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Abstract 12 

The accurate automatic volcanic cloud detection by means of satellite data is a challenging task and of great concern for both 13 

scientific community and aviation stakeholder due to the well-known issues generated by strong eruption events in relation to 14 

aviation safety and health impacts. In this context, machine learning techniques applied to satellite data acquired from recent 15 

spaceborne sensors have shown promising results in the last years.  16 

This work focuses on the application of a neural network based model to Sentinel-3 SLSTR (Sea and Land Surface 17 

Temperature Radiometer) daytime products in order to detect volcanic ash plumes generated by the 2019 Raikoke eruption. A 18 

classification of meteorological clouds and of other surfaces comprising the scene is also carried out. The neural network has 19 

been trained with MODIS (MODerate resolution Imaging Spectroradiometer) daytime imagery collected during the 2010 20 

Eyjafjallajökull eruption. The similar acquisition channels of SLSTR and MODIS sensors and the comparable latitudes of the 21 

eruptions allow to extend the approach to SLSTR, thereby overcoming the lack in Sentinel-3 products collected in previous 22 

mid-high latitude eruptions. The results show that the neural network model is able to detect volcanic ash with good accuracy 23 

if compared with RGB visual inspection and BTD (Brightness Temperature Difference) procedures. Moreover, the comparison 24 

between the ash cloud obtained by the neural network (NN) and a plume mask manually generated for the specific SLSTR 25 

considered images, shows significant agreement. Thus, the proposed approach allows an automatic image classification during 26 

eruption events, and it is also considerably faster than time-consuming manual algorithms. Furthermore, the whole image 27 

classification indicates an overall reliability of the algorithm, in particular for recognition and discrimination from volcanic 28 

clouds. 29 
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1 Introduction 30 

From the start of an eruptive event, volcanic emissions are composed of a broad distribution of ash particles, ranging from 31 

very fine ash (particle diameters, d < 30 µm) increasing in size to tephra (airborne pyroclastic material) with diameters from 2 32 

mm up to 64 mm.  Larger fragments are also generated which fall out quickly; these and ash with d > 30 µm are not considered 33 

in this paper. The gaseous part is made mainly of water vapour (H2O), carbon dioxide (CO2) and sulphur dioxide (SO2) gases 34 

(Oppenheimer et al., 2011; Shinohara, 2008), and also a liquid part consisting in sulphate aerosol is present. Depending on the 35 

eruptive intensity, the volcanic cloud can reach different altitudes in the atmosphere thus affecting environment (Craig et al., 36 

2016; Delmelle et al., 2002), climate (Bourassa et al., 2012; Haywood & Boucher, 2000; Solomon et al., 2011), human health 37 

(Delmelle et al., 2002; Horwell et al., 2013; Horwell & Baxter, 2006; Mather et al., 2003) and aircraft safety (Casadevall, 38 

1994). 39 

The detection procedure consists in identifying the presence of certain species in the atmosphere and discriminating them 40 

against other species. Thus, volcanic ash detection is related to the discrimination of the areas (pixels in an image), which are 41 

affected by the presence of these particles. First evidences about the possibility to detect volcanic cloud by means of remote 42 

sensing data arise in the eighties (A. J. Prata, 1989a; A. J. Prata, 1989b). The method used for the detection of volcanic ash 43 

particles relies on the ability to discriminate between volcanic clouds and meteorological ice and liquid water clouds by 44 

exploiting the different spectral absorption in the Thermal InfraRed (TIR) spectral range (7–14 µm). In this interval the 45 

absorption of ash particles with radius between 0.5 µm and 15 µm at wavelength of 11 µm is larger than the absorption of ash 46 

particles at 12 µm. The opposite happens for meteorological clouds, which absorb more significantly at longer TIR 47 

wavelengths. Therefore, the Brightness Temperature Difference (BTD), i.e. the difference between the Brightness 48 

Temperatures (BTs) at 11 and 12 microns, turns out to be negative (ΔT11µm- ΔT12µm < 0 °C) for regions affected by volcanic 49 

clouds and positive (ΔT11µm- ΔT12µm > 0 °C) for regions affected by meteorological clouds.  50 

The BTD approach is the most used method for the volcanic cloud identification. It is effective and simple to apply, even if it 51 

can lead to false alarms in some cases, e.g. over clear surfaces during night, on soils containing large amounts of quartz (such 52 

as deserts), on very cold or ice surfaces, in the presence of high water vapour content (F. Prata et al., 2001). As already 53 

mentioned, the discrimination between volcanic and meteorological clouds is a challenging task, since the region of the overlap 54 

of the two objects shows a mixed behaviour not easily recognizable. In these mixed scenarios, the BTD can be negative not 55 

only for volcanic clouds but also for meteorological clouds; thus, some false positive results may occur, as the case of high 56 

meteorological clouds. False negative results may arise in the case of high atmospheric water vapour content: the water vapour 57 

contribution can hide and cancel out the ash particles effects on the BTD, and then the ashy pixels cannot be revealed. In these 58 

cases a correction procedure can be applied (Corradini et al., 2008, 2009; A. J. Prata & Grant, 2001). In addition to the described 59 

procedures, other algorithms have been developed (Francis et al., 2012; M. J. Pavolonis, 2010; M. Pavolonis & Sieglaff, 2012; 60 

Clarisse & Prata, 2016). 61 
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For these reasons, it seems appropriate to use advanced classification schemes to address the task of ash detection, such as 62 

approaches which make use of machine learning techniques, avoiding the need to find for each product the best BTD threshold 63 

for creating the volcanic cloud mask manually, which can be a time-consuming process. 64 

For aerosol and meteorological cloud detection, a neural network (NN) (Atkinson & Tatnall, 1997; Bishop, 1994; Di Noia & 65 

Hasekamp, 2018) based algorithm allows the solution of a classification problem. Starting from inputs containing spectral 66 

radiance values acquired in a specific wavelength band, the model generates a prediction in output by assigning to each pixel 67 

of the original image a predefined class. In previous research, neural networks have already shown significant effectiveness in 68 

terms of atmospheric parameter extraction (Gardner & Dorling, 1998) and specifically for volcanic eruption scenarios (Gray 69 

& Bennartz, 2015; Picchiani et al., 2011, 2014; Piscini et al., 2014). A strong advantage of using a NN based approach for 70 

volcanic cloud detection is that once the model is trained on a statistically representative selection of test cases, new imagery 71 

acquired over new eruptions can be accurately (depending on the training phase) classified in near real time allowing significant 72 

advantages in critical situations and in emergency management. 73 

In this work, we developed a NN based algorithm for volcanic cloud detection using Sentinel-3 SLSTR (Sea and Land Surface 74 

Temperature Radiometer) daytime data with a model trained on MODIS (MODerate resolution Imaging Spectroradiometer) 75 

daytime images. This is possible since the two sensors have similar spectral bands and it represents an advantage as there is 76 

currently limited use of SLSTR products for eruptive events. The use of MODIS as a proxy for SLSTR was already successfully 77 

tested in a previous work investigating  the complex challenge of distinguishing ice and meteorological clouds (also containing 78 

ice) using neural networks on SLSTR data (Picchiani et al., 2018). As a test case, the Raikoke 2019 eruption has been 79 

considered in this work. 80 

2 Case study: the Raikoke 2019 eruption 81 

The Raikoke volcano is located in the Kuril Island chain, near the Kamchatka Peninsula in Russia (48.3° N, 153.2° E). On 82 

June 21, 2019 at about 18:00 UTC Raikoke started erupting and continued erupting until about 03:00 UTC on 22 June 2019). 83 

During this period, Raikoke released large amount of ash and SO2 into the stratosphere.  84 

Figure 1 shows a time-series of 11 µm brightness temperatures (BTs) determined from the Himawari-8 AHI (Advanced 85 

Himawari Imager) sensor at 10-minute intervals for the first 18 hrs of the eruption. With the purpose of searching for high 86 

(cold) vertically ascending clouds due to an eruption, and not of meteorological origin, discrete eruptions were identified by 87 

comparing AHI BTs near the vent with those some distance upwind from the vent.  The Himawari-8 time-series shows a 88 

sequence of eruptions (12 in all) and a sustained period of activity between 22:40 of 21 June and 02:10 of 22 June, when the 89 

majority of ash and gas was emitted. The estimated time of an eruption event was determined by examining animated images 90 

and consequently the times of eruptions shown do not always coincide with the coldest cloud-top.  It is estimated from the 91 

AHI data that June 2019 Raikoke eruption produced approximately 0.4–1.8 Tg of ash (Bruckert et al., 2022; Muser et al., 92 

2020; A. T. Prata et al., 2022) and 1–2 Tg of SO2 (Bruckert et al., 2022; Gorkavyi et al., 2021). The amount of water vapour 93 
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emitted is unknown, but would have been considerable, as common in most volcanic eruptions (Glaze et al., 1997; McKee et 94 

al., 2021; Millán et al., 2022; Murcray et al., 1981; Xu et al., 2022). These emissions would have led to copious amounts of 95 

water and ice clouds being produced (McKee et al., 2021; Rose et al., 1995), making the composition of the transported clouds 96 

both complex and changing with time. 97 

 98 

 99 

Figure 1: Time-series of eruptions from Raikoke during the first 18 hrs of activity. The times of eruptions were estimated from the imagery 100 
and do not always coincide with the coldest cloud tops. (Black line is the average within a box bounded by the latitude/longitude coordinates: 101 
153.25-153.35°E, 48.32-48.42°N.  The red line (upwind) is the average within a box bounded by: 153.10-153.20°E, 48.32-48.42°. 102 

 103 

3 Instruments 104 

In this section the specifications of the instruments which provide the products used to conduct the research are described. The 105 

MODIS sensor on board Terra and Aqua satellites has been used to set up the training dataset of a NN based model. The 106 

SLSTR sensor on board Sentinel-3A and Sentinel-3B satellites has been used for the application of the aforementioned model. 107 

3.1 MODIS instrument 108 

MODIS aboard NASA Terra and Aqua polar orbit satellites is a multispectral instrument, with 36 channels from VIS to TIR 109 

ranging from 0.4 to 14.4 µm, and spatial resolutions of 0.25 km for bands 1-2, 0.5 km for bands 3-7 and 1 km for bands 8-36. 110 
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The two spacecrafts fly at 705 km of altitude in a sun-synchronous orbit, with a revisit cycle of about one or two days. Terra 111 

spacecraft was launched in 1999 and its equatorial crossing time is 10:30 am (descending node), while Aqua was launched in 112 

2002 and its equatorial crossing time is 1:30 pm (ascending node). 113 

In our work we used several Terra-Aqua/MODIS products: Level-1A Geolocation Fields (MOD/MYD03) (see (Nishihama et 114 

al., 1997) for details), Level-1B Calibrated Radiances (MOD/MYD021KM) (see (Toller et al., 2017) for details), which has 115 

been used to generate the Brightness Temperatures (BTs), Level-2 Surface Reflectance (MOD/MYD09) (see (Vermote & 116 

Vermeulen, 1999) for details), Level-2 Cloud Product (MOD/MYD06_L2) (see (Menzel et al., 2015) for details). 117 

3.2 SLSTR instrument 118 

The Sea and Land Surface Temperature Radiometer (SLSTR) is one of the instruments on board the Sentinel-3A (S3A) and 119 

Sentinel-3B (S3B) polar satellites launched in 2016 and 2018, respectively.  120 

Sentinel-3 is designed for a sun-synchronous orbit at 814.5 km of altitude with a local equatorial crossing time of 10:00 am. 121 

The revisit time is 0.9 days at equator for two operational spacecrafts configuration. The orbits of the two satellites are equal 122 

but S3B flies +/- 140° out of phase with S3A. The basic SLSTR technique is inherited from the technique used by the series 123 

of conical scanning radiometers starting with the ATSR. The instrument includes the set of channels used by ATSR-2 and 124 

AATSR (0.555 – 0.865 µm for VIS channels, 1.61 µm for SWIR channel, 3.74 – 12 µm for MWIR/TIR channels), ensuring 125 

continuity of data, together with two new channels at wavelengths of 1.375 and 2.25 µm in support of cloud clearing for surface 126 

temperature retrieval. The SLSTR radiometer measures a nadir and an along track scan, each of which also intersects the 127 

calibration black bodies and the visible calibration unit once per cycle (two successive scans). Each scan measures two along 128 

track pixels of 1 km (four or eight pixels at 0.5 km resolution for visible/NIR channels and SWIR channels, respectively) 129 

simultaneously. This configuration increases the swath width in both views, as well as providing 0.5 km resolution in the solar 130 

channels. 131 

Our procedure makes use of the SLSTR Level-1 TOA (Top Of Atmosphere) Radiances and Brightness Temperature product 132 

from both platform S3A and S3B, see (Cox et al., 2021) for details of SLSTR Level-1 product.  133 

 134 

4 Methodology 135 

In this section the adopted methodology is described. The procedure has been developed in MatLab environment and the 136 

source codes are available upon request, as explained in Code Availability section. In particular, the MatLab Deep Learning 137 

Toolbox has been used to implement the NN. 138 

A multilayer perceptron neural network (MLP NN) was trained with MODIS daytime data and then it was applied to Sentinel-139 

3/SLSTR daytime products, in order to discriminate ashy pixels from others, following the scheme reported in Figure 2. 140 

The MLP NN model (Atkinson & Tatnall, 1997; Gardner & Dorling, 1998) consists in a multi-layer architecture with three 141 

types of layers. The first type of layer is the input layer, where the nodes represents the elements of a feature vector. The second 142 
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type of layer is the hidden layer, and consists of only processing units. The third type of layer is the output layer and it represents 143 

the output data, which are the classes to be distinguished and are set to one (that of the chosen class) or zero (all other nodes) 144 

in image classification problems. All nodes (i.e. neurons) are interconnected and a weight is associated to each connection. 145 

Each node in each layer passes the signal to the nodes in the next layer in a feed-forward way, and in this passage the signal is 146 

modified by the weight. The receiving node sums the signals from all the nodes in the previous layer and elaborates them 147 

through an activation function before passing them to the next layer. 148 

The output of the proposed model is the SLSTR image fully classified in eight different species: ash over sea, ash over cloud, 149 

ash over land, sea, land and ice surfaces, liquid water clouds and ice clouds. This approach has been used because of the readily 150 

available time series of MODIS data, the quality of MODIS products (Picchiani et al., 2011, 2014; Piscini et al., 2014) and the 151 

spatial/spectral similarities between MODIS and SLSTR. The SLSTR and MODIS channels which are used in our research 152 

are shown in Table 1, along with the spectral characteristics of the two sensors. 153 

The first step of our procedure consists in generating the training patterns, that is the “ground truth” to be passed to the NN 154 

model during the training phase. This step represents a crucial aspect in building a NN model since the more the training 155 

dataset is accurate and representative of the problem we want to address the more the NN would be efficient in solving that 156 

problem. For this scope, MODIS products have been used as inputs to a semi-automatic procedure for identifying the different 157 

classes to be discriminated by the NN model in the output image. Some of these classes don’t exist as MODIS standard 158 

products, for example the ash classes and the ice surface class; for this reason we derived them by means of different operations 159 

in our semi-automatic procedure developed in MatLab. Other classes are instead already present as MODIS standard product, 160 

for example the land/sea mask.  161 

 162 

Table 1: Correspondence between MODIS and SLSTR channels. 163 

SLSTR Channel λ Centre (μm) Bandwidth (nm) MODIS Channel λ Centre (μm) Bandwidth (μm) 

S1 0.554 19.26 4 0.555 0.545-0.565 

S2 0.659 19.25 1 0.659 0.620-0.670 

S3 0.868 20.60 2 0.865 0.841-0.876 

S4 1.375 20.80 26 1.375 1.360-1.390 

S5 1.61 60.68 6 1.64 1.628-1.652 

S6 2.25 50.15 7 2.13 2.105-2.155 

S7 3.74 398.00 20 3.75 3.660-3.840 

S8 10.85 776.00 31 11.03 10.780-11.280 

S9 12.02 905.00 32 12.02 11.770-12.270 

 164 
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 165 

 166 

Figure 2: Overall diagram of the procedure followed for the classification process with NN model. 167 

The training set from which we extracted the training patterns (i.e. identifying classification classes) consists of nine MODIS 168 

granules acquired over the Eyjafjallajokull volcano area during the 2010 eruption (from May 6th to May 13th), for a total of 169 

about 5400 patterns for each class available for the training of the model. The single training pattern (i.e.: training example) 170 

corresponds to a single pixel of a specific target class as identified in MODIS images through the semi-automatic procedure 171 

aforementioned, this means that one class is represented by several patterns. In particular, not all the pixels of the considered 172 

MODIS images are contained in the training dataset (i.e.: the ensemble of the training patterns), but only a part of them are 173 

randomly included. The total number of patterns we collected has been divided into three subsets: 75% training set, 20% 174 

validation set, 5% test set. A NN with two hidden layers of was trained and then it was applied to Sentinel-3 SLSTR RBT 175 

(Radiance and Brightness Temperature) Level 1 images collected during the Raikoke 2019 eruption. Table 2 shows the details 176 

of MODIS and SLSTR data used for this work.  177 

 178 

Table 2: Training set (MODIS) from the Eyjafjallajökull 2010 eruption; Sentinel-3 Raikoke 2019 classified products. 179 

Date Time UTC Platform Training/Application 

6 May 2010  (JD 126) 11:55 Terra Training 

9 May 2010  (JD 129) 12:25 Terra Training 

11 May 2010 (JD 131) 12:10 Terra Training 

11 May 2010 (JD 131) 12:15 Terra Training 

11 May 2010 (JD 131) 13:50 Terra Training 

11 May 2010 (JD 131) 14:05 Aqua Training 

12 May 2010 (JD 132) 12:55 Terra Training 
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13 May 2010 (JD 133) 12:00 Terra Training 

13 May 2010 (JD 133) 13:40 Terra Training 

22 June 2019 (JD 173) 00:07 Sentinel-3A Application 

22 June 2019 (JD 173) 23:01 Sentinel-3B Application 

 180 

In order to build the NN training patterns a semi-automatic procedure, that exploits MODIS radiances and standard products, 181 

has been developed. The MODIS products considered for the extraction of the training patterns are the following:  182 

● MOD/MYD021KM, Level 1B Calibrated Radiances – 1 km, which gives the radiance values for each MODIS band; 183 

● MOD/MYD03, Geolocation – 1 km, used for creating the Land/Sea Mask;  184 

● MOD/MYD06_L2, Cloud Product, containing cloud parameters, used for creating the Cloud Mask;  185 

● MOD/MYD09, Surface Reflectance Product, containing an estimate of the surface spectral reflectance measured at 186 

ground level; it is used for generating the Ice Mask; 187 

where “MOD” and “MYD” stands for MODIS-Terra and MODIS-Aqua products respectively.  188 

The semi-automatic procedure for the extraction of training patterns starting from MODIS data basically consists in using 189 

MODIS products to create binary “masks” identifying the different species, and then replaces them by “classes”. For each 190 

element of the class the radiance values (W/(m2 sr µm)) are extracted from the MODIS product MOD/MYD021KM. In this 191 

way each object is radiometrically characterized. The identification of the ashy pixel is pursued by creating a mask according 192 

to specific BTD thresholds (from 0.0 to -0.4 °C) for each MODIS image. For this purpose, the MOD/MYD021KM product 193 

has been used to derive the brightness temperatures required to compute the BTD. The MODIS products used for training the 194 

model were acquired in near-nadir view only. 195 

The other species are identified using both MODIS Level 1 radiances and MODIS standard products. Once each object/surface 196 

has been defined, they are associated with the corresponding class. Then a set of input-output samples for the training phase is 197 

generated, where the input consists of the set of radiances measured for the given pixel and the output is a binary vector with 198 

value 1 associated with the corresponding class and value 0 for the other classes. 199 

Table 3 shows the classification map legend for each classified product presented in this work, in which eight classes are 200 

discriminated, each one representing a surface/object.  201 

 202 

Table 3: Classification map legend. 203 

Class ID Surface/Object Name Colour 

1 Ash over sea Ash_sea  

2 Ash over clouds Ash_cloud  

3 Sea surface Sea  

4 Liquid water clouds Cloud  
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5 Snow/Ice surface Ice  

6 Ash over land Ash_land  

7 Land surface Land  

8 Ice clouds Cloud_ice  

- Masked out pixels Not classified  

 204 

 205 

Figure 3: NN topology for ash detection. 206 

The NN final model consists of nine inputs, which are the radiances in the SLSTR selected channels, while the output space 207 

is composed of eight classes, which are the objects/surfaces which the net has to classify. After doing several tests the optimum 208 

topology of the NN turns out to be the combination of two hidden layers with 20 and 15 neurons, respectively. For each neuron 209 

we set the hyperbolic tangent activation function (Vogl et al., 1988). The final neural network architecture used for ash 210 

detection in this work is shown in Figure 3. The proposed algorithm includes a post processing operation in order to avoid 211 

false positive results for land and sea classes. This a-posteriori filter is applied both to the resulting NN land and sea classes. 212 

It allows masking out the pixels which the NN classifies as land/sea which do not belong to the Sentinel-3/SLSTR land/sea 213 

mask standard product, which is always available and thus it can be used to increase the precision of the algorithm. The filtered 214 

out pixels have been inserted in a class named “not classified”, as reported in Table 3. 215 
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For classification problems approached with machine learning algorithms, one of the most used accuracy metrics for the 216 

performance evaluation is the confusion matrix (Fawcett, 2006), where each predicted output class is compared to the 217 

corresponding ground truth considered in the validation dataset. An overall accuracy of 90.9% was obtained at the end of the 218 

NN training phase for the proposed neural network model (see Figure 4).  219 

 220 

 221 

Figure 4: Confusion matrix on validation set. 222 

The target class represents the “ground truth” of each class, while the output class refers to the prediction of the NN. The 223 

diagonal shows that most of the total of the pixels have been correctly classified (green boxes). The number of pixels incorrectly 224 

classified are placed out of the diagonal. False positives (false detection) and false negatives (missed detection) are reported 225 

in the last grey column and row, respectively. 226 

The code of the procedure ran with a CPU i7-9850H (6 core, processor base frequency at 2.60 GHz): it takes less than 30 227 

minutes to train the adopted model and few seconds to apply it. 228 

5 Results and Discussion      229 

The neural network algorithm previously described was applied to Sentinel-3/SLSTR daytime images acquired on Raikoke 230 

during the 2019 eruption. The Sentinel-3A/SLSTR and Sentinel-3B/SLSTR products collected on 22 June 2019 at 00:07 and 231 

23:01 UTC have been considered (see Table 2). 232 
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 233 

Figure 5: Sentinel-3A/SLSTR image collected on Raikoke for 22 Jun 2019 at 00:07 UTC, nadir view. (a) RGB; (b): BTD; (c): NN 234 
classification. 235 

Figure 5(a) shows the RGB colour composite of the S3A/SLSTR image acquired on Raikoke for 22 June 2019 at 00:07 UTC. 236 

The RGB composite has been carried out by considering the SLSTR visible (VIS) channels S3 (868 nm), S2 (659 nm) and S1 237 

(554 nm) for R, G and B, respectively. In Figure 5(b) the BTD map is displayed, where red and blue pixels represent negative 238 

and positive BTD, respectively. The BTD is computed by making the difference between the brightness temperature of the 239 
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SLSTR thermal infrared channels S8 and S9 centred at 10.8 and 12 μm. The output of the NN classification is shown in Figure 240 

5(c) with the corresponding colour legend, where each colour represents the classified surface/object. 241 

 242 

Figure 6: Sentinel-3B/SLSTR image collected on Raikoke for 22 June 2019 at 23:01 UTC, nadir view. (a): RGB; (b): BTD; (c): NN 243 
classification. 244 

As Figure 5(a) shows, the RGB composite shows the presence of a wide distribution of meteorological clouds and a significant 245 

signal derived from the volcanic cloud (brown pixels). The BTD (Figure 5(b)), obtained with a threshold of 0 °C, shows the 246 

presence of the volcanic cloud together with a significant number of false negatives (volcanic cloud pixels not identified near 247 
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the vents) and false positives (pixels identified as volcanic cloud while actually they are not, see light red pixels below the 248 

volcanic cloud and along the right edge of the scene). 249 

Despite the challenging scenario, the NN algorithm shows its ability to detect the volcanic cloud and to classify the whole 250 

image, by detecting with good accuracy meteorological clouds composed of water droplets (yellow) and ice (grey), sea (blue) 251 

and land (green) surfaces, and volcanic ash clouds, as reported in Figure 5(c). Looking at the cloud masks generated with the 252 

NN algorithm (yellow and grey) and by comparing them with the RGB natural colour composite of the SLSTR product, a high 253 

degree of agreement in terms of spatial features can been observed. From the comparison between NN output classes and RGB 254 

composite we can observe that also land (green) and sea (blue) pixels are properly detected in the areas where they actually 255 

lie. 256 

From a qualitative comparison between the NN plume mask and the RGB composite, we can state that the NN correctly 257 

identifies the volcanic cloud class in the area where it seems actually present, even if some pixels are misclassified as ash over 258 

land (magenta pixels), instead of ash above meteorological cloud. As Figure 5 shows, the NN algorithm is able to detect a 259 

wide volcanic cloud area and more ash, especially in the opaque regions, compared to the BTD approach. In particular the 260 

difference found near the vents can be due to the complete opacity of the cloud. Here the ash cloud optical thickness is so high 261 

that there is no spectral difference and the BTD approach has no sensitivity. 262 

Following the same visualization scheme of Figure 5, the results derived from the application of the trained NN model to the 263 

S3B/SLSTR image acquired on 22 June 2019 at 23:01 UTC are reported in Figure 6. In this second image, all the ashy pixels 264 

are classified by the NN model as ash above meteorological clouds (cyan pixels). This seems reasonable being the scenario 265 

mostly dominated by meteorological clouds, as we can also observe looking at the NN classification, which assigns the 266 

majority of the pixels to the liquid water cloud class (yellow) and to the ice cloud class (grey). The NN classification shows 267 

also the presence of sea pixels (blue), which are located in the same area identifiable using the RGB composite. In this case, 268 

from the RGB composite (Figure 6(a)), unlike what is seen in the 00:07 UTC image, it is not straightforward to identify the 269 

volcanic plume by visual inspection. Indeed, this image was collected about 24 hours later than the previous one and thus the 270 

plume has been transported through the atmosphere and dispersed. A qualitative comparison between the NN classification 271 

(Figure 6(c)) and the BTD map (Figure 6(b)) shows considerable differences between the two methods. The BTD, obtained 272 

with a threshold of 0 °C, identifies a wider area (red pixels) affected by the volcanic cloud with respect to the NN ash mask 273 

(cyan pixels). We can notice that the BTD map includes some aircraft condensation trails (recognizable by the shape in the 274 

RGB composite) in the ash mask, which can be identified as false ash detections. The reasons for these misclassifications are 275 

not fully understood, but may be due to multilayer cloud effects, pixel heterogeneity or viewing angle. 276 

Our results suggest that the NN technique is robust and has shown that it is possible to transfer the NN model from one single 277 

eruption event to others occurring at similar latitudes. However, the complexity of the application suggests that the 278 

generalization of the methodology to all types of eruptions is not straightforward. For example, the change of latitude has an 279 

impact on the characteristics of the atmosphere. At the same time different volcanoes emit different types of ash affecting the 280 
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variability of the radiance values detected by the sensors. A possible solution to give to the proposed technique a broader 281 

applicability could be training different NN models for specific latitude belts which can be defined to cover the whole globe. 282 

Overall, we can summarize the main uncertainties and the limitations of the presented model in the following points: 283 

1. model transferability is significantly related to the spatial-temporal data availability for the generation of a training 284 

dataset which is statistically representative of all the possible scenarios; 285 

2. lack of standard ground truth data for training and validation phases requires the BTD threshold selection by an 286 

operator which prevents the method from being fully objective. 287 

5.1 Vicarious validation 288 

The capability of the NN to correctly detect pixels containing ash was validated by making a pixel per pixel comparison with 289 

a reference plume mask generated manually (hereafter MPM) in order to obtain the best accurate ground truth as possible in 290 

each SLSTR product. The choice of taking the MPM as reference derives from the lack of ash standard products. 291 

For the image collected at 00:07 UTC the MPM creation was performed by selecting a region around the volcanic cloud 292 

(clearly recognizable as it is at the beginning of the eruption) and then considering only the pixels with 11 µm brightness 293 

temperature < 270 K (see Figure 1). In this case the BTD alone it is not very useful as the high value of the ash optical thickness 294 

of the cloud (especially close to the vent) produces many pixels with BTD values near zero, not distinguishable from adjacent 295 

pixels characterized by meteorological clouds. For the image collected at 23:01 UTC, the identification of the volcanic cloud 296 

is much more difficult due to its larger spread and dilution; in this case the MPM was obtained considering the pixels with 297 

BTD < -0.25 °C, even if probably this choice implies that some ashy pixels were discarded. On the other hand, using an higher 298 

BTD threshold will produce a lot of false positive pixels. In general, the creation of an accurate manual plume mask is time 299 

consuming and case-sensitive and often requires the presence of an operator; so the generation of a volcanic cloud mask with 300 

a fast, automatic and case-independent procedure would be a rather significant improvement.  301 

Because the MPM doesn’t distinguish between the different surfaces under the ash cloud, the validation is performed by 302 

considering the total of the ashy pixels detected from the NN (i.e. the sum between ash_land, ash_sea and ash_cloud).  303 

Figure 7 shows the MPM, created as described above, and the comparison between NN plume mask (hereafter NNPM) and 304 

MPM for the S3A/SLSTR image collected on Raikoke for 22 June 2019 at 00:07 UTC (Figure 7(a) and Figure 7(b)) and 305 

S3B/SLSTR image collected on Raikoke for 22 June 2019 at 23:01 UTC (Figure 7(c) and Figure 7(d)). 306 

 307 

Table 4: NN and BTD volcanic cloud detection accuracies using classification metrics derived from the comparison between the plume 308 
mask obtained from the two approaches and the manual plume mask (MPM) for each SLSTR considered product, respectively. 309 

Classified Product Plume mask source Precision   Recall F-measure Accuracy 

S3A/SLSTR at 00:07 UTC NN classification 0.709 0.683 0.696 0.993 

S3A/SLSTR at 00:07 UTC  BTD < 0 °C 0.164 0.647 0.261 0.955 

S3B/SLSTR at 23:01 UTC NN classification 0.773 0.657 0.710 0.935 
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S3B/SLSTR at 23:01 UTC BTD < 0 °C 0.417 0.998 0.588 0.829 

 310 

 311 

Figure 7: Sentinel-3A/SLSTR image collected on Raikoke for 22 June 2019 at 00:07, nadir view (a),(b); Sentinel-3B/SLSTR image collected 312 
on Raikoke for 22 June 2019 at 23:01, nadir view (c),(d). (a),(c): red pixels display the manual plume mask (MPM) obtained from the 313 
analysis on the specific image; (b),(d): comparison between volcanic ash detected by NN and MPM; green pixels indicate the areas for which 314 
both NN and MPM detect ashy pixels, red pixels indicate the areas for which only MPM detects ashy pixels, blue pixels indicate the areas 315 
for which only NN detects ashy pixels. 316 

 317 

 318 

 319 
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 320 

Figure 8: Sentinel-3A/SLSTR image collected on Raikoke for 22 June 2019 at 00:07, nadir view (a),(b); Sentinel-3B/SLSTR image collected 321 
on Raikoke for 22 June 2019 at 23:01, nadir view (c),(d). (a),(c): RGB view; (b),(d): comparison between cloud mask retrieved by NN and 322 
standard Sentinel-3 confidence in summary cloud mask (CSCM); green pixels indicate the areas for which both NN and CSCM detect cloudy 323 
pixels, red pixels indicate the areas for which only CSCM detects cloudy pixels, blue pixels indicate the areas for which only NN detects 324 
cloudy pixels, white pixels indicate the areas for which both NN and CSCM don’t detect cloudy pixels. 325 

 326 

In relation to the images which display the comparison between NN output and MPM (Figure 7(b) and Figure 7(d)), green 327 

areas indicate the pixels for which both the MPM and NN ash masks detect the presence of volcanic cloud, red pixels represent 328 

the areas classified as ash only by the MPM; blue pixels are classified as ash only according to the NN model. We can observe 329 
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that most of the volcanic cloud is displayed in green for both products (00:07 UTC and 23:01 UTC), indicating good agreement 330 

between the two approaches. This is also confirmed by the scores in Table 4, which allow quantitative conclusions on the 331 

accuracy of the proposed NN model approach compared to the MPM considered as ground truth. The classification metrics 332 

considered are precision, recall, F-measure and accuracy (Fawcett, 2006) which range from 0 to 1 (perfect classifier). 333 

The score differences for the two classified products are mainly related to the significant higher number of correctly classified 334 

ashy pixels contained in the 23:01 UTC (136435 pixels) with respect to 00:07 UTC (13545 pixels), if compared to the total 335 

number of classified pixels in the images which is similar (1614405 pixels for the S3A/SLSTR at 00:07 UTC image and 336 

1701319 for the S3B/SLSTR at 23:01 UTC image respectively). However, the metrics are aligned for both classified data with 337 

encouraging values for each index suggesting the reasonability of the results. In particular, the F-measure results of around 0.7 338 

for both classifications. Moreover, using MPM as a benchmark, the comparison of the metrics obtained with the BTD < 0°C 339 

approach with those derived with the NN model indicates that the neural network performs a more accurate volcanic cloud 340 

detection for both considered test cases. 341 

Besides the NN plume mask validation, we also compared the pixels which the NN model classified as affected by 342 

meteorological clouds (hereafter NNCM) with the SLSTR standard product for meteorological clouds.  343 

Among the cloud masks available in the SLSTR L1RBT product, the confidence_in_summary_cloud mask (hereafter CSCM) 344 

is considered. The CSCM is a cloud mask which discriminates cloud pixels (true) and cloud-free pixels (false); it is an ultimate 345 

cloud mask product derived from several separated cloud tests (Polehampton et al., 2021). As the CSCM doesn’t distinguish 346 

between meteorological liquid water clouds and meteorological ice clouds as the NN algorithm does, the comparison is realized 347 

by considering the whole NN meteorological cloud classes (i.e. the sum between Cloud and Cloud_ice). 348 

Figure 8 displays the RGB composite, in which the Sentinel-3 sun glint mask is highlighted (right part of the scene), and the 349 

comparison between NN cloud mask and S3 cloud mask for S3A/SLSTR image collected on Raikoke for 22 June 2019 at 350 

00:07 UTC (Figure 8(a) and Figure 8(b)) and for S3B/SLSTR image collected on Raikoke for 22 June 2019 at 23:01 UTC 351 

(Figure 8(c) and Figure 8(d)). 352 

Also in this case, for the images displaying the comparison between the two types of cloud masks (Figure 8(b) and Figure 353 

8(d)), green indicates the pixels classified as meteorological cloud for both procedures, while red and blue indicate the pixels 354 

classified as meteorological cloud only from the SLSTR standard product and NN, respectively. Pixels that are not coloured 355 

are associated to a cloud-free condition for both the NN and the S3 cloud mask. Looking at the comparison, a very good 356 

agreement between the NN meteorological cloud mask and the SLSTR standard cloud mask can be observed. The metrics in 357 

Table 5 show very good performances, reaching an F-measure around 0.9. Moreover, looking at the red pixels in the 23:01 358 

UTC image especially, it can be noted that the SLSTR cloud mask also includes the volcanic cloud. 359 

 360 

Table 5: NN meteorological cloud detection accuracy using classification metrics derived from the comparison between the NN cloud mask 361 
(NNCM) and the confidence in summary cloud mask (CSCM) for each SLSTR considered product which has been assumed as ground truth. 362 

Classified Product Precision  Recall F-measure Accuracy 
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S3A/SLSTR at 00:07 UTC 0.891 0.936 0.913 0.842 

S3B/SLSTR at 23:01 UTC 0.952 0.820 0.881 0.795 

 363 

From the validation procedure we have carried out, a considerable point which has to be underlined is that, unlike adopting a 364 

time consuming and case-specific approach as MPM which also needs a manual operation by setting various thresholds for 365 

each case under examination, the NN model can be used to discriminate ash plume in satellite images with good accuracy in 366 

a fast and automatic way, which saves a significant amount of time by eliminating the need for manual intervention. 367 

 368 

6 Conclusions 369 

In this work the results of a new neural network based approach for volcanic cloud detection are described. The algorithm, 370 

developed to process Sentinel-3/SLSTR daytime images, exploits the use of MODIS daytime data as training. The procedure 371 

allows the full characterization of the SLSTR image by identifying, besides the volcanic cloud, surfaces under the cloud itself, 372 

meteorological clouds (and phases), land, and sea surfaces. As test cases, the S3A-S3B/SLSTR images collected over the 373 

Raikoke volcano area during the June 2019 eruption have been considered. 374 

The proposed neural network based approach for volcanic ash detection and image classification shows an overall good      375 

accuracy for the ash class, which is the main target of the algorithm, and for the meteorological cloud class as well. A strong 376 

effectiveness of the NN classification is indeed also related to the cloudy pixel recognition, with the ability to distinguish two 377 

different types of meteorological clouds composed of water droplets and ice respectively. It has to be reminded that the wide 378 

distribution of meteorological clouds in the scenario under consideration makes the ash detection task particularly complex. 379 

A point to be underlined is the valuable advantage of the procedure related to the creation of products (the eight classes) not 380 

all currently available as SLSTR standard products; this fact represents a considerable step forward for generation of novel 381 

types of S3/SLSTR products. 382 

A post processing has been applied to NN outputs by exploiting the land/sea mask available in the SLSTR standard products, 383 

in order to mitigate the insurgence of NN land/sea failure. 384 

The comparison between the NN plume mask and a reference plume mask (MPM) taken as ground truth, shows a good 385 

agreement between the two techniques. The significant result lies in the fact that the overall good performance of the NN 386 

output is achieved in an automatic way and with a brief processing time, compared to the plume mask specifically generated, 387 

which instead requires a longer time, is case-specific and needs the presence of an operator. The other considerable 388 

achievement of the NN developed procedure is that, once the NN model has been properly trained, it has been used to detect 389 

the ash plume for each SLSTR image related to the Raikoke eruption, while the creation of the MPM has to be made separately 390 

for each image. 391 

The comparison between the NN cloud mask and the cloud mask derived from SLSTR standard products has also been carried 392 

out, resulting in a high percentage of agreement between the two products. 393 
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 394 

Figure 9: Sentinel-3A/SLSTR image collected on Raikoke for 22 Jun 2019 at 00:07 UTC, oblique view ((a) and (b)); Sentinel-3B/SLSTR 395 
image collected on Raikoke for 22 June 2019 at 23:01 UTC, oblique view ((c) and (d)). (a) and (c): RGB; (b) and (d): NN classification. 396 

A promising outcome is related to the ability of the NN model to generalize over different data in terms of spatio-temporal and 397 

geographical characteristics, being the NN model trained with data collected over the Iceland region in 2010 and then applied 398 

to data acquired over the Kamchatka Peninsula in Russia in 2019. Something under consideration for future improvements is 399 
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to enhance the ability of the NN to generalize over various eruptive scenarios, by integrating different training dataset (in terms 400 

of regions, type of eruption, time interval, etc). In fact, the current methodology has been applied just to a few test cases and 401 

more validation is required in order to give the technique broader applicability.  For example, the effects of varying moisture 402 

and atmospheric conditions has not been fully explored. On the other hand, the generation of an appropriate number of 403 

examples, which must be statistically representative of all the possible scenarios, to be included in the training dataset may 404 

represent a very difficult task. A possible approach could be the design of different neural networks, each associated with a 405 

specific scenario. 406 

We also aim at further investigate some aspects in order to improve the classification accuracy, as the introduction of other 407 

output classes, such as volcanic ice cloud, and the integration of other variables in the model, such as the sensor view angle. 408 

Moreover, a fully comprehensive study about the sensitivity of the NN detection on the observation angle could be another 409 

possible future development of the study. Here we addressed briefly this point applying the trained network to SLSTR oblique 410 

view products, characterized by a zenith view angle of about 55° (Polehampton et al., 2021).  shows the RGB composite and 411 

the NN classification for the SLSTR oblique view product collected on 22 June 2019 at 00:07 UTC ((a) and (b)) and 23:01 412 

UTC ((c) and (d)) respectively. It is interesting, as a preliminary result, to show how, especially for the 23:01 UTC image 413 

where the opacity of the volcanic cloud is slighter, the main features of the classification map obtained using a NN model 414 

trained only on near nadir view acquired products and used for classifying oblique view data are mostly conserved. However, 415 

the complexity brought in by the difference in the slant optical depth, which may translate to a noticeable difference in top-of-416 

atmosphere signal levels, needs to be investigated in a full dedicated study. 417 

Finally, the possibility to use S3/SLSTR products to train a neural network able to detect volcanic clouds in Sentinel-3/SLSTR 418 

granules might improve the overall accuracy of the classification.  419 

 420 

Code availability 421 
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