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Abstract 12 

The accurate automatic volcanic cloud detection by means of satellite data is a challenging task and of great concern for both 13 

scientific community and stakeholder due to the well-known issues generated by a strong eruption event in relation to aviation 14 

safety and health impact. In this context, machine learning techniques applied to recent spaceborne sensors acquired data have 15 

shown promising results in the last years.  16 

This work focuses on the application of a neural network based model to Sentinel-3 SLSTR (Sea and Land Surface 17 

Temperature Radiometer) daytime products in order to detect volcanic ash plumes generated by the 2019 Raikoke eruption. 18 

The classification of the clouds and of the other surfaces composing the scene is also carried out. The neural network has been 19 

trained with MODIS (MODerate resolution Imaging Spectroradiometer) daytime imagery collected during the 2010 20 

Eyjafjallajökull eruption. The similar acquisition channels of SLSTR and MODIS sensors and the events comparable latitudes 21 

foster the robustness of the approach, which allows overcoming the lack in SLSTR products collected in previous mid-high 22 

latitude eruptions. The results show that the neural network model is able to detect volcanic ash with good accuracy if compared 23 

with RGB visual inspection and BTD (Brightness Temperature Difference) procedure. Moreover, the comparison between the 24 

ash cloud obtained by neural network and a plume mask manually generated for the specific SLSTR considered images, shows 25 

significant agreement. Thus, the proposed approach allows an automatic image classification during eruption events, which it 26 

is also considerably faster than time-consuming manually algorithms (e.g. find the best BTD product-specific threshold). 27 

Furthermore, the whole image classification indicates an overall reliability of the algorithm, in particular for meteo-clouds 28 

recognition and discrimination from volcanic clouds.  29 

Finally, the results show that the NN developed for the SLSTR nadir view is able to properly classify also the SLSTR oblique 30 

view images. 31 
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1 Introduction 32 

In general, from the start of the eruption, the volcanic emission is composed by both coarse and fine particles. The coarser fall 33 

down to the volcanic edifice, while the finer are transported by the wind. The solid part of the volcanic plume is basically 34 

composed by ash particles while the gaseous part is made mainly of water vapour (H2O), carbon dioxide (CO2) and sulphur 35 

dioxide (SO2) gases (Oppenheimer et al., 2011; Shinohara et al., 2008). Depending on the eruptive intensity, the volcanic cloud 36 

can reach different altitudes in the atmosphere thus affecting environment (Delmelle et al.,2002; Craig et al., 2016) , climate 37 

(Haywood et al., 2000; Solomon et al., 2011; Bourassa et al., 2012), human health (Delmelle et al.,2002; Mather et al., 2003; 38 

Horwell et al., 2006; 2013) and aircraft safety (Casadevall et al., 1994; Zenher 2010). 39 

The detection procedure consists in identifying the presence of certain species in the atmosphere and discriminating them 40 

against other species. Thus, volcanic ash detection is related to the discrimination of the areas (pixels in an image), which are 41 

affected by the presence of these particles. First evidences about the possibility to detect the volcanic cloud by means of remote 42 

sensing data arise in the eighties (Prata, 1989a,b). The method used for the detection problem of volcanic ash particles lies in 43 

the ability to discriminate between volcanic clouds and meteorological ice and water vapour clouds by exploiting the different 44 

spectral absorption in the Thermal InfraRed (TIR) spectral range. In this interval the absorption of ash particles with radius 45 

between 0.5 µm and 15 µm at wavelength of 11 µm is larger than the absorption of ash particles at 12 µm. The opposite 46 

happens for weather clouds, which absorb more significantly at longer TIR wavelengths. Therefore, the Brightness 47 

Temperature Difference (BTD), i.e. the difference between the Brightness Temperatures (BTs) at 11 and 12 microns, turns out 48 

to be negative (ΔT11µm-12µm < 0 °C) for region affected by volcanic clouds and positive (ΔT11µm-12µm > 0 °C) for region 49 

affected by meteorological clouds.  50 

The BTD approach is the most used method for the volcanic cloud identification. It is effective and simple to be applied, even 51 

if it can lead to false alarms in some cases: over clear surfaces during night, on soils containing large amounts of quartz (such 52 

as deserts), on very cold or ice surfaces, in presence of high water vapour content (Prata et al., 2001a). As already mentioned, 53 

the discrimination between volcanic and weather clouds is a challenging task, since the region of the overlap of the two objects 54 

shows a mixed behaviour not easily recognizable. In these mixed scenarios, the BTD can be negative not only for volcanic 55 

clouds but also for meteorological clouds; thus, some false positive results may occur, as the case of high weather clouds. False 56 

negative results may arise in the case of high atmospheric water vapour content: the water vapour contribution can hide and 57 

cancel out the ash particles effects on the BTD, and then the ashy pixels cannot be revealed. In these cases a correction 58 

procedure can be applied (Prata et al., 2001b; Corradini et al., 2008; 2009). Among the procedures described, other algorithms, 59 

based on the use of different spectral channels, have been developed (Francis et al., 2012; Pavolonis et al., 2010a,b). 60 

For these reasons, it seems appropriate to use advanced classification schemes to address the task of the ash detection, such as 61 

approaches which make use of machine learning techniques, avoiding to find for each product the best BTD threshold for 62 

creating the volcanic cloud mask manually, which can be a considerable time-consuming process. 63 
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For aerosol and cloud detection, a neural network (NN) (Bishop et al., 1994; Atkinson et al., 1997; Di Noia and Hasekamp, 64 

2018) based algorithm allows solution of a classification problem. Starting from inputs containing spectral radiance values 65 

acquired in specific wavelength, the model generates a prediction in output by assigning to each pixel of the original image a 66 

predefined class. In previous research, neural networks have already shown significant effectiveness in terms of atmospheric 67 

parameter extraction (Gardner et al., 1998; Picchiani et al., 2011; Sellitto et al., 2012; Di Noia et al., 2013; Picchiani et al., 68 

2014; Piscini et al., 2014). A strong advantage of using a NN based approach for volcanic cloud detection is that once the 69 

model is trained on a statistical representative selection of test cases, new imagery acquired over new eruptions can be 70 

accurately (depending on the training phase) classified in near real time allowing significant improvements in critical situations 71 

and in emergency management. 72 

In this work, we developed a NN based algorithm for volcanic cloud detection using Sentinel-3 SLSTR (Sea and Land Surface 73 

Temperature Radiometer) daytime data with a model trained on MODIS (MODerate resolution Imaging Spectroradiometer) 74 

daytime images. This is possible since the two sensors have similar spectral bands and it represents an advantage as there are 75 

currently limited amounts of SLSTR products available for eruptive events. The use of MODIS as a proxy for SLSTR was 76 

already successfully tested in a previous work investigating  the complex challenge of distinguishing ice and weather clouds 77 

(also containing ice) using neural networks on SLSTR data (Picchiani et al., 2018). As test case, the Raikoke 2019 eruption 78 

has been considered in this work. 79 

2 Case study: the Raikoke 2019 eruption 80 

The Raikoke volcano is located in the Kuril Island chain, near the Kamchatka Peninsula in Russia (48.3° N, 153.2° E). On 81 

June 21, 2019 at about 18:00 UTC Raikoke started erupting and continued erupting until about 03:00 UTC on 22 June 2019). 82 

During this period, Raikoke released large amount of ash and SO2 into the stratosphere.  83 

Figure 1 shows a time-series of 11 µm brightness temperatures (BTs) determined from the Himawari-8 AHI sensor at 10-84 

minute intervals for the first 18 hrs of the eruption. With the purpose of searching for high (cold) clouds associated with a 85 

vertically ascending clouds due to an eruption, and not of meteorological origin, discrete eruptions were identified by 86 

comparing AHI BTs near the vent with those some distance upwind from the vent.  The Himawari-8 time-series shows a 87 

sequence of eruptions (12 in all) and a sustained period of activity between 22:40 of 21 June and 02:10 of 22 June, when the 88 

majority of ash and gas was emitted. The estimated time of an eruption event was determined by examining animated images 89 

and consequently the times of eruptions shown do not always coincide with the coldest cloud-top.   90 

It is estimated from the AHI data that June 2019 Raikoke eruption produced approximately 0.4–1.8 Tg of ash and 1–2 Tg of 91 

SO2 (Prata, private communication).  The amount of water vapour emitted is unknown, but would have been considerable.  92 

These emissions would have led to copious amounts of water and ice clouds being produced, making the composition of the 93 

transported clouds both complex and changing with time. 94 
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 95 

Figure 1: Time-series of eruptions from Raikoke during the first 18 hrs of activity. The times of eruptions was estimated from the imagery 96 
and does not always coincide with the coldest cloud tops. 97 

 98 

3 Methodology 99 

A multilayer perceptron neural network (MLP NN) was trained with MODIS daytime data and then it was applied to Sentinel-100 

3/SLSTR daytime products, in order to discriminate ashy pixels from others, following the scheme reported in Figure 2.  101 

The output of the proposed model is the SLSTR image fully classified in eight different surfaces: ash over sea, ash over cloud, 102 

ash over land, sea, land and ice surfaces, water vapour clouds and ice clouds. This approach has been used because of the long 103 

available time series of MODIS data, the quality of MODIS products (Picchiani et al., 2011; 2014; Piscini et al., 2014) and the 104 

spatial/spectral similarities between MODIS and SLSTR (see Table 1).  105 

MODIS aboard the NASA-Terra/Aqua polar orbit satellites is a multispectral instrument, with 36 channels from VIS to TIR, 106 

a spatial resolution from 0.25 to 1 km, and a revisit time of 1–2 days. SLSTR is a dual view scanning radiometer, with 9 107 

channels on board of Sentinel-3A and Sentinel-3B. The pixel size ranges from 500x500 m for VNIR and SWIR bands to 1x1 108 

km for TIR bands. The feasibility of this procedure has also been confirmed for high latitudes (Picchiani et al., 2018), since 109 

our study area is located in medium-high latitudes. 110 

 111 
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Table 1: Correspondence between MODIS and SLSTR channels. 112 

SLSTR Channel λ Centre (μm) MODIS Channel Bandwidth (μm) 

S1 0.555 4 0.545-0.565 

S2 0.659 1 0.620-0.670 

S3 0.865 2 0.862-0.877 

S4 1.375 26 1.360-1.390 

S5 1.61 6 1.628-1.652 

S6 2.25 7 2.105-2.155 

S7 3.74 20 3.660-3.840 

S8 10.85 31 10.780-11.280 

S9 12 32 11.770-12.270 

 113 

 114 

Figure 2: Overall diagram of the followed procedure for the classification process with NN model. 115 

The training set consists of nine MODIS data acquired over the Eyjafjallajokull volcano area during the 2010 eruption (from 116 

May 6th to May 13th), for a total of about 5400 patterns for each class available for the training of the model. The total number 117 

of patterns has been divided into three subsets: 75% training set, 20% validation set, 5% test set. A neural network with two 118 

hidden layers was trained and then it was applied to four Sentinel-3 SLSTR RBT (Radiance and Brightness Temperature) 119 

(SL_1_RBT) images collected during the Raikoke 2019 eruption. Table 2 shows the details of MODIS and SLSTR data used 120 

for this work.  121 

 122 
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Table 2: Training set (MODIS) from the Eyjafjallajökull 2010 eruption; Sentinel-3 Raikoke 2019 classified products. 123 

Date Time UTC Platform Training/Application 

6 May 2010  (JD 126) 11:55 Terra Training 

9 May 2010  (JD 129) 12:25 Terra Training 

11 May 2010 (JD 131) 12:10 Terra Training 

11 May 2010 (JD 131) 12:15 Terra Training 

11 May 2010 (JD 131) 13:50 Terra Training 

11 May 2010 (JD 131) 14:05 Aqua Training 

12 May 2010 (JD 132) 12:55 Terra Training 

13 May 2010 (JD 133) 12:00 Terra Training 

13 May 2010 (JD 133) 13:40 Terra Training 

22 June 2019 (JD 173) 00:07 Sentinel-3A Application 

22 June 2019 (JD 173) 23:01 Sentinel-3B Application 

 124 

In order to build the NN training patterns, a semi-automatic procedure, that exploits MODIS radiances and standard products, 125 

has been developed. The MODIS products considered for the extraction of the training patterns are the following:  126 

● MOD/MYD 021KM, Level 1B Calibrated Radiances – 1 km, which gives the radiance values for each MODIS band; 127 

● MOD/MYD 03, Geolocation – 1 km, used for the Land/Sea Mask;  128 

● MOD/MYD 06_L2, Cloud Product, containing cloud parameters, used for the Cloud Mask;  129 

● MOD/MYD 09, Surface Reflectance Product, containing an estimate of the surface spectral reflectance measured at 130 

ground level; it is used for the Ice Mask; 131 

where “MOD” and “MYD” stands for MODIS-Terra and MODIS-Aqua products respectively.  132 

The semi-automatic procedure for the extraction of training patterns starting from MODIS data, basically consists in using 133 

MODIS products to create binary “masks” identifying the different objects/surfaces, and then replace them by “classes”, 134 

consisting of matrices containing radiance values (W/(m2 sr µm)) extracted from the MODIS product MOD/MYD021KM. In 135 

this way each object is radiometrically characterized. The identification of the ashy pixel is pursued by creating a mask 136 

according to specific BTD thresholds (from 0.0 to -0.4 °C) and a manual correction performed through visual inspection of 137 

each MODIS image. The other objects are identified using both MODIS bands and MODIS standard products. Once each 138 

object/surface has been defined, they are associated with the corresponding class. Then a set of input-output samples for the 139 

training phase is generated, where the input consists of the set of radiances measured for the given pixel and the output is a 140 

binary vector with value 1 associated with the corresponding class and value 0 for the other classes. 141 

Table 3 shows the classification map legend for each classified product presented in this work, in which eight classes are 142 

discriminated, each one representing a surface/object.  143 
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 144 

Table 3: Classification map legend. 145 

Class ID Surface/Object Name Colour 

1 Ash over sea Ash_sea  

2 Ash over clouds Ash_cloud  

3 Sea surface Sea  

4 Weather clouds Cloud  

5 Snow/Ice surface Ice  

6 Ash over land Ash_land  

7 Land surface Land  

8 Ice clouds Cloud_ice  

- Masked out pixels Not classified  

 146 

 147 

Figure 3: NN topology for ash detection. 148 

The NN final model consists of nine inputs, which are the radiances in the SLSTR selected channels, while the output space 149 

is composed of eight classes, which are the objects/surfaces which the net has to classify. After doing several tests the optimum 150 

topology of the NN turns out to be the combination of two hidden layers with 20 and 15 neurons respectively. The final neural 151 
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network architecture used for ash detection in this work is shown in Figure 3. The proposed algorithm includes a post 152 

processing operation in order to avoid false positive results for land and sea classes. This a posteriori filter is applied both to 153 

the resulting NN land and sea classes. It allows masking out the pixels which the NN classifies as land/sea which do not belong 154 

to the Sentinel-3/SLSTR land/sea mask standard product, which is always available and thus it can be used to increase the 155 

precision of the algorithm. The filtered out pixels have been inserted in a class named “not classified”, as reported in Table 3. 156 

For classification problems approached with machine learning algorithms, one of the most used accuracy metrics for the 157 

performance evaluation is the confusion matrix, where each predicted output class is compared to the corresponding ground 158 

truth considered in the validation dataset. An overall accuracy of 90.9% was obtained at the end of the NN training phase for 159 

the proposed neural network model (see Figure 4).  160 

 161 

 162 

Figure 4: Confusion matrix on validation set. 163 

The target class represents the “ground truth” of each class, while the output class refers to the prediction of the NN. The 164 

diagonal shows that most of the total of the pixels have been correctly classified (green boxes). The number of pixels incorrectly 165 

classified are placed out of the diagonal. Commission and omission errors are reported in the last grey column and row 166 

respectively. 167 

The MODIS products used for training the model were acquired in nadir view only. The trained network was applied to SLSTR 168 

products acquired both in nadir and oblique view. 169 
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4 Results and Discussion      170 

The neural network algorithm previously described was applied to Sentinel-3/SLSTR daytime images acquired on Raikoke 171 

during the 2019 eruption. The Sentinel-3A/SLSTR and Sentinel-3B/SLSTR products collected the 22 June 2019 at 00:07 and 172 

23:01 UTC have been considered (see Table 2). 173 

 174 

Figure 5: Sentinel-3A/SLSTR image collected on Raikoke the 22 Jun 2019 at 00:07 UTC, nadir view. (a) RGB; (b): BTD; (c): NN 175 
classification. 176 
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Figure 5(a) shows the RGB colour composite of the S3A/SLSTR image acquired on Raikoke the 22 June 2019 at 00:07 UTC. 177 

The RGB composite has been carried out by considering the SLSTR visible (VIS) channels S3 (868 nm), S2 (659 nm) and S1 178 

(554 nm) for R, G and B, respectively. In Figure 5(b) the BTD map is displayed, where red and blue pixels represent negative 179 

and positive BTD respectively. The BTD is computed by making the difference between the brightness temperature of the 180 

SLSTR thermal infrared channels S8 and S9 centred at 10.8 and 12 μm. The output of the NN classification is shown in Figure 181 

5(c) with the corresponding colour legend, where each colour represents the classified surface/object. 182 

 183 

Figure 6: Sentinel-3B/SLSTR image collected on Raikoke the 22 June 2019 at 23:01 UTC, nadir view. (a): RGB; (b): BTD; (c): NN 184 
classification. 185 
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As Figure 5(a) shows, the RGB composite emphasizes the presence of a wide distribution of meteorological clouds and a 186 

significant signal derived from the volcanic cloud (brown pixels). The BTD (Figure 5(b)), obtained with a threshold of 0 °C, 187 

shows the presence of the volcanic cloud together with a significant number of false negative (volcanic cloud pixels not 188 

identified near the vents) and false positive (pixels identified as volcanic cloud but that are not below the volcanic cloud and 189 

along the right edge of the scene) pixels.  190 

Despite the challenging scenario, the NN algorithm shows its ability to detect the volcanic cloud and to classify the whole 191 

image, by detecting with good accuracy meteorological clouds composed of water droplets (yellow) and ice (grey), sea (blue) 192 

and land (green) surfaces, and volcanic ash clouds, as reported in Figure 5(c). Looking at the cloud masks generated with the 193 

NN algorithm (yellow and grey) and by comparing them with the RGB natural colour composite of the SLSTR product, a high 194 

agreement in terms of spatial features can been observed. From the comparison between NN output classes and RGB composite 195 

we can observe that also land (green) and sea (blue) pixels are properly detected in the area where they actually lie. 196 

From a qualitative comparison between the NN plume mask and the RGB composite, we can state that the NN correctly 197 

identifies the volcanic cloud class in the area where it seems actually present, even if some pixels are misclassified as ash-on-198 

land (magenta pixels). As Figure 5 shows, the NN algorithm is able to detect a wide volcanic cloud area and much less false 199 

positives compared to the BTD approach. In particular the difference found near the vents can be due to the complete opacity 200 

of the cloud. Here the ash cloud optical thickness is so high that the BTD is null. 201 

Following the same visualization scheme of Figure 5, the results derived from the application of the trained NN model to the 202 

S3B/SLSTR image acquired the 22 June 2019 at 23:01 UTC are reported in Figure 6. In this second image, all the ashy pixels 203 

are classified by the NN model as ash above meteorological clouds (cyan pixels). This seems reasonable being the scenario 204 

mostly dominated by weather clouds, as we can also observe looking at the NN classification, which assigns the majority of 205 

the pixels to the water vapour cloud class (yellow) and to the ice cloud class (grey). The NN classification shows also the 206 

presence of sea pixels (blue), which are located in the same area identifiable using the RGB composite. In this case, from the 207 

RGB composite (Figure 6(a)), unlike to what can be seen in the midnight image, it is not straightforward to identify the volcanic 208 

plume by visual inspection. Indeed, this image was collected about 24 hours later than the previous one and thus the plume 209 

has been transported through the atmosphere and dispersed. A qualitative comparison between the NN classification (Figure 210 

6(c)) and the BTD map (Figure 6(b)) shows considerable differences between the two methods. The BTD, obtained with a 211 

threshold of 0 °C, identifies a wider area (red pixels) affected by the volcanic cloud respect to the NN ash mask (cyan pixels). 212 

We can notice that the BTD map includes some aerial trails (recognizable by the shape in the RGB composite) in the ash mask, 213 

which represent of course false positive results. 214 

Figure 7 shows the RGB composite and the NN classification for the SLSTR oblique view product collected the 22 June 2019 215 

at 00.07 UTC (Figure 7(a) and Figure 7(b)) and 23.01 UTC (Figure 7(c) and Figure 7(d)) respectively. 216 

Looking at results obtained for the oblique view (Figure 7), we can observe that for the S3B/SLSTR image collected the 22 217 

June 2019 at 23.01 UTC the NN model produces good results, which are also in accordance to the NN output obtained for the 218 
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processing of nadir view image acquired at the same time. For the S3A/SLSTR image collected the 22 June 2019 at 00.07 219 

UTC, the NN results are instead less accurate; this is due to the opacity of the volcanic cloud.  220 

 221 

Figure 7: Sentinel-3A/SLSTR image collected on Raikoke the 22 Jun 2019 at 00:07 UTC, oblique view ((a) and (b)); Sentinel-3B/SLSTR 222 
image collected on Raikoke the 22 June 2019 at 23:01 UTC, oblique view ((c) and (d)). (a) and (c): RGB; (b) and (d): NN classification. 223 
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A significant point to be discussed is that the results obtained in this work highlighted the robustness and transferability for a 224 

NN model learning from one single event in a specific location in the world with specific background condition (latitude, 225 

longitude, geometry of acquisition, atmospheric condition, season, etc) and successfully operating in a different scenario. 226 

4.1 Validation 227 

The capability of the NN to correctly detect pixels containing ash was validated by making a pixel per pixel comparison with 228 

a reference plume mask generated manually (hereafter MPM) in order to obtain the best accurate ground truth as possible in 229 

each SLSTR product. For the image collected at 00:07 UTC the MPM creation was performed selecting a region around the 230 

volcanic cloud (clearly recognizable as it is at the beginning of the eruption) and then considering only the pixels with 11 µm 231 

brightness temperature < 270 K. In this case the BTD alone it is not very useful as the high value of the ash optical thickness 232 

of the cloud (especially close to the vent) produces many pixels with BTD values near zero, not distinguishable from adjacent 233 

pixels characterized by meteorological clouds. For the image collected at 23:01 UTC, the identification of the volcanic cloud 234 

is much more difficult due to its larger spread and dilution; in this case the MPM was obtained considering the pixels with 235 

BTD < -0.25 °C, even if probably this choice implies that some ashy pixels were discarded. On the other hand, using an higher 236 

BTD threshold will produce a lot of false positive pixels. In general, the creation of an accurate manual plume mask is time 237 

consuming and case-sensitive and often requires the presence of an operator; so the generation of a volcanic cloud mask with 238 

a fast, automatic and case-independent procedure would be a rather significant improvement.  239 

Because the MPM doesn’t distinguish between the different surfaces under the ash cloud, the validation is performed by 240 

considering the total of the ashy pixels detected from the NN (i.e. the sum between ash_land, ash_sea and ash_cloud).  241 

Figure 8 shows the MPM, created as described above, and the comparison between NN plume mask (hereafter NNPM) and 242 

MPM for S3A/SLSTR image collected on Raikoke the 22 June 2019 at 00:07 UTC (Figure 8(a) and Figure 8(b)) and 243 

S3B/SLSTR image collected on Raikoke the 22 June 2019 at 23:01 UTC (Figure 8(c) and Figure 8(d)). 244 

In relation to the images which display the comparison between NN output and MPM (Figure 8(b) and Figure 8(d)), green 245 

areas indicate the pixels for which both the MPM and NN ash masks detect the presence of volcanic cloud, red pixels represent 246 

the areas classified as ash only by the MPM; blue ones are the pixels classified as ash only according to the NN model. We 247 

can observe that most of the volcanic cloud is displayed in green for both products (00.07 UTC and 23.01 UTC), indicating 248 

good matching between the two approaches. This is also confirmed by the scores in Table 4, which shows the number of pixels 249 

classified as ash by both NN and MPM (green pixels), the number of pixels classified as ash only by NN (blue pixels), the 250 

number of pixels classified as ash only by MPM (red pixels). We can observe that the two approaches are in accordance for 251 

the majority of the pixels, albeit they differ in discriminating volcanic cloud in some regions. 252 

 253 
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Table 4: Comparison between the NN plume mask (NNPM) and the manual plume mask (MPM) for each SLSTR classified product (pixels 254 
number for each class). The total number of classified pixels is 1614405 for the S3A/SLSTR at 00.07 UTC image and 1701319 for the 255 
S3B/SLSTR at 23.01 UTC image respectively. 256 

Product Classified Product NNPM and MPM   Only NNPM Only MPM 

S3A/SLSTR at 00.07 UTC 13545 5568 6275 

S3B/SLSTR at 23.01 UTC 136435 39991 71223 

 257 

Figure 8: Sentinel-3A/SLSTR image collected on Raikoke the 22 June 2019 at 00:07, nadir view (a),(b); Sentinel-3B/SLSTR image 258 
collected on Raikoke the 22 June 2019 at 23:01, nadir view (c),(d). (a),(c): red pixels display the manual plume mask (MPM) obtained from 259 
the analysis on the specific image; (b),(d): comparison between volcanic ash detected by NN and MPM; green pixels indicate the areas for 260 
which both NN and MPM detect ashy pixels, red pixels indicate the areas for which only MPM detects ashy pixels, blue pixels indicate the 261 
areas for which only NN detects ashy pixels. 262 
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Besides the NN plume mask validation, we also compared the pixels which the NN model classified as affected by weather 263 

clouds (hereafter NNCM) with the SLSTR standard product for meteorological clouds.  264 

 265 

Figure 9: Sentinel-3A/SLSTR image collected on Raikoke the 22 June 2019 at 00:07, nadir view (a),(b); Sentinel-3B/SLSTR image 266 
collected on Raikoke the 22 June 2019 at 23:01, nadir view (c),(d). (a),(c): RGB view; (b),(d): comparison between cloud mask retrieved by 267 
NN and standard Sentinel-3 confidence in summary cloud mask (CSCM); green pixels indicate the areas for which both NN and CSCM 268 
detect cloudy pixels, red pixels indicate the areas for which only CSCM detects cloudy pixels, blue pixels indicate the areas for which only 269 
NN detects cloudy pixels. 270 

Among the cloud masks available in the SLSTR L1RBT product, the confidence_in_summary_cloud mask (hereafter CSCM) 271 

is considered. The CSCM is a cloud mask which discriminates cloud pixels (true) and cloud-free pixels (false); it is an ultimate 272 
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cloud mask product derived from several separated cloud tests (Sentinel-3-SLSTR-Land-Handbook, 2021). Because of the 273 

CSCM doesn’t distinguish between meteo clouds and meteo ice clouds as the NN algorithm does, the comparison is realized 274 

by considering the whole NN meteo cloud classes (i.e. the sum between Cloud and Cloud_ice). 275 

Figure 9 displays the RGB composite, in which the Sentinel-3 sun glint mask is highlighted (right part of the scene), and the 276 

comparison between NN cloud mask and S3 cloud mask for S3A/SLSTR image collected on Raikoke the 22 June 2019 at 277 

00:07 UTC (Figure 9(a) and Figure 9(b)) and for S3B/SLSTR image collected on Raikoke the 22 June 2019 at 23:01 UTC 278 

(Figure 9(c) and Figure 9(d)). 279 

Also in this case, for the images displaying the comparison between the two types of cloud masks (Figure 9(b) and Figure 280 

9(d)), green indicates the pixels classified as cloud for both procedures, while red and blue indicate the pixels classified as 281 

cloud only from the SLSTR standard product and NN, respectively. Pixels that are not coloured are associated to a cloud-free 282 

condition for both the NN and the S3 cloud mask. Looking at the comparison, a very good agreement between the NN meteo 283 

cloud mask and the SLSTR standard cloud mask can be observed, with high amount of pixels classified as affected by clouds 284 

by both products (see Table 5). Moreover, looking at the red pixels in the 23:01 UTC image especially, it can be noted that the 285 

SLSTR cloud mask includes also the volcanic cloud. 286 

  287 

Table 5: Comparison between the NN cloud mask (NNCM) and the confidence in summary cloud mask (CSCM) for each SLSTR classified 288 
product (pixels number for each class). The total number of classified pixels is 1614405 for the S3A/SLSTR at 00.07 UTC image and 289 
1701319 for the S3B/SLSTR at 23.01 UTC image respectively. 290 

Product Classified Product NNCM and CSCM   Only NNCM Only CSCM 

S3A/SLSTR at 00.07 UTC 1332632 163225 91768 

S3B/SLSTR at 23.01 UTC 1291989 65359 284193 

 291 

From the validation procedure we have carried out, a considerable point which has to be underlined is that, unlike adopting a 292 

time consuming and case-specific approach as MPM which also needs a manual operation by setting various thresholds for 293 

each case under examination, the NN model can be used to discriminate ash plume in satellite images with good accuracy in 294 

a fast and automatic way. 295 

 296 

5 Conclusions 297 

In this work the results of a new neural network based approach for volcanic cloud detection are described. The algorithm, 298 

developed to process Sentinel-3/SLSTR daytime images, exploits the use of MODIS daytime data as training. The procedure 299 

allows the full characterization of the SLSTR image by identifying, besides the volcanic cloud, the surfaces under the cloud 300 

itself, the meteorological clouds (and phases), land and sea surfaces. As test cases, the S3A-S3B/SLSTR images collected over 301 

the Raikoke volcano area during the June 2019 eruption have been considered. 302 
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The proposed neural network based approach for volcanic ash detection and image classification shows an overall good      303 

accuracy for the ash class, which is the main target of the algorithm, and for the meteorological cloud class also. A strong 304 

effectiveness of the NN classification is indeed also related to the cloudy pixel recognition, with the ability to distinguish two 305 

different types of meteorological clouds composed of water droplets and ice respectively. It has to be reminded that the wide 306 

distribution of meteorological clouds in the scenario under consideration makes the ash detection task particularly complex, 307 

since weather ice clouds and volcanic clouds exhibit similar spectral behaviour. 308 

A point to be underlined is the valuable advantage of the developed procedure related to the creation of products (the eight 309 

classes) not all already available as SLSTR standard products; this fact represents a considerable step forward for generation 310 

of novel type of S3/SLSTR products. 311 

A post processing has been applied to NN outputs by exploiting the land/sea mask of SLSTR standard products, in order to 312 

mitigate the insurgence of NN land/sea failure, being the land/sea mask always available as SLSTR standard product. 313 

The comparison between the NN plume mask and a reference plume mask (MPM) taken as ground truth, shows a good 314 

agreement between the two techniques. The significant result lies in the fact that the overall good performance of the NN 315 

output is achieved in an automatic way and with a brief processing time, compared to the plume mask generated ad hoc, which 316 

instead requires longer time, is case-specific and it needs the presence of an operator. The other considerable achievement of 317 

the NN developed procedure indeed is that, once the NN model has been properly trained, it has been used to detect the ash 318 

plume for each SLSTR image related to the Raikoke eruption, while the creation of the MPM has to be made separately for 319 

each image. 320 

The comparison between the NN cloud mask and the cloud mask derived from SLSTR standard products has been also carried 321 

out, resulting in high percentage of agreement between the two products. 322 

A promisingly outcome is related to the ability of the NN model to generalize over different data in terms of spatiotemporal 323 

and geographical characteristics, being the NN model trained with data collected over the Iceland region in 2010 and then 324 

applied to data acquired over the Kamchatka Peninsula in Russia in 2019. One of the point under consideration for future 325 

improvements is to enhance the ability of the NN to generalize over various eruptive scenarios, by integrating different training 326 

dataset (in terms of regions, type of eruption, time interval, etc). We also aim at further investigating some aspects in order to 327 

improve the classification accuracy, as the introduction of other output classes, such as volcanic ice cloud, and the integration 328 

of other variables in the model, such as the sensor view angle. Finally, the possibility to use S3/SLSTR products as training 329 

dataset instead of using MODIS data is an essential point to be taken into account in order to increase the accuracy of the 330 

algorithm. 331 

Data availability 332 

Terra-Aqua/MODIS data are distributed from the Level-1 and Atmosphere Archive & Distribution System (LAADS) 333 

Distributed Active Archive Center (DAAC) and they are available at: https://ladsweb.modaps.eosdis.nasa.gov/search/. 334 
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