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Abstract. The vertical distribution of atmospheric aerosol components is vital to the estimation of radiation forcing and the 

catalysis of atmospheric photochemical processes. Based on the synergy of ground-based lidar and sun-photometer in 

Generalized Aerosol Retrieval from Radiometer and Lidar Combined data (GARRLiC), this paper developed a new 

algorithm to get the vertical mass concentration profiles of fine-mode aerosol components for the first time. The sky radiance 15 

at multiple scatter angles, the total optical depth (TOD) at 440, 675, 870, and 1020 nm, and the lidar signals at 532 nm and 

1064 nm were applied to retrieve the aerosol properties. Besides, the internal mixing model and normalized volume size 

distribution model were constructed, according to the absorption and water-solubility of aerosol components, to separate the 

profiles of black carbon (BC), water-insoluble organic matter (WIOM), water-soluble organic matter (WSOM), ammonium 

nitrate-like (AN), and fine aerosol water content (AW). The results showed a reasonable vertical distribution of aerosol 20 

components compared with in situ observations and reanalysis data. The estimated and observed BC concentration matched 

well with a correlation coefficient up to 0.91, while there was an evident overestimation of organic matter 

(OM=WIOM+WSOM, NMB=0.98). And the retrieved AN concentrations were closer to the simulated results (the 

correlation coefficient of 0.85), especially in the polluted condition. The correlations of BC and OM were weaker relatively, 

with a correlation coefficient of about 0.5. Besides, the uncertainties caused by input parameters (i.e. RH, volume 25 

concentration, and extinction coefficients) were assessed by Monte Carlo method. AN and AW had smaller uncertainties at 

higher RH. In this paper, the algorithm was also applied to the remote sensing measurements of Beijing and two typical 

cases were presented. Under the clean condition with low RH, there were comparable AN and WIOM but peaking at 

different altitudes. While in the polluted case, AN was dominant and the maximum mass concentration occurred near the 

surface. We expected the algorithm can provide a new idea for lidar inversion and promote the development of aerosol 30 

components profiles. 
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1 Introduction 

Atmospheric aerosols play a key role in the radiation budget and energy balance (Andrews and Forster, 2020; Hasekamp et 

al., 2019). The aerosols with different optical and physical properties have diverse radiative forcing effects (Boucher et al., 

2013). For example, the soot dominated by black carbon has the most significant effect on cloud cover and precipitation due 35 

to its strong absorption (Gu et al., 2006; Xia, 2014), while the negative radiative forcing of sulfate and nitrate is more 

prominent (Myhre et al., 2013). Especially, different aerosol components can even cause opposite radiation changes 

vertically (Jiang et al., 2013). On the other hand, aerosols can affect the atmospheric oxidation capacity by changing the 

photolysis rate of trace gases (Bian et al., 2003; Lou et al., 2014; Xing et al., 2017). Liao et al. (1999) once found that 

nonabsorbent aerosols generally enhanced photolysis rates, contrary to the soot aerosols. What’s more, the ability of aerosols 40 

to reduce the photolysis frequency of O3 decreases with altitude on a regional scale (Li et al., 2011). Therefore, the vertical 

distribution of atmospheric aerosol components is of vital importance to reduce the uncertainty of radiation forcing 

estimation and understand the impact of haze on atmospheric photochemical processes.  

At present, there are many studies focusing on the aerosol components on the ground (Han et al., 2015; Huang et al., 2014; 

Zhao et al., 2013). However, the ways to get the aerosol components in the atmosphere are finite. Although the field 45 

campaigns often launched aircrafts (Chen et al., 2009; Zhang et al., 2009) or tethered balloons (Li et al., 2015; Ran et al., 

2016) to detect the atmospheric structure, there are still many limitations in the resolution and representation due to the 

restricted aircraft control. In such a situation, continuous remote sensing technology with high temporal resolution, such as 

sun-photometer and lidar, provides a powerful tool for the identification of aerosol components. Besides, the establishment 

of ground-based networks, e.g., AERONET (Dubovik et al., 2002; Dubovik et al., 2000), AD-Net (Shimizu et al., 2017; 50 

Nishizawa et al., 2017), and MPLNET (Chew et al., 2013; Huang et al., 2011), also improves the spatial detection resolution. 

So far, the algorithms using instantaneous remote sensing measurements to retrieve atmospheric aerosol components have 

been greatly developed. The available aerosol parameters from sun-photometer make it possible to distinguish the 

components. Schuster et al. (2005) proposed a three-component model constrained by the refractive index to infer black 

carbon, ammonium sulfate, and water. Subsequently, the absorbing organic carbon and dust were supplemented to the model 55 

by Arola et al. (2011) and Wang et al. (2012) respectively. By joint use of the refractive index, single scattering albedo, 

sphericity, and other measurements, Van Beelen et al. (2014) and Xie et al. (2017)  greatly increased the identifiable aerosol 

components. Besides, internal mixing and hygroscopic growth of aerosols were also considered in the algorithms to 

reproduce the real state (Schuster et al., 2016; Zhang et al., 2018a; Zhang et al., 2020). 

However, the aerosol vertical distribution is not available from the sun-photometer, which can be made up by the ground-60 

based lidar with its vertical resolution of meters. Burton et al. (2012) and Groß et al. (2011) found the characteristics of 

different aerosol types in lidar parameters, proving the feasibility of lidar. Nishizawa et al. (2007) took use of dual-

wavelength elastic lidar but only separated water-soluble aerosol from dust or sea salt. After that, the application of Raman 

lidar and more wavelengths made it possible to get the profiles of sea salt, soot, dust, and water-soluble aerosols (Nishizawa 
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et al., 2011; Nishizawa et al., 2017; Hara et al., 2018). Mamouri and Ansmann (2017) refined the fine and coarse dust and 65 

separate them from maritime and anthropogenic aerosols based on a polarization/Raman lidar. However, limited by the 

available lidar information, there has been no breakthrough in the aerosol types identified by lidar measurements. Therefore, 

how to use limited lidar channels to distinguish more atmospheric aerosol components is what we need to investigate. And 

considering the advantages and limitations of sun-photometer and lidar, it may be a good choice to combine them. 

In this study, based on the synergy of ground-based Mie lidar and sun-photometer in Generalized Aerosol Retrieval from 70 

Radiometer and Lidar Combined data (GARRLiC), a new algorithm to get the vertical profiles of fine-mode aerosol 

components, including black carbon (BC), water-insoluble organic matter (WIOM), water-soluble organic matter (WSOM), 

ammonium nitrate-like (AN), and fine aerosol water content (AW), is proposed for the first time. The details about the 

algorithm and the measurement data applied to the algorithm will be described in Sect. 2. And Sect. 3 will present the 

evaluation, uncertainty analysis, and application of our algorithm to confirm the validity of inversion results. 75 

2 Methodology and data 

2.1 Methodology 

2.1.1 Aerosol microphysical characteristics 

Atmospheric aerosol is a complicated mixture of different components, which have different size distributions and complex 

refractive indexes (CRI). This makes it possible to separate aerosol components by remote sensing. But we should note that 80 

the aerosol components in the remote sensing model are not completely equivalent to the chemical compositions traditionally, 

and there are some limitations in identifying compositions compared with surface chemical measurements. For example, 

distinguishing sulfate and nitrate seems to be beyond the scope of remote sensing due to their similar optical properties in 

light scattering, particle size and shape. Despite all this, the common remote sensing components, including black carbon 

(BC), brown carbon (BrC), dust, organic matter (OM), ammonium nitrate-like (AN), sea salt, and water uptake, are close to 85 

the species defined in Intergovernmental Panel on Climate Change (IPCC) 2013 (Boucher et al., 2013) and enough to satisfy 

the need for climate change and environmental monitoring. In fact, there are often different aerosol definitions and 

classification schemes focusing on some key components, which depends on the limited inputs and specific research 

purposes. Generally, sea salt aerosol is considered as coarse particles and neglected in Beijing (Li et al., 2013). Dust and OM 

have similar light-absorbing characteristics due to the presence of hematite (Formenti et al., 2014). Therefore, they are 90 

usually separated by particle size since OM and dust are mostly present in fine and coarse mode aerosols, respectively 

(Schuster et al., 2016; Zhang et al., 2018a). Certainly, fine mode dust will also be taken into account with sufficient 

constraints. By assuming the dust volume concentration ratio of fine to coarse mode, Xie et al. (2017) further separated fine 

and coarse mode dust with the aid of spectra refractivity at four wavelengths, sphericity and single scatter albedos. Besides, 

they also defined OM as non-absorbing and hydrophobic aerosols to separate from inorganic salt and absorbing carbon (BC 95 
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and BrC). While Zhang et al. (2018a) divided the OM into two categories (WIOM and WSOM) to better model complex 

liquid systems, and BrC is considered as a part of WIOM.  

In this paper, considering the limited lidar constraints (only two wavelengths), we only focus on fine mode aerosol and 

treat it as a mixture of five components like Zhang et al. (2018a): BC, OM (WIOM + WSOM), AN, and AW, and omit the 

presence of dust in fine mode to optimize the algorithm performance, although it seems to not cover all possible aerosol 100 

types in the atmosphere. Exactly as in Table 1, BC has the largest CRI at different wavelengths, which indicates its strong 

optical absorption (Mueller et al., 2007; Burton et al., 2012). On the contrary, AN (denoting the inorganic salt such as nitrate 

and sulfate) is mainly characterized by scattering with the smallest CRI except for AW (Zhang et al., 2012; Xu and Penner, 

2012). Generally, AW content directly depends on the hygroscopic AN at a certain ambient RH, especially in heavy haze 

episodes (Zhang et al., 2015). With the properties of spectral absorbing, WIOM is significantly different from BC in water-105 

insoluble matter. While in water-soluble ones, hygroscopicity is the key to distinguishing WSOM and AN. According to the 

summary in Zhang et al. (2018a), the growth factors of inorganic salts are all above 1.5, much larger than that of WSOM. 

Thus, it is considered that the aerosol hygroscopicity only comes from AN rather than WSOM in this algorithm to separate 

them. 

Based on the distinct aerosol microphysical characteristics, we retrieve the fine-mode aerosol components profiles by 110 

constructing the aerosol model and microphysical parameterization schemes. Figure 1 gives the flowchart of our algorithm 

proposed in this study and the details will be described below.  

 

Table 1. Microphysical parameters of atmospheric aerosol components used in this paper, including CRI, mean radius rm and geometric 

standard deviation σ of the lognormal distribution, and density. The relevant literature is given in the last row of the table. 115 

 

 

  BC WIOM WSOM AN AW 

CRI 
532 nm 1.95-0.79i 1.56-0.06i 1.53-0.003i 1.41-2.3e-3i 1.33 

1064 nm 1.95-0.79i 1.54-0.001i 1.53-0.001i 1.40-6.8e-3i 1.33 

rm (μm) 0.095 0.126 0.126 0.17 - 

σ 1.8 1.49 1.49 2 - 

ρ (g cm-3) 2.0 1.2 1.2 1.76 1.0 

References 

Van Beelen et al. 

(2014); Ganguly et 

al. (2009); 

Schuster et al. 

(2005) 

Kirchstetter et al. 

(2004); Schuster et al. 

(2016); Ganguly et al. 

(2009); Dey et al. 

(2006) 

Arola et al. 

(2011); Ganguly 

et al. (2009) 

Hess et al. (1998); 

Ganguly et al. 

(2009); Van Beelen 

et al. (2014) 

Dey et al. (2006); 

Schuster et al. (2005); 

Van Beelen et al. 

(2014) 
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Figure 1. Flowchart of the algorithm proposed in this paper. 

 

2.1.2 Fine mode aerosol properties from GARRLiC 

In fact, there have been developed algorithms combining the sun/sky photometer with lidar. For pursuing an even deeper 125 

synergy of lidar and sun-photometer, GARRLiC was created by modification of AERONET algorithms to adapt them for 

inclusion of lidar data (Lopatin et al., 2013). As a part of the extensive Generalized Retrieval of Atmosphere and Surface 

Properties (GRASP), it can get the properties profiles separately for fine and coarse mode particles. So far, GARRLiC has 

been applied for the characterization of atmospheric aerosols (Lopatin et al., 2013; Tsekeri et al., 2017; Bovchaliuk et al., 

2016) and evaluated by air-borne in situ measurements (Benavent-Oltra et al., 2021; Benavent-Oltra et al., 2017). Although 130 



6 

 

GARRLiC was able to quantitatively retrieve aerosol components (Li et al., 2019a), it still stayed on the columnar level and 

can not get the flexible volume proportion of different components vertically. 

Note particularly that the volume concentration profiles provided by GARRLiC build a bridge between the retrieval of 

sun-photometer and lidar. In previous lidar algorithms, lidar parameters such as lidar ratio (the ratio of extinction to 

backscattered coefficients), were employed to avoid the use of volume concentration. But now, due to the accessible volume 135 

concentration, complex refractive index and volume size distribution can be directly used to construct the aerosol model in 

lidar algorithms based on Mie theory (Bohren and Huffman, 1998). Consequently, the combination of ground-based remote 

sensing technology not only enriches the inversion output but also provides a new idea for lidar inversion. 

However, Mie theory is only applicable to spherical particles, which is in contradiction with the irregular shape of dust 

aerosols (Mamouri and Ansmann, 2014; Sugimoto et al., 2002). Generally, it’s assumed in retrieval algorithms that the 140 

aerosol size distribution is bimodal and the dust aerosol is distributed in the coarse mode (Nishizawa et al., 2007; Nishizawa 

et al., 2011; Schuster et al., 2016; Xie et al., 2017; Zhang et al., 2018a). Therefore, in this study, we only focus on the fine 

aerosol components profiles based on the outputs of GARRLiC, which includes the aerosol extinction and volume 

concentration profiles in the fine mode. Similar to AERONET (Dubovik and King, 2000), the radius of 0.576 μm was used 

as a separation point in GARRLiC. According to the field experiments, the retrieved fine mode aerosol components, 145 

including BC, WIOM, WSOM, and AN, were almost distributed in PM1 (particles with the aerodynamic diameter less than 1 

μm) (Liu et al., 2020; Reddington et al., 2013; Zhang et al., 2018b). To some extent, the fine modal truncation radius of 

0.576 μm is reasonable for inversion. 

2.1.3 Aerosol modeling 

In the actual atmosphere, the internal mixing of aerosols is very common due to aerosol collision, condensation, and 150 

chemical reactions. Generally, Maxwell-Garnett (MG) mixing rule is more appropriate for the mixture of water-insoluble 

matter embedded in the host environment (Choi and Ghim, 2016; Dey et al., 2006; Schuster et al., 2005). The effective 

permittivity of the mixture 𝜀𝑚𝑖𝑥 can be expressed as follows: 

𝜀𝑚𝑖𝑥(𝜆) = 𝜀ℎ𝑜𝑠𝑡 + 3𝜀ℎ𝑜𝑠𝑡 [
∑

𝜀𝑗(𝜆)−𝜀ℎ𝑜𝑠𝑡(𝜆)

𝜀𝑗(𝜆)+2𝜀ℎ𝑜𝑠𝑡(𝜆)𝑗 𝑓𝑗

1−∑
𝜀𝑗(𝜆)−𝜀ℎ𝑜𝑠𝑡(𝜆)

𝜀𝑗(𝜆)+2𝜀ℎ𝑜𝑠𝑡(𝜆)
𝑓𝑗𝑗

]            𝑗 = 𝐵𝐶 𝑎𝑛𝑑 𝑊𝐼𝑂𝑀                                                                           (1) 

where 𝑓𝑗 is the volume fraction of water-insoluble components: BC and WIOM. Here, the host environment represents the 155 

mixture of water-soluble matter, including AN, WSOM, and AW. 𝜀ℎ𝑜𝑠𝑡 and 𝜀𝑗 are the effective permittivities of the host 

environment and insoluble matter respectively, which can be calculated from the corresponding CRIs by Eq. (2). 

𝑚 = √
|𝜀(𝜆)|+𝑅𝑒(𝜀(𝜆))

2
+ 𝑖√

|𝜀(𝜆)|−𝑅𝑒(𝜀(𝜆))

2
                                                                                                                                 (2) 
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where 𝑚 and 𝜀 are the CRI and effective permittivity respectively. For the CRI of the host environment 𝑚ℎ𝑜𝑠𝑡, which refers 

to the water-soluble matter, can be obtained by the volume averaged (VA) mixing rule to strengthen the physical constraints 160 

between multi-component liquid systems (Zhang et al., 2018a). 

𝑚ℎ𝑜𝑠𝑡(𝜆) =
∑ 𝑚𝑗(𝜆)𝑓𝑗𝑗

∑ 𝑓𝑗𝑗
                  𝑗 = 𝐴𝑁, 𝐴𝑊, 𝑎𝑛𝑑 𝑊𝑆𝑂𝑀                                                                                                   (3) 

where 𝑚𝑗 and 𝑓𝑗 are the CRI and volume fraction of soluble components respectively. Then the CRI of the aerosol mixture 

𝑚𝑚𝑖𝑥 can be acquired by combining Eq. (1)–(3). 

In addition to CRI, volume size distribution (VSD) is the other requirement for Mie theory. Here, the normalized VSD of 165 

each component can be simulated according to the lognormal distribution parameters in Table 1, which are all in the dry 

state. Considering the hygroscopicity of AN, the growth factor is introduced to fit the AN normalized VSD under ambient 

RH (AW is taken into account at the same time). Then, we can model the normalized VSD of aerosol mixture based on the 

assumed component volume fraction 𝑓𝑗 as follows: 

𝑑𝑉𝑁(𝑙𝑛𝑟)

𝑑𝑙𝑛𝑟
=  ∑ 𝑓𝑗

𝑑𝑉𝑗(𝑙𝑛𝑟)

𝑑𝑙𝑛𝑟

4
𝑗=1            𝑗 = 𝐴𝑁, 𝐵𝐶, 𝑊𝐼𝑂𝑀, 𝑎𝑛𝑑 𝑊𝑆𝑂𝑀                                                                                    (4) 170 

where 
𝑑𝑉𝑁(𝑙𝑛𝑟)

𝑑𝑙𝑛𝑟
 is the normalized VSD of the aerosol mixture. 

𝑑𝑉𝑗(𝑙𝑛𝑟)

𝑑𝑙𝑛𝑟
 is the normalized VSD of component 𝑗 and can be 

expressed by Eq. (5). 

𝑑𝑉𝑗(𝑙𝑛𝑟)

𝑑𝑙𝑛𝑟
=

1

√2𝜋|𝑙𝑛𝜎𝑗|
exp [−

1

2
(

𝑙𝑛𝑟−𝑙𝑛𝑟𝑗

𝑙𝑛𝜎𝑗
)

2

]                                                                                                                             (5) 

where 𝜎𝑗 and 𝑟𝑗 are the geometric standard deviation and mean radius of component 𝑗 respectively, which are listed in Table 

1.  175 

Combining the fine mode volume concentration profiles 𝑉(ℎ) from GARRLiC, the extinction coefficients at different 

wavelengths and levels 𝜎𝑚(𝜆, ℎ) can be modeled according to Mie theory:  

𝜎𝑚(𝜆, ℎ) = ∫
3

4𝑟2 𝑄𝑒𝑥𝑡(𝜆, 𝑟, 𝑚)
𝑑𝑉(𝑙𝑛𝑟)

𝑑𝑙𝑛𝑟
𝑑𝑙𝑛𝑟                                                                                                                         (6) 

where 𝑄𝑒𝑥𝑡  is the Mie efficiency factor, which is related to lidar wavelength, particle size, and CRI (Bohren and Huffman, 

1998). 
𝑑𝑉(𝑙𝑛𝑟)

𝑑𝑙𝑛𝑟
 can be obtained by 𝑉(ℎ)

𝑑𝑉𝑁(𝑙𝑛𝑟)

𝑑𝑙𝑛𝑟
. 180 

Finally, the residual between modeled extinction 𝜎𝑚 and fine mode extinction from GARRLiC 𝜎𝑐  is quantified by the 

iterative kernel function 𝜒2 to find the optimal combination of component volume fractions. 

𝜒2 = ∑
(𝜎𝑚(𝜆,ℎ)−𝜎𝑐(𝜆,ℎ))2

𝜖𝑔(𝜆,ℎ)(𝜎𝑐(𝜆,ℎ))2𝜆                      𝜆 = 532, 1064 𝑛𝑚                                                                                                  (7) 

where 𝜖𝑔(𝜆, ℎ)  is the relative fitting residual between lidar measurement and modeled lidar signal from GARRLiC at 

different wavelengths, which is added to avoid the interference of the uncertainty resulting from GARRLiC modeling. 185 

Further, the component volume fractions can be transformed to the mass concentrations 𝑀𝑗(ℎ) by the density (𝜌𝑗) of aerosol 

component 𝑗.  

𝑀𝑗(ℎ) =  𝑓𝑗(ℎ) × 𝑉(ℎ) × 𝜌𝑗       𝑗 = 𝐴𝑁, 𝐴𝑊, 𝐵𝐶, 𝑊𝐼𝑂𝑀, 𝑎𝑛𝑑 𝑊𝑆𝑂𝑀                                                                            (8) 
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2.1.4 Microphysical parameterization scheme 

The matched number of input parameters and the output aerosol types is the prerequisite for a reasonable aerosol model. Due 190 

to the limitation of lidar wavelengths, the input parameters of lidar are not as many as sun-photometer. Therefore, the aerosol 

parameterization scheme should be constructed to establish the relationship between aerosol components, thereby reducing 

the number of unknowns. In our algorithm, we separated water-soluble and water-insoluble aerosols firstly by the 

parameterization scheme of Zhang et al. (2018a), which was re-parameterized with relative humidity (RH) based on Schuster 

et al. (2009). The volume ratio of water-insoluble to water-soluble matter can be expressed as follows: 195 

𝑓𝑖

𝑓𝑠
= 𝜑(𝑅𝐻) ∫ 𝜀(𝐷)𝑑𝐷                                                                                                                                                      (9) 

𝜑(𝑅𝐻) = 5.74(1 − 𝑅𝐻)3 + 0.01                                                                                                                                   (10) 

𝜀(𝐷) = 𝜀0 + 𝜀𝑣 ∗ exp [−(
log (𝐷/𝑑0)

𝜎𝑙𝑜𝑔
)2]                                                                                                                             (11) 

where 𝑓𝑖 and 𝑓𝑠 are the water-insoluble and water-soluble volume fractions respectively. 𝜑(𝑅𝐻) is the re-parameterized part 

of the function with RH. 𝜀(𝐷) is the climatological function of water-soluble volume fraction and 𝐷 is the aerosol diameter. 200 

𝜀0, 𝜀𝑣, 𝑑0 and 𝜎𝑙𝑜𝑔 are the average fitting parameters in Kandler and Schuetz (2007), which can represent the general aerosol 

properties. Moreover, 𝑓𝑖+𝑓𝑠 = 1 is an important guarantee for the success of retrieval.  

For the water-soluble matter, we assumed that AN was the only hygroscopic component as mentioned in Sect. 2.1.1. For 

enhancing the interaction between AN and AW, the relationship between solute mass concentration and water activity was 

applied in our algorithm, which was investigated in Tang (1996). And the volume ratio of AN to AW can be obtained by 205 

combining the Equation (12)–(15): 

𝑎𝑤 = 1 + ∑ 𝐶𝑘𝑥𝑘4
𝑘=1                                                                                                                                                          (12) 

𝑅𝐻 = 𝑎𝑤/100                                                                                                                                                                   (13) 

𝜌𝑠 = 0.9971 + ∑ 𝐴𝑘𝑥𝑘4
𝑘=1                                                                                                                                                 (14)      

𝑓𝐴𝑁

𝑓𝐴𝑁+𝑓𝐴𝑊
= 𝑥

𝜌(𝑥)

𝜌(100)
                                                                                                                                                             (15) 210 

where 𝑎𝑤 is the water activity, which can be approximately regarded as RH due to the lower curvature effect (Tang, 1996). 

𝜌𝑠 is the density of solution and 𝑥 is the weight percent of AN. 𝐶𝑘 and 𝐴𝑘  are the polynomial coefficient of ammonium 

nitrate from Tang (1996), which is considered as the representive of inorganic salt. 𝑓𝐴𝑁 and 𝑓𝐴𝑊 are the volume fractions of 

AN and AW respectively. With that, the growth factor (GF) of AN can also be acquired, which palys a vital role in the 

aerosol normalized volume distribution model of Sect. 2.1.3. 215 

𝐺𝐹(𝑅𝐻) =
𝑟𝑤𝑒𝑡(𝑅𝐻)

𝑟𝑑𝑟𝑦
= √

𝑓𝐴𝑁+𝑓𝐴𝑊

𝑓𝐴𝑁

3
                                                                                                                                    (16) 

where 𝑟𝑑𝑟𝑦 is the dry particle radius; 𝑟𝑤𝑒𝑡  is the particle radius under the ambient RH. 

Based on the above relationship, the fine mode aerosols are divided into two categories: water-insoluble aerosols and 

water-soluble aerosols, which can be quantified with the help of the climatological parameterization scheme in Eq. (9). For 
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water-insoluble aerosols (BC and WIOM), once the volume fraction of one is known, the other is determined. While for 220 

water-soluble aerosols (AN, AW, and WSOM), the relationship between AN and AW is constructed by Eq. (15), which can 

be considered as a whole. So only two unknowns, one from water-soluble and the other from water-insoluble species, are 

enough to get what we want. In our algorithm, we iteratively changed the volume fractions of WIOM and WSOM. 

Correspondingly, that of AN, AW, and BC can be obtained. What’s more, we also constrained the relationship between 

WSOM and WIOM to ensure the reliability of inversion. The ratio of WSOM mass concentration to the total OM is limited 225 

to 0.44 to 0.77, which has been applied in Zhang et al. (2018a) according to the statistics of observation experiments.  

In summary, as presented in Fig. 1, if the volume fractions of WIOM and WSOM are initialized, the other species would 

be determined with the aid of parameterization schemes. Then the extinction coefficient can be calculated by the constructed 

aerosol model. Through multiple iterations and the constraints of fine mode extinction coefficients from GARRLiC, the 

optimal combination of volume fractions will be found. Subsequently, the optimal mass concentration results are compared 230 

with surface components measurements and model products, including OM, BC, and AN, which verifies the inversion 

performance of our algorithm. Besides, the possible sources of error are discussed and the uncertainties from these sources 

are assessed in Sect. 3.2. 

 

2.2 Measurement data 235 

2.2.1 The input data of GARRLiC 

The input data of GARRLiC consist of sun-photometer sun and sky radiance, and lidar signals. Here, the sun-photometer 

measurements were from the Beijing station (39.977° N, 116.381° E) of the AERONET (Aerosol Robotic Network, 

https://aeronet.gsfc.nasa.gov/) in February of 2021. The sky radiance (raw almucantar with 26 scattering angles) and the 

version 3 level 1.5 product (i.e. automatically cloud cleared but may not have final calibration applied) of total optical depth 240 

(TOD) at 440, 675, 870, and 1020 nm were applied to drive GARRLiC. Besides, the AERONET products of fine AOD and 

fine volume concentration were employed to validate the outputs from GARRLiC.  

For the available sky radiance sequence, the correlative lidar signals data were chosen from a dual-wavelength elastic lidar 

in the corresponding ±15 min time window, which was set up on the roof of a 28 m high building in the tower of the Institute 

of Atmospheric Physics at the Chinese Academy of Sciences (39.976° N, 116.378° E). The normalized lidar signals at 532 245 

nm and 1064 nm were used to run the GARRLiC with the sun-photometer data. In advance, the lidar signals were averaged 

for 15 min and computed for 60 log-spaced heights between 150 m and 6000 m above the ground to avoid the instrumental 

error just as the Equation (17).  

𝑃𝑘
′ =  𝑃𝑘/ ∫ 𝑃𝑘

𝑍𝑚𝑎𝑥

𝑍𝑚𝑖𝑛
𝑑𝑍                                                                                                                                (17) 

Where 𝑃𝑘
′ is the normalized lidar signal and 𝑃𝑘 is the raw averaged lidar signal. 𝑍𝑚𝑎𝑥 and 𝑍𝑚𝑖𝑛 represents the upper and 250 

lower height limit, respectively. Besides, for the accuracy of GARRLiC, the cases with the relative residual larger than 15 % 

https://aeronet.gsfc.nasa.gov/
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in the inversion process have been eliminated according to Benavent-Oltra et al. (2021). Consequently, there were 133 

retrievals remaining in February of 2021. 

2.2.2 Relative humidity data 

The vertical profile of relative humidity (RH) data used in our algorithm was interpolated linearly from the European Centre 255 

for Medium-Range Weather Forecast (ECMWF) Reanalysis v5 (ERA5) hourly data from 1000 hPa to 300 hPa, which has 

been verified by the sounding data from the University of Wyoming (http://weather.uwyo.edu/upperair/bufrraob.shtml) in 

Fig. S1 of Supplement. 

2.2.3 Components data 

The mass concentrations of aerosol components near the surface on 8–15 February 2021, including water-soluble inorganic 260 

salt, BC, and organic carbon (OC), were provided by the China National Environmental Monitoring Center to validate the 

retrieved components results. Besides, the Nested Air Quality Prediction Model System (NAQPMS), a three-dimensional 

chemistry transport model developed by the Institute of Atmospheric Physics (IAP) (Li et al., 2012), was also employed to 

verify the reliability of estimated component profiles. The meteorology field was provided by the Weather and Forecasting 

model (WRF), which is driven by Final Analysis data (FNL) from the National Centers for Environmental Prediction 265 

(NCEP). And the outputs of NAQPMS used in this paper have been assimilated through the Parallel Data Assimilation 

Framework (PDAF) system, which has a fairly good correlation with measurements (Wang et al., 2022).  

For comparable aerosol components, we used the sum of the water-soluble inorganic salt from surface measurements and 

NAQPMS products, such as sulfate, nitrate and ammonium, was used to compare with AN. Due to the limited available data, 

the mass concentration of OC multiplied by the conversion factor of 1.7 (Burki et al., 2020) was considered as the observed 270 

organics to compare with the total retrieved OM (WIOM+WSOM). And estimated BC can be directly validated by the 

observation data and model products. In this study, in addition to the correlation coefficient (R), two statistics of root-mean-

square error (RMSE) and normalized mean bias (NMB) were introduced to evaluate the algorithm performance, which can 

be expressed as follows: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑋𝑟−𝑋𝑜)2𝑛

𝑖=1

𝑛
                                                                          (17) 275 

𝑁𝑀𝐵 =  
∑ (𝑋𝑟−𝑋𝑜)𝑛

𝑖=1

∑ 𝑋𝑜
𝑛
𝑖=1

                                                                                (18) 

Where 𝑋𝑟 represents different aerosol components of BC, AN, and OM; and 𝑛 is the sample size; 𝑋𝑜 is the corresponding 

components from surface measurements and NAQPMS products. As an index to measure the deviation from true values 

(Wang et al., 2021), NMB > 0 indicates the overestimation of estimated results. The larger the value, the greater the 

overestimation. 280 

http://weather.uwyo.edu/upperair/bufrraob.shtml
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3 Results and discussion 

3.1 Validation 

3.1.1 Evaluation of the outputs from GARRLiC 

Since GARRLiC provides the input and constraints for our algorithm, whether the GARRLiC outputs are reliable directly 

determines the accuracy of the component inversion. Therefore, the GARRLiC outputs have to be validated based on the 285 

products of AERONET, which is widely used in the validation of remote sensing results (Che et al., 2009). Due to the 

unavailable volume concentration profile of AERONET, Fig. 2a presents the comparison of fine columnar volume 

concentration between GARRLiC and AERONET. It’s clear that the correlation coefficient (R) can be up to 0.94 and the 

Root Mean Square Error (RMSE) was only 0.017. The Mean Percent Error (MPE), which is the average percent of error 

from the truth, was about 42 %. This deviation was acceptable since the estimated uncertainty for CRI in the Level 2 290 

AERONET products is about 50 % (Dubovik et al., 2000). Moreover, the extinction coefficients from GARRLiC were also 

compared with the results retrieved by the Fernald method (Fernald, 1984) with the lidar ratio of 50 sr (Wang et al., 2020). 

From Fig. 2b we can see that the two results were highly consistent and R was close to 1. Figure 2c shows the vertical 

distribution of extinction coefficients from GARRLiC and lidar. Obviously, the extinction average and standard deviation 

profiles of the two almost coincided, confirming the validity of the GARRLiC outputs. In fact, the extinction profiles from 295 

GARRLiC depend directly on the fine mode AODs and the aerosol vertical profiles (unit: km-1), which are retrieved by lidar 

signal. Therefore, we validated the fine mode AOD and fitting lidar signal with AERONET and lidar signal measurements, 

respectively. As shown in Fig. 3, not only the fine mode AOD but also the fitting lidar signal was in good agreement with 

their respective reference, with the R greater than 0.99. And the total MPEs of fine extinction at two wavelengths were both 

about 14 %, largely dependent on the fine mode AOD due to the little error in vertical lidar signal fitting. All the above 300 

analysis indicates that the fine volume concentration and extinction profiles from GARRLiC are reliable enough to drive the 

component retrieval. 
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Figure 2. (a) The comparison of fine volume concentration between GARRLiC and AERONET; (b) The comparison of extinction 

coefficient at 532 nm between GARRLiC and lidar; (c) The averaged vertical extinction profiles from GARRLiC and lidar in February of 305 

2021. The shadows with different colors represent the standard deviation of extinction profiles from GARRLiC and lidar.  

 

Figure 3. (a) The comparison of fine mode AOD between GARRLiC and AERONET; The comparison of lidar signal between the fit from 

GARRLiC and measurement at (b)532 nm and (c) 1064 nm. 

3.1.2 Comparison with surface observations 310 

In order to validate the estimated mass concentration of components, the comparison with observations on 8–15 February 

2021 is presented here. During the test experiment period, the number of samples was limited by the availability of 

AERONET data. As shown in Fig. 4a, the fine volume concentration between GARRLiC and AERONET matched well, 

with a correlation coefficient of 0.89. The NMB of 0.031 indicated the credible results from GARRLiC. But there was still a 

slight overestimation at high aerosol loading. On 11–12 February 2021, the RH dropped from the peak value companied with 315 

decreased extinction coefficients (Fig. 4b–c). And the RH in the experiment period changed from 20 % to 70 %, which was 

enough to reflect the general atmospheric situation.  

Due to the lack of observed component profile, the observed mass concentrations of water-soluble inorganic salt, BC, and 

organic carbon (OC) near the surface were used to verify the remotely sensed results preliminarily. The estimated 

components from remote sensing at 150 m were employed for the verification. Figure 5 gives the comparable results of AN, 320 

BC, and OM between observation and retrieval results at the available time. An encouraging coherence in the variation trend 

of AN between estimation and observation (R=0.67) was found although there was an underestimation on 12 February. 

Besides, there was a better consistency between the estimated and observed BC. The correlation coefficient can be up to 0.91. 

However, the overestimation of BC was obvious on 12 February, which was just the opposite of AN. This deviation can be 

attributed to the decreasing RH from 11 February to 12 February, which influences the parameterization schemes as 325 

mentioned in Sect. 2.1.4. Moreover, when the extinction coefficients changed little (Fig. 4b), the decreased fine volume 

concentrations after 12 February also had responsibility for the error, which led to the underestimated total mass 

concentration relative to observation. As shown in Fig. 5c, the overestimation of OM was evident, and the mass 
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concentrations of WSOM were closer to the observation. We should note that the components in the remote sensing models 

are not equivalent to the concepts in chemical research (Li et al., 2019b), which is the primary error of comparisons. On the 330 

other hand, there must be differences in the mass concentration of aerosol between the surface and 150 m due to the 

influence of the atmospheric mixing state and emission sources of different aerosol components. 

 

 

Figure 4. (a) The fine volume concentration from GARRLiC and AERONET; (b) The fine mode extinction at 532 nm and 1064 nm; (c) 335 

The RH from ERA5 at the available time on 8–15 February 2021. 
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Figure 5. The comparisons between observation and estimation results from remote sensing of (a) AN; (b) BC; (c) OM at available time 

on 8–15 February 2021.  340 

3.1.3 Verification of estimated vertical profiles 

Similar to the comparisons with surface observations, the mass concentration of OC multiplied by 1.7 was chosen to 

compare with OM, and the sum of the nitrate, sulfate, and ammonium salt was used to compare with AN. The estimated AN 

from remote sensing had the best correlation with that from NAQPMS (R=0.85 in Table 2), and there was a slight 

underestimation (NMB=-0.19). While the correlations of BC and OM were weaker relatively, with a correlation coefficient 345 

of about 0.5, which corresponded to the relationship of OM in Zhang et al. (2018a). The deviation can be explained by the 

different input RH data of our algorithm and NAQPMS. What’s more, the differences in the results from two different 

principles are reasonable. After all, our classification of aerosol components is based on their optical characteristics. Here, in 

order to evaluate the performance of vertical profiles, we present two cases with lower and higher aerosol loading in Fig. 6. 

It can be seen that the mass concentration profiles of aerosol components from remote sensing and NAQPMS were 350 

comparable. Under the relatively clean condition, the mass concentrations of OM were higher than that of AN, and the 
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estimated OM had a similar vertical distribution to that from NAQPMS with the smallest deviation. There were fluctuations 

in both estimated and simulated AN profiles below 1 km. Subsequently, the local maximum concentration of estimated AN 

occurred at 2.5 km, while at about 2 km for simulated AN profiles. The distribution of the two BC profiles was similar. 

Under the situation with a higher aerosol load (Fig. 6d–f), the estimation of AN performed best according to the simulated 355 

AN profile from NAQPMS, but still with a little underestimation. While the overestimation of OM and BC at about 1 km 

was obvious. It is noteworthy that the vertical distribution of different aerosol components was synchronous in both remote 

sensing and NAQPMS. Therefore, the vertical patterns of components depend largely on that of total extinction profiles, 

which is why the two results from remote sensing and NAQPMS cannot match exactly. 

 360 

Table 2. The correlation coefficient (R), the Root Mean Square Error (RMSE), and the Normalized Mean Bias (NMB) of AN, BC, and 

OM between remote sensing and NAQPMS are presented. 

 R  RMSE (μg m-3)  NMB  

AN 0.85 14.4 -0.19 

BC 0.54 5.2 -0.18 

OM 0.50 15.9 0.78 
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Figure 6. The averaged mass concentration profiles of (a) AN; (b) OM; (c) BC from 11:00 to 13:00 (LT) on 9 February, 2021; (d)–(f) 

Same as (a)–(c) but averaged from 9:00 to 12:00 (LT) on 11 February, 2021. The solid lines and dashed lines represent the results from 365 

remote sensing and NAQPMS, respectively. 

3.2 Uncertainty assessment of components estimation 

In fact, the uncertainties of component retrieval mainly come from the errors of input parameters, i.e. RH, volume 

concentration, and extinction coefficients. Among them, RH influences the components estimation indirectly by the 

parameterization schemes, which are closely related to RH. Zhang et al. (2018a) have discussed the uncertainty of 
𝑓𝑖

𝑓𝑠
 caused 370 
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by 𝜑(𝑅𝐻)  and the mean error is about 31.6 % when the RH is no more than 85 %. Since the influence of RH on 

parameterization scheme always exists, here, we take 55 % as the critical point of higher and lower RH to evaluate the 

uncertainty from input microphysical parameters. In this paper, Monte Carlo method was employed based on the random 

generation of input parameters by a Gaussian distribution with the original values and errors as mean and standard deviation, 

respectively. The error of RH was considered as about 10 % according to the uncertainty from ERA5 (Gamage et al., 2020). 375 

And MPEs of the fine volume concentration and extinction coefficient mentioned in Sect. 3.1.1, were applied in the Monte 

Carlo method. Each input parameter was sampled with 30 iterations at different heights (Mattis et al., 2016). Relative 

uncertainty was characterized by the ratio of standard deviation to mean values of 30 iteration results.  

The uncertainties of AN, AW, WSOM, BC, and WIOM from RH are given in Fig. 7a, with the mean values of 34.5 %, 

48 %, 16.5 %, 40 %, and 7 % under the low-RH condition, 24.7 %, 40 %, 57 %, 68.8 %, and 65.8 % under the high-RH 380 

condition, respectively. For other parameters, there were similar quantitative relationships of the components estimation 

uncertainties. The uncertainties of AN and AW at higher RH were smaller than those at lower RH for all parameters. That’s 

because the parameterization scheme described in Sect. 2.1.4 is closer to the actual condition at higher RH (Tang, 1996). On 

the contrary, the higher RH made the larger uncertainties for WIOM, BC, and WSOM, which may be due to the increasing 

error of 
𝑓𝑖

𝑓𝑠
 caused by 𝜑(𝑅𝐻) below the RH of 85 % (Zhang et al., 2018a). As shown in Fig. 7b, the larger error of fine 385 

volume concentration with 42 % brought greater uncertainty to components estimation. Similarly, with the input CRI 

varying by more than an order of magnitude, Schuster et al. (2016) have found that the uncertainty of brown carbon can 

change from 50% to 440 %. Obviously, the estimation of BC was more sensitive to the input parameters. This may be 

attributed to the smaller amount of BC, the volume fraction of which is one to two orders of magnitude less than that of other 

components. The uncertainties caused by the constraints of the extinction coefficients were mainly below 50 % for different 390 

components, which is comparable with the uncertainty of retrievals by remote sensing (Li et al., 2013). It should be noted 

that the uncertainty of aerosol components, such as BC in emission inventories, can be 200% and more (Schuster et al., 

2005). Therefore, it’s valuable to retrieve by our algorithm. 

In fact, some errors exist exactly but are difficult to quantify in a realistic way. Just as the assumption of internal mixing 

doesn’t apply to all situations, so do the microphysical parameters. Cheng et al. (2012) have observed that the number 395 

fraction of internally mixed soot in total soot particles had pronounced diurnal cycles. When the aging process converts 

externally mixed soot into internally mixed ones, emissions tend to emit more fresh and externally mixed soot particles. 

Another unquantifiable error is from the Mie theory based on the spherical hypothesis, which idealizes aerosol particles. 

However, the uncertainties related to assumptions are endemic to all retrievals by remote sensing, as well as the chemistry 

transport models (Chen et al., 2019). We should mention that field measurement also cannot avoid inconsistent assumptions. 400 
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Figure 7. The uncertainty of component retrieval from (a) RH with the error of 10 %; (b) Volume concentration with the error of 42 %; 

extinction coefficient with the error of 14 % at (c) 532 nm; (d) 1064 nm. 

 

3.3 The application of retrieval algorithm 405 

3.3.1 Optical closure test 

Based on the measurement data of lidar and sun-photometer in February of 2021, the mass concentration profiles of aerosol 

components in Beijing were retrieved. Figure 8 shows a quantitative optical closure test under different RH conditions to 

validate the consistency between recovered extinction and the constraints from GARRLiC. It can be seen that the modeled 

extinctions at 532 nm and 1064 nm both had a good correlation with the reference values. The correlation coefficients were 410 

both close to 1. However, there were still some large residuals at the two wavelengths, especially at the RH between 70–

80 %. It seems to underestimate the extinction when the RH was larger than 70 %. That’s probably because the water-

insoluble fraction is limited at high RH, and BC in water-insoluble matter tends to contribute greatly to extinction. On the 

contrary, the overestimation of 532 nm at the RH of about 30 % can be attributed to the larger proportion of water-insoluble 

matter. We should realize that the parameterization scheme of water-soluble and water-insoluble matter may have trouble in 415 

reflecting the real atmosphere situation. But for now, there are still not enough observation experiments to construct a more 

realistic scheme. Moreover, the added constraint of the relationship between WIOM and WSOM can also limit the BC 

fraction. Although ignoring the constraint could bring about a well-matched closure result but might lead to unreasonable 

component volume fractions. 
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 420 

Figure 8. The comparison between modeled extinction 𝜎𝑚 and extinction constraints from GARRLiC 𝜎𝑐 at (a) 532 nm; (b) 1064 nm. 

3.3.2 Vertical profiles of aerosol components in Beijing 

Figure 9 shows two typical cases under different situations. It can be seen that the vertical distribution of aerosol components 

can be quantified even with extremely low aerosol loading (Fig. 9a). Under the clean condition, aerosols were mainly 

distributed below 3 km with different patterns of component profiles. There were similar peak values in the mass 425 

concentrations of AN and WIOM but at different heights. The mass concentration of AW was the smallest throughout the 

vertical direction due to the low RH. As shown in Fig. 9b, the two local maximums of RH being about 40 % appeared at 

about 700 m and 2.4 km respectively, which was consistent with extinction profiles below 3 km. Besides, there was a fairly 

good relationship between the optical fit extinctions and inputs from GARRLiC with a mean relative error of 4.63 % at 532 

nm and -1.99 % at 1064 nm (Fig. 9c). 430 

In the polluted case, aerosol components were concentrated below 1 km due to the weak atmospheric diffusion capacity as 

shown in Fig. 9d. The maximum mass concentration of AN occurred near the surface, being about 125 μg m-3. Subsequently,  

there was a decreasing trend with a fluctuation between about 300 m to 600 m. While the mass concentration of WIOM and 

WSOM peaked at 672 m and were only about 10 μg m-3 near the ground. According to Lou et al. (2017), sulfate and nitrate, 

transformed from SO2 and NO2, were mainly responsible for the fine particle pollution at the RH about 70 %, which explains 435 

the high proportion of AN in Fig. 9d. Generally, pollution is usually accompanied by high RH. As shown in Fig. 9e, the 

maximum RH matched the large value of extinction below 1 km well. Moreover, the well-recovered extinction profiles at 

two lidar wavelengths indicated the stability of our algorithm. 
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Figure 9. (a) The mass concentration profiles of aerosol components retrieved from remote sensing at 9:00 (LT) on 7 February 2021, 440 

which was under clean condition; (b) The vertical distribution of relative humidity (RH) (green line) and extinction coefficients at 532 nm 

at 9:00 (LT) on 7 February 2021. The red dotted line represents the extinction profile recovered by the components results and the dark 

grey line represents the input data from GARRLiC; (c) The vertical distribution of extinction coefficients at 1064 nm at 9:00 (LT) on 7 

February 2021; (d)–(f) Same as (a–(c) but for 12:29 (LT) on 26 February 2021, which was under polluted condition. 
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4. Conclusions 445 

By combining ground-based lidar and sun-photometer, we develop a new algorithm to get the vertical profiles of fine mode 

aerosol components, including black carbon (BC), water-insoluble organic matter (WIOM), water-soluble organic matter 

(WSOM), ammonium nitrate-like (AN), and fine aerosol water content (AW), which increases the retrieved aerosol types 

from dual-wavelength Mie lidar. On this basis, the vertical profiles of aerosol components in the February of 2021 in Beijing 

are retrieved and compared with in situ measurements and simulated results from NAQPMS, which prove the validity of our 450 

components estimation. There is the best consistency between the estimated and observed BC with a correlation coefficient 

up to 0.91. The trend of AN between estimation and observation is accordant but with a little underestimation. While 

compared with the simulated results, the retrieved AN from remote sensing had the best correlation (R=0.85) and there was a 

slight underestimation (NMB=-0.19). The correlations of BC and OM were weaker relatively with a correlation coefficient 

of about 0.5. Vertically, the distribution of different aerosol components was synchronous in both remote sensing and 455 

NAQPMS. Considering the distinct principles, the differences between remote sensed and simulated results are reasonable to 

some extent. Besides, the reliability of the retrieval algorithm is also verified by the well-recovered extinction coefficients in 

the quantitative optical closure test.  

Based on the products of AERONET, the evaluated mean errors of input parameters are introduced to assess the 

uncertainty of components estimation by Monte Carlo method. The uncertainties caused by extinction coefficients are 460 

mainly below 50 % for different components. And the more accurate input parameters are, the better estimated component 

results can be expected. However, the errors from the assumptions, such as internal mixing and spherical hypothesis, are 

difficult to quantify in a realistic way. We should mention that the assumptions are endemic to all retrievals by remote 

sensing. On the other hand, the parameterization schemes and aerosol microphysical parameters used in the algorithm, which 

are variable over time and place, still need to be improved by enough observation experiments. In the future, the 465 

distinguishable aerosol types will increase by upgrading parameterization schemes, employing more lidar wavelengths, and 

considering the irregular shape of dust.  
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