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Abstract 12 

The accurate automatic volcanic cloud detection by means of satellite data is a challenging task and of great concern for both 13 

scientific community and aviation stakeholder due to the well-known issues generated by a strong eruption events in relation 14 

to aviation safety and health impacts. In this context, machine learning techniques applied to satellite data acquired from recent 15 

spaceborne sensors acquired data have shown promising results in the last years.  16 

This work focuses on the application of a neural network based model to Sentinel-3 SLSTR (Sea and Land Surface 17 

Temperature Radiometer) daytime products in order to detect volcanic ash plumes generated by the 2019 Raikoke eruption. 18 

AThe classification of meteorological the clouds and of the other surfaces comprisingcomposing the scene is also carried out. 19 

The neural network has been trained with MODIS (MODerate resolution Imaging Spectroradiometer) daytime imagery 20 

collected during the 2010 Eyjafjallajökull eruption. The similar acquisition channels of SLSTR and MODIS sensors and the 21 

events comparable latitudes of the eruptions allow to extend foster the robustness of the approach to SLSTR, whichthereby   22 

overcoming the lack in Sentinel-3SLSTR products collected in previous mid-high latitude eruptions. The results show that the 23 

neural network model is able to detect volcanic ash with good accuracy if compared with RGB visual inspection and BTD 24 

(Brightness Temperature Difference) procedures. Moreover, the comparison between the ash cloud obtained by the neural 25 

network (NN) and a plume mask manually generated for the specific SLSTR considered images, shows significant agreement.. 26 

Thus, the proposed approach allows an automatic image classification during eruption events, andwhich it it is also 27 

considerably faster than time-consuming manually algorithms (e.g. find the best BTD product-specific threshold). 28 

Furthermore, the whole image classification indicates an overall reliability of the algorithm, in particular for meteo-clouds 29 

recognition and discrimination from volcanic clouds.  30 

Finally, the results show that the NN developed for the SLSTR nadir view is able to properly classify also the SLSTR oblique 31 

view images. 32 
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1 Introduction 33 

FIn general, from the start of an eruptive eventthe eruption, volcanic emissions are composed of a broad distribution of ash 34 

particles, ranging from very fine ash (particle diameters, d < 30 µm) increasing in size to tephra (airborne pyroclastic material) 35 

with diameters from 2 mm up to 64 mm.  Larger fragments areand are also generated which fall out quickly; these and ash 36 

with d > 30 µm are not considered in this paper. TheIn general, from the start of the eruption, the volcanic emission is composed 37 

by both coarse and fine particles. The coarser fall down to the volcanic edifice, while the finer are transported by the wind . 38 

The solid part of the volcanic plume is basically composed by ash particles while the gaseous part is made mainly of water 39 

vapour (H2O), carbon dioxide (CO2) and sulphur dioxide (SO2) gases (Shinohara, 2008)(Oppenheimer et al., 2011; Shinohara, 40 

2008)(Oppenheimer et al., 2011; Shinohara et al., 2008), and also a liquid part consisting in sulphate aerosol is present..  41 

Depending on the eruptive intensity, the volcanic cloud can reach different altitudes in the atmosphere thus affecting 42 

environment (Craig et al., 2016; Delmelle et al., 2002) (Delmelle et al.,2002; Craig et al., 2016) , climate (Bourassa et al., 43 

2012; Haywood & Boucher, 2000; Solomon et al., 2011) (Haywood et al., 2000; Solomon et al., 2011; Bourassa et al., 2012), 44 

human health (Delmelle et al., 2002; Horwell et al., 2013; Horwell & Baxter, 2006; Mather et al., 2003) (Delmelle et al.,2002; 45 

Mather et al., 2003; Horwell et al., 2006; 2013) and aircraft safety (Casadevall, 1994). (Casadevall et al., 1994; Zenher 2010). 46 

The detection procedure consists in identifying the presence of certain species in the atmosphere and discriminating them 47 

against other species. Thus, volcanic ash detection is related to the discrimination of the areas (pixels in an image), which are 48 

affected by the  presence of these particles. First evidences about the possibility to detect the volcanic cloud by means of 49 

remote sensing data arise in the eighties (A. J. Prata, 1989a; A. J. PrataRATA, 1989b) (Prata, 1989a,b). The method used for 50 

the detection problem of volcanic ash particles relies onin the ability to discriminate between volcanic clouds and 51 

meteorological ice and water vapourliquid water clouds by exploiting the different spectral absorption in the Thermal InfraRed 52 

(TIR) spectral range (7–14 µm).. In this interval the absorption of ash particles with radius between 0.5 µm and 15 µm at 53 

wavelength of 11 µm is larger than the absorption of ash particles at 12 µm. The opposite happens for meteorologicalweather 54 

clouds, which absorb more significantly at longer TIR wavelengths. Therefore, the Brightness Temperature Difference (BTD), 55 

i.e. the difference between the Brightness Temperatures (BTs) at 11 and 12 microns, turns out to be negative (ΔT11µm- ΔT12µm 56 

ΔT11µm-12µm < 0 °C) for regions affected by volcanic clouds and positive (ΔT11µm- ΔT12µm > 0 °C) for regions affected by 57 

meteorological clouds.  58 

The BTD approach is the most used method for the volcanic cloud identification. It is effective and simple to applybe applied, 59 

even if it can lead to false alarms in some cases, e.g.: over clear surfaces during night, on soils containing large amounts of 60 

quartz (such as deserts), on very cold or ice surfaces, in the presence of high water vapour content (F. Prata et al., 2001) (Prata 61 

et al., 2001a). As already mentioned, the discrimination between volcanic and meteorologicalweather clouds is a challenging 62 

task, since the region of the overlap of the two objects shows a mixed behaviour not easily recognizable. In these mixed 63 

scenarios, the BTD can be negative not only for volcanic clouds but also for meteorological clouds; thus, some false positive 64 

results may occur, as the case of high meteorologicalweather clouds. False negative results may arise in the case of high 65 
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atmospheric water vapour content: the water vapour contribution can hide and cancel out the ash particles effects on the BTD, 66 

and then the ashy pixels cannot be revealed. In these cases a correction procedure can be applied (Corradini et al., 2008, 2009; 67 

A. J. Prata & Grant, 2001) (Prata et al., 2001b; Corradini et al., 2008; 2009). In addition to Among the described procedures 68 

described, other algorithms , based on the use of different spectral algorithmschannels, have been developed (Francis et al., 69 

2012; M. J. Pavolonis, 2010; M. Pavolonis & Sieglaff, 2012; Clarisse & Prata, 2016n.d.). 70 

 (Francis et al., 2012; Pavolonis et al., 2010a,b). 71 

For these reasons, it seems appropriate to use advanced classification schemes to address the task of the ash detection, such as 72 

approaches which make use of machine learning techniques, avoiding the need to find for each product the best BTD threshold 73 

for creating the volcanic cloud mask manually, which can be a considerable time-consuming process. 74 

For aerosol and meteorological cloud detection, a neural network (NN) (Atkinson & Tatnall, 1997; Bishop, 1994; Di Noia & 75 

Hasekamp, 2018) (Bishop et al., 1994; Atkinson et al., 1997; Di Noia and Hasekamp, 2018) based algorithm allows the solution 76 

of a classification problem. Starting from inputs containing spectral radiance values acquired in a specific wavelength bandin 77 

specific wavelength, the model generates a prediction in output by assigning to each pixel of the original image a predefined 78 

class. In previous research, neural networks have already shown significant effectiveness in terms of atmospheric parameter 79 

extraction (Gardner & Dorling, 1998) and specifically for volcanic eruption scenarios (Di Noia et al., 2013; Gardner & Dorling, 80 

1998; (Gray & Bennartz, 2015; Picchiani et al., 2011, 2014; Piscini et al., 2014; Sellitto et al., 2012)(Gardner et al., 1998; 81 

Picchiani et al., 2011; Sellitto et al., 2012; Di Noia et al., 2013; Picchiani et al., 2014; Piscini et al., 2014). A strong advantage 82 

of using a NN based approach for volcanic cloud detection is that once the model is trained on a statistically representative 83 

selection of test cases, new imagery acquired over new eruptions can be accurately (depending on the training phase) classified 84 

in near real time allowing significant advantages in critical situations and in emergency management. 85 

In this work, we developed a NN based algorithm for volcanic cloud detection using Sentinel-3 SLSTR (Sea and Land Surface 86 

Temperature Radiometer) daytime data with a model trained on MODIS (MODerate resolution Imaging Spectroradiometer) 87 

daytime images. This is possible since the two sensors have similar spectral bands and it represents an advantage as there isare 88 

currently limited useamounts of SLSTR products available for eruptive events. The use of MODIS as a proxy for SLSTR was 89 

already successfully tested in a previous work investigating  the complex challenge of distinguishing ice and 90 

meteorologicalweather clouds (also containing ice) using neural networks on SLSTR data (Picchiani et al., 2018) (Picchiani 91 

et al., 2018). As a test case, the Raikoke 2019 eruption has been considered in this work. 92 

2 Case study: the Raikoke 2019 eruption 93 

The Raikoke volcano is located in the Kuril Island chain, near the Kamchatka Peninsula in Russia (48.3° N, 153.2° E). On 94 

June 21, 2019 at about 18:00 UTC Raikoke started erupting and continued erupting until about 03:00 UTC on 22 June 2019). 95 

During this period, Raikoke released large amount of ash and SO2 into the stratosphere.  96 
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Figure 1 shows a time-series of 11 µm brightness temperatures (BTs) determined from the Himawari-8 AHI (Advanced 97 

Himawari Imager) sensor at 10-minute intervals for the first 18 hrs of the eruption. With the purpose of searching for high 98 

(cold) vertically ascending clouds associated with a vertically ascending clouds due to an eruption, and not of meteorological 99 

origin, discrete eruptions were identified by comparing AHI BTs near the vent with those some distance upwind from the vent.  100 

The Himawari-8 time-series shows a sequence of eruptions (12 in all) and a sustained period of activity between 22:40 of 21 101 

June and 02:10 of 22 June, when the majority of ash and gas was emitted. The estimated time of an eruption event was 102 

determined by examining animated images and consequently the times of eruptions shown do not always coincide with the 103 

coldest cloud-top.   104 

It is estimated from the AHI data that June 2019 Raikoke eruption produced approximately 0.4–1.8 Tg of ash (Bruckert et al., 105 

2022; Muser et al., 2020; A. T. Prata et al., 2022) and 1–2 Tg of SO2 (Bruckert et al., 2022; Gorkavyi et al., 2021).It is estimated 106 

from the AHI data that June 2019 Raikoke eruption produced approximately 0.4–1.8 Tg of ash and 1–2 Tg of SO2 (Prata, 107 

private communication).  The amount of water vapour emitted is unknown, but would have been considerable, as is common 108 

in most volcanic eruptions (Glaze et al., 1997; McKee et al., 2021; Millán et al., 2022; Murcray et al., 1981; Xu et al., 2022) 109 

(Murcray et al., 1981; Glaze et al., 1997;  McKee et al., 2021; Xu et al., 2022; Milan et al., 2022) .  These emissions would 110 

have led to copious amounts of water and ice clouds being produced (McKee et al., 2021; Rose et al., 1995), making the 111 

composition of the transported clouds both complex and changing with time. 112 

 113 

(Rose et al., 1995; McKeee et al., 2021), making the composition of the transported clouds both complex and changing with 114 

time. 115 
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 116 

Figure 1: Time-series of eruptions from Raikoke during the first 18 hrs of activity. The times of eruptions wereas estimated from the imagery 117 
and does not always coincide with the coldest cloud tops. (Black line is the average within a box bounded by the latitude/longitude 118 
coordinates: 153.25-153.35°E, 48.32-48.42°N.  The red line (upwind) is the average within a box bounded by: 153.10-153.20°E, 48.32-119 
48.42°tops. 120 

 121 

3 Instruments 122 

In this section the specifications of the instruments which provide the productshave been used to conduct the research are 123 

described. The MODIS sensor on board Terra and Aqua satellites has been used to set up the training dataset of a NN based 124 

model. The SLSTR sensor on board Sentinel-3A and Sentinel-3B satellites has been used for the application of the 125 

aforementioned model. 126 

3.1 MODIS iInstrument 127 

MODIS aboard NASA Terra and Aqua polar orbit satellites is a multispectral instrument, with 36 channels from VIS to TIR 128 

ranging from 0.4 to 14.4 µm, and spatial resolutions of 0.25 km for bands 1-2, 0.5 km for bands 3-7 and 1 km for bands 8-36. 129 

The two spacecrafts fly at 705 km of altitude in a sun-synchronous orbit, with a revisit cycle of about one or two days. Terra 130 

spacecraft was launched in 1999 and its equatorial crossing time is 10:30 am (descending node), while Aqua was launched in 131 

2002 and its equatorial crossing time is 1:30 pm (ascending node). 132 
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In our work we used several Terra-Aqua/MODIS products: Level-1A Geolocation Fields (MOD/MYD03) (see (Nishihama et 133 

al., 1997)  (L1B Documents | MCST, n.d.)[http://modis.gsfc.nasa.gov/data/atbd/atbd_mod28_v3.pdf] for details), Level-1B 134 

Calibrated Radiances (MOD/MYD021KM) (see 135 

[https://mcst.gsfc.nasa.gov/sites/default/files/file_attachments/M1054E_PUG_2017_0901_V6.2.2_Terra_V6.2.1_Aqua.pdf] 136 

(Toller et al.Isaacman, 2017) for details), which has been used to generate the Brightness Temperatures (BTs), Level-2 Surface 137 

Reflectance (MOD/MYD09) (see (Vermote & Vermeulen, 1999)  [http://modis.gsfc.nasa.gov/data/atbd/atbd_mod08.pdf] for 138 

details), Level-2 Cloud Product (MOD/MYD06_L2) (see [https://atmosphere-139 

imager.gsfc.nasa.gov/sites/default/files/ModAtmo/MOD06-ATBD_2015_05_01_1.pdf](Menzel et al., 2015n.d.) for details). 140 

MODIS aboard the NASA-Terra/Aqua polar orbit satellites is a multispectral instrument, with 36 channels from VIS to TIR, 141 

a spatial resolution from 0.25 to 1 km, and a revisit time of 1–2 days. 142 

3.2 SLSTR iInstrument 143 

SLSTR is a dual view scanning radiometer, with 9 channels on board of Sentinel-3A and Sentinel-3B. The pixel size ranges 144 

from 500x500 m for VNIR and SWIR bands to 1x1 km for TIR bands. 145 

The Sea and Land Surface Temperature Radiometer (SLSTR) is one of the instruments on board the Sentinel-3A (S3A) and 146 

Sentinel-3B (S3B) polar satellites launched in 2016 and 2018, respectively.  147 

Sentinel-3 is designed for a sun-synchronous orbit at 814.5 km of altitude with a local equatorial crossing time of 10:00 am. 148 

The revisit time is 0.9 days at equator for two operational spacecrafts configuration. The orbits of the two satellites are equal 149 

but S3B flies +/- 140° out of phase with S3A. The basic SLSTR technique is inherited from the technique used by the series 150 

of conical scanning radiometers starting with the ATSR. The instrument includes the set of channels used by ATSR-2 and 151 

AATSR (0.555 – 0.865 µm for VIS channels, 1.61 µm for SWIR channel, 3. 3.74 – 12 µm for MWIR/TIR channels), ensuring 152 

continuity of data, together with two new channels at wavelengths of 1.375 and 2.25 µm in support of cloud clearing for surface 153 

temperature retrieval. The SLSTR radiometer measures a nadir and an along track scan, each of which also intersects the 154 

calibration black bodies and the visible calibration unit once per cycle (two successive scans). Each scan measures two along 155 

track pixels of 1 km (four or eight pixels at 0.5500 km resolution for visible/NIR channels and SWIR channels, respectively) 156 

simultaneously. This configuration increases the swath width in both views, as well as providing 0.5500 km resolution in the 157 

solar channels. 158 

Our procedure makes use of the SLSTR Level-1 TOA (Top Of Atmosphere) Radiances and Brightness Temperature product 159 

from both platform S3A and S3B, see (Sentinel-3 SLSTR Level-1 Observables ATBD - Sentinel Online, n.d.)Cox et al., 2021)  160 

[https://sentinels.copernicus.eu/documents/247904/2731673/S3_TN_RAL_SL_032+-Issue+8.0+version1.0-161 

++SLSTR+L1+ATBD.pdf/fb45d35c-0d87-dca6-ea3c-dc7c2215b5bc?t=1656685672747] for details of SLSTR Level-1 162 

product.  163 

 164 
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3 4 Methodology 165 

In this section the adopted methodology is described. The procedure has been developed in MatLab environment and the 166 

source codes are available upon request, as explained in Code Availability section. In particular, the MatLab Deep Learning 167 

Toolbox has been used to implement the NN. 168 

A multilayer perceptron neural network (MLP NN) was trained with MODIS daytime data and then it was applied to Sentinel-169 

3/SLSTR daytime products, in order to discriminate ashy pixels from others, following the scheme reported in Figure 2. 170 

The MLP NN modelstructure (Atkinson & Tatnall, 1997; Gardner & Dorling, 1998) (Gardner et al., 1998, Atkinson et al., 171 

1997) consists in a multi-layer architecture with three types of layers. The first type of layer is the input layer, where the nodes 172 

represents the elements of a feature vector. The second type of layer is the hidden layer, and consists of only processing 173 

unitswhich could be one or more layers composed of nodes. The third type of layer is the output layer and it represents the 174 

output data, which are the classes to be distinguished and are set to one (that of the chosen class) or zero (all other nodes) in 175 

image classification problems. All nodes (i.e. neurons) are interconnected and a weight is associated to each connection. Each 176 

node in each layer passes the signal to the nodes in the next layer in a feed-forward way, and in this passage the signal is 177 

modified by the weight. The receiving node sums the signals from all the nodes in the previous layer and elaborates themit 178 

through an activation function before to passing them to the next layer.  179 

The output of the proposed model is the SLSTR image fully classified in eight different surfacespecies: ash over sea, ash over 180 

cloud, ash over land, sea, land and ice surfaces, water vapourliquid water clouds and ice clouds. This approach has been used 181 

because of the long readily available time series of MODIS data, the quality of MODIS products (Picchiani et al., 2011, 2014; 182 

Piscini et al., 2014) (Picchiani et al., 2011; 2014; Piscini et al., 2014) and the  spatial/spectral similarities between MODIS and 183 

SLSTR (see Table 1). The SLSTR and MODIS channels which are used in our research are shown in Table 1Table 1, along 184 

with the spectral characteristics of the two sensors. 185 

MODIS aboard the NASA-Terra/Aqua polar orbit satellites is a multispectral instrument, with 36 channels from VIS to TIR, 186 

a spatial resolution from 0.25 to 1 km, and a revisit time of 1–2 days. SLSTR is a dual view scanning radiometer, with 9 187 

channels on board of Sentinel-3A and Sentinel-3B. The pixel size ranges from 500x500 m for VNIR and SWIR bands to 1x1 188 

km for TIR bands. The feasibility of this procedure has also been confirmed for high latitudes (Picchiani et al., 2018)(Picchiani 189 

et al., 2018).,  since our study area is located in medium-high latitudes. 190 

The first step of our procedure consists in generating the training patterns,  that is the “ground truth” to be passed to the NN 191 

model during the training phase. This step represents a crucial aspect in building a NN model since the more the training 192 

dataset is accurate and representative of the problem we want to address the more the NN would be efficient in solving that 193 

problem. For this scope, MODIS products have been used as inputs to a semi-automatic procedure for identifying the different 194 

classes species (i.e. classification classes) to be discriminated by the NN model in the output image we want the NN model be 195 

able to distinguish. Some of these classesspecies don’t exist as MODIS standard products, for example the ash classes and the 196 
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ice surface class;, for this reason we derived them by means of different operations in our semi-automatic procedure developed 197 

in MatLab. Other classesspecies are instead already present as MODIS standard product, for example the land/sea mask.  198 

 199 

 200 

Table 1: Correspondence between MODIS and SLSTR channels. 201 

SLSTR Channel λ Centre (μm) Bandwidth (nm) MODIS Channel λ Centre (μm) Bandwidth (μm) 

S1 0.5545 19.26 4 0.555 0.545-0.565 

S2 0.659 19.25 1 0.659 0.620-0.670 

S3 0.8685 20.60 2 0.865 0.86241-0.8776 

S4 1.375 20.80 26 1.375 1.360-1.390 

S5 1.61 60.68 6 1.64 1.628-1.652 

S6 2.25 50.15 7 2.13 2.105-2.155 

S7 3.74 398.00 20 3.75 3.660-3.840 

S8 10.85 776.00 31 11.03 10.780-11.280 

S9 12.02 905.00 32 12.02 11.770-12.270 

 202 

Tabella formattata
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 203 

 204 

Figure 2: Overall diagram of the followed procedure followed for the classification process with NN model. 205 

The training set from which we extracted the training patterns (i.e. identifying classification classes) consists of nine MODIS 206 

granulesdata acquired over the Eyjafjallajokull volcano area during the 2010 eruption (from May 6th to May 13th), for a total 207 

of about 5400 patterns for each class available for the training of the model.  The single training pattern (i.e.: training example)) 208 

corresponds to a single pixel of a specific target class as identified in MODIS images through the semi-automatic procedure 209 

aforementioned, this means that one class is represented by several patterns. In particular, not all the pixels of the considered 210 

MODIS images are contained in the training dataset (i.e.: the ensemble of the training patterns), but only a part of them are 211 

randomly included. The total number of patterns we collected has been divided into three subsets: 75% training set, 20% 212 

validation set, 5% test set. A NNneural network with two hidden layers of was trained and then it was applied to Sentinel-3 213 
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SLSTR RBT (Radiance and Brightness Temperature) Level 1(SL_1_RBT) images collected during the Raikoke 2019 eruption. 214 

Table 2 shows the details of MODIS and SLSTR data used for this work.  215 

 216 

Table 2: Training set (MODIS) from the Eyjafjallajökull 2010 eruption; Sentinel-3 Raikoke 2019 classified products. 217 

Date Time UTC Platform Training/Application 

6 May 2010  (JD 126) 11:55 Terra Training 

9 May 2010  (JD 129) 12:25 Terra Training 

11 May 2010 (JD 131) 12:10 Terra Training 

11 May 2010 (JD 131) 12:15 Terra Training 

11 May 2010 (JD 131) 13:50 Terra Training 

11 May 2010 (JD 131) 14:05 Aqua Training 

12 May 2010 (JD 132) 12:55 Terra Training 

13 May 2010 (JD 133) 12:00 Terra Training 

13 May 2010 (JD 133) 13:40 Terra Training 

22 June 2019 (JD 173) 00:07 Sentinel-3A Application 

22 June 2019 (JD 173) 23:01 Sentinel-3B Application 

 218 

In order to build the NN training patterns a, the aforementioneda semi-automatic procedure, that exploits MODIS radiances 219 

and standard products, has been developed. The MODIS products considered for the extraction of the training patterns are the 220 

following:  221 

● MOD/MYD 021KM, Level 1B Calibrated Radiances – 1 km, which gives the radiance values for each MODIS band; 222 

● MOD/MYD 03, Geolocation – 1 km, used for creating the Land/Sea Mask;  223 

● MOD/MYD 06_L2, Cloud Product, containing cloud parameters, used for creating the Cloud Mask;  224 

● MOD/MYD 09, Surface Reflectance Product, containing an estimate of the surface spectral reflectance measured at 225 

ground level; it is used for generating the Ice Mask; 226 

where “MOD” and “MYD” stands for MODIS-Terra and MODIS-Aqua products respectively.  227 

The semi-automatic procedure for the extraction of training patterns starting from MODIS data, basically consists in using 228 

MODIS products to create binary “masks” identifying the different objects/surfacesspecies, and then replaces them by 229 

“classes”. For each element of the class, the consisting of matrices containing radiance values (W/(m2 sr µm)) are extracted 230 

from the MODIS product MOD/MYD021KM. In this way each object is radiometrically characterized. The identification of 231 

the ashy pixel is pursued by creating a mask according to specific BTD thresholds (from 0.0 to -0.4 °C) and a manual correction 232 

performed through visual inspection forof each MODIS image. For this purpose, the MOD/MYD021KM product has been 233 
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used to derive the brightness temperatures required to compute the BTD. The MODIS products used for training the model 234 

were acquired in near-nadir view only. 235 

The other specieobjects are identified using both MODIS Level 1 radiancesbands and MODIS standard products. Once each 236 

object/surface has been defined, they are associated with the corresponding class. Then a set of input-output samples for the 237 

training phase is generated, where the input consists of the set of radiances measured for the given pixel and the output is a 238 

binary vector with value 1 associated with the corresponding class and value 0 for the other classes. 239 

Table 3 shows the classification map legend for each classified product presented in this work, in which eight classes are 240 

discriminated, each one representing a surface/object.  241 

 242 

Table 3: Classification map legend. 243 

Class ID Surface/Object Name Colour 

1 Ash over sea Ash_sea  

2 Ash over clouds Ash_cloud  

3 Sea surface Sea  

4 Liquid 

waterWeather 

clouds 

Cloud  

5 Snow/Ice surface Ice  

6 Ash over land Ash_land  

7 Land surface Land  

8 Ice clouds Cloud_ice  

- Masked out pixels Not classified  
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 244 

 245 

Figure 3: NN topology for ash detection. 246 

The NN final model consists of nine inputs, which are the radiances in the SLSTR selected channels, while the output space 247 

is composed of eight classes, which are the objects/surfaces which the net has to classify. After doing several tests the optimum 248 

topology of the NN turns out to be the combination of two hidden layers with 20 and 15 neurons, respectively. For each neuron 249 

we set the hyperbolic tangent activation function (Vogl et al., 1988). The final neural network architecture used for ash 250 

detection in this work is shown in Figure 3. The proposed algorithm includes a post processing operation in order to avoid 251 

false positive results for land and sea classes. This a- posteriori filter is applied both to the resulting NN land and sea classes. 252 

It allows masking out the pixels which the NN classifies as land/sea which do not belong to the Sentinel-3/SLSTR land/sea 253 

mask standard product, which is always available and thus it can be used to increase the precision of the algorithm. The filtered 254 

out pixels have been inserted in a class named “not classified”, as reported in Table 3 Table 3. 255 

For classification problems approached with machine learning algorithms, one of the most used accuracy metrics for the 256 

performance evaluation is the confusion matrix (Fawcett, 2006), where each predicted output class is compared to the 257 

corresponding ground truth considered in the validation dataset. An overall accuracy of 90.9% was obtained at the end of the 258 

NN training phase for the proposed neural network model (see Figure 4Figure 4).  259 

 260 
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 261 

Figure 4: Confusion matrix on validation set. 262 

The target class represents the “ground truth” of each class, while the output class refers to the prediction of the NN. The 263 

diagonal shows that most of the total of the pixels have been correctly classified (green boxes). The number of pixels incorrectly 264 

classified are placed out of the diagonal. False positives (false detection) Commission and omission errorsfalse negatives 265 

(missed detection) are reported in the last grey column and row, respectively. 266 

The code of the procedure ran with a CPU i7-9850H (6 core, processor base frequency at 2.60 GHz): and it takes less than 30 267 

minutes tofor training the adopted model and it takes few seconds to apply itfor applying the adopted model. 268 

The MODIS products used for training the model were acquired in nadir view only. The trained network was applied to SLSTR 269 

products acquired both in nadir and oblique view(Copernicus Sentinel-3 SLSTR Land User Handbook, n.d.)(User Guides - 270 

Sentinel-3 SLSTR - Product Grid Definitions - Sentinel Online - Sentinel Online, n.d.). 271 

4 5 Results and Discussion      272 

The neural network algorithm previously described was applied to Sentinel-3/SLSTR daytime images acquired on Raikoke 273 

during the 2019 eruption. The Sentinel-3A/SLSTR and Sentinel-3B/SLSTR products collected onthe 22 June 2019 at 00:07 274 

and 23:01 UTC have been considered (see Table 2). 275 
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 276 

Figure 5: Sentinel-3A/SLSTR image collected on Raikoke forthe 22 Jun 2019 at 00:07 UTC, nadir view. (a) RGB; (b): BTD; (c): NN 277 
classification. 278 

Figure 5(a) shows the RGB colour composite of the S3A/SLSTR image acquired on Raikoke forthe 22 June 2019 at 00:07 279 

UTC. The RGB composite has been carried out by considering the SLSTR visible (VIS) channels S3 (868 nm), S2 (659 nm) 280 

and S1 (554 nm) for R, G and B, respectively. In Figure 5(b) the BTD map is displayed, where red and blue pixels represent 281 

negative and positive BTD, respectively. The BTD is computed by making the difference between the brightness temperature 282 
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of the SLSTR thermal infrared channels S8 and S9 centred at 10.8 and 12 μm. The output of the NN classification is shown in 283 

Figure 5(c) with the corresponding colour legend, where each colour represents the classified surface/object. 284 

 285 

Figure 6: Sentinel-3B/SLSTR image collected on Raikoke forthe 22 June 2019 at 23:01 UTC, nadir view. (a): RGB; (b): BTD; (c): NN 286 
classification. 287 

As Figure 5(a) shows, the RGB composite showemphasizes the presence of a wide distribution of meteorological clouds and 288 

a significant signal derived from the volcanic cloud (brown pixels). The BTD (Figure 5(b)), obtained with a threshold of 0 °C, 289 

shows the presence of the volcanic cloud together with a significant number of false negatives (volcanic cloud pixels not 290 
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identified near the vents) and false positives (pixels identified as volcanic cloud while actually theybut that are not, see light 291 

red pixels below the volcanic cloud and along the right edge of the scene) pixels.  292 

Despite the challenging scenario, the NN algorithm shows its ability to detect the volcanic cloud and to classify the whole 293 

image, by detecting with good accuracy meteorological clouds composed of water droplets (yellow) and ice (grey), sea (blue) 294 

and land (green) surfaces, and volcanic ash clouds, as reported in Figure 5(c). Looking at the cloud masks generated with the 295 

NN algorithm (yellow and grey) and by comparing them with the RGB natural colour composite of the SLSTR product, a high 296 

degree of agreement in terms of spatial features can been observed. From the comparison between NN output classes and RGB 297 

composite we can observe that also land (green) and sea (blue) pixels are properly detected in the areas where they actually 298 

lie. 299 

From a qualitative comparison between the NN plume mask and the RGB composite, we can state that the NN correctly 300 

identifies the volcanic cloud class in the area where it seems actually present, even if some pixels are misclassified as ash -301 

overn-l land (magenta pixels), instead of ash above meteorological cloud. As Figure 5 shows, the NN algorithm is able to 302 

detect a wide volcanic cloud area and much less false positivesmore ash, especially in the opaque regions, compared to the 303 

BTD approach. In particular the difference found near the vents can be due to the complete opacity of the cloud. Here the ash 304 

cloud optical thickness is so high that there is no spectral difference and the BTD approach has no sensitivity is null. 305 

Following the same visualization scheme of Figure 5, the results derived from the application of the trained NN model to the 306 

S3B/SLSTR image acquired onthe 22 June 2019 at 23:01 UTC are reported in Figure 6. In this second image, all the ashy 307 

pixels are classified by the NN model as ash above meteorological clouds (cyan pixels). This seems reasonable being the 308 

scenario mostly dominated by meteorologicalweather clouds, as we can also observe looking at the NN classification, which 309 

assigns the majority of the pixels to the water vapourliquid water cloud class (yellow) and to the ice cloud class (grey). The 310 

NN classification shows also the presence of sea pixels (blue), which are located in the same area identifiable using the RGB 311 

composite. In this case, from the RGB composite (Figure 6(a)), unlike to what is seen in the 00:07 UTC can be seen in the 312 

midnight image, it is not straightforward to identify the volcanic plume by visual inspection. Indeed, this image was collected 313 

about 24 hours later than the previous one and thus the plume has been transported through the atmosphere and dispersed. A 314 

qualitative comparison between the NN classification (Figure 6(c)) and the BTD map (Figure 6(b)) shows considerable 315 

differences between the two methods. The BTD, obtained with a threshold of 0 °C, identifies a wider area (red pixels) affected 316 

by the volcanic cloud with respect to the NN ash mask (cyan pixels). We can notice that the BTD map includes some aerial 317 

trailsaircraft condensation trails (recognizable by the shape in the RGB composite) in the ash mask, which represent of 318 

coursecan be identified as false positive resultsash detections. The reasons for these false positivesmisclassifications are not 319 

fully understood, but may be due to multilayer cloud effects, pixel heterogeneity or viewing angle. 320 

Figure 7 shows the RGB composite and the NN classification for the SLSTR oblique view product collected the 22 June 2019 321 

at 00.07 UTC (Figure 7(a) and Figure 7(b)) and 23.01 UTC (Figure 7(c) and Figure 7(d)) respectively. 322 

Looking at results obtained for the oblique view (Figure 7), we can observe that for the S3B/SLSTR image collected the 22 323 

June 2019 at 23.01 UTC the NN model produces good results, which are also in accordance to the NN output obtained for the 324 
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processing of nadir view image acquired at the same time. For the S3A/SLSTR image collected the 22 June 2019 at 00.07 325 

UTC, the NN results are instead less accurate; this is due to the opacity of the volcanic cloud.  326 

 327 

Figure 7: Sentinel-3A/SLSTR image collected on Raikoke the 22 Jun 2019 at 00:07 UTC, oblique view ((a) and (b)); Sentinel-3B/SLSTR 328 
image collected on Raikoke the 22 June 2019 at 23:01 UTC, oblique view ((c) and (d)). (a) and (c): RGB; (b) and (d): NN classification. 329 
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A significant point to be discussed is that the results obtained in this work highlighted the robustness and transferability for a 330 

NN model learning from one single event in a specific location in the world with specific background condition (latitude, 331 

longitude, geometry of acquisition, atmospheric condition, season, etc) and successfully operating in a different scenario.Our 332 

results suggest that the NN technique is robust and has shown that it is possible to transfer the NN model from one single 333 

eruption event to others occurring at similar latitudes. However, the complexity of the application suggests that the 334 

generalization of the methodology to all types of eruptions is not straightforward. For example, the change of latitude has an 335 

impact on the characteristics of the atmosphere. At the same time different volcanoes emit different types of ash affecting the 336 

variability of the radiance values detected by the sensors. A possible solution to give to the proposed technique a broader 337 

applicability could be the training of different NN models for specific latitude belts which can be defined to cover the whole 338 

globe. 339 

Overall, we can summarize the main uncertainties and the limitations of the presented model in the following points: 340 

1. model transferability is significantly related to the spatial-temporal data availability for the generation of a training 341 

dataset which is statistically representative of all the possible scenarios; 342 

2. lack of standard ground truth data for training and validation phases requires the BTD threshold selection by an 343 

operator which prevents the method from being fully objective. 344 

 345 

45.1 Vicarious vValidation 346 

The capability of the NN to correctly detect pixels containing ash was validated by making a pixel per pixel comparison with 347 

a reference plume mask generated manually (hereafter MPM) in order to obtain the best accurate ground truth as possible in 348 

each SLSTR product. The choice of taking the MPM as reference derives from the lack of ash standard products. 349 

For the image collected at 00:07 UTC the MPM creation was performed by selecting a region around the volcanic cloud 350 

(clearly recognizable as it is at the beginning of the eruption) and then considering only the pixels with 11 µm brightness 351 

temperature < 270 K (see Figure 1). In this case the BTD alone it is not very useful as the high value of the ash optical thickness 352 

of the cloud (especially close to the vent) produces many pixels with BTD values near zero, not distinguishable from adjacent 353 

pixels characterized by meteorological clouds. For the image collected at 23:01 UTC, the identification of the volcanic cloud 354 

is much more difficult due to its larger spread and dilution; in this case the MPM was obtained considering the pixels with 355 

BTD < -0.25 °C, even if probably this choice implies that some ashy pixels were discarded. On the other hand, using an higher 356 

BTD threshold will produce a lot of false positive pixels. In general, the creation of an accurate manual plume mask is time 357 

consuming and case-sensitive and often requires the presence of an operator; so the generation of a volcanic cloud mask with 358 

a fast, automatic and case-independent procedure would be a rather significant improvement.  359 

Because the MPM doesn’t distinguish between the different surfaces under the ash cloud, the validation is performed by 360 

considering the total of the ashy pixels detected from the NN (i.e. the sum between ash_land, ash_sea and ash_cloud).  361 
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Figure 7Figure 8 shows the MPM, created as described above, and the comparison between NN plume mask (hereafter NNPM) 362 

and MPM for the S3A/SLSTR image collected on Raikoke forthe 22 June 2019 at 00:07 UTC (Figure 7Figure 8(a) and Figure 363 

7Figure 8(b)) and S3B/SLSTR image collected on Raikoke forthe 22 June 2019 at 23:01 UTC (Figure 7Figure 8(c) and Figure 364 

7Figure 8(d)). 365 

 366 

In relation to the images which display the comparison between NN output and MPM (Figure 8(b) and Figure 8(d)), green 367 

areas indicate the pixels for which both the MPM and NN ash masks detect the presence of volcanic cloud, red pixels represent 368 

the areas classified as ash only by the MPM; blue ones are the pixels classified as ash only according to the NN model. We 369 

can observe that most of the volcanic cloud is displayed in green for both products (00.07 UTC and 23.01 UTC), indicating 370 

good matching between the two approaches. This is also confirmed by the scores in Table 4, which shows the number of pixels 371 

classified as ash by both NN and MPM (green pixels), the number of pixels classified as ash only by NN (blue pixels), the 372 

number of pixels classified as ash only by MPM (red pixels). We can observe that the two approaches are in accordance for 373 

the majority of the pixels, albeit they differ in discriminating volcanic cloud in some regions. 374 

 375 

Table 4: NN and BTD volcanic cloud detection accuracies using classification metrics derived from the cComparison between the NN 376 
plume mask obtained from the two approaches and (NNPM) and the manual plume mask (MPM) for each SLSTR consideredlassified 377 
product (pixels number for each class), respectively. The total number of classified pixels is 1614405 for the S3A/SLSTR at 00.07 UTC 378 
image and 1701319 for the S3B/SLSTR at 23.01 UTC image respectively. 379 

Product Classified Product Ash Pplume mask 

source 

PrecisionNNP

M and MPM   

Only 

NNPMReca

ll 

Only 

MPMF-

measure 

Accuracy 

S3A/SLSTR at 00:.07 UTC NN classification 0.70913545 0.6835568 0.6966275 0.993 

S3A/SLSTR at 00:07 UTC  BTD < 0 °C 0.164136435 399910.647 712230.261 0.955 

S3B/SLSTR at 23:01 UTC NN classification 0.773 0.657 0.710 0.935 

S3B/SLSTR at 23:01 UTC BTD < 0 °C 0.417 0.998 0.588 0.829 Tabella formattata
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 380 

 381 

Figure 78: Sentinel-3A/SLSTR image collected on Raikoke for the 22 June 2019 at 00:07, nadir view (a),(b); Sentinel-3B/SLSTR image 382 
collected on Raikoke forthe 22 June 2019 at 23:01, nadir view (c),(d). (a),,(c): red pixels display the manual plume mask (MPM) obtained 383 
from the analysis on the specific image; (b),(d): comparison between volcanic ash detected by NN and MPM; green pixels indicate the areas 384 
for which both NN and MPM detect ashy pixels, red pixels indicate the areas for which only MPM detects ashy pixels, blue pixels indicate 385 
the areas for which only NN detects ashy pixels. 386 

 387 

 388 

 389 
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Besides the NN plume mask validation, we also compared the pixels which the NN model classified as affected by 390 

meteorologicalweather clouds (hereafter NNCM) with the SLSTR standard product for meteorological clouds.  391 

 392 

Figure 89: Sentinel-3A/SLSTR image collected on Raikoke forthe 22 June 2019 at 00:07, nadir view (a),(b); Sentinel-3B/SLSTR image 393 
collected on Raikoke forthe 22 June 2019 at 23:01, nadir view (c),(d). (a),(c): RGB view; (b),(d): comparison between cloud mask retrieved 394 
by NN and standard Sentinel-3 confidence in summary cloud mask (CSCM); green pixels indicate the areas for which both NN and CSCM 395 
detect cloudy pixels, red pixels indicate the areas for which only CSCM detects cloudy pixels, blue pixels indicate the areas for which only 396 
NN detects cloudy pixels, white pixels indicate the areas for which both NN and CSCM don’t detect the presence of cloudy pixels.. 397 

 398 
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In relation to the images which display the comparison between NN output and MPM (Figure 7Figure 8(b) and Figure 7Figure 399 

8(d)), green areas indicate the pixels for which both the MPM and NN ash masks detect the presence of volcanic cloud, red 400 

pixels represent the areas classified as ash only by the MPM; blue pixels are classified as ash only according to the NN model. 401 

We can observe that most of the volcanic cloud is displayed in green for both products (00:07 UTC and 23:01 UTC), indicating 402 

good agreement between the two approaches. This is also confirmed by the scores in Table 4, which allow quantitative 403 

conclusions on the accuracy of the proposed NN model   approach compared to the MPM considered as ground truth. The 404 

classification metrics considered are precision, recall, F-measure and accuracy (Fawcett, 2006) which range from 0 to 1 (perfect 405 

classifier). 406 

The performance score differences for the two classified products are mainly related to the significant higher number of 407 

correctly classified ashy pixels contained in the 23:01 UTC (136435 pixels) with respect to 00:07 UTC (13545 pixels), if 408 

compared to the total number of classified pixels in the images which is similar (1614405 pixels for the S3A/SLSTR at 00:07 409 

UTC image and 1701319 for the S3B/SLSTR at 23:01 UTC image respectively). However, the metrics are aligned for both 410 

the classified data with encouraging values for each index suggesting the reasonability of the results. In particular, the F-411 

measure results of around 0.7 for both the classifications. Moreover, using MPM as a benchmark, the comparison of the metrics 412 

obtained with the BTD < 0°C approach with those derived with the NN model indicates that the neural network performs a 413 

more accurate volcanic cloud detection for both the considered test cases. 414 

Besides the NN plume mask validation, we also compared the pixels which the NN model classified as affected by 415 

meteorological clouds (hereafter NNCM) with the SLSTR standard product for meteorological clouds.  416 

Among the cloud masks available in the SLSTR L1RBT product, the confidence_in_summary_cloud mask (hereafter CSCM) 417 

is considered. The CSCM is a cloud mask which discriminates cloud pixels (true) and cloud-free pixels (false); it is an ultimate 418 

cloud mask product derived from several separated cloud tests (Polehampton et al., 2021)(Copernicus Sentinel-3 SLSTR Land 419 

User Handbook, n.d.)(Sentinel-3-SLSTR-Land-Handbook, 2021). AsBecause of the CSCM doesn’t distinguish between 420 

meteorological liquid watermeteo clouds and meteorologicalmeteo ice clouds as the NN algorithm does, the comparison is 421 

realized by considering the whole NN meteorologicalmeteo cloud classes (i.e. the sum between Cloud and Cloud_ice). 422 

Figure 8Figure 9 displays the RGB composite, in which the Sentinel-3 sun glint mask is highlighted (right part of the scene), 423 

and the comparison between NN cloud mask and S3 cloud mask for S3A/SLSTR image collected on Raikoke forthe 22 June 424 

2019 at 00:07 UTC (Figure 8Figure 9(a) and Figure 8Figure 9(b)) and for S3B/SLSTR image collected on Raikoke forthe 22 425 

June 2019 at 23:01 UTC (Figure 8Figure 9(c) and Figure 8Figure 9(d)). 426 

Also in this case, for the images displaying the comparison between the two types of cloud masks (Figure 8Figure 9(b) and 427 

Figure 8Figure 9(d)), green indicates the pixels classified as meteorological cloud for both procedures, while red and blue 428 

indicate the pixels classified as meteorological cloud only from the SLSTR standard product and NN, respectively. Pixels that 429 

are not coloured are associated to a cloud-free condition for both the NN and the S3 cloud mask. Looking at the comparison, 430 

a very good agreement between the NN meteorologicalmeteo cloud mask and the SLSTR standard cloud mask can be observed. 431 

The metrics in Table 5, Table 5 show very good performances, reaching an F-measure around 0.9with high amount of pixels 432 

ha formattato: Tipo di carattere: Corsivo



23 

 

classified as affected by clouds by both products (see Table 5). Moreover, looking at the red pixels in the 23:01 UTC image 433 

especially, it can be noted that the SLSTR cloud mask includes also includes the volcanic cloud. 434 

  435 

Table 5: NN meteorological cloud detection accuracy using classification metrics derived from the cComparison between the NN cloud 436 
mask (NNCM) and the confidence in summary cloud mask (CSCM) for each SLSTR consideredlassified product (pixels number for each 437 
class)which has been assumed as ground truth. The total number of classified pixels is 1614405 for the S3A/SLSTR at 00.07 UTC image 438 
and 1701319 for the S3B/SLSTR at 23.01 UTC image respectively. 439 

Product Classified Product PrecisionNNCM and 

CSCM   

Only 

NNCMRecall 

Only CSCMF-

measure 

Accuracy 

S3A/SLSTR at 00:.07 UTC 0.8911332632 0.936163225 0.91391768 0.842 

S3B/SLSTR at 23:.01 UTC 0.9521291989 653590.820 2841930.881 0.795 

 440 

From the validation procedure we have carried out, a considerable point which has to be underlined is that, unlike adopting a 441 

time consuming and case-specific approach as MPM which also needs a manual operation by setting various thresholds for 442 

each case under examination, the NN model can be used to discriminate ash plume in satellite images with good accuracy in 443 

a fast and automatic way, which saves a significant amount of time. The extra speed is obtained by eliminating the need for 444 

manual intervention. 445 

 446 

5 6 Conclusions 447 

In this work the results of a new neural network based approach for volcanic cloud detection are described. The algorithm, 448 

developed to process Sentinel-3/SLSTR daytime images, exploits the use of MODIS daytime data as training. The procedure 449 

allows the full characterization of the SLSTR image by identifying, besides the the volcanic cloud, the surfaces under the cloud 450 

itself, the meteorological clouds (and phases), land, and sea surfaces. As test cases, the S3A-S3B/SLSTR images collected 451 

over the Raikoke volcano area during the June 2019 eruption have been considered. 452 

The proposed neural network based approach for volcanic ash detection and image classification shows an overall good      453 

accuracy for the ash class, which is the main target of the algorithm, and for the meteorological cloud class as wellalso. A 454 

strong effectiveness of the NN classification is indeed also related to the cloudy pixel recognition, with the ability to distinguish 455 

two different types of meteorological clouds composed of water droplets and ice respectively. It has to be reminded that the 456 

wide distribution of meteorological clouds in the scenario under consideration makes the ash detection task particularly 457 

complex., since meteorologicalweather ice clouds and volcanic clouds exhibit similar spectral behaviour. 458 

A point to be underlined is the valuable advantage of the developed procedure related to the creation of products (the eight 459 

classes) not all currentlyalready available as SLSTR standard products; this fact represents a considerable step forward for 460 

generation of novel types of S3/SLSTR products. 461 
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A post processing has been applied to NN outputs by exploiting the land/sea mask available in theof SLSTR standard products, 462 

in order to mitigate the insurgence of NN land/sea failure, being the land/sea mask which is always available as SLSTR 463 

standard product. 464 

The comparison between the NN plume mask and a reference plume mask (MPM) taken as ground truth, shows a good 465 

agreement between the two techniques. The significant result lies in the fact that the overall good performance of the NN 466 

output is achieved in an automatic way and with a brief processing time, compared to the plume mask specifically generated 467 

ad hoc, which instead requires a longer time, is case-specific and it needs the presence of an operator. The other considerable 468 

achievement of the NN developed procedure indeed is that, once the NN model has been properly trained, it has been used to 469 

detect the ash plume for each SLSTR image related to the Raikoke eruption, while the creation of the MPM has to be made 470 

separately for each image. 471 

The comparison between the NN cloud mask and the cloud mask derived from SLSTR standard products has been also been 472 

carried out, resulting in a high percentage of agreement between the two products. 473 
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We also aim at further investigating some aspects in order to improve the classification accuracy, as the introduction of other 474 

output classes, such as volcanic ice cloud, and the integration of other variables in the model, such as the sensor view angle.475 

 476 

Figure 97: Sentinel-3A/SLSTR image collected on Raikoke for 22 Jun 2019 at 00:07 UTC, oblique view ((a) and (b)); Sentinel-3B/SLSTR 477 
image collected on Raikoke for 22 June 2019 at 23:01 UTC, oblique view ((c) and (d)). (a) and (c): RGB; (b) and (d): NN classification. 478 
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A promisingly outcome is related to the ability of the NN model to generalize over different data in terms of spatio-temporal 479 

and geographical characteristics, being the NN model trained with data collected over the Iceland region in 2010 and then 480 

applied to data acquired over the Kamchatka Peninsula in Russia in 2019. SomethingOne of the point under consideration for 481 

future improvements is to enhance the ability of the NN to generalize over various eruptive scenarios, by integrating different 482 

training dataset (in terms of regions, type of eruption, time interval, etc). In fact, the current methodology has been applied just 483 

to just a few test cases and more validation is required in order to give the technique broader applicability.  For example, the 484 

effects of varying moisture and atmospheric conditions has not been fully explored. On the other hand, the generation of an 485 

appropriate number of examples, which must be statistically representative of all the possible scenarios, to be included in the 486 

training dataset may represent a very difficult task. A possible approach could be the design of different neural networks, each 487 

associated with a specific scenario. 488 

We also aim at further investigate some aspects in order to improve the classification accuracy, as the introduction of other  489 

output classes, such as volcanic ice cloud, and the integration of other variables in the model, such as the sensor view angle. 490 

Moreover, a fully comprehensive study about the sensitivity of the NN detection onto the observation angle could be another 491 

possible future developments of the study. Here we addressed briefly this point applying the trained network to SLSTR oblique 492 

view products, characterized by a zenith view angle of about 55° (Polehampton et al., 2021). Figure 7 shows the RGB 493 

composite and the NN classification for the SLSTR oblique view product collected on 22 June 2019 at 00:07 UTC (Figure 494 

7(a) and Figure 7(b)) and 23:01 UTC (Figure 7(c) and Figure 7(d)) respectively. It is interesting, as a preliminary result, to 495 

show how, especially for the 23:01 UTC image where the opacity of the volcanic cloud is slighter, the main features of the 496 

classification map obtained using a NN model trained only on near nadir view acquired products and used for classifying 497 

oblique view data are mostly conserved. However, the complexity brought in by the difference in the slant optical depth, which 498 

may translate to a noticeable difference in top-of-atmosphere signal levels, needs to be investigated in a full dedicated study. 499 

 Finally, the possibility to use S3/SLSTR products as training dataset instead of using MODIS data is an essential point to be 500 

taken into account in order to increase the accuracy of the algorithm.Finally, the possibility to use S3/SLSTR products to 501 

trainfor training a neural network able to detect volcanic clouds in Sentinel-3/SLSTR granules might improve the overall 502 

accuracy of the classification.  503 

 504 

Code availability 505 

The whole methodology is developed in MatLab environment. The source codes are available upon request to 506 

ilaria.petracca@uniroma2.it. 507 

 508 

Data availability 509 

Terra-Aqua/MODIS data are distributed from the Level-1 and Atmosphere Archive & Distribution System (LAADS) 510 

Distributed Active Archive Center (DAAC) and they are available at: https://ladsweb.modaps.eosdis.nasa.gov/search/. 511 
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Sentinel-3/SLSTR data are distributed from the Copernicus Open Access Hub and they are available at: 512 

https://scihub.copernicus.eu/dhus/#/home. 513 

The dataset used for this study are freely available on the Zenodo platform (https://doi.org/10.5281/zenodo.7050771).  514 
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