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Abstract. Phase Correlation (PC) is a well-known method for estimating cloud motion vectors (CMV) from infrared and visible

spectrum images. Commonly phase-shift is computed in the small blocks of the images using the fast Fourier transform. In

this study, we investigate the performance and the stability of the block-wise PC method by changing the block size, the

frame interval, and combinations of red, green, and blue (RGB) channels from the total sky imager (TSI) at the United States

Atmospheric Radiation Measurement user facility’s Southern Great Plains site. We find that shorter frame intervals, followed5

by larger block sizes, are responsible for stable estimates of the CMV as suggested by the higher autocorrelations. The choice

of RGB channels has a limited effect on the quality of CMV, and the red and the grayscale images are marginally more reliable

than the other combinations during rapidly evolving low-level clouds. The stability of CMV was tested at different image

resolutions with an implementation of the optimized algorithm on the Sage cyberinfrastructure testbed. We find that doubling

the frame rate outperforms quadrupling the image resolution in achieving CMV stability. The correlations of CMV with the10

wind data are significant in the range of 0.38–0.59 with a 95% confidence interval, despite the uncertainties and limitations of

both datasets. The raindrop contaminated images were excluded by identifying the rotation of the raindrop contaminated TSI

mirror in the motion field. The results of this study are critical to optimizing algorithms for edge-computing enabled sensor

systems.

1 Introduction15

Converting cloud images captured by a ground-based sky-facing camera into a time series of motion vectors has implications

for reporting local weather and short-term forecasting of solar irradiance (Jiang et al., 2020). Phase Correlation (PC) estimates

translative shift between two similar images by detecting a peak in their cross-correlation matrix which is used to estimate the

cloud motion vectors (CMV) from the satellite and ground-based sky camera images (Leese et al., 1971; Dissawa et al., 2017;

Zhen et al., 2019). Other object-based cloud tracking methods used in radar and satellite meteorology require cloud identifi-20

cation before the tracking stage. The cloud identification approaches vary from threshold-based to texture-based methods and

machine learning methods (Steiner et al., 1995; Raut et al., 2008; Park et al., 2021).

1

https://doi.org/10.5194/amt-2022-159
Preprint. Discussion started: 10 June 2022
c© Author(s) 2022. CC BY 4.0 License.



The texture-based methods and the machine learning models add computational overhead complicating their use in real-

time applications. In infrared and microwave satellite images, and radar images, the threshold of brightness temperatures and

reflectivity, mark a physical distinction of the features in the scene. However, for the cloud images in the visible spectrum,25

thresholds of RGB values may not be a meaningful criterion to distinguish the properties of the clouds because they are

affected by the lighting conditions and time of the day. The texture-based techniques are also susceptible to detection errors

due to reflections and shadows caused by solar zenith angle. While the optical flow method can also estimate dense field motion,

it also suffers from the limitations in visible camera images and requires segmentation or background subtraction before the

images are processed (Denman et al., 2009; Wood-Bradley et al., 2012; El Jaouhari et al., 2015).30

The Sage Project is designing and building a new kind of reusable cyberinfrastructure composed of geographically dis-

tributed sensor systems (sage nodes) that include cameras, microphones, and weather and air quality sensors generating large

volumes of data that are efficiently analyzed by an embedded computer connected directly to the sensor at the network edge

(Beckman et al., 2016, https://sagecontinuum.org/). An edge device rapidly analyzes the data in real-time at the location where

it is collected, and continuously sends and receives feedback from connected remote computing systems and other similar35

devices. In such networks including Sage, the computational efficiency of the algorithm is critical. The PC method can be

implemented without preprocessing images and is robust to noise and changes in illumination as it works by only correlating

the phase information (Chalasinska-Macukow et al., 1993; Turon et al., 1997). This eliminates the burden of separating the

background from the objects to be tracked. A straightforward implementation of the PC method in the frequency domain using

the fast Fourier transform (FFT) is computationally efficient, and hence a natural choice to detect the cloud motion vectors40

from the hemispheric camera images at the edge.

The PC method is efficient for uniform rigid body motion, i.e. when an object’s shape and size are preserved, and multiple

objects in the scene are moving with the same velocity. There are a few limitations to the PC method that can affect the

applicability of using it to track cloud motions in a sky-facing camera. First, the PC method is less efficient when multiple

peaks in the correlation matrix are observed. This occurs when cloud features are moving with different velocities as each peak45

is associated with the motion of one or more independent features in the images. This limitation is overcome by dividing the

image into sufficiently smaller subregions or blocks and employing the PC separately for each block (Leese et al., 1971).

Second, the changing cloud texture and geometries may cause incoherent motion vectors in some image blocks. Therefore,

additional quality control measures are applied to remove the spurious CMVs, usually assuming that a spurious CMV sub-

stantially deviates from its surrounding CMVs in the presumably smooth velocity field (Westerweel and Scarano, 2005). For50

the assumption of the coherent velocity field, smaller block sizes are preferred. The optimal block size is determined by the

maximum expected displacement during the frame interval.

Third, the ground-based cameras frequently encounter contamination on the mirror dome or hemispherical lens, obscuring

the clouds during and after a precipitation event and automated identification and removal of precipitation-contaminated images

are critical (Heinle et al., 2010; Kazantzidis et al., 2012; Gacal et al., 2018; Voronych et al., 2019). The distortion of images55

caused by the presence of raindrops and the edge detection methods are used to identify raindrop contamination (Kazantzidis
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et al., 2012; Voronych et al., 2019). In this paper, we propose the use of motion vectors for detecting raindrop contamination

on the rotating TSI mirror.

Finally, while it is common for cameras to produce high-resolution three-channel images, the PC method utilized only a

single channel. Hence, either the grayscale image or one of the RGB channels is used. The dependence of CMV stability on60

the choice of image channels is undocumented.

Investigating the sensitivity of the motion vectors to the block sizes, the frame frequency, and its response to different spectral

channels will help in the effective implementation of the method. Therefore, in this paper, we evaluate the performance of the

block-wise PC with three visible channels, the grayscale, and the red to the blue ratio in two blocksizes and two frame rates.

We also demonstrate the effect of change in the image resolution and the change in frame rate on the CMV quality. The data,65

methodology and the algorithm are described in section 2. The results are shown in section 3, and their implications for the

Sage edge-computing platform are discussed in section 4.

2 Data and Methods

2.1 Data

In this paper, we mainly used data from the Atmospheric Radiation Measurement (ARM) user facility’s Southern Great Plains70

(SGP) atmospheric observatory (36.7◦N, 97.5◦W), in particular, at the supplemental S1 and central C1 facilities in Lamont,

OK, due to long-term data availability from colocated instruments for wind and cloud base height measurements. The Sage

camera images are used in section 3.2.2.

2.1.1 Total Sky Imager

The Total Sky Imager (TSI) is a mounted full-color digital camera looking downward toward a rotating hemispherical mirror.75

Daytime full-color hemispheric sky images are obtained from TSIs operational at the ARM SGP atmospheric observatory

(Morris, 2005; Slater et al., 2001). The images recorded over the S1 site every 30 seconds (Morris, 2000) during the day on

July 26, 2016, are used to demonstrate the sensitivity of the method described later on. The central sky region of 400 × 400

pixels is used to compute the CMV during the 06:36 to 20:35 CDT window. The data over the C1 site are used for comparison

of CMVs with the wind data.80

2.1.2 Sage Camera

Hanwha Techwin America’s fish-eye camera (XNF-8010RV X series), hosted on the atop a Sage node and pointed toward the

sky at the Argonne Testbed for Multiscale Observational Studies (ATMOS) (41.70◦N, 87.99◦W), has a 6 MP CMOS sensor

providing 2048×2048 pixels full-color images. Unlike the TSI camera, the Sage fish-eye camera lacks a sunband and a rotating

mirror. Images recorded from this camera every 30 seconds from 06:00 to 17:00 CDT on February 13 and 14, 2022, are used85

to demonstrate the effect of camera resolution and frame rate on the sensitivity of the method.
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2.1.3 WPR and CEIL

To validate the estimates of the CMV in our work, measurements from the co-located ceilometer and the wind profiling radar

(WPR) (Muradyan and Coulter, 1998; Morris et al., 1996) were used from the SGP C1 site from October 14, 2017, to August

14, 2019. We used the cloud base height (CBH) estimates for the same period from the laser ceilometer, with its measurements90

extending up to 7.7 km in 10 m resolution. The ceilometer is an autonomous, ground-based active remote sensing instrument,

that transmits near-infrared pulses of light and detects multi-layer clouds from the signal backscattered from cloud droplets that

reflect a portion of the energy back toward the ground. (Morris, 2016). The wind profiles for comparison were obtained from

the 915 MHz WPR, which transmits electromagnetic pulses in vertical and multiple tilted directions (3-beam configuration is

used at SGP) to measure the Doppler shift of the returned signal due to atmospheric turbulence from all heights (Muradyan95

and Coulter, 2020). The consensus-averaged winds are estimated at an hourly interval and are available from 0.36 km to about

4 km at 60 m vertical resolution.

2.2 Phase Correlation using FFT

The PC in each image block, between the subsequent images, is computed using FFT (Leese et al., 1971). The following

procedure is used to estimate the shift in images I1(i, j) at time t1 and I2(i, j) at time t2:100

1. Obtain FFT of the images I1(i, j) and I2(i, j) as I1(µ,ν) and I2(µ,ν).

2. Compute C(µ,ν) by multiplying FFT of the first image and complex conjugate of the second image.

3. Obtain an inverse FFT of C(µ,ν)/|C(µ,ν)|

The real part of the outcome gives covariance matrix Cov(p,q). An example of the procedure is given in Raut et al. (2021).

Sharp single-pixel peaks can occur in the correlation matrix, due to the high-frequency noise and artifacts in the images,105

which are flattened using Gaussian smoothing on Cov(p,q) with σ = 3. The location of the peak covariance gives the shift in

the images.

2.3 Outliers in the CMV Field

When the image block belongs to the clear sky or the scene has changed beyond recognition by the correlation, the peak in

the covariance matrix is usually near the boundaries of the block, thus giving artificially large displacements. Such vectors are110

easily identified using a maximum velocity limit Vmax. For this analysis, we used Vmax = block length
3 . If the Vmax is smaller

than the expected maximum speed, then a larger block size is recommended.

Removing large magnitude vectors smooths the field, however some motion vectors of reasonable magnitude but spurious

directions remain. Such spurious vectors can be removed by comparing them with the surrounding motion vectors. We com-

pared each vector with the normalized median fluctuation of the neighboring blocks as described in Westerweel and Scarano115

(2005) and Huang et al. (2011). The CMV vectors with normalized median fluctuation values over 6 are discarded.
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Figure 1. a) An example of the circular motion field generated every 2-4 minutes by rotation of the raindrop contaminated mirror of TSI. b)

Histogram of the correlation coefficient between the mean rotational vector field and CMV fields on January 2, 2017 shows robust separation

of raindrop contaminated frames from the clean frames.

2.4 Identification of Raindrop Contamination

The CMV is not valid when rainwater present on the reflecting mirror obscures the clouds. However, in such a scenario, the

rotation of the raindrop contaminated mirror produces a rotating vector field as shown in Fig. 1a. We correlated the estimated

CMV fields with the mean of manually identified contaminated CMV fields and found that the correlation coefficient, r > 0.4120

is associated with the rotation of the raindrop contaminated mirror (Fig. 1b). Because of the sharp edges of the raindrops, the

rotational pattern is efficiently captured with few raindrops contaminating the mirror. However, it struggles to detect contami-

nation when the drops are concentrated at the center of the dome. Therefore, after the rotation is detected, the next 10 minutes

of data are flagged as contaminated even if no subsequent rotation is detected.

2.5 Setup for Sensitivity Analysis125

To test the algorithm’s sensitivity to the block size, we divided the 400× 400-pixel sky area into a grid of 10× 10 and 20× 20

blocks and referred to as block length 40 and 20 pixels, respectively in Figures 3–6. Note that the choices for the number or size

of blocks are restricted by the Vmax on one end and the neighborhood criteria on the other. For example, if the expected Vmax

is 7 pixels/min then the blocks should be at least 21 pixels wide (section 2.3). On the other hand, for the 10 × 10 grid (block

width 40 pixels) with one pixel neighborhood, the correction applies to the central region of 8 × 8 blocks only. Therefore,130

increasing block sizes reduces the number of blocks in the sky region, which reduces the scope for the neighborhood method in

the error correction stage. To test the sensitivity to the frame interval, CMVs are also computed at 30 and 60-second intervals.

The 30-second CMVs are accumulated over one minute for comparison. As the PC uses monochromatic images, the CMVs

were computed separately for the three BGR channels (abbreviated to Bu, Gn, Rd in Figures), the red to the blue ratio (RB,

Slater et al., 2001), and grayscale (Gy) images.135
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Figure 2. Varying sky conditions on 26 July 2016, during 06:36 to 20:35 CDT (11:36-01:35 next day in UTC) at 100 minutes interval over

Lamont, OK. Sky area of 400x400 pixels is cropped and used for CMV computation. The top of the images point to the north and the red

arrow shows direction of motion for that frame.

3 Results
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Figure 3. Smoothed time series of U component of domain averaged CMV [pixel ·min−1] on 26 July 2016, 06:36 to 20:35 CDT (11:36-

01:35 next day in UTC) over Lamont, OK. Variation with block size (20 pixels and 40 pixels) and frame intervals (30 sec and 60 sec) are

shown for 5 channels.

3.1 Cloud Motion and Sensitivity Results

Changing sky conditions captured by TSI on July 26, 2016, during the 06:36 to 20:35 CDT are shown in Fig. 2 at 100

minutes intervals for reference. The sequence of images shows the movement of stratiform clouds from the southwest for over

two hours (∼ 150 min), with the occasional presence of low-level cumulus clouds. After about 3 hours, the cumulus cloud140

development covered the sky (see the 200-minute snapshot) moving predominantly from the east/northeast, as shown by the

red arrow. Rapidly moving low-level clouds had less coherent motion at the block level than the altostratus. In addition, the

low-level clouds intermittently traveled in patches with the altostratus aloft moving from the southwest. The time series of U

and V components of CMV, shown in Fig. 3 and Fig. 4, respectively, are smoothed using cubic splines for easily discernible

visualizations. The raw output is shown in Fig. A1 and A2. The U and V plots suggest that the PC method successfully145

captured the direction of the motion and the reversal of the direction in all configurations. As described above, the mid-level

clouds moving from the west and transition to low-level clouds moving from the east at around 150 minutes are seen in Fig. 3.
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Figure 4. Same as Figure 3 but for V component of the CMV.

The turbulent motion characterized the episodes of cumulus growth from 150 to 450 minutes, as evidenced by the fluctuations

in the CMV during this phase in all channels, however, more pronounced in the RB channel. Between 500 and 600 minutes,

cumulus and altostratus cleared, and high-level cirrus clouds became visible, flowing from the west. Additional late-afternoon150

cumulus movement (see the 700 min snapshot) and the clear sky with high-level cirrus or occasional westward-moving low-

level cloud patches were present until sunset.

The frequency distribution of the CMV components (Fig. 5) also shows two peaks of positive eastward component (U)

distinguishing the rapidly moving mid-level and slow high-level clouds from the camera viewpoint. The larger blocks (40

pixels wide) and the shorter frame interval (30-sec) have a wider range than the rest of the configuration, which shows their155

efficiency at capturing the low-level cumulus motion. It is important to note that July 26, 2016, was accompanied by a variety

of cloud conditions and individual episodes of the low, medium, and high-level cloud motion, each lasting for at least an hour.

Thus, the short-term fluctuations of CMV are mainly caused by the algorithm’s instability. To assess the stability of CMVs for

various configurations, we compare the autocorrelation of the CMV in the following subsection.
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Figure 5. Frequency distributions of U and V components [pixel ·min−1] shown in Figures 3 and 4, respectively for all 20 setup combina-

tions. The bimodal distribution of U component is due to two cloud regimes discussed in sec

3.1

3.2 Stability of CMV160

The stability of the CMV was tested by changing the block size, the frame interval, and combinations of red, green, and blue

(RGB) channels from the total sky imager (TSI) and by changing the image resolution and frame rate in the Sage camera.

3.2.1 Block Size, Frame Interval and Channel

The movement of clouds is usually smooth at the one-minute time interval. Except for the change in direction during the

altostratus to cumulus transition, the movement of the clouds on July 26, 2016, should be more or less stable at the hourly165

intervals for most of the day (Fig. 3 and 4). However, the CMV fluctuates at a 1-minute time interval, mainly due to the

irregular response of the algorithm caused by the issues mentioned in Section 1. Therefore, the stability of motion vectors in

time is evaluated for the above configurations by checking the autocorrelation of the CMV time series. The autocorrelation

function (ACF) of U and V components for different configurations is shown in Fig. 6 (top panels). The linear ACF suggests a

long decorrelation length for all the combinations. While RB has the lowest autocorrelations (more fluctuating vectors) for all170

configurations, the rest of the color channels have more or less equally stable vectors. The frame interval, followed by block

length, noticeably affects the stability of the vectors.
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Figure 6. Autocorrelogram for U and V components showing the stability of the motion vectors shown in Figure 3 and Figure 4. (top) for all

the data, and (bottom) for the selected period of rapid Cu cloud development between 09:06 to 14:56 LT (time steps: 150–500 in ).

The lower panels in Fig. 6 are the same as the top panels but for the period between 150:450 minutes when the rapidly

developing low-level clouds were present. The small cloud features were developing fast and had variable motion. Therefore,

during this period, the autocorrelation is lower and the performance of the large block sizes and short frame intervals is175

noticeably better for both U and V components. The CMV from red and gray channels has slightly higher autocorrelation for

the dominant motion (i.e. zonal component, U) during this period.

3.2.2 Image Resolution and Frame Interval

Our analysis shows that CMVs are more stable for larger blocks and shorter frame intervals (see Sec. 3.2.1). Therefore, the

stability of motion vectors is evaluated for the same blocks (i.e., the image divided into 10×10 grid.) and by reducing their180
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Figure 7. The scheme for testing resolution sensitivity with Sage camera image obtained on April 21, 14:06:38 over Lamont, OK. A 10×10

block grid with four successively lower resolutions is used for CMV computation to compare the effect of resolution and time interval on the

stability of CMV.

resolution in steps to block lengths of 200, 150, 100, and 50 pixels, as shown in Fig. 7, with frame intervals of 30 and 60

seconds. February 13 was dominated by mid-level stratus cloud motion and February 14 had periods of low-level cumuliform

development with fast movements and rapid evolution of cloud features dominating the scene. In addition, on both days, the

cloud motion was mostly in East-West (zonal) direction with the U component approximately four times larger than the V

component. Therefore, ACF of only U components for four image resolutions and two frame intervals are shown in Fig. 8.185

ACF is significantly lower for longer frame intervals. For example, long intervals reduce the autocorrelation at lag-1 from 0.75

at 30-sec interval to 0.5 at 60-sec interval (Fig. 8 a ). This effect is even more prominent for the rapidly evolving cumuliform

clouds (Fig. 8 b ) where the autocorrelation at the lag-1 drops from 0.65 to 0.2. On the other hand, change in the resolution by

a factor of four has minimal effect and change in lag-1 autocorrelation is within 0.05.

3.3 Comparison with Wind Data190

The comparison of the CMV either from a ground-based camera or satellite deployed sensors with that of atmospheric winds,

has several sources of uncertainty. The estimation and comparison of CBH and winds from the ceilometer and the wind profiler

respectively, show sampling uncertainty. In addition, the cloud displacement from the camera viewpoint differs with altitude,

and deeper convective clouds do not always move parallel to the low level winds. Therefore, this comparison may not be

11

https://doi.org/10.5194/amt-2022-159
Preprint. Discussion started: 10 June 2022
c© Author(s) 2022. CC BY 4.0 License.



0.0

0.2

0.4

0.6

0.8

0 5 10 15 20
Lag [min]

Au
to

co
rre

la
tio

n

13−02−2022a

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20
Lag [min]

Au
to

co
rre

la
tio

n

14−02−2022b

Block Length 200 150 100 50 Interval 30 sec 60 sec

Figure 8. Autocorrelogram for U components for varying resolutions of the image with the same block region and the two frame intervals

on February 13 and 14, 2022 shows the effect of the changing resolution and time intervals on the stability of the motion vectors.

interpreted as a quantitative validation of the algorithm, however, significant correlations of the magnitudes indicate that the195

estimates of the instantaneous CMVs from the camera images are stable over a long period.

To qualitatively compare the hourly mean CMV with winds of appropriate altitudes, we identified the hours with a stable

CBH for at least 20 minutes from the ceilometer measurements from October 14, 2017, to August 14, 2019. The hourly winds

are averaged for 1-km deep layers from the surface to 4 km altitude, and then the hourly-mean CMVs are compared with

the mean wind vectors in the vertical layer corresponding to the median CBH (Fig. 9). From the 551 days of data during200

this period, 876 daytime cloudy hours were identified, when simultaneous measurements from the WPR, the ceilometer, and

CMV estimates were available. We only present CMVs for one setting: the 40-pixel block length, and the 30-second frame

interval for the red channel. The rainy samples, identified using the method described in section 2.4 mostly fall close to zero

value, as no mean motion is recorded. The sky-view camera data routinely suffers from rain, snow, and other debris on the

lens that obstructs the view. The higher wind speeds near zero CMV can mainly occur due to the snow obstructing the view,205

or smooth flat clouds bases that are not successfully tracked. In addition, the quality of the wind profiles from the WPR is also

adversely affected by rainfall (Muradyan and Coulter, 2020). Therefore, we removed instances with precipitating events from

consideration in our comparison. The correlation coefficient (r) of the U component of the CMV and hourly wind averages

improved from 0.38 for all the data, to 0.42 after removing rainy samples, with a 95 % confidence interval. Likewise, for

V component, r increased from 0.56 for all data to 0.59, with a 95 % confidence interval. The slope of the linear fit for U210
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Figure 9. Comparison of hourly mean U and V components of the CMV and mean wind in a 1 km deep layer where the stable cloud base

height was observed during the hour. The rainy hours extracted using the method in section 2.4 are shown with the red color.

components is between 2.4–3.4 for layers 0–3 km and it is 5.7 for the 3–4 km layer, suggesting that the mid-level (i.e. 3–4 km)

CMVs are noticeably underestimated from the camera viewpoint. The slopes of the V components are in the range 3–4 for all

layers. The WPR data above 4 km are sparse hence no samples with matching criteria were available during the study period.

4 Conclusion and Future Scope

Prior studies have documented the effectiveness of the block-wise phase correlation method for detecting cloud motion in IR215

and visible spectrum images (Leese et al., 1971; Dissawa et al., 2017; Zhen et al., 2019). We tested the sensitivity of the method

to changes in block length, frame interval, image resolution, as well as five combinations of the visible channels from a sky-

viewing camera. These results are also applicable for satellite and radar based motion estimation. Additionally, we compared

the derived mean CMV with the observed mean wind field from a colocated remote sensing instrument, and presented a method

to detect raindrops on the rotating dome.220

The performance of different visible channels is comparable except for the red to blue channel ratio (RB). Although the

RB is effective in segmenting clouds from the blue sky background, it smooths the cloud texture during overcast conditions,

reducing the performance of the PC method. The red and grayscale performed slightly better than the blue and green channels.

13

https://doi.org/10.5194/amt-2022-159
Preprint. Discussion started: 10 June 2022
c© Author(s) 2022. CC BY 4.0 License.



We find that larger block sizes provide a more stable estimation of cloud motion, and the stability benefits largely from

shortened interval between frames even for coarse resolution camera data. Considering that the temporal changes in cloud225

patterns reduce the quality of the motion vectors, a shorter frame interval helps in maintaining the structure from one image to

the next. However, a larger block size allows for a larger sample for stable correlation matching, achieving more stable estimates

of the motion during disorganized cloud conditions (Fig. 6 c and d). Although averaging in time over the short frame interval is

a better way to achieve reliable estimates, a higher sampling rate may not be always feasible. In these situations, the large block

size that can capture homogeneous motion is recommended for block-based PC implementation. We also show that increasing230

the spatial resolution, i.e. increasing the number of pixels without decreasing the number of blocks, marginally affects the

quality of the motion vectors. At the same time, reducing the frame interval from 60 sec to 30 sec outperforms quadrupling of

the resolution. Comparable results were obtained by Wang et al. (2018) for cloud segmentation using a ground-based camera.

Our analysis shows that doubling the frame rate outperforms quadrupling of the resolution. This non-intuitive result is very

interesting in the context of edge-computing. Because a shorter frame interval between the camera images effectively improves235

the quality of the CMVs, it is important that the application has a deterministic and low-latency access to sky images. Edge-

computing solves this problem efficiently by carefully placing and pairing computation with sensor data sources. Without

incurring large data transfers and delays due to network outages, in an edge-computing platform like Sage, image data can be

acquired and processed right next to the camera, in the field. The high-level motion estimation result which is much smaller

and compresses efficiently, can be communicated and archived for further studies.240

Current machine learning algorithms for automatic cloud identification underperform in the presence of thin clouds (Park

et al., 2021). To this end, we are generating a dataset of thin clouds identified by scanning Mini Micropulse LIDAR (MiniMPL)

and a co-located sky-viewing camera using edge-computing paradigm. One of the objectives is to use the camera images to

predict cloud boundaries and the cloud motion, and utilize the knowledge to modify the MiniMPL settings to adapt scan

strategies in real-time for optimal sampling in various environmental conditions.245

Code availability. The Sage plugin implementation on the waggle platform is made available from https://portal.sagecontinuum.org/ and the

full source code is available on Github at https://github.com/waggle-sensor/plugin-cmv-fftpc

.

Data availability. The data were obtained from the Atmospheric Radiation Measurement (ARM) user facility, a U.S. Department of Energy

(DOE) Office of Science user facility managed by the Biological and Environmental Research Program. The ARM SGP data can be obtained250

from the following DOI 10.5439/1025309 (Total Sky Imager), 10.5439/1181954 (Ceilometer), and 10.5439/1025135 (Radar Wind Profiler).

Sage camera data was collected at the Argonne Testbed for Multi-scale Atmospheric Observational Science (ATMOS). The ATMOS data

used in this paper can be obtained by sending requests to the authors.
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Figure A1. Unprocessed time series of U component of domain averaged CMV [pixel ·min−1] on 26 July 2016, 06:36 to 20:35 CDT

(11:36-01:35 next day in UTC) over Lamont, OK. Variation with block size (20 pixels and 40 pixels) and frame intervals (30 sec and 60 sec)

are shown for 5 channels. The smoothed data is shown in Fig. 3.

Appendix A: Raw CMV Output

The unprocessed 1-min time series of U and V components of CMV are shown in Fig. A1 and A2.255
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Figure A2. Same as Figure A1 but for V component of the CMV.
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