changing the image resolution and frame rate in the Sage5

camera.

3.3.1 Block Size, Frame Interval and Channel

The movement of clouds is usually smooth at the one-minute
time interval. Except for the change in direction during the
altostratus to cumulus transition, the movement of the clouds10

on July 26, 2016, should be more or less stable at the hourly
intervals for most of the day (Fig. 5 and 6). However, the
CMV fluctuates at a 1-minute time interval, mainly due to
the irregular response of the algorithm caused by the issues
mentioned in Section 1. Therefore, the stability of motion15

vectors in time is evaluated for the above configurations by
checking the autocorrelation of the CMV time series. The au-
tocorrelation function (ACF) of U and V components for dif-
ferent configurations is shown in Fig. 8 (top panels). The lin-
ear ACF suggests a long decorrelation length for all the com-20

binations. While RB has the lowest autocorrelations (more
fluctuating vectors) for all configurations, the rest of the color
channels have more or less equally stable vectors. The frame

interval, followed by block length, noticeably affects the sta-
bility of the vectors. 25

The lower panels in Fig. 8 are the same as the top pan-
els but for the period between 150:450 minutes when the
rapidly developing low-level clouds were present. The small
cloud features were developing fast and had variable motion.
Therefore, during this period, the autocorrelation is lower 30

and the performance of the large block sizes and short frame
intervals is noticeably better for both U and V components.
The CMV from red and gray channels has slightly higher au-
tocorrelation for the dominant motion (i.e. zonal component,
U) during this period. 35

3.3.2 Image Resolution and Frame Interval

Our analysis shows that CMVs are more stable for larger
blocks and shorter frame intervals (see Sec. 3.3.1). There-
fore, the stability of motion vectors is evaluated for the same
blocks (i.e., the image divided into 10×10 grid.) and by re- 40

ducing their resolution in steps to block lengths of 200, 150,
100, and 50 pixels, as shown in Fig. 9, with frame intervals
of 30 and 60 seconds. February 13 was dominated by mid-
level stratus cloud motion and February 14 had periods of
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Figure 6. Same as Figure 5 but for V component of the CMV.
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Figure 7. Frequency distributions of U and V components [pixel ·min−1] shown in Figures 5 and 6, respectively for all 20 setup combina-
tions. The bimodal distribution of

::
the U component is due to two cloud regimes discussed in sec

3.2
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Figure 8. Autocorrelogram for U and V components showing the stability of the motion vectors shown in Figure 5 and Figure 6. (top) for all
the data, and (bottom) for the selected period of rapid Cu cloud development between 09:06 to 14:56 LT (time steps: 150–500 in ).

low-level cumuliform development with fast movements and
rapid evolution of cloud features dominating the scene. In
addition, on both days, the cloud motion was mostly in East-5

West (zonal) direction with the U component approximately
four times larger than the V component. Therefore, ACF of
only U components for four image resolutions and two frame
intervals are shown in Fig. 10. ACF is significantly lower for
longer frame intervals. For example, long intervals reduce the10

autocorrelation at lag-1 from 0.75 at 30-sec interval
::::::
intervals

to 0.5 at 60-sec interval
:::::::
intervals (Fig. 10 a ). This effect is

even more prominent for the rapidly evolving cumuliform
clouds (Fig. 10 b ) where the autocorrelation at the lag-1
drops from 0.65 to 0.2. On the other hand,

:
a change in the15

resolution by a factor of four has minimal effectand ,
::::
and

:
a

change in lag-1 autocorrelation is within 0.05.

3.4 Comparison with Wind Data

The comparison of the CMV either from a ground-based
camera or satellite deployed sensors with that of atmospheric 20

winds, has several sources of uncertainty. The estimation
and comparison of CBH and winds from the ceilometer and
the wind profiler respectively, show sampling uncertainty. In
addition, the cloud displacement from the camera viewpoint
differs with altitude, and deeper convective clouds do not 25

always move parallel to the low level winds. Therefore,
this comparison may not be interpreted as a quantitative
validation of the algorithm, however, significant correlations
of the magnitudes indicate that the estimates of the
instantaneous CMVs from the camera images are stable over 30

a long period.
To qualitatively

::
To

:
compare the hourly mean CMV with

winds of appropriate altitudes, we identified the hours with
a stable CBH for at least 20 minutes from the ceilometer
measurements from October 14, 2017, to August 14, 2019. 35

The hourly winds are averaged for 1-km
:
1
:::
km

:
deep layers

from the surface to 4 km altitude, and then the hourly-mean
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Figure 9. The scheme for testing resolution sensitivity with Sage
camera image obtained on April 21, 14:06:38 over Lamont, OK. A
10×10 block grid with four successively lower resolutions is used
for CMV computation to compare the effect of resolution and time
interval on the stability of CMV.
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Figure 10. Autocorrelogram for U components for varying reso-
lutions of the image with the same block region and the two frame
intervals on February 13 and 14, 2022 shows the effect of the chang-
ing resolution and time intervals on the stability of the motion vec-
tors.

CMVs are compared with the mean wind vectors in the ver-
tical layer corresponding to the median CBH (Fig. 11).

::::
Note

:::
that

:::
the

:::::
range

::
of

::::::
values

:::
for

:::::
CMV

:::
and

:::::
wind

::::
have

::
an

:::::
order

::
of

::::::::
magnitude

:::::::::
difference

:::
due

::
to

:::
the

:::::::
different

:::::
units.

:
From the 551

days of data during this period, 876 daytime cloudy hours
were identified, when simultaneous measurements from the5

WPR, the ceilometer, and CMV estimates were available. We
only present CMVs for one setting: the 40-pixel block length,
and the 30-second frame interval for the red channel. The
rainy samples, identified using the method described in sec-
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Figure 11. Comparison of hourly mean U and V components of the
CMV and mean wind in a 1 km deep layer where the stable cloud
base height was observed during the hour. The rainy hours extracted
using the method in section 2.5 are shown with the red color.

tion 2.5 mostly fall close to zero value, as no mean motion is10

recorded. The sky-view camera data routinely suffers from
rain, snow, and other debris on the lens that obstructs the
view. The higher wind speeds near zero CMV can mainly
occur due to the snow obstructing the view, or smooth flat
clouds

::::
cloud

:
bases that are not successfully tracked. In ad- 15

dition, the quality of the wind profiles from the WPR is also
adversely affected by rainfall (Muradyan and Coulter, 2020).
Therefore, we removed instances with precipitating events
from consideration in our comparison. The correlation coef-
ficient (r) of the U component of the CMV and hourly wind 20

averages improved from 0.38 for all the data, to 0.42 after
removing rainy samples, with a 95 % confidence interval.
Likewise, for

::
the

:
V component, r increased from 0.56 for all

data to 0.59, with a 95 % confidence interval. The slope of
the linear fit for U components is between 2.4–3.4 for layers 25

0–3 km and it is 5.7 for the 3–4 km layer, suggesting that the
mid-level (i.e. 3–4 km) CMVs are noticeably underestimated
from the camera viewpoint. The slopes of the V components
are in the range

::
of 3–4 for all layers. The WPR data above 4

km are sparse hence no samples with matching criteria were 30

available during the study period.

:::
The

::::::::::
comparison

::
of

:::
the

::::::
CMV

:::::
either

::::
from

::
a
:::::::::::
ground-based

::::::
camera

::
or

:::::::
satellite

:::::::
sensors

::::
with

::::
that

::
of

:::::::::::
atmospheric

:::::
winds

:::
has

:::::::
several

:::::::
sources

:::
of

::::::::::
uncertainty.

:::::
The

:::::::::
estimation

::::
and

:::::::::
comparison

:::
of

:::::
CBH

::::
and

::::::
winds

:::::
from

:::
the

:::::::::
ceilometer

::::
and 35

::
the

:::::
wind

:::::::
profiler

:::::::::::
respectively,

:::::
show

::::::::
sampling

::::::::::
uncertainty.

::
In

::::::::
addition,

::::
the

::::::
cloud

::::::::::::
displacement

:::::
from

::::
the

:::::::
camera

::::::::
viewpoint

::::::
differs

::::
with

:::::::
altitude,

:::
and

::::::
deeper

:::::::::
convective

:::::
clouds

::
do

::::
not

:::::::
always

::::::
move

:::::::
parallel

:::
to

::::
the

:::::::::
low-level

::::::
winds.

::::::::
Therefore,

::::
this

:::::::::::
comparison

::::
may

::::
not

:::
be

::::::::::
interpreted

::
as

::
a 40

:::::::::
quantitative

:::::::::
validation

::
of

::::
the

::::::::
algorithm

:::
for

:::::
wind

::::::::
retrievals,

:::::::
however,

:::::::::
significant

::::::::::
correlations

::
of
::::

the
:::::::::
magnitudes

:::::::
indicate

:::
that

::::
the

::::::::
estimates

:::
of

:::
the

::::::::::::
instantaneous

:::::::
CMVs

:::::
from

:::
the

::::::
camera

::::::
images

::::
are

:::::
stable

:::::
over

:
a
:::::

long
::::::
period.

:::::::::
Although

:
a

::::::
perfect

:::::::::
correlation

::::
does

::::
not

::::
exist

::::::::
between

::::
wind

::::
and

:::::
CMV 45

::::
from

:::::::
ground

:::::::
camera

:::::::
images

::::
due

:::
to

:::
the

::::::
above

:::::::
factors,
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::::
more

:::::::
accurate

::::::::::::
identification

::
of

::::
rain

:::
and

::::::::::::::::
snow-contaminated

::::::
images

:::::
would

:::::::
improve

:::
the

:::::::::::
comparison.

3.5
::::::::::
Comparison

::::
with

:::::::
Optical

:::::
Flow

:::::::
Method

:::
The

::::::::::
estimations

::
of

:::
the

:::::
mean

::::::
motion

::::::
vector

::::
from

:::
PC

:::
and

:::
the

:::
OF

::::::::
algorithms

:::
for

::
U

::::::::::
components

:::
are

:::::
shown

::
in
::::::
Figure

:::
12.

:::
The5

::::
issue

::
of

::::::::
near-zero

::::::
values

::::
seen

::
in
::::::

Figure
::
3
::
is

::::
also

::::::
present

::
in

:::
OF

::::::
vectors

:::::
which

::
is

:::::::
causing

::
an

:::::::::::::
underestimation

:::
of

:::
the

::::
mean

::::::::
magnitude

:::
as

::::::::
compared

::
to

:::
the

:::
PC

:::::::
(Figure

:::
12,

:::::::::::
OptFlowAll).

:::::
Figure

:::
13

::::::
shows

:::::::::
smoothed

::::::
dense

::::::
CMV

::::
field

::::::
using

:::
OF

:::::::
method.

::::
The

::::::::
near-zero

::::::
values

::::
occur

::
at
:::
the

:::::
clear

:::
sky

:::::
region

::
or10

:::::
where

:::
the

:::::::
lighting

:::
and

:::::
scene

:::::::
change

:::::::::
drastically.

::::
Due

::
to

:::
the

:::::
dense

::::::
motion

::::
field,

:::::
these

::::::
vectors

:::
are

:::::::
clustered

::
in

::::::
image

::::
space

:::
and

::::::::
therefore

:::
they

:::
can

:::
not

:::
be

:::::::
removed

::::
with

:::
the

:::::::::::
neighborhood

::::::
method

:::
of

:::::::::::::::::::::::::::
Westerweel and Scarano (2005).

:::::::::
However,

:::
the

::::::
regions

::::
with

::::::::::
cloudiness

:::
are

:::::::::
efficiently

:::::::
tracked

:::
by

:::
the

:::
OF 15

:::::::
method.

::::::
After

:::::::::
removing

::::::::
near-zero

:::::::::::
magnitudes

:::::
using

:::
an

:::::::
arbitrary

::::::::
threshold

:::
of

:::
1,

:::
the

::::
OF

::::
has

::::::
higher

::::::::::
magnitudes

::
as

:::::::::
compared

::
to

::::
the

:::
PC

:::::::
method

::::
and

::::::
better

::::::::
captures

:::
the

::::::::
variability

::::
than

::::
the

:::
PC

:::::::
method.

::::
The

:::::
dense

:::::
field

::
of

::::::
motion

::::::
vectors

::::
can

:::
be

:::::::::
leveraged

:::
for

::::::
more

:::::::::
adaptable

::::::::
statistical 20

:::::::::
corrections

::::
than

:::
the

:::::::
arbitrary

::::::::
threshold

::::
used

::
in

::::
this

:::::
study

::
for

::::::::::
presentation

::::::::
purposes.

::::
The

::::
final

:::::
CMV

::::::::::
magnitudes

:::::
could

::
be

:::::
highly

:::::::::
dependent

:::
on

:::
the

::::::::::::::
post-processing

::
of

:::
the

::::::
results

:::
for

::::
both

:::
PC

:::
and

::::
OF

::::::::
methods.

::::::::
Although

:::
the

:::::
mean

::::::::::
magnitudes

::
are

::::::::
sensitive

:::
to

:::::::::::::
post-processing

::::::::::
corrections,

:::
the

:::::::
change

::
in 25

:::::::
direction

::::
and

:::::::::
magnitude

:::
of

:::
the

:::::::
motion

::::::
vectors

:::::
from

::::
both

:::::::
methods

:::
are

:::::::::::
comparable.

::::
The

:::::::::
correlation

::::::::
between

:::
the

:::
OF

:::
and

:::
PC

:::::::
methods

:::::::::
increases

::::
from

::::
0.84

:::
to

:::
0.9

::::
after

::::::::
removing

::
the

::::::::
near-zero

::::::
values.

::::
The

:::::::::::::
autocorrelation

::::::::
functions

::
in

:::::
Figure

:::
12b

:::::
show

:::
that

:::
the

:::::::::::::::
minute-by-minute

:::::::::
fluctuations

:::
of

::
the

:::::
CMV 30

::
are

:::::
more

:::::
stable

:::
for

:::
OF

:::::
than

::
for

::::
PC,

:::
due

:::
to

:::
the

:::::
dense

:::::
vector

::::
field

::
of

:::
OF.

:

4 Conclusion and Future Scope

Prior studies have documented the effectiveness of the
block-wise phase correlation

:::
PC

::::
and

::::
OF

::
method for 35

detecting cloud motion in IR and visible spectrum im-
ages (Leese et al., 1971; Dissawa et al., 2017; Zhen et al., 2019)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Leese et al., 1971; Chow et al., 2015; Dissawa et al., 2017; Zhen et al., 2019).

We tested the sensitivity of the
::
PC

:
method to changes in

block length, frame interval,
:::
and image resolution, as well as

five combinations of the visible channels from a sky-viewing 40

camera. These results are also applicable for satellite and
radar based

::
to

:::::::
satellite

:::
and

::::::::::
radar-based

:
motion estimation.

Additionally, we compared the derived mean CMV
::::
from

::
the

::::
PC

::::::
method

:
with the observed mean wind field from a

colocated
::::::::
collocated

:
remote sensing instrument, and

::
OF

:::::::
method.

::::
We

::::
also

:
presented a method to detect raindrops

on the rotating dome.
:::::::
However,

::::
the

:::::::::
automated

:::::::
removal

::
of5

:::::::::::
contaminated

::::::
images

:::
due

::
to

::::
rain,

:::::
snow,

::::
and

::::
other

:::::::::
obscurities

:::::
needs

:
a
:::::

more
::::::::

complex
::::::::
approach

:::::
using

:::::::::
advanced

:::::::
machine

:::::::
learning

:::::::::
algorithms

:::
and

::::::
labeled

:::::
data.

The performance of different visible channels is compara-
ble except for the red to blue

::::::::
red-to-blue

:
channel ratio (RB).10

Although the RB is effective in segmenting clouds from the
blue sky background

::::::::::::::
(Dev et al., 2016), it smooths the cloud

texture during overcast conditions, reducing the performance
of the PC method. The red and grayscale performed slightly
better than the blue and green channels.15

We find that larger block sizes provide a more stable es-
timation of cloud motion, and the stability benefits largely
from

::
the

:
shortened interval between frames even for coarse

resolution
::::::::::::::
coarse-resolution camera data. Considering that

the temporal changes in cloud patterns reduce the quality of20

the motion vectors, a shorter frame interval helps in main-
taining the structure from one image to the next. However, a
larger block size allows for a larger sample for stable cor-
relation matching, achieving more stable estimates of the
motion during disorganized cloud conditions (Fig. 8 c and25

d). Although averaging in time over the short frame interval
is a better way to achieve reliable estimates, a higher sam-
pling rate may not be always feasible. In these situations,
the large block size that can capture homogeneous motion is
recommended for block-based PC implementation. We also30

show that increasing the spatial resolution, i.e. increasing the
number of pixels without decreasing the number of blocks,
marginally affects the quality of the motion vectors. At the
same time, reducing the frame interval from 60 sec to 30
sec outperforms quadrupling of the resolution. Comparable35

results were obtained by Wang et al. (2018) for cloud seg-
mentation using a ground-based camera.

Our analysis shows that doubling the frame rate outper-
forms quadrupling of the resolution

:::
the

:::::::::
resolution

:::
for

:::
PC.

This non-intuitive result is very interesting in the context of40

edge-computing
::::
edge

:::::::::
computing. Because a shorter frame in-

terval between the camera images effectively improves the
quality of the CMVs, it is important that the application has
a
:::
the

:::::::::
application

::::
must

:::::
have deterministic and low-latency ac-

cess to sky images. Edge-computing
::::
Edge

:::::::::
computing solves45

this problem efficiently by carefully placing and pairing com-
putation with sensor data sources. Without incurring large
data transfers and delays due to network outages, in an edge-
computing platform like Sage, image data can be acquired
and processed right next to the camera, in the field. The high-50

level motion estimation result which is much smaller and
compresses efficiently , can be communicated and archived
for further studies.

:::
The

:::::::::
validation

::::
with

::::::::::
constructed

::::
data

:::
and

:::
the

::::::::::
comparison

::
of

:::
PC

:::
and

:::
OF

:::::::
methods

:::::::
suggests

::::
that

::
the

::::::
quality

::
of

:::
the

::::::
motion55

::::::
vectors

::
is

:::::::
sensitive

:::
to

:::
the

:::::
error

:::::::::
corrections

::::
and

::::::::
removal

::
of

::
the

:::::::::
near-zero

:::::::::
magnitudes

:::
in

:::
the

:::::::::::::
post-processing.

::::
The

:::::
dense

:::
OF

::::
field

:::
can

:::
be

::::::::
corrected

:::::
using

::::::
spatial

:::::::::
clustering

:::::::
methods

::
to

:::::::
produce

::::::::
valuable

::::::
results.

::
It
::

is
:::::

also
:::::::
possible

::
to
::::

use
:::
the

:::::
inputs

::::
from

:::
the

:::::
cloud

:::::
cover

:::::::::
estimation

::::::
plugin

::
to

::::::
correct

:::
the 60

:::
raw

:::
OF

:::::
field.

::::
The

::::
issue

:::
of

:::::::::
multi-layer

::::::
clouds

:::::::::
mentioned

::
in

::
the

:::::::
Section

::
1

:::
can

::
be

:::::::::
addressed

:::::
using

:::
OF

:::::
dense

::::::
motion

::::
field

::::
using

::::::::
adaptive

::::::::
clustering

:::
as

:::::::::::::
post-processing

:::
as

:::::::
opposed

::
to
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Figure 12.
:::::::::
Comparison

::
of

::::
mean

::::
cloud

::::::
motion

:::::::
estimated

:::::
using

::
PC

:::
and

:::
OF

::::::
methods

:::
on

::
26

:::
July

:::::
2016,

:::
over

:::::::
Lamont,

:::
OK.

:::
The

::::
mean

:::
OF

::::::
vectors

:::::::
computed

::::
with

::
all

::::
valid

:::
data

:::
and

::::
after

::::::::
removing

:::
low

:::::
values

::
are

:::::
shown

::::
with

::::
green

:::::::::::
(OptFlowAll)

:::
and

:::
blue

::::::::::
(OptFlowHi)

::::
lines,

::::::::::
respectively.

::
a)

:::
time

:::::
series

::
of

:::::
domain

::::::
average

::
U
:::::::::
component

::::
taken

::
at

::
the

:::::
central

::::::::
400×400

::::
pixel

:::::
region

:
at
::
1
:::
min

::::::
interval.

:::
No

::::::::
smoothing

::
is

:::::
applied

::
to

:::
this

::::
plot.

:
b)
::::

Lag
:::::::::::
autocorrelation

:::::::
function

::::
shows

:::
the

::::::
stability

::
of
:::
the

::::::
vectors.

1

Figure 13.
:::
Two

:::::::
examples

:::
of

::::
dense

:::::
cloud

::::::
motion

::::
field

::::
using

:::
OF

::::::
method,

::::::
thinned

::
by

:::
the

:::::
factor

::
of

:::
20,

::::
show

::::::::
clustering

::
of

:::::
vectors

::
in

::::
image

:::::
space.

:::::
Mean

:::::
cloud

:::::
motion

::
in
::::::

Figure
:::
12a

::
is

:::::::::::
underestimated

:::
due

:
to
:::
the

:::::::
near-zero

::::::
values.

:::::::
adaptive

:::::
blocks

::::
used

::
in
:::::::::::::::
Peng et al. (2016).

:::::::
Further

::::::::
sensitivity

:::
and

::::::::::
comparative

::::::
studies

::::
with

:::
OF

::::::::
algorithm

:::
are

::::::
needed

::
to

:::
test 65

:::
this

:::::::::
technique.

:::
The

::::::::
distortion

:::
of

:::
the

:::
sky

::::::
images

::::
near

:::
the

::::::::
horizon,

:::
due

::
to

::
the

:::::
wide

:::::
FOV

::
of

::::
the

::::::
fisheye

:::::
lens,

::::::
affects

:::
the

::::::::
accuracy

::
of

::
the

::::::
mean

:::::
cloud

::::::
motion

::::::::::
estimation.

:::::::::
Therefore,

:::
the

:::::
mean

::
is

::::::::
estimated

::::
using

:::
the

::::::
center

::::::
portion

::
of

:::
the

:::::::
images.

:::
The

::::::
fisheye 70

:::::::::
de-warping

:::::::
method

:::
can

::::::
correct

:::
the

::::::
regions

::::
near

:::
the

:::::::
horizon,

:::::
where

:::::::
features

:::
are

:::
not

::::::
heavily

:::::::::::
compressed.

Current machine learning algorithms for automatic cloud
identification underperform in the presence of thin clouds
(Park et al., 2021). To this end, we are generating a dataset of 75

thin clouds identified by scanning Mini Micropulse LIDAR

:::::
Micro

:::::
Pulse

::::::::
LiDAR

:
(MiniMPL) and a co-located sky-

viewing camera using
::
an

:
edge-computing paradigm. One of

the objectives is to use the camera images to predict cloud
boundaries and the cloud motion ,

:::::
cloud

::::::
motion

:
and utilize 80

the knowledge to modify the MiniMPL settings to adapt scan
strategies in real-time for optimal sampling in various envi-
ronmental conditions.

:::
The

::::::
results

::
of

:::
this

:::::
study

:::
are

::::::
helping

::
to

:::::::
optimize

:::::
cloud

::::::
motion

:::::::::
estimation

::::
with

:::::::::::
edge-enabled

::::::
camera

:::::::
systems. 85

Code availability. The Sage plugin implementation on the waggle
platform is made available from https://portal.sagecontinuum.org/
and the full source code is available on GitHub at
https://github.com/waggle-sensor/plugin-cmv-fftpc

. 90

Data availability. The data were obtained from the Atmospheric
Radiation Measurement (ARM) user facility, a U.S. Department of
Energy (DOE) Office of Science user facility managed by the Bio-
logical and Environmental Research Program. The ARM SGP data
can be obtained from the following DOI 10.5439/1025309 (Total 95

Sky Imager), 10.5439/1181954 (Ceilometer), and 10.5439/1025135
(Radar Wind Profiler). Sage camera data was collected at the Ar-
gonne Testbed for Multi-scale Atmospheric Observational Science
(ATMOS). The ATMOS data used in this paper can be obtained by
sending requests to the authors.

5 Raw CMV Output
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The unprocessed 1-min time series of U and V components
of CMV are shown in Fig. ?? and ??.

Unprocessed time series of U component of domain5

averaged CMV pixel ·min−1on 26 July 2016, 06:36 to 20:35
CDT (11:36-01:35 next day in UTC) over Lamont, OK.
Variation with block size (20 pixels and 40 pixels) and frame
intervals (30 sec and 60 sec) are shown for 5 channels. The
smoothed data is shown in Fig. 5.10

Same as Figure ?? but for V component of the CMV.
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phase shift invariance based multi-transform-fusion method for 950

cloud motion displacement calculation using sky images, Energ
Convers Manage, 197, 111 853, 2019.

https://doi.org/10.5439/1025308
https://doi.org/10.2172/1020716
https://doi.org/10.5439/1181954
https://doi.org/10.2172/1036530
https://doi.org/10.5439/1025135
https://doi.org/10.2172/1020560
https://ams.confex.com/ams/98Annual/webprogram/Paper335460.html
https://ams.confex.com/ams/98Annual/webprogram/Paper335460.html
https://ams.confex.com/ams/98Annual/webprogram/Paper335460.html
https://doi.org/10.1175/jamc-d-20-0119.1

