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Abstract. Nitrogen dioxide (NO2) air pollution provides valuable information for quantifying NOx (NOx = NO + NO2) 

emissions and exposures. This study presents a comprehensive method to estimate average tropospheric NO2 emission 

strengths derived from four-year (April 2018 – June 2022) TROPOMI observations by combining a wind-assigned anomaly 20 

approach and a Machine Learning (ML) method, the so-called Gradient Descent. This combined approach is firstly applied to 

the Saudi Arabian capital city Riyadh, as a test site, and yields a total emission rate of 1.04×1026 molec./s. The ML-trained 

anomalies fit very well with the wind-assigned anomalies with an R2 value of 1.0 and a slope of 0.99. Hotspots of NO2 

emissions are apparent at several sites where the cement plant and power plants are located and over areas along the highways. 

Using the same approach, an emission rate of 1.80×1025 molec./s is estimated in the Madrid metropolitan area, Spain. Both the 25 

estimate and spatial pattern are comparable to the CAMS inventory.  

Weekly variations of NO2 emission are highly related to anthropogenic activities, such as the transport sector. The NO2 

emissions were reduced by 24% at weekends in Riyadh, and high reductions are found near the city center and the areas along 

the highway. An average weekend reduction estimate of 30% in Madrid is found. The regions with dominant sources are 

located in the east of Madrid, where the residential areas and the Madrid-Barajas airport are located. Additionally, the NO2 30 

emissions decreased by 21% in March-June 2020 compared to the same period in 2019 induced by the COVID-19 lockdowns 

in Riyadh. A much higher reduction (60%) is estimated for Madrid where a very strict lockdown policy was implemented. The 

high emission strengths during lockdown only persist in the residential areas and cover smaller areas during weekdays than at 
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weekends. The spatial patterns of NO2 emission strengths during lockdown are similar to those observed at weekends in both 

cities. Though our analysis is limited to two cities as testing examples, the method has proved to provide reliable and consistent 35 

results. It is expected to be suitable for other trace gases and other target regions. However, it might become challenging in 

some areas with complicated emission sources and topography, and specific NO2 decay times in different regions and seasons 

should be taken into account. These impacting factors should be considered in the future model to further reduce the uncertainty 

budget.  

1 Introduction 40 

Nitrogen oxides (NOx = NO + NO2, also known as oxides of nitrogen) are a group of highly reactive trace gases (NO and 

NO2). NOx are toxic to human health and play a key role in tropospheric chemistry by catalyzing tropospheric O3 formation 

and acting as aerosol precursors, and this tropospheric O3 is a secondary pollutant that is also harmful to human health (IPCC, 

2021). The emission of NOx is dominated by human activities and is mostly related to fossil fuel or biomass combustion 

(Goldberg et al., 2019). The major anthropogenic source in Europe is road transport (39%), followed by another four sectors 45 

with similar shares: energy production and distribution (14%), commercial, institutional, and households (13%), energy use in 

industry (11%) and agriculture (11%) (EEA, 2021). The near-surface abundance of NOx has generally increased with 

urbanization and industrialization (IPCC, 2021; Barré et al., 2021). Additionally, due to its short tropospheric atmospheric 

lifetime (1 – 12 h) (Beirle et al., 2011; Stavrakou et al., 2013), NOx concentrations are highly variable and strongly correlated 

with local emission sources (Goldberg et al., 2019). Thus, NO2 observations can be considered as an excellent indicator to 50 

NOx emissions. The accurate knowledge of spatial and temporal distribution of NO2 atmospheric abundances, for this reason, 

is critical. 

Space missions succeed in delivering well-resolved maps of tropospheric NO2 columns, from the early Global Ozone 

Monitoring Experiment (GOME) (Burrows et al., 1999), to the widely used Ozone Monitoring Instrument (OMI) (Boersma et 

al., 2007; He et al., 2021), to the latest TROPOspheric Monitoring Instrument (TROPOMI) (Veefkind et al., 2012). Among 55 

them, TROPOspheric Monitoring Instrument (TROPOMI) onboard Sentinel-5 Precursor (S-5P) since October 2017 has an 

outstanding importance. It is a push broom grating spectrometer, and measures direct and reflected sunlight in ultraviolet, 

visible, near-infrared, and shortwave infrared bands (Veefkind et al., 2012). TROPOMI offers daily coverage of data with an 

unprecedented spatial resolution of 3.5 × 7 km2 (3.5 × 5.5 km2 since August 2019) and a high signal-to-noise ratio (Copernicus 

Sentinel-5P, 2018; van Geffen et al., 2021). The TROPOMI NO2 data have been used for a variety of studies to estimate the 60 

NOx lifetime and emissions. For example, Lorente et al. (2019) has demonstrated that the strength and distribution of NO2 

emissions from Paris can be directly determined from the TROPOMI NO2 measurements. Beirle et al. (2019) mapped the NOx 

emissions on high spatial resolution based on the continuity equation and quantified urban pollution from Riyadh, Saudi Arabia 

(8.5 kg/s over 250 × 250 km2). A top-down NOx emission estimate approach was developed by Goldberg et al. (2019) and it 

reported that three megacities (New York City, Chicago, and Toronto) in North America emitted 3.9 – 5.3 kg/s NOx. Liu et 65 
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al. (2020) demonstrated a 48% drop in the tropospheric NO2 column densities in China during the COVID-19 lockdown. The 

reductions of NO2 emission across the European urban areas resulting from the lockdown were studied by Barré et al. (2021) 

and -23% changes on average were obtained based on TROPOMI NO2 observations.  

TROPOMI is unique due to its very high spatial- and temporal- resolution, which provides a large amount of data despite a 

planned mission lifetime of only about four years. This huge data set offers a possibility for its exploitation by the quickly 70 

developed artificial intelligence – Machine Learning (ML) techniques. For example, the application of ML to assess the NO2 

pollution changes during the COVID19 lockdown (Petetin et al., 2020; Keller et al., 2021; Barré et al., 2021; Chan et al., 2021). 

However, most studies focus on changes in NO2 column abundances. The accurate amount and spatial pattern of deduced 

emission strengths are also important and can help air quality policy development. 

In this study, the Gradient Descent (GD) approach in ML incorporating the wind-assigned method (Tu et al., 2022a, 2022b) is 75 

used to train the “modeled truth” constructed from a simple downwind plume model for the emissions on each grid pixel using 

space borne NO2 observations, to estimate the NO2 emission strengths of two (mega)cities: Riyadh (Saudi Arabia) and Madrid 

(Spain). The paper is organized as follows. Sect. 2 presents the data set and the combined method (wind-assigned and ML 

methods). The approach will be first applied to the Saudi Arabian capital city Riyadh for its evaluation and then applied to 

Madrid, followed by the discussion of the differences on weekdays and at weekends, and the changes before and during the 80 

COVID-19 lockdown period (Sect. 3). Conclusions are given in Sect. 4. 

2 Data and Methodology 

2.1 TROPOMI tropospheric NO2 columns and wind data 

The NO2 data used in this study are obtained from the Sentinel-5P Pre-Operations Data Hub 

(https://s5phub.copernicus.eu/dhus/#/home), which provides level 2 datasets with three different data streams: the Non-Time 85 

Critical or Offline (OFFL), the Reprocessing (RPRO) and the near-real-time (NRTI) streams. The NRTI is available within 3 

h after the actual satellite measurement and may sometimes be incomplete and has a slightly lower data quality 

(http://www.tropomi.eu/data-products/level-2-products, last access: 14 September 2022), and thus, this data set is not 

considered here. The RPRO data covers a time range from 30 April 2018 – 17 October 2018, and the OFFL data covers the 

remaining time period. Meanwhile, the NO2 dataset is an aggregate of different versions. The RPRO data is v1.2, while OFFL 90 

includes several versions: v1.2 until March 20, 2019, v1.3 until 29 November 2020, v1.4 until 5 July 2021, v2.2 until 15 

November 2021, and v2.3 until 17 July 2022 and v2.4 afterwards. An improved FRESCO cloud retrieval has been introduced 

in v1.4, which leads to higher tropospheric NO2 columns over areas with pollution sources under small cloud coverage (van 

Geffen et al., 2022). We use the operational Copernicus TROPOMI tropospheric NO2 level 2 product (Copernicus Sentinel-

5P (processed by ESA), 2021) from May 2018 to June 2022 over Saudi Arabian capital city of Riyadh and another (mega)city 95 

in Europe, such as Madrid, Spain. The quality flag (qa_value) is recommended to be >0.75, with which data are restricted to 
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cloud-free (cloud radiance fraction < 0.5), and snow-ice-free observations (van Geffen et al., 2021). There are nearly 1,380,000 

910,000 in Riyadh (23.6ºN – 25.4ºN; 46.1ºE – 47.4ºE) and 930,000 580,000 measurements in Madrid (39.5ºN – 41.5ºN; 4.5ºW 

– 3ºW) of good quality over three years. These observations are then binned for this study on a regular 0.1º × 0.1º grid, using 

as prerequisite that the number of observations is larger than 5 at the respective grid point. The amounts of TROPOMI 100 

measurements in each 0.1º grid pixel is distributed evenly with a number range of 4400-4800 in Riyadh, whereas larger 

differences are observed in Madrid with a number range of 2200-3700 (see Figure A- 1). 

We use the horizontal wind information from the ERA5, which is the fifth-generation climate reanalysis produced by the 

European Centre for Medium-Range Weather Forecasts (ECMWF) at a spatial resolution of 0.25º × 0.25º (Copernicus Climate 

Change Service, 2017). NO2 is a short-lived species, following the orography. Therefore, we use ERA5 at 10 m (Figure A- 2).  105 

2.2 Wind-assigned and ML methods 

The averaged distribution of emitted NO2 over a long-term period can be approximated by an evenly distributed cone-shape 

plume, which is prescribed by wind speed and direction, and source strength with consideration of its temporal decay: 

ΔNO!	($%,'%) =
𝜀

𝑣 ∙ 𝑑($%,'%) ∙ 𝛼
× 𝑒𝑥𝑝 .−

𝑡
𝜏2	

Eq. (1) 

where 𝜀 is the emission strength and has an initialized value of 1×1026 molec./s. The study area is binned on a regular 0.1º × 

0.1º grid and the emission rates at each grid are assumed to be constant during the study period. 𝛼 is the angle of the emission 110 

cone and has an empirical value of 1/3 rad (i.e., 60°) (Tu et al., 2022a). 𝑑 and 𝑡 are the distance in m and transport time in hour 

between the downwind location and NO2 emission source, respectively. 𝑣 is the wind speed in m/s from ERA5 and 𝜏 is the 

lifetime/decay time in hour for NO2. For simplification, seasonal and spatial variability of lifetime is not considered, and 

empirical values based on Beirle et al. (2019, 2011), i.e., fixed values of 4 hours for Riyadh and 7 hours for Madrid, are used 

in this study. The daily plumes (ΔNO!) from the individual emission source are computed based on Eq. (1) and then are super-115 

positioned to have a total daily plume. The ERA5 model wind is divided into two opposite wind regimes based on the 

predominant wind regimes in each site (i.e., S: 90°-270° and N: the rest for Riyadh; SW: 135°-315° and NE: the rest for 

Madrid, see Figure A- 2). A temporally averaged ΔNO! plume is obtained for each wind regime and the difference between 

the two plumes generates the wind-assigned anomalies (for more details see Tu et al., 2022a, 2022b). 

The study area has x × y (=N) grids. Each grid cell is considered as an independent point source at position (𝑠)*+! , 𝑠)*+"), which 120 

yields a map of wind-assigned anomalies (𝒄,#$%! ,,#$%"). The wind information is assumed to be constant at each time over the 

study area in this study. The modeled wind-assigned anomalies derived from the point source located at the center grid 

(𝑙𝑎𝑡%& , 𝑙𝑜𝑛-&) is considered as a parent map (see Figure A- 3a): 

𝒄,#$%!& ,,#$%"&
= (𝑝)*+',)./'⋯	𝑝)*+!,)./"⋯𝑝)*+(,)./)) Eq. (2) 
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The anomalies derived from other point source is identical to the parent anomalies, and value at each grid depends on the 

relative location to the parent one (see Figure A- 3b): 125 

𝒄,#$%! ,,#*+" = (𝑝)*+'0)*+!& ,)./'0)./!& ⋯	𝑝)*+!0)*+!& ,)./"0)./!& ⋯𝑝)*+(0)*+!& ,)./)0)./!&) Eq. (3) 

These maps of wind-assigned anomalies at each grid are the inputs for the further step, which needs to be reformatted. The 

locations of the grids are reordered in the sequence of latitude and longitude values from west to east and from north to south. 

The first grid at (𝑙𝑎𝑡1, 𝑙𝑜𝑛1) locates in the far northwest and the last grid (𝑙𝑎𝑡$ , 𝑙𝑜𝑛') locates in the far southeast. Therefore, 

each map of wind-assigned anomalies is converted to a new column vector 𝒄𝒌 = (𝑎3,1 ⋯ 𝑎3,4)𝑻, i.e., 𝑎3,3 represents the 

wind-assigned anomalies at kth grid cell derived from point sources at kth grid cell. The N grids generate N vectors to construct 130 

an N × N matrix:  

𝐌 = (𝒄𝟏 	⋯	𝒄𝑵) = 	?
𝑎1,1 ⋯ 𝑎4,1
⋮ ⋱ ⋮

𝑎1,4 ⋯ 𝑎4,4
B Eq. (4) 

The estimated emission rate is a column vector 𝒘 = (𝑤1 ⋯ 𝑤4)𝑻. Since the emission rates cannot be negative, we use 

log	(𝑤3) as a proxy of the 𝑤3 . The final result is then the exponent of the log	(𝑤3) and scaled by the initial 𝜀 of 1×1026 

molec./s. Then the modeled-calculated map (𝒎) of the wind-assigned anomalies can be written as: 

𝒎 = 𝐌×𝒘 =	?
𝑎1,1 ⋯ 𝑎4,1
⋮ ⋱ ⋮

𝑎1,4 ⋯ 𝑎4,4
B × (𝑤1 ⋯ 𝑤4)𝑻 = (𝑚1 ⋯ 𝑚4)𝑇 Eq. (5) 

The wind-assigned anomaly method is also applied to the TROPOMI tropospheric NO2 column, yielding to a true map y = 135 

(𝑦1 ⋯ 𝑦4)𝑻. 

To estimate the emission strengths accurately, the modeled map (𝒎) should approximate the true map (𝒚). This problem is 

then converted to find the best 𝒘 which results in the minimum value of the difference between 𝒚 and 𝒎, i.e., the cost function: 

𝐿(𝒚,𝒎) = 	
1
𝑁N

(𝑦% −𝑚%)!
4

%81

=
1
𝑁N

(𝑦% − (𝑎1,% ⋯ 𝑎4,%) × (𝑤1 ⋯ 𝑤4)𝑻)!
4

%81

 Eq. (6) 

In our approach, the above equation can be considered as solving a linear system with constraints over the coefficients. In the 

ML framework, the popular GD algorithm can be a simple yet effective solution to find the coefficients. These coefficients 140 

can satisfy the approximation and the constraints at the same time, by formulating some of the constraints into the loss function 

that needs to be optimized. The main idea of GD is to find the partial derivatives of all coefficients in the system with respect 

to the loss function and use the local (gradient) information to reach the solution closer to the true state, which minimizes the 

approximation loss. In practice, this is implemented in an iterative process in which the data are sampled for the required 

gradients. However, there is only one single “data point” (one column vector) in our problem formulation. For each iteration 145 

(Eq. (7)), the new weight (𝒘+91) is equal to the old weight (𝒘+) minus the gradient times the learning rate 𝜂 (or so-called step 

size). Here, we use the default settings (𝜂 = 0.001) as used by Kingma and Ba (2015):  
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𝒘+91 = 𝒘+ + ∆𝒘+ = 𝒘+ − 𝜂 ×N
𝛿𝐿
𝛿𝒘+

4

%81

 Eq. (7) 

The selected areas in this study are highly isolated from the neighboring sources and thus, the emission rates at the edge can 

be assumed to be zero.  However, the initialized constrain of them can increase the final biases. Therefore, we use a larger 

study area with (n+2) × (m+2) grids as the input data and remove the outmost ring outmost rectangle within 2-grid width to 150 

the target area of n×m grids.  

When applying GD for complicated systems with many parameters, there are many variations of GD that rely not only on the 

gradients but also introduce additional temporal information, i.e., the accumulation of gradients over time known as 

“momentum” to help GD converge faster and more reliable. Among those algorithms we decided to use Adaptive Moment 

Estimation (ADAM), because it is characterized by efficiency, little cost requirement (Kingma and Ba, 2015) compared to 155 

second-order methods such as BFGS (Broyden–Fletcher–Goldfarb–Shanno), and for our problem, it can slightly outperform 

other GD variations, such as the original gradient descent (GD) with momentum or Adadelta/Adagrad. In addition, it has been 

documented that it is superior by employing the cumulative first-order and second-order moments and, thus, become the de-

facto method in the current deep learning scene when dealing with large data and parameters (Kingma and Ba, 2015). 

It is notable that, in practice, GD or its variations are implemented under the name “Stochastic Gradient Descent” or “Mini-160 

batch Gradient Descent” because using all datasets for one GD iteration is infeasible. The name “Stochastic” suggests having 

the model parameters to be randomly generated and the dataset is randomly sampled into mini-batches (a small subset of the 

dataset) and the gradients are accumulated over the mini-batch solely for each update. This practice is not necessary with our 

problem.  

3 Results and Discussion 165 

3.1 Approach test for NO2 emissions in Riyadh 

Riyadh was chosen as the test site because this city with arid climate, has high NOx emissions due to the high population 

density (~4,300 residents/km2; https://worldpopulationreview.com/world-cities/riyadh-population, last access: 29 March 

2022) and it has punctual strong NOx sources close to the metropolitan area, such as cement plant and power plants. Moreover, 

Riyadh is remote from other sources, and has favorite weather conditions with low cloud cover and high surface albedo (Beirle 170 

et al., 2019; Rey-Pommier et al., 2022). The typical two wind regimes presented in Riyadh favors the applicability of the wind-

anomaly method and is another reason of choosing it for the work. 

Figure 1 illustrates the averaged wind-assigned plumes derived from the TROPOMI tropospheric NO2 and ML method over 

the analyzed period (April 2018 - March 2021). The ML-modelled plumes agree excellently with the satellite’s results (true 

map). A stronger plume is observed in the south of Riyadh, as the wind is more from the north (Figure A- 2). The good 175 
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correlation between these two maps is also presented in the one-to-one figure with an R2 value of 1.0 and a slope value of 0.99 

(Figure 1c). The estimated emission strengths based on the ML model (Figure 1d) show a similar spatial pattern, especially on 

the main sources near the city center to the results in Beirle et al. (2019) (Fig. 2). Hotspots of NO2 emissions are apparent at 

several sites where the cement plant and power plants are located and over areas along the highways (Figure 1d). These power 

plants have capacities larger than 1 GW and use crude oil and partly natural gas as fossil fuels (Beirle et al., 2019). The total 180 

emission rate is about 1.04×1026 molec./s. Our estimate is slightly higher than the Beirle’s result (8.3×1025 molec./s from 

December 2017 to October 2018), in which wind fields from the ECMWF operational analysis at about 450 m above the 

ground were used (Beirle et al., 2019). The difference might be due to the different study periods and methods used. The 

pattern of wind direction is similar at higher level (100 m), while the wind speed increases (Figure A- 2). therefore, it is 

expected that wind at these levels introduces minor impacts on the estimates. 185 

 
Figure 1: Wind-assigned plumes derived from (a) TROPOMI tropospheric NO2 and (b) ML method, (c) correlation plot between (a) 
and (b) for each grid (the x and y labels represent the data sets from where the wind-assigned anomalies are derived), and (d) 
estimated emission rates in Riyadh, Saudi Arabia. Data in (a), (b), and (d) are gridded oversampled to on a regular latitude-longitude 
grid with 0.1◦ spacing ×0.1◦ resolution. In (d) number in the figure’s title presents the total emission rate; triangle symbols and right-190 
triangle symbol represent power plants and cement plant, respectively; grey lines represent the highways (data derived from 
www.openstreetmap.org © OpenStreetMap and www.mapcruzin.com, last access: 11 April 2022). 

3.2 NO2 emission in Madrid 

As a (mega)city in Europe, Madrid in Spain is another target in this study. The population of the Madrid metropolitan area is 

estimated to be about 6.7 million and nearly half of the residents live in Madrid city, resulting in a population density of ~5,400 195 

residents/km2 (https://worldpopulationreview.com/world-cities/madrid-population, last access: 29 March 2022). Figure 2a and 

b display the wind-assigned anomalies derived from TROPOMI observations and ML method, showing clearly pronounced 

bipolar plumes which are symmetrical in the Madrid city center. The ML-trained anomalies have a very good agreement with 

the TROPOMI one with an R2 value of 0.99 and a slope of 0.99 (Figure 2c). The spatial pattern of estimated emission strengths 

is shown in Figure 2d, which is comparable to that of CAMS-REG-AP (Copernicus Atmospheric Monitoring Service regional 200 

anthropogenic emission inventory, https://eccad.aeris-data.fr/catalogue/, last access: 31 March 2022; Granier, et al., 2019; 

Kuenen, et al., 2021) (Figure 2e). The CAMS-REG-AP covers emissions from the UNECE-Europe for the main air pollutants 

(e.g., NOx, expressed as NO2) with a spatial resolution of 0.05º × 0.1º - 0.1º × 0.1º in longitude and latitude on a yearly basis 
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over Europe (Kuenen et al., 2014). The v5.1-BAU2020 is the latest version of a series of emission inventories, which 

extrapolate CAMS-REG-v5.1 to the year 2020, neglecting the impacts related to Covid-19 (Kuenen et al., 2021). CAMS-REG-205 

v5.1 covers the data from 2000-2018 and v4.2-ry covers the updated recent years 2018 and 2019 

(https://eccad3.sedoo.fr/#CAMS-REG-AP, last access: 17 August 2022). The total emission rate over the whole study is about 

1.80×1025 molec./s, close to the CAMS inventory value of 9.2×1024 1.12×1025 molec./s in 2020.  

Our estimate is smaller than a previous estimate of 6.8×1025 molec./s derived from the Ozone Monitoring Instrument (OMI) 

data during 2005-2009 (Beirle et al., 2011). The time series of tropospheric NO2 observed by OMI since 2004 and TROPOMI 210 

since 2018 in two study sites are shown in Figure A- 14 and their correlations are shown in Figure A- 15. NO2 amounts 

increased since 2004 and reached highest value around 2016, except a sudden drop in 2013 in Riyadh. A continuous decrease 

is observed in Madrid and the COVID lockdown leads to a reduction of NO2 emission in 2020. NO2 concentration retrieved 

from the OMI observations are generally lower (slope = 0.8074) than TROPOMI results with a mean bias of 6.3×1018 ± 

9.8×1018 molec./m2 in Riyadh. The R2 value in Madrid area (R2=0.8542) is slightly smaller than the value in Riyadh 215 

(R2=0.9357). However, the mean bias is lower and the standard deviation is higher in Madrid area with a value of 1.9×1018 ± 

1.2×1019 molec./m2 (slope=0.8353). The ML emission rate retrieved from OMI observations (binned in 0.25º×0.25º) is 17% 

lower in Riyadh and 18% lower in Madrid area than those from TROPOMI observations. Thus, the discrepancy between this 

and previous study is mainly due to the data sets used.  

Apart from that, it is important highlighting that in the last decades, considerable efforts have been made in promoting the 220 

control and regulation of air quality policies across Europe (EEA report, 2020). In this context, Madrid City Council launched 

the Air Quality and Climate Change Plan for the city of Madrid (Plan A) in 2017, aiming at reducing pollution and adapting 

to climate change and ~25% reduction of NO2 concentrations in the central area were assumed by 2020 

(https://www.madrid.es/UnidadesDescentralizadas/Sostenibilidad/CalidadAire/Ficheros/PlanAire&CC_Eng.pdf, last access: 

January 21, 2022). With an expectation, these actions may help to decrease NO2 concentrations by ~25% in the central area 225 

by 2020. The binned emission rates agree well between the CAMS inventory and the ML-trained results with an R2 value of 

0.67 and a slope of 1.16 (Figure 2f). The ML-trained results are higher than the inventory. This is probably related to the fact 

that TROPOMI measures real-time NO2 emissions which are not fully considered in the CAMS inventory.  

Based on the spatial pattern, the dominant NO2 sources can be easily distinguished. High NO2 emissions are found near the 

city center, while the highest emissions are occurred to the east, south, and southwest where the residential areas are located. 230 

The northwest of Madrid is the natural space and the Guadarrama mountains range runs in the NE-SW direction. Therefore, 

no obvious NO2 sources can be found in these mountain regions. The Madrid-Barajas airport (presented as the triangle symbol 

in Figure 2d and e), which is the main international airport in Spain and the second-largest airport in Europe, is near the 

northeast of the city center where the region shows high NO2 emissions. This is because aircraft exhaust emissions are highly 

enriched in NO2 during taxiing and taking off  (Herndon et al., 2004) and the near-airport NO2 concentrations are higher than 235 

the emissions from highways and busy roadways (Hudda et al., 2020). In addition, the orographic feature, i.e., the development 
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of mountain breezes along the slope of the Guadarrama range causes the accumulation of pollutants in the NE -SW axis (Querol 

et al., 2018). Significant plumes of NO2 columns are observed for wind from narrow wind regimes covering NE1/2 (0º-90º) and 

SW1/2 (18º-270º) (Figure A- 7(a)-(b)). NO2 accumulates near the city center for NW1/2 wind (270º-360º), and a much weaker 

plume is found for SE1/2 (90º-180º) wind regimes due to fewer wind days and weaker wind speed (Figure A- 7(c)-(d)). 240 

 

 
Figure 2: (a)-(d): same figures as Figure 1, but for the Madrid area, Spain. (e): spatial distribution of CAMS-REG-AP inventory, (f) 
correlation of emission rates between ML and CAMS-REG-AP inventory. 

3.3 NO2 emission changes on weekdays and at weekends 245 

NOx emission variations result in significant changes in the weekly cycle, which is an unequivocal sign of anthropogenic 

sources (Beirle et al., 2003). 

The estimated emission rates for weekdays (Sunday to Thursday) and weekends (Friday and Saturday) in Riyadh are presented 

in Figure 3. It should be noted that the weekends in Saudi Arabia are Fridays and Saturdays. The lowest NO2 column 

abundances are observed on Fridays, followed by the ones on Saturdays (Figure A- 8). The NO2 emissions were reduced by 250 

24% at weekends, and high reductions were found near the city center and the areas along Highway 65. Highway 65 is a major 

north-south highway in central Saudi Arabia and runs in the southeast-northwest direction, connecting Riyadh to Al Majma’ah 

in the northwest and to Kharj in the southeast (Figure A- 9).  
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Figure 3: Averaged ML estimated emission strengths during (a) weekdays (Sunday to Thursday), (b) weekends (Friday and 255 
Saturday), and (c) their difference (weekdays-weekend) in the Riyadh. Number in each figure’s title presents the total emission rate. 

Significant column declines are found in large cities, especially in Europe, at weekends (Stavrakou et al., 2020). The weekly 

cycle of NO2 column abundances in the Madrid area is different from that in Riyadh, as the lowest amounts are on Sundays, 

the second days of weekends (Figure A- 10). An outstanding difference becomes apparent as much higher NO2 amounts are 

found on working days, especially in urban areas. These high emissions are mainly due to road transport, which is the largest 260 

NOx contributor in Europe (Crippa et al., 2018) and emits up to 90% NO2 in Madrid (Borge et al., 2014). 

The ML-estimated emission strengths for Madrid are presented in Figure 4. High NO2 emission sources on weekdays are 

evenly distributed around the city center (Figure 4a). However, for weekends, the northeastern regions close to the airport, far 

away from the city center, are the main sources, and no obvious sources are observed in the southwestern regions (Figure 4b). 

The total NO2 emission strength in the urban area (dashed rectangles) during weekends (7.24×1024 molec./s) are smaller than 265 

those observed during weekdays (9.85×1024 molec./s) by about 26%. This result is similar to the result observed in another 

European city – Helsinki, where the weekly variability of traffic-related emissions was reduced by 30% at weekends (Ialongo 

et al. 2020). By subtracting weekends’ emissions from the ones of weekdays (Figure 4c), we found that the dominant NO2 

sources are in east-to-northeast and south-to-southwest regions, where the residential areas and working places are mainly 

located (Figure A- 11). The orographic feature further causes the accumulation of NO2 in these regions (see Section 3.2). The 270 

wind-assigned anomalies and correlation plots are presented in Figure A- 12. Note that slightly higher scattering in the results 

at weekends is mostly due to fewer data points. 
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Figure 4: same figures as Figure 3, but for the Madrid area. Number in each figure’s title presents the total emission rate in the 
dashed rectangle (70 ×70 km2). 275 

3.4 COVID-19 lockdown effect 

The current global pandemic caused by coronavirus disease (COVID-19) largely impacts human life and the economic 

situation. To minimize the spread of the COVID-19 SARS-CoV-2 virus, countries around the world have enforced lockdown 

measures. Recent studies have reported decreasing NOx concentrations in the atmosphere due to lockdown, and additional 

reductions with more stringent lockdown, such as in Spain (Abdelsattar et al., 2021; Barré et al., 2021; Sun et al., 2021; Liu et 280 

al., 2021; Vîrghileanu et al., 2020; Keller et al., 2021; Bauwens et al., 2020; Fan et al., 2020; Huang and Sun, 2020). An 

approximate decrease of 40% in NO2 is observed by OMI in Riyadh (Abdelsattar et al., 2021). Bauwens et al. (2020) illustrates 

the impact of COVID outbreak on NO2 based on TROPOMI and OMI observations. The averaged NO2 column decreases by 

~29% derived from TROPOMI observations and by ~21% derived from OMI observations in Madrid during lockdown period 

(Bauwens et al., 2020). The NO2 reductions are strongly related with the lockdown policy and is also presented in the study 285 

by Levelt et al. (2022) and it reports that NO2 column amounts decreased by 14 % - 63 % in megacities globally. A sharp 

reduction of 54% in the NO2 tropospheric column amounts was observed in Madrid during the lockdown period and 36% 

during the transition period. The time series of TROPOMI tropospheric NO2 columns displays an obvious decrease since the 

lockdown started in early 2020 (Figure A- 13). The NO2 amounts reach the lowest values in April 2020 and in the meanwhile 

they are gradually back to normal levels as in previous years. We analyze the same seasonal period in 2019 (before lockdown, 290 

March – June 2019) and in 2020 (during the lockdown, March – June 2020) for Riyadh and Madrid. 

Figure 5 presents the spatial distribution of estimates before and during the lockdown in Riyadh. NO2 emissions decreased by 

21% from 1.24×1026 molec./s before lockdown to 9.79×1026 molec./s during lockdown. The spatial distribution of estimates 

during lockdown is similar to that at weekend, when significant decreases are observed along Highway 65 and emissions are 

generally reduced in the city center and in the areas where the cement plant and power plants are located. 295 
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Figure 5: Averaged ML estimated emission strengths before lockdown (March – June 2019) and during lockdown (March – June 
2020). Number in each figure’s title presents the total emission rate. 

The NO2 emission estimate in the urban area of Madrid is about 1.04×1025 molec./s before lockdown and it decreases by 60% 

to 4.04×1024 molec./s during the lockdown period (Figure 6). This result fits well with the recent studies (Baldasano, 2020; 300 

Barré et al., 2021; Guevara et al., 2021). European Environment Agency (EEA) also reported a 56% - 72% reduction in NO2 

concentrations in Madrid based on in situ monitoring data (EEA report, 2020). Even compared to the emission at weekends, 

the lockdown emission was reduced by 43%. The regions with high NO2 emissions are constrained only in the east of Madrid, 

where there are residential areas. Note that the lockdown spatial pattern reproduces that observed at weekends during the whole 

period (Figure 4b), corroborating that NO2 emissions are highly related to transportation. Civil aviation was also restricted 305 

during the lockdown and thus less NO2 emission strength is observed close to the airport. The reduction is larger than that in 

Riyadh as Madrid was under a very strict lockdown policy.  

 
Figure 6: same figures as Figure 5, but for the Madrid area. Number in each figure’s title presents the total emission rate in the 
dashed rectangle (70 ×70 km2). 310 
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4. Uncertainty analysis  

4.1 Different choices for 𝛼 and 𝜏 

The angle (𝛼) of the emission cone is an empirical value, so as the lifetime/decay time (𝜏) for NO2. They can introduce 

uncertainties and thus, different values for 𝛼 and 𝜏 are used to investigate their impacts on emissions. The spatial patterns of 

the estimates with using different 𝛼 or 𝜏 are quite similar. The absolute values of emission rate increase with the increasing 𝛼 315 

(see Figure 7-left). A change of 10º in 𝛼 introduces a difference of less than 3.2%. A decrease of 1.5% is observed when using 

𝛼 = 50º, and an increase of 1.4% is observed for 𝛼 = 70º, as compared to 𝛼 = 60º. The increasing values of 𝜏 result in lower 

estimates (see Figure 7-right). With respect to the result obtained with 𝜏 = 4ℎ, the estimate increases by ~42% for 𝜏 = 3ℎ, 

and it decreases by ~20% for  𝜏 = 5ℎ.  

 320 
Figure 7: Estimated emissions under different cone angle 𝜶 (left) and NO2 lifetime 𝝉 (right) based on TROPOMI data in Riyadh in 
2019. 

4.2 Different choice of wind field segmentation  

The wind field segmentation is decided based on the predominant wind fields. We chose a different segmentation for Riyadh 

(i.e., SW: 45º - 225º and NE for the rest fields) and for Madrid (i.e., SE: 45º - 225 º and NW for the rest fields). The spatial 325 

pattern of the estimates in Riyadh is similar with previous results (8a), whereas some unexpected positive emissions are 

obtained in southwest of Madrid. An increase of 12.5% in Riyadh and 8.6% in Madrid are estimated. Using different wind 

segmentation leads to different spatial distributions of estimates, especially in Madrid where the topography (e.g., land cover, 

altitude) is more complicated than in Riyadh. 
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 330 

Figure 8: (a) similar to Figure 1(d), but using SW-NE wind field segmentation; (b): similar to Figure 2(d), but using N-S wind field 
segmentation. Note that data are based on TROPOMI data in 2019. 

4.3 Different choice of wind field on vertical and horizontal dimension 

The wind speed increases with altitude (Figure A- 2), whereas the distribution of wind directions stays similar. Approximate 

increases of 19% and 39% in wind speed at 100 m are observed in Riyadh and Madrid, respectively. The estimates change 335 

slightly in both cities, as the wind-assigned method compensate the increases on both wind field. 

To limit the computational effort, we simplified the wind field on horizontal distribution to be evenly distributed, i.e., constant 

wind speed and wind direction over the study area at each time gap (1 hour). This might introduce some errors and thus, a full 

year of data in 2020 are used to investigate the uncertainty. The wind direction and speed are interpolated at each pixel center, 

as ERA5 wind is at a spatial resolution of 0.25º × 0.25º. Either the spatial distribution or the estimated emission is similar to 340 

those with constant wind field in both cities. The estimates change by 1.9% in Riyadh and by -1.3% in Madrid. The pixel-to-

pixel difference on average is 6.8×1021 (± 4.6×1023) molec./s in Riyadh and -8.3×1020 (± 4.5×1022) molec./s in Madrid. 

 
Figure 9: Similar to Figure 5(c) and Figure 6(c) but using spatially varying wind field.  
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5. Conclusions 345 

The paper proposes a combination of wind-assigned anomalies and Machine Learning (ML) methods to estimate the average 

tropospheric NO2 emission strengths and its spatial pattern derived from TROPOMI observations from April 2018 to June 

2022. The ADAM algorithm, as one of the Gradient Descent algorithms in ML is chosen because of its high efficiency and 

little cost requirement.  

Riyadh is first used as a test site due to its high population density, remote from other sources, and favorite weather conditions, 350 

which allow for the high availability of space-based observations. Consistent wind-assigned plumes are found based on the 

TROPOMI measurements, so as the ML-trained plumes. A very good correlation between them is obtained with an R2 value 

of 1.0 and a slope of 0.99. The spatial pattern of the estimated emission strengths on the main sources near the city center 

agrees with the results from Beirle et al. (2019) as well. Several NO2 emission hotspots, associated with the cement plant and 

power plants, are discernible. The total emission rate over the whole area is about 1.04×1026 molec./s, which is higher than the 355 

previous study (8.5×1025 molec./s, Beirle et al., 2019). This difference might be due to the different study period and methods. 

These results suggest that our combined method works properly and is reliable.  

We extended this method to the (mega)city of Madrid, Spain. The averaged NO2 emission estimates are 1.80×1025 molec./s in 

total and the dominant emitting area is around the city center, especially in the north-to-northeast and south-to-southeast 

regions. The region with the international Madrid-Barajas Airport in the northeast is also distinguished with high emission 360 

rates, as aircraft exhaust emissions are highly enriched in NO2 during taxiing and taking off (Herndon et al., 2004). The 

orographic feature also causes NO2 accumulation in the NE-SW regions, along the Guadarrama mountains range.  

NO2 emission is highly related to transportation and thus, NO2 emission changes between weekdays and weekends are 

investigated as well. Different weekly cycles of NO2 are observed in Riyadh and Madrid. The lowest NO2 column abundances 

are observed on Fridays, followed by the ones on Saturdays in Riyadh. The NO2 emissions were reduced by 24% at weekends, 365 

and high reductions are found near the city center and the areas along Highway 65. Regions in the west and southwest of 

Madrid are not main NO2 emitting areas at weekends but are on weekdays, indicating that many working places are located in 

the southwest. The estimates are 9.85×1024 molec./s on weekdays and 7.24×1024 molec./s at weekends in the urban area (70 

km × 70 km2). This 26% reduction in NO2 emission is mainly due to commuting from home to the city center and working 

places. 370 

Many studies have demonstrated that the lockdown policy response to the COVID-19 pandemic reduces NO2 emissions (Barré 

et al., 2021; Sun et al., 2021; Liu et al., 2021; Vîrghileanu et al., 2020; Keller et al., 2021; Bauwens et al., 2020; Fan et al., 

2020; Huang and Sun, 2020). Countries like Spain imposed a very stringent lockdown since March 2020. An average reduction 

of 60% in NO2 emissions is observed during lockdown (March – June 2020) compared to the period of March – June 2019. 

The regions with dominant NO2 emissions during lockdown are limited in the east of Madrid where there are residential areas. 375 
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Reduced NO2 emissions (27%) were observed in Riyadh, especially near the city center. This reduction is much smaller than 

that in Madrid, as the latter was under a very strict lockdown regulation.  

Our easy-to-apply method has successfully probed its consistency and reliability in two contrasting examples (Riyadh and 

Madrid). However, application in some areas with complicated emission source distribution and topography might not be 

feasible. The varying decay time for short-lived species in different regions and seasons is another important factor affecting 380 

the estimates of emissions. We plan to include these refinements in future studies to reduce the uncertainties of both the wind-

assigned anomaly method and the ML approach. The spatial distributions of estimates generally show checkerboard-like 

structures. We assume that these structures indicate that the inversion attempts to resolve fine structure which is poorly 

constrained by the observation. When we converge to a stable solution with minimal bias, we are confident that spatially 

averaged retrieved emissions are more realistic. It is our hope that the method presented here can be applied to other key gases 385 

such as carbon dioxide or methane for which the background concentration needs to be considered, and in other regions. 

Meanwhile, the powerful ML framework might allow to investigate related questions, perhaps a joint estimation of NO2 

lifetime and emission strength would be possible. 

 

Data availability. The TROPOMI data set is publicly available from https://scihub.copernicus.eu/ (last access: 18 January 390 

2022; ESA, 2020). The access and use of any Copernicus Sentinel data available through the Copernicus Open Access Hub 

are governed by the legal notice on the use of Copernicus Sentinel Data and Service Information, which is given here: 

https://sentinels.copernicus.eu/documents/247904/690755/Sentinel_Data_Legal_Notice (last access: 18 January 2022; 

European Commission, 2020).  
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Appendix 

 
Figure A- 1: Amount of TROPOMI measurements in each 0.1° grid pixel for Riyadh and Madrid during May 2018 – June 2022. 

 

 415 
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Figure A- 2: Windrose of ERA5 model wind at 10 m and 100 m in the daytime during TROPOMI overpasses, and wind speed at two 
levels in Riyadh ((a)-(c)), and in Madrid ((d)-(f)). 

 
Figure A- 3: Examples of wind-assigned plume for the point source at 24.65ºN, 46.85ºE and at 25.05ºN, 46.85ºE in Riyadh. 420 
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Figure A- 4: left: Ratio of  emission rates derived from Machine learning method and the CAMS inventory in 2020, right: correlation 
between the amount of measurements in a single pixel and the ratio of emission rates. 

 

 425 

Figure A- 5: yearly averaged estimated NO2 emission rates in Riyadh for the years 2018 to 2022. Note that data in 2018 started 
from May and data in 2022 ended in June. 
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Figure A- 6: similar to Figure A- 5, but for the Madrid area. 430 

 
Figure A- 7: TROPOMI tropospheric NO2 column for narrow wind regimes covering (a) NE1/2 (0º-90º), (b) SW1/2 (180º-270º), (c) 
NW1/2 (270º-360º), and (d) SE1/2 (90º-180º), respectively. 
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Figure A- 8: TROPOMI tropospheric NO2 column during week in Riyadh. Number in the figures’ title represents the average 435 
column abundances over the area. 

 

 
Figure A- 9: Map for Riyadh. Area in the white rectangle represents the study area. © Esri © Google Maps 
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 440 
Figure A- 10: same as Figure A- 8, but for the Madrid area. 
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Figure A- 11: Map of the study area (up) © Esri © Google Maps and zoom version (bottom, 

https://land.copernicus.eu/local/urban-atlas/urban-atlas-2018, last access: 25 April 2022) for Madrid.  445 
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Figure A- 12: Wind-assigned plumes derived from TROPOMI observations (a-b), ML method (c-d), and their correlation plots (e-450 
f) on weekdays (left) and at weekends (right) in Madrid. 

 

 
Figure A- 13: Time series of TROPOMI tropospheric NO2 columns in terms of daily, 10-day and monthly mean in (a) Riyadh and 
(b) Madrid. Areas marked with lavender and orange colors are the study periods in 2019 and 2020, respectively. The annotations 455 
on top of each figure represent the different versions of data sets. 
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Figure A- 14: Time series of TROPOMI and OMI tropospheric NO2 columns in terms of 10-day mean in (a) Riyadh and (b) Madrid. 460 
Areas marked with lavender and orange colors are the study periods in 2019 and 2020, respectively 
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Figure A- 15: Correlation plot between TROPOMI and OMI tropospheric NO2 columns. 

 

 465 
Figure A- 16: Estimated emission rates in Riyadh for different angles (𝜶) of the emission cone from 30º to 90º. 
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Figure A- 17: Estimated emission rates in Riyadh for different decay hour (𝝉) from 1h to 7h. Note that the colorbars is different than 
that in Figure 1(d) for covering larger range. 470 
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