Reducing errors on estimates of the carbon uptake period based on time series of atmospheric CO₂

Theertha Kariyathan1,2, Wouter Peters2, Julia Marshall3, Ana Bastos1, Pieter Tans4, and Markus Reichstein1
1Max Planck Institute for Biogeochemistry
2Wageningen University and Research
3Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
4Institute of Arctic and Alpine Research, U. of Colorado, Boulder, CO 80309
Correspondence: Theertha Kariyathan (tkariya@bge-jena.mpg.de)

Abstract. Long, high-quality time series measurements of atmospheric greenhouse gases show interannual variability in the measured seasonal cycles. These changes can be analyzed to better understand the carbon cycle and the impact of climate drivers. However, nearly all discrete measurement records contain gaps and have noise due to the influence of local fluxes or synoptic variability. To facilitate analysis, filtering and curve-fitting techniques are often applied to these time series. Previous studies have recognized that there is an inherent uncertainty associated with this curve-fitting approach and the choice of a given mathematical method might introduce biases. Since uncertainties are seldom propagated to the metrics under study, this can lead to misinterpretation of the signal. In this study, we present a novel curve fitting method and use an ensemble-based approach that allows to quantify the uncertainty of the metrics to be quantified. Derived seasonal cycle metrics. We apply it here to Northern Hemisphere CO₂ dry air mole fraction time series from flask measurements in the Northern Hemisphere. We use this ensemble-based approach to analyze different seasonal cycle metrics, namely the onset, termination, and duration of the carbon uptake period (CUP), i.e., the time of the year when the CO₂ uptake is greater than the CO₂ release: its onset, termination and duration. Previous studies have diagnosed CUP based on the dates on which the detrended, zero-centered seasonal cycle curve switches from positive to negative (the downward zero-crossing date DZCD) and vice versa (upward zero-crossing date UZCD). However, we find that the upward zero-crossing date the UZCD is sensitive to the skewness of the CO₂ seasonal cycle during the net carbon release period. Hence, we propose an alternative method proposed by Barlow et al. (2015) to estimate the onset and termination of the CUP based on a threshold defined in terms of the first-derivative of the CO₂ seasonal cycle (First derivative threshold (FDT) method). Using the ensemble approach we arrive at a tighter constraint to the threshold by considering the annual uncertainty, we call this ensemble of first derivative (EFD) method. Further, using the ensemble-based EFD approach and an additional curve fitting algorithm, we show that (a) the uncertainty of the studied metrics is smaller using the FDT method than when estimated using the timing of the zero-crossing dates (ZCD), and (b) the onset and termination dates derived with the FDT method provide more robust results, irrespective of the curve-fitting method applied to the data. The code is made freely available under a Creative Commons-BY license, along with the documentation in this paper (https://doi.org/10.17617/3.ZKX9JS).
1 Introduction

Ongoing in-situ measurements of the atmospheric CO₂ mixing ratio at Mauna Loa (MLO), initiated by Charles D. Keeling in 1958, have revealed an increase in CO₂ mole fraction in the atmosphere. The increase in atmospheric CO₂ due to release of carbon from fossil fuel burning and land-use change is buffered by net CO₂ uptake by the ocean and land biosphere CO₂ uptake (Keeling, 1960). Since then, many studies have used high precision measurements of greenhouse gases at MLO and other sites across the globe to better understand the role of CO₂ in global climate (e.g. Langenfelds et al., 2002; Keeling et al., 2017; Barlow et al., 2016). The analysis of such long, high-quality atmospheric time series helps to identify and isolate the long-term trends, inter-annual variability and seasonality of climatically important greenhouse gases (Thoning et al., 1989). However, these measurement records contain gaps and are influenced by local fluxes or synoptic scale variability, which induce noise on the underlying climate signals. Hence the use of filtering and curve-fitting techniques to obtain smooth and continuous data has been an inevitable part of such studies (Trivett et al., 1989). The choice of mathematical method for data processing can, however introduce biases that can result in misinterpretation of the signal (Nakazawa et al., 1997; Tans et al., 1989; Pickers and Manning, 2015).

Curve-fitting methods are often used to pre-process atmospheric time series for analysis. Three examples are found in the commonly-used software packages, HPspline (Bacastow et al., 1985), CCGCRV (Thoning et al., 1989) and STL (Cleveland et al., 1990). Each of these methods produce a gap-filled time series that contains the important features of the atmospheric record, however the resultant fitted curves vary significantly from each other owing to differences in their response to gaps and outliers in the original data. Pickers and Manning (2015) addressed the sensitivity of scientific conclusions to the curve-fitting method used, by repeating a scientific study (Piao et al., 2008) using two additional curve-fitting method. Both studies looked at changes in the CO₂ seasonal cycle zero-crossing date (ZCD) for ten mid-to-high-latitude, Northern Hemisphere stations. The re-analysis by Pickers and Manning (2015) found that the major conclusion of Piao et al. (2008) was robust, but that inferences at individual stations depended on the curve fitting method. This was corroborated by Barlow et al. (2015) who used a wavelet-based curve fitting method to illustrate the sensitivity of various key aspects of the seasonal cycle of CO₂ time series to the curve fitting approach. Thus, the impact of bias introduced by data processing methods can vary based on the data set used and the type of analyses performed. Each method has its strengths and weaknesses; hence Pickers and Manning (2015) argued that data must be analyzed with multiple approaches to ensure that results are robust and free from bias. Despite this recommendation, studies that focus on metrics of time series such as the zero crossing dates ZCD or seasonal cycle amplitude usually use a single curve-fitting method for analysis (e.g. Park et al., 2019; Piao et al., 2018), which can lead to differences in the conclusions that are drawn. An example is the disagreement in the direction of the trend of the CO₂ seasonal cycle amplitude (SCA) at Alert, Canada between Chan and Wong (1990) and Keeling et al. (1996), as shown by Pickers and Manning (2015).
The shape of the seasonal cycle changes from year to year, and the CUP of the seasonal cycle can be traced as a relative phase change at other points (Barichivich et al., 2012). However, if the shape of the seasonal cycle does not change significantly, a change in the phase at one point (e.g., maximum) of the seasonal cycle, respectively. However, the CO₂-seasontal cycle at many observational sites is characterized by a flat peak or multiple peaks in winter, making it difficult to estimate the start of the CUP by using the maximum of the seasonal cycle. To avoid this problem, previous studies have used the comparatively more unambiguous zero-crossing dates to determine ZCD to approximate the timing and duration of the CUP (e.g., Piao et al., 2008). The zero-crossing dates ZCD are the two dates in the seasonal cycle when the detrended CO₂ curve crosses the zero-line (an imaginary line passing through 0 ppm in the detrended CO₂ seasonal cycle). Note that this period starts later than the seasonal spring maximum and ends later than the summer minimum, i.e., it is shifted compared to the CUP definition above. This approximation is thus based on the assumption that, if the shape of the seasonal cycle does not change significantly, a change in the phase at one point (e.g., maximum) of the seasonal cycle can be traced as a relative phase change at other points (Barichivich et al., 2012). However, this assumption breaks down if the shape of the seasonal cycle changes from year to year, and the CUP estimated using the zero-crossing dates approximated using the ZCD may be erroneous (Barlow et al., 2015). This is illustrated in Fig. 1.

In this study, we present a novel ensemble-based method to quantify the uncertainty in the CO₂ release. Barlow et al. (2015) show that using the time-derivative of a time-series can provide a more robust estimate of the key dates that define the CUP, compared to the conventional use of ZCD. A threshold of this time-derivative as a fraction of peak uptake in mid-summer was shown a robust metric to define both start (threshold 25%) and end (threshold 0%) of the CUP in their study. They used a synthetic
data experiment applying a linear trend with substantial interannual variations in amplitude (± 25%) and CUP (±10 days) to a dCO₂ seasonal cycle metrics, arising from curve fitting data with noise and data gaps. /dt time series, to show that in the absence of transport, their method can capture the prescribed linear trend of the CUP. We expand on that work here by additionally creating an ensemble of fitted time-series using residual bootstrapping on a loess-fit. For each ensemble member we calculate the first derivative, allowing us to determine the timing of the various start, end, and peak moments in the CUP, its duration, and the individual uncertainty on each metric for each individual year in the time series. We call this the ensemble of first derivatives method (EFD method). The EFD method accounts for the random and non-linear changes from year to year in the CO₂ time-series, allowing a better handling of outlier years (in mean or uncertainty), which potentially improves trend-analyses of seasonal cycle changes. We apply the EFD method to long time-series and a set of stations covering the low, mid and high latitudes.

We first use this method to show that the zero crossing dates, the EFD method to confirm that the CO₂ ZCD are not the best proxy for determining the timing and duration of the CUP, when, also when the newly derived uncertainty is considered, and we propose an alternative method using a threshold defined by the first derivative. We then demonstrate that the EFD method is independent of the skewness of the seasonal cycle, which we refer to as the first-derivative threshold method (FDT method). The FDT method is independent of the skewness of and we optimize the threshold for the CUP onset and termination based on the first derivative. The derived uncertainty also reveals that the robustness of various metrics are site-dependent, with high-latitudes being sensitive to the seasonal cycle and it can better constrain the timing and duration of the CUP than the maximum (also found in Barlow et al. (2015)), and low latitude sites sensitive to the upward zero-crossing method. Next we test if the ensemble approach-date (UZCD) of the CO₂ seasonal cycle. We also tested if the EFD method is sensitive to the specific curve-fitting method applied by fitting the data using with the commonly-used CCGCRV method, which is a frequency-domain-based filter, similar to the wavelet transform approach of Barlow et al. (2015). The measurements used in this study are presented in Sect. 2 and the steps for the uncertainty estimate using an ensemble-based approach and the FDT method for estimating the timing and duration of the CUP are EFD-method is presented in Sect. 3. The results and the discussion on the findings can be found in Sect. 4 and Sect. 5 respectively, and Sect. 6 summarizes the findings of this study.

2 Data

We use discrete CO₂ dry air mole fraction from flask measurements from ten observational sites of the NOAA/ESRL network (Dlugokencky et al., 2019, 2020), ranging from 19°N to 82°N latitude. Table 1 lists the station names, station codes, their locations and the studied time period for each station (longer time records are available for MLO and NWR but these years have large data gaps of an year or more hence are not considered for analysis). At these observational sites, air is sampled in glass flasks under background conditions, hence the dry air mole fractions from the air samples are representative of the zonal mean atmospheric composition (Langenfelds et al., 2002). These air samples are collected weekly in pairs for quality
Table 1. Observational sites of NOAA/ESRL network used in this study

<table>
<thead>
<tr>
<th>Station name</th>
<th>Station code</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Time period</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mauna Loa, Hawaii, United States</td>
<td>MLO</td>
<td>19.47°N</td>
<td>155.57°W</td>
<td>1977-2017</td>
<td>(Dlugokencky et al., 2019)</td>
</tr>
<tr>
<td>Assekrem, Algeria</td>
<td>ASK</td>
<td>23.26°N</td>
<td>5.63°E</td>
<td>1996-2018</td>
<td>(Dlugokencky et al., 2020)</td>
</tr>
<tr>
<td>Sand Island, Midway, United States</td>
<td>MID</td>
<td>28.21°N</td>
<td>177.36°W</td>
<td>1986-2018</td>
<td>(Dlugokencky et al., 2020)</td>
</tr>
<tr>
<td>Weizmann Institute of Science at the Arava Institute,</td>
<td>WIS</td>
<td>29.96°N</td>
<td>35.06°E</td>
<td>1996-2018</td>
<td>(Dlugokencky et al., 2020)</td>
</tr>
<tr>
<td>Ketura, Israel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terceira Island, Azores, Portugal</td>
<td>AZR</td>
<td>38.76°N</td>
<td>27.37°E</td>
<td>1996-2018</td>
<td>(Dlugokencky et al., 2020)</td>
</tr>
<tr>
<td>Niwot Ridge, Colorado, United States</td>
<td>NWR</td>
<td>40.05°N</td>
<td>105.58°W</td>
<td>1976-2018</td>
<td>(Dlugokencky et al., 2020)</td>
</tr>
<tr>
<td>Shemya Island, Alaska, United States</td>
<td>SHM</td>
<td>52.71°N</td>
<td>174.12°E</td>
<td>1986-2018</td>
<td>(Dlugokencky et al., 2020)</td>
</tr>
<tr>
<td>Barrow Atmospheric Baseline Observatory, United States</td>
<td>BRW</td>
<td>71.29°N</td>
<td>156.61°W</td>
<td>1972-2017</td>
<td>(Dlugokencky et al., 2019)</td>
</tr>
<tr>
<td>Ny-Alesund, Svalbard, Norway and Sweden</td>
<td>ZEP</td>
<td>78.90°N</td>
<td>11.88°E</td>
<td>1995-2018</td>
<td>(Dlugokencky et al., 2020)</td>
</tr>
<tr>
<td>Alert, Nunavut, Canada</td>
<td>ALT</td>
<td>82.50°N</td>
<td>62.50°W</td>
<td>1986-2017</td>
<td>(Dlugokencky et al., 2019)</td>
</tr>
</tbody>
</table>

control, and pairs with a difference less than 0.5 ppm between the two samples are flagged as good-quality data ("good pairs") (Dlugokencky et al., 2019, 2020). For our analysis, we use the mean value of each pair considered as "good pairs" and exclude low-quality measurements, which introduces irregular gaps in the data. The mean seasonal cycle of the higher latitude stations (above 45°N latitude, i.e. SHM, BRW, ZEP, and ALT) is characterized by a broader maxima or multiple peaks in winter. Some lower latitude stations like MLO, MID and NWR have distinct seasonal cycles with clearly defined maxima, while others, like ASK, AZR and WIS, have broader peaks — (Fig. 2).

3 Method

3.1 Curve Loess fitting and ensemble generation

The time series of CO₂ can be described as the superposition of different modes of variability, acting at different frequencies. A standard approach to extract these modes of variability from the observations ($X_{\text{obs}}(t)$) is to define:

$$X_{\text{obs}}(t) = X_{\text{trend}}(t) + X_{\text{seas}}(t) + R(t)$$ \hspace{1cm} (1)

where $X_{\text{trend}}(t)$ is the low frequency component of the data, which captures variability on multi-annual time scales; $X_{\text{seas}}(t)$ represents the seasonal cycle, which can be expressed in terms of a series of harmonics; and $R(t)$ captures the remaining variability (Cleveland et al., 1990). The data used in this study are provided at approximately weekly time steps and includes gaps, as described above. We fill gaps and estimate daily values by fitting a series of curves described in Eq. (1) and use residual bootstrapping (Kreiss and Lahiri, 2012) to generate an ensemble of 500 fitted curves consistent with the observational data for uncertainty estimation. Figure 3 describes the steps involved in curve-fitting and uncertainty estimation. Each step is described...
Figure 2. Mean seasonal cycle of CO₂ at studied stations. Note that this seasonal cycle is derived from the fitted loess-curves and excludes the observed mean, trend, and high-frequency variations in CO₂.

Figure 3. Flow diagram explaining the processes of curve fitting (purple boxes) and ensemble generation (blue boxes).
First, we separate the long-term trend and mean seasonal cycles \((X_{\text{trend}}(t) + X_{\text{seas}}(t))\) with a second-degree polynomial and four harmonic sinusoidal functions respectively (Bacastow et al., 1985). The remaining variability, \(R(t)\), is referred to as the residuals, which we verified to not show autocorrelation. We then fit a smooth curve to the residuals using the “loess” (local regression) method, which smooths the data, taking into account the gap-lengths in the data. The “Caret” package (Kuhn, 2020) in R provides a method for optimizing the smoothing parameter for the “loess” regression using a mathematical method called \(k\)-fold cross validation. The optimization is based on five repetitions of ten fold (\(k=10\)) cross-validation, where the sub-samples are randomly sampled with restitution. The optimized smoothing parameters are then used to fit a smooth curve to the residuals \((R(t))\). The resulting smoothed residuals \((R_{s}(t))\), which contain the remaining variability, are added back to the other components \((X_{\text{trend}}(t) + X_{\text{seas}}(t))\). This produces a continuous and smooth data set that preserves short-term variations.

Next, we...

3.2 CCGCRV fitting

CCGCRV is a curve fitting method developed by Kirk Thoning and Pieter Tans (Global Monitoring Laboratory (GML), NOAA) in the late 1980s. The method fits a combination of polynomials and annual harmonics to the data to approximate the long-term variation and seasonal cycle. The short-term and interannual variability are retained by filtering the residuals from the fit using a low-pass filter. A detailed description of the routines used for fitting the data and filtering of residual can be found in Thoning et al. (1989). In this study we use the C language version of CCGCRV, freely available at: ftp://ftp.cmdl.noaa.gov/pub/john/ccgcrv/ for curve-fitting and finally obtaining a detrended time-series. The values chosen for the input parameters were taken from Table 2 of Pickers and Manning (2015), who optimized them by fitting artificial data (short-term cut-off period \(f_s\); 250 days; long-term cut-off period \(f_l\); 1500 days; number of harmonic terms: 4; degree of polynomial function: 3).

3.3 Ensemble generation

Further, for uncertainty estimation, we generate 500 bootstrap samples from the curve fitted data. For this, we calculate the difference between the smoothed data and the observational data which gives the new set of residuals for generating bootstrap samples \((R_{b}(t))\). These residuals \((R_{b}(t))\) are resampled (with replacement) and added to the observational data initial fitted curve, producing a resampled time series. The resampled time series is processed as described in the preceding paragraph sections to obtain a continuous and smooth data set with daily values. From this smoothed time series, a quadratic polynomial is subtracted to remove the long-term trend, resulting in a de-trended, zero-centered time series. The residual resampling and further processing are iterated 500 times to create an ensemble of 500 slightly different de-trended time series (bootstrap samples) which are all consistent with the observations (Fig 3 shows these steps for loess fitting). The classical bootstrapping method (where the observations are resampled) cannot be applied directly to a time series data as the resampling step fails to replicate the time-dependent structure. Hence, we use residual bootstrapping where bootstrapping is applied to the residuals obtained from fitting a model to the raw data. The resampled time series thus show the same time dependence as the observational data, but are produced from the fitted curve and a random component from the residual resampling.
The ensemble of fitted curves is used to constrain the uncertainty in seasonal cycle metrics estimates. If the estimated metrics differ largely across the bootstrap samples it indicates that the metric estimate is influenced by the inherent uncertainty in extracting a definitive seasonal cycle, by curve fitting the discrete data. Hence, interpreting these metrics without accounting for this uncertainty can be misleading.

3.4 First-derivative threshold method for estimating the timing and duration

Ensemble of the CUP first derivative (EFD) method

At high-latitude measuring stations the CUP extends from the seasonal cycle maximum in spring to the seasonal cycle minimum in late summer (Barichivich et al., 2012), driven by CO$_2$ uptake by ecosystems in the Northern Hemisphere. There is large uncertainty in associating the seasonal cycle maximum with the onset of the CUP, and the definition of the maximum is very sensitive to the curve-fitting method (Barichivich et al., 2012). The uncertainty in associating the timing of a maximum to the start of the CUP is larger than associating it with the zero-crossing dates ZCD, especially if the seasonal cycle is characterized by a fairly flat peak, or multiple peaks during the winter (Piao et al., 2008). Hence, previous studies have used the zero-crossing dates ZCD and their difference as proxies for the onset, termination and duration of the CUP, respectively. However, the period between the zero-crossing dates ZCD includes the CO$_2$ release period that does not directly affect the CUP (Fig. 1). Therefore, we propose an alternate method to use the alternate method proposed by Barlow et al. (2015) to determine the timing and duration of the CUP from the first derivative of the mole fraction data, which more closely corresponds to the spring maximum and the late summer minimum times. This method will be referred to as the first-derivative threshold method (FDT method). Finally, we estimate the uncertainty in the different CUP estimates by using the spread of the ensemble members.

For each ensemble member we calculate the first derivative of the time series as a proxy for the rate of CO$_2$ uptake or release. The first derivative is at its minimum when CO$_2$ uptake is most intense and reaches zero at the peak or trough of the seasonal cycle, i.e. when the sign of the integrated large-scale CO$_2$ flux changes. However, a peak or a trough (as indicated by zero first-derivative Fig. 4) might not correspond to the spring maximum or late summer minimum if the peak is flat or there are multiple peaks in winter. Our aim is to define the timing of the CUP in such a way should be such that it closely corresponds to the timing of the spring maximum and late summer minimum.

To determine the onset and termination of the CUP from CO$_2$ mole fractions, we define a threshold, analogous to the way the onset and termination of the growing season are determined from measurements of the CO$_2$ fluxes (Wang et al., 2019) based on an ensemble of the first derivative of the time-series. We define the threshold in terms of the first derivative of the CO$_2$ dry air mole fraction measurements, as the analogous to Barlow et al. (2015). The first derivative can be seen as a proxy for the flux (not an exact correspondence, as the seasonal cycle at each site is affected by the atmospheric transport). For the data points before and after the date of the first derivative minimum (i.e. peak uptake), we identify the points when the first derivative value is below a given threshold (Fig. 4). The threshold is defined as X% of the first derivative minimum and its value is optimized...
Figure 4. Schematic diagram showing the timing of the CUP as determined by the first derivative method. The timing is marked by a threshold, defined in terms of the first derivative of the CO$_2$ seasonal cycle. It is defined as X% of the first derivative minimum. The value of X is varied from 0% to 20% and the corresponding threshold value is marked on the seasonal cycle first derivative with different colored points. Their timing then defines the timing of the CUP for the different threshold values. The day of the onset and the termination of the CUP are defined by the points before and after the first derivative minimum respectively. The squares and circles denote the onset and threshold calculated with different thresholds.

by testing values ranging from 0% to 20%. These dates correspond, therefore, to X is determined separately for the onset and termination of the CUP and their difference then represents the duration of the CUP. The value of X is chosen to minimize The onset/termination of CUP is defined as the closest point to the threshold value (as the rate of uptake towards the beginning and end of the CUP approaches zero) while keeping before/after the first derivative minimum (Fig. 4). The threshold for the onset and termination is chosen such that 1) the uncertainty in timing the timing of onset and termination is minimized across the ensemble members small and 2) it represents as long a period as possible within the CUP. We varied the value of the parameter X until we find the optimum threshold. When X is 0%, it corresponds to the time period between the seasonal cycle maximum and minimum, including the full CUP but additional non-CUP periods may be erroneously included due to multiple peaks or flat maxima. By increasing the value of X we remove this error, but can also truncate part of the “actual” CUP. Hence, we try to select a low value of X while reducing the uncertainty in the timing of the CUP.

3.5 CCGCRV fitting and ensemble generation

CCGCRV is a curve-fitting method developed by Kirk-Thoning and Pieter Tans (Global Monitoring Laboratory (GML), NOAA) in the late 1980s. The method fits a combination of polynomials and annual harmonics to the data to approximate the long-term variation and seasonal cycle. The short-term and interannual variability are retained by filtering the residuals.
4 Results

The seasonal cycles of atmospheric CO₂ based on observational data and the respective ensemble from our curve fitting approach are shown in Fig. 10 for (a) BRW, where the atmospheric mixing ratios have a nearly constant value from January to May followed by a decrease in CO₂ until a minimum is reached in August, and (b) MLO, where the seasonal cycle is characterized by a maximum in May and a minimum in October. It can be noted that the estimated timing of the seasonal cycle maximum varies greatly across the bootstrap samples in BRW (inset of Fig. 10 (a)), where the seasonal cycle is characterized by a flat peak. An earlier peak is likely to be associated with a flat maximum or multiple peaks that may result from transport (Parazoo et al., 2008) or other fluxes, rather than indicating the onset of the uptake period. The timing of the zero-crossing dates at BRW are consistent across the ensemble members, which suggests that the timing of the zero-crossing dates (upward and downward) is less ambiguous. Other higher latitude sites like ALT, SHM and ZEP and lower latitude sites like ASK, WIZ and AZR exhibit similar seasonal cycles, characterized by flat or multiple peaks and less ambiguous zero-crossing dates. However, the zero-crossing dates are closer to the timing of the maximum uptake and release of CO₂ Manning (1993) than to the actual onset and termination of the CUP. For example, in Fig. 1, the onset of the CUP occurs in June, however the downward zero-crossing occurs in early July, thus the CUP estimate using the zero-crossing dates explicitly excludes the start of the drawdown period. At lower latitude stations like MLO, MID and NWR, we find that the zero-crossing dates can vary across ensemble members as shown in Fig. 7 and in such cases the zero-crossing dates are clearly not the best proxy for estimating the duration of the CUP. This is especially the case for the time series at MLO (Fig. 10 (b)), which shows relatively a large spread of 5 days (median of the ensemble spread, rounded to the nearest integer) in the timing of the upward zero-crossing point across the ensemble members. The seasonal cycle at MLO has well-defined peaks and troughs, hence the timings of the seasonal cycle maximum and minimum show only a small spread of 1 day (median of the ensemble spread, rounded to the nearest integer) across the bootstrap samples (inset of Fig. 10 (b)). In this case, the difference between the seasonal cycle maximum and minimum times gives a more robust estimate of the CUP duration.
Figure 5. Fitted bootstrap samples—Standard deviation (thin yellow lines among ensemble members) representing in the seasonal cycle of a year at onset (a) BRW and termination (b) MLO. The observational data of the corresponding time period are shown with CUP across years. Red and blue curves in (a) and (b) highlight two random ensemble members that differ in shape and are marked. Differently colored boxes represent different threshold values. The threshold value with X equal to 15% and 0% is chosen for defining the timings of onset and termination of the seasonal cycle maximum (t_{max}), minimum (t_{min}), downward zero crossing (t_{down}) and upward zero crossing (t_{up}). With all the corresponding symbols as in the legend studied sites. The vertical bars in the inset show the standard deviation of the labeled metric estimates across the ensemble members.

We estimate the duration of the CUP for each year using different approaches: 1) the difference between the seasonal cycle maximum and minimum times, 2) the difference in the zero crossing dates and 3) using the proposed FDT method. The three methods are then compared to each other. For the FDT method, we find that the onset of the CUP is best defined when the value of the tuning parameter X is set to 15% and that a value X equal to 15% and 0% is chosen for defining the termination of the CUP. We optimized the value of the tuning parameter X such that the threshold value remains close to zero while the uncertainty in the estimate of the onset and termination of the CUP is minimized. Increasing the value of X from 0% to 15% reduces the uncertainty in the estimate of the onset and termination of the CUP. To be on the safe side, we chose 15% to 20% results in a similar variability in the estimated onset (Fig. 5) while truncating more of the “actual” CUP as the threshold (for onset) in all our analyses. Incidentally, previous studies using flux measurements have also used 15% of the maximum GPP as a threshold to define the start of the growing season (e.g. Wang et al., 2019). Given the robustness of this value, we use 15% as the threshold to define the onset of the CUP. The result from varying X in steps between 0%-20%
Figure 6. Boxplots showing the bootstrap standard deviation (i.e. the standard error distribution of estimate) in the timing of the seasonal cycle maximum (t_{max}), minimum (t_{min}), median and upward ($t_{\text{zero up}}$) and downward ($t_{\text{zero down}}$) zero crossing dates. Standard deviation of CUP duration across all years estimated for loess fitted residual bootstrap samples using different methods at the studied sites. The standard deviation in the timing median of the different metrics CUP duration for a given year is estimated from the ensemble spread for that year. In the box plots in this paper, the CUP duration is calculated using three methods, namely: as the box denotes period between the interquartile range seasonal maximum and minimum (IQR for loess max/min), showing the median with a solid line. The whiskers range from $Q_1-1.5\times IQR$ to $Q_3+1.5\times IQR$ for EFD method (loess EFD), where Q_1 and Q_3 are the 25th and 75th percentiles ZCD (loess ZCD).

is shown in Fig 5. When X is set to 0%, the onset then corresponds to the maximum of the seasonal cycle, hence the large spread in CUP-onset at BRW and ALT, with an. The interquartile range of 16.5 and 11.5 days respectively, 15.0 and 11.2 days respectively can be attributed to the multiple peaks or broad peak of the CO$_2$ seasonal cycle at these stations. Compared to the onset, where the data ranges to 35 days (30.8 days shown as whiskers of the boxplots in Fig.5 (a)), the variability in the termination of the CUP is smaller, with a maximum range of 4.2-3.9 days (whiskers of the boxplots in Fig.5 (b)). The standard deviation in the termination is highest at WIS, where the median of the boxplot for different threshold values is within 2.7-2.8 ±0.3-0.2 days. Hence to define the termination, we chose a threshold such that the standard deviation is minimized at WIS, this is achieved when X is set to 0% (the median of the spread is then 2.4-2.5 days).

Standard deviation (among ensemble members) in the onset (a) and termination (b) of the CUP across years. Differently colored boxes represents different threshold values. The threshold value with X equal to 15% and 0% is chosen for defining
We estimate the duration of the CUP for each year using different approaches: 1) the difference between the seasonal cycle maximum and minimum times, 2) the difference in the ZCD and 3) using the EFD method. Figure 6 (a) shows the duration of CUP for all the studied sites, estimated using the three different methods, across the years (median of the 500 ensemble members). The size (interquartile range) of the boxplots varies strongly across the stations for CUP duration calculated using the zero-crossing dates ZCD and the maxima and minima. At the lower latitude stations MLO, MID and NWR, the variability in the CUP duration is larger than at the other stations when using the zero-crossing dates ZCD ("loess ZCD" in Fig. 6 (a)). This is seen in the interquartile range of the "loess ZCD" boxplots, with values of 43, 35 and 34 days for MLO, MID and NWR respectively, which is larger than for the other stations (within 45-15.2 ±5.2-5.1 days). The large interquartile range of the CUP-duration estimates using maximum and minimum times at the high latitude sites BRW (41-46.75 days) and ALT (35-32 days) ("loess max.min" in Fig. 6 (a)) follows mainly from the large variability in the timing of the seasonal cycle maximum across the ensemble members (Fig. 7).

Using the FDT method proposed in this study, we are able to derive a more robust estimation of the CUP duration across When using EFD method, the CUP estimates have least uncertainty across the ensemble members (Table 2). Figure 6-6 (b) compares the standard deviation of the CUP duration across years at all studied sites and methods. The standard deviation is smaller when the EFD method is used for calculating the CUP duration, implying that this metric is better determined.

The interquartile range of standard deviation is largest for the method using the dates of the seasonal cycle maximum and minimum, especially at higher latitude stations like BRW (20-17 days) and ALT (42-13.7 days) and lower latitude station like WIS (48-17 days). This follows from the shape of the seasonal cycle. These results indicate that the duration of the CUP should not be estimated based on the seasonal cycle maximum and minimum at higher latitude stations and other stations where the seasonal cycle has flat or multiple peaks. At MLO, NWR and MID MID and NWR, using the zero-crossing dates to estimate ZCD to approximate the CUP duration results in a larger standard deviation (median of the spread is 5.7, 5.7 and 7.5-5.5, 6.7 and 8.1 days respectively) in the CUP duration estimates relative to the other methods used (the median of the spread for the other methods is within 2-1.75 ±0.6 days), which can be attributed to the change of shape of the seasonal cycle around the upward-zero-crossing point (Fig. 1).

In Fig. 11, we show two random ensemble members (red and blue thick lines), one each from two different years from MLO. The two selected years have a similar CUP duration when estimated using the times of the seasonal cycle maximum and minimum (138 days for the red curve and 135 days for the blue). However, the change of shape following the seasonal cycle minimum results in differences in the timing of the upward zero-crossing point for the two years, leading to differing estimates of the CUP duration when using the zero-crossing method for these years (168 days for the red curve and 188 days for the blue). This suggests that the skewness of the seasonal cycle can affect the interpretation of CUP for individual years by causing variability in the timing of the upward zero-crossing across the ensemble members (Fig. 10(b)) as well as between the years (Fig. 11). Hence, an alternative to the timing of the zero-crossing dates is required to robustly estimate the CUP—Here we
Figure 7. Boxplot showing the distribution bootstrap standard deviation (i.e. the standard error of estimate) in the median CUP duration timing of the seasonal cycle maximum (t_{max}), minimum (t_{min}) and upward (t_{ZCD}), downward (t_{UZCD}) zero crossing dates across all the years estimated for the loess-fitted residual bootstrap samples using different methods at the studied sites. The median standard deviation in the timing of the CUP duration different metrics for a given year is estimated from the ensemble spread for that the year. The CUP duration is calculated using three methods. In the box-plots in this paper, namely, as the period between box denotes the seasonal maximum and minimum interquartile range (loess max. min. IQR), showing the FDT method (loess FDT) median with a solid line. The whiskers range from Q_1-$1.5xIQR$ to Q_3+$1.5xIQR$, where Q_1 and Q_3 are the zero crossing dates (loess zero) 25^{th} and 75^{th} percentiles.

show that using the FDT-EFD method, the uncertainty in the CUP estimate is reduced across all the studied sites. A previous studies that used the zero crossing dates to estimate the CUP (Barichivich et al., 2012; Barlow et al., 2015) also noted the large uncertainty in using the seasonal cycle maximum and minimum (Barichivich et al., 2012) to determine the CUP, which is similar to our result (Fig. 7). Therefore this method will not be considered in further analysis here. However, when CUP duration is estimated using the zero crossing dates, ZCD is used to approximate CUP duration, there is also large uncertainty at the lower latitude stations (e.g. the interquartile range for the ‘loess zero’ boxplot for MLO is 43 days, Fig. 6(a)). Nevertheless, the ZCD is a widely used approach (e.g. Piao et al., 2008; Barichivich et al., 2012, 2013), therefore the EFD method is compared against the ZCD here. The difference between the CUP estimates, using the two different methods (EFD and ZCD) varies from year to year, suggesting that the estimates cannot be corrected by simply adding an offset (Fig. 8). The X-axis range, showing the CUP from ZCD in Fig. 8, has large year-to-year variation in the CUP, with the largest variation at MLO, NWR and ASK. This can be attributed to the variability in the skewness of the seasonal cycle at these sites. The FDT method is not affected by this skewness and therefore gives a more robust estimate of the timing and duration of the CUP even at lower latitudes.
Boxplot showing the distribution of the standard deviation in CUP duration across all years estimated from the loess-fitted residual bootstrap samples using different methods at the studied sites. The standard deviation in CUP duration for a given year is estimated from the ensemble spread for that year. The CUP duration is calculated using three methods as described by the legend (and as in Figure 6). To further test the robustness of the CUP estimates based on the loess-fitted residual bootstrap method, we compared them against the CUP estimates from an ensemble using the CCGCRV curve-fitting method. Comparable results were obtained when the same CUP estimation method (zero crossing dates-ZCD / FDT method-EFD) was applied to the ensemble members using the two different curve-fitting methods (Fig. 9 (a)). The CUP duration calculated from the CCGCRV ensemble using the zero crossing dates and the FDT-ZCD and the EFD method were within the range of their corresponding estimates from the loess-fitted-loess-fitted ensemble members. The mean difference between the median of the "CCG ZCD" and "loess ZCD" estimates in Fig. 9 is 2.3 (a) is 1.1 days, and between the median of "CCG FDT-EFD" and "loess FDT-EFD" estimates the mean difference is only 0.7–0.6. However, the range of boxplots corresponding to “loess ZCD” is larger relative to the “CCG ZCD”, resulting from the curve-fitting details. In the loess method the long-term trend in the data is separated by fitting a quadratic polynomial, the decadal variability in the data is then retained which influences the ZCD leading to more variability in the CUP approximated using the ZCD. The EFD method is less sensitive to the choice of the curve-fitting method (Fig. 9 (a)) shown in the comparable "CCG EFD" and "loess EFD" numbers. Furthermore, we show that for both curve-fitting methods the standard deviation in the CUP duration estimate across the ensemble members is lowest for the FDT-EFD method (Fig. 4) (b)). Thus, the FDT-EFD method produces robust results irrespective of the particular curve fitting method.

The CUP duration approximated using the ZCD shows larger spread for sites like MLO (with an interquartile range of 16 days for CCGCRV fitted data and 43 days for loess fitted data) irrespective of the curve-fitting method used. This is attributed to variability in the UZCD due to the skewness of the seasonal cycle during periods of net release and is similar in both the curve-fitting methods. Furthermore, we find that using the EFD method of CUP estimation resulted in smaller spread across the bootstrap samples for both the curve-fitting methods (Fig. 4). This suggests that the period within the onset and termination defined by the EFD method, which includes only part of the drawdown period, is less variable than the time period between the ZCD, which includes parts of both the drawdown and release periods.

Boxplot showing the distribution of the standard deviation in the CUP duration across years (as described in Fig. 6), estimated for the CCGCRV-fitted residual bootstrap samples using the FDT method (CCG FDT, red), the zero-crossing dates (CCG zero, green), and for the loess-fitted residual bootstrap samples using the FDT method (loess FDT, blue) and the zero-crossing dates (loess zero, purple). Note that six outliers (with values between 16 to 30 days) corresponding to AZR has been removed for ease of visualization.

5 Discussion
This study introduces a novel method for quantifying uncertainty in the CO₂ seasonal cycle curve-fitting by creating multiple residual bootstrap samples. The spread of this ensemble provides a measure of the uncertainty in the estimation of seasonal cycle metrics. The ensemble members are consistent with the observational data; hence we consider the variability of the metric estimate across the ensemble as a measure of uncertainty. The shape of the ensemble approach allows us to quantify the year-to-year change in different seasonal cycle metrics and we see that the sensitivity of these metrics to curve-fitting differs across latitudes and from year to year. Here we show that CO₂ seasonal cycle varies with latitude. For example, the seasonal cycle at MLO has clearly defined peaks while at BRW there is a nearly flat peak followed by a decrease in metric estimates can be strongly sensitive to the method used, hence any method must be thoroughly evaluated before it can be used to derive trends from the atmospheric data. In Barlow et al. (2015) the robustness of the first derivative is tested by evaluating its ability to
Figure 9. Boxplot showing the distribution of the (a) median, (b) standard deviation of the CUP duration across years (as described in Fig. 6), estimated for the CCGCRV-fitted residual bootstrap samples using the EFD-method (CCG EFD, red), the zero-crossing dates ZCD (CCG zeroZCD, green), and for the loess-fitted residual bootstrap samples using the EFD-method (loess EFD, blue) and the zero-crossing dates ZCD (loess zeroZCD, purple). Note that six outliers (with values between 16 to 30 days) corresponding to AZR in (b) has been removed for ease of visualization.

...capture a known trend from a synthetic time series. They found a larger threshold value for the onset (25%, suggesting a shorter CUP in their approach) from a synthetic data trend analysis in which they applied a linear trend with Gaussian variations of the peak uptake date to a CO₂ time series. However, we argue that the data-derived year-to-year uncertainty from our ensemble provides a more robust threshold estimate and we derived a tighter threshold than Barlow et al. (2015) (15% for onset). Further, Barlow et al. (2015) showed that their method can retrieve the true linear trend to within 10-25%. Our EFD-approach provides uncertainty on the year to year variability in the seasonal cycle metrics based on the fitted data residuals, which could be used in a trend analysis to give differential weights to each year. Also, trend analysis on the individual ensemble members would allow uncertainty on the trend to be calculated. Our demonstration of the EFD-method on the CUP could be extended to other metrics that are derived directly from the seasonal cycle in a similar way, for example the peak to trough amplitude, especially when curve-fitting discrete data, at sites with broader or multiple peaks. In a similar fashion, the ensemble-based approach could be used to evaluate a newly proposed method or select an optimal method for evaluating any other metric based on reduced uncertainty.
5.2 **Latitudinal dependence of metrics**

The shape of the CO₂ levels during a short time when the vegetation at high latitudes actively photosynthesizes (Cleveland et al., 1983) is if the seasonal cycle were determined solely by the biospheric fluxes then the onset and termination of the CUP would be marked by the timing of the seasonal cycle maximum and minimum respectively (Barichivich et al., 2012). However at seasonal cycle varies with latitude. At the higher latitude stations the seasonal cycle has a broader peak or multiple peaks in winter and the timing of the seasonal cycle maximum cannot be interpreted as the onset of the CUP. Further, our analysis shows that there is large uncertainty in the timing of the seasonal cycle maximum (Fig. 7) at higher latitude stations which is in agreement with previous studies (e.g. Barichivich et al., 2012; Piao et al., 2008), that have used the (e.g. Barichivich et al., 2012; Piao et al., 2008; Barlow et al., 2015). For example for BRW shown in Fig. 10 (a) the atmospheric mixing ratios have a nearly constant value from January to May followed by a decrease in CO₂ until a minimum is reached in August, also illustrated in Barlow et al., 2015 (their Figure 6). If the seasonal cycle were determined solely by the biospheric fluxes then the onset and termination of the CUP would be marked by the timing of the seasonal cycle maximum and minimum respectively (Barichivich et al., 2012). However, it can be noted that the estimated timing of the zero-crossing dates as an alternative to define the CUP. We find this approach to be less ambiguous for sites seasonal cycle maximum varies greatly across the bootstrap samples in BRW (inset of Fig. 10 (a)), where the seasonal cycle peaks are not clearly defined (Fig. 7) is characterized by a flat peak. An earlier peak is likely to be associated with a flat maximum or multiple peaks that may result from transport (Parazoo et al., 2008) or other fluxes, rather than indicating the onset of the uptake period (Barlow et al., 2015). The timing of the ZCD at BRW are consistent across the ensemble members, which suggests that the timing of the ZCD (upward and downward) is less ambiguous. Other higher latitude sites like ALT, SHM and ZEP and lower latitude sites like ASK, WIZ and AZR exhibit similar seasonal cycles, characterized by flat or multiple peaks and less ambiguous ZCD. However, the ZCD are closer to the timing of the maximum uptake and release of CO₂ (Manning, 1993) than to the actual onset and termination of the CUP. For example, in Fig. 1, the onset of the CUP occurs in June, however the downward zero-crossing occurs in early July, thus the CUP approximated using the ZCD explicitly excludes the start of the drawdown period.

However, at MLO, MID and NWR (Fig. ??), the standard deviation in the estimated CUP duration is the largest when estimated using the zero-crossing dates relative to other methods of estimation. For these sites (At lower latitude stations like MLO, MID and NWR) the timing of the upward zero-crossing date is less certain, with a higher standard deviation relative to the other metrics shown in Fig. 7, we find that the ZCD can vary across ensemble members as shown in Fig. 7 and in such cases the ZCD are not the best proxy for estimating the duration of the CUP. This is especially the case for the time series at MLO (Fig. 10 (b)), which shows relatively a large spread of 5 days (median of the ensemble spread, rounded to the nearest integer) in the timing of the UZCD across the ensemble members. The seasonal cycle at these sites is characterized by clearly defined peaks, hence there is less uncertainty in the timing. MLO has well-defined peaks and troughs, hence the timings of the seasonal cycle maximum and minimum (i.e. smaller standard deviation relative to the other metrics shown in Fig. 7). At such sites the period between seasonal cycle maxima and minima gives a better representation show only a small spread of 1 day.
(median of the ensemble spread, rounded to the nearest integer) across the bootstrap samples (inset of Fig. 10 (b)). In this case, the EFD method gives a more robust estimate of the CUP duration than the period between the zero-crossing dates.

The time period between the zero-crossing dates includes parts of both the CO₂ uptake and release period. However, we find that in addition to having a larger annual uncertainty, the range of CUP values over the study period for the ZCD approach is much larger than that of the EFD approach for some sites (Fig. 8). For example, at MLO the zero-crossing-approximated CUP ranges from 100 to 250 days, corresponding to a period of 3-8 months. Changes in the growing season in the Northern Hemisphere are not expected to be this large. As an example, Jeong et al. (2011) estimated the length of the growing season using satellite measurements of normalized difference vegetation index (NDVI). When integrating over the temperate northern hemisphere, the length of the phenology-derived growing season was found to vary by less than 25 days from 1982-2008. The ZCD approach includes changes in both the latter part of the net uptake period and the early release period, making it difficult to separate the contribution of the net uptake and net release periods to the changes in the CUP estimate. To understand this large spread in CUP, we compare two years with very different CUP values estimated by the ZCD at MLO, 1992 with 192 days and 1998 with 147 days (Fig 11). We find that the difference in the CUP estimate is due to the change in the early release period, whereas the uptake periods are essentially the same. When using the EFD method, by contrast, the two years show similar CUP, 134 and 126 days, respectively. By definition, the EFD is not affected by differences in the net release period, and therefore provides more robust CUP duration estimates.

Atmospheric transport can contribute to the inter-annual variability in CUP estimates while using both the EFD and ZCD. However, the ZCD is influenced by transport variability in both the late uptake and early release periods. Hence, changes in the early release period could be erroneously interpreted as changes in the CUP if defined as the period when the CO₂ uptake is greater than when using the ZCD. Years with extreme CUP approximated by the ZCD suggest that there is reduced net respiration in the early release period, thereby prolonging the time to reach the UZCD. This is determined by the interplay of the CO₂ release. Changes in CO₂ uptake and release processes, which are influenced by physical factors like temperature, soil moisture and solar radiation. For example, in dry conditions there is less respiration by plants and slower decomposition of organic matter in the soil, resulting in reduced CO₂ release after the upward zero-crossing do not directly affect the true CUP duration, unlike the timing of release to the atmosphere (Yan et al., 2018). The rate of decomposition further depends on the snow cover and available detritus content in the minimum, which is more crucial in defining the CUP duration. However, soil following leaf senescence. Furthermore, in the maximum CO₂ early release period, when the solar radiation is not limiting, plants may continue photosynthesize depending on water availability and temperature, leading to reduced net CO₂ uptake occurs within the CUP, hence any change in the maximum uptake (timing and rate) influences the CUP duration more directly. The FDT method we propose for estimating the timing and duration of the CUP directly depends on the maximum CO₂ uptake (timing and rate) and thus is more closely related to release. Thus, in years with extreme CUP as approximated by the ZCD, the actual CUP. Using the first derivative threshold method to define the onset and termination of the CUP, we are able to reduce the spread among ensemble members when calculating the timing and duration of the CUP. We find that by using
CUP duration estimated from the loess-fitted residual bootstrap samples using the timing of the zero-crossing dates (x-axis) against that estimated using the FDT method (y-axis) for different sites (panels). The colored points show estimates for different years and the associated error bars show the spread (median sd) of the ensemble.

Figure 10. Fitted bootstrap samples (thin yellow lines) representing the seasonal cycle of a year at (a) BRW and (b) MLO. The observational data of the corresponding time period are shown with ‘x’. Red and blue curves in (a) and (b) highlight two random ensemble members that differ in shape and are marked with the timings of the seasonal cycle maximum (t_{max}), minimum (t_{min}), downward zero-crossing (t_{DZCD}) and upward zero-crossing (t_{UZCD}) with the corresponding symbols as in the legend. The vertical bars in the inset show the standard deviation of the labeled metric estimates across the ensemble members.

This method, physical processes that affects the release period should be investigated. In comparison to the CUP definition, the approximation by ZCD is also sensitive to variations after the summer minimum, i.e. during the early release period. A more thorough investigation of the sensitivity of the EFD and ZCD to CUP interannual variability would require dedicated modelling experiments, which is beyond the scope of the variability among ensemble members is reduced in comparison to using the zero-crossing dates to estimate the CUP duration. The difference between the CUP estimates using the two different methods varies from year to year, suggesting that the estimates using zero-crossing dates cannot be corrected by simply adding an offset, as can be seen in Fig. 8, current study.

We also tested the different methods for CUP estimation on ensembles created using a different curve fitting approaches, to compare the proposed curve fitting method to a well-established method. The CUP estimates from ensemble members of both curve fitting methods produced comparable results when the same CUP estimation method was applied, which shows that the proposed curve fitting method is robust. The CUP duration estimated using the zero-crossing dates shows larger
Figure 11. Bootstrap samples representing the seasonal cycle of two years (red and blue) with largely different CUP timing when estimated with the two methods (a case taken from Fig 8). Thin red and blue lines represent the ensemble spread for the two years. The thicker red/blue lines represent a random ensemble member from each year and these are marked with the timings of the onset and termination as determined by the EFD method (squares) and the ZCD (diamonds).

spread for sites like MLO (with an interquartile range of 16 days for CCGCRV fitted data and 43 days for loess fitted data) irrespective of the curve-fitting method used. This is attributed to variability in the upward zero-crossing dates due to the skewness of In this study we use the first derivative of the concentration time series as a proxy for the large-scale spatially integrated flux (Barlow et al., 2015), however, this should not be directly translated to the underlying flux fields. The atmospheric transport plays an important role in explaining a significant portion of observed CO₂ variations at various surface stations (e.g. Krol et al., 2018; Fu et al., 2015) that might affect any interpretation of the CUP metrics. An extensive study was carried out by Lintner et al. (2006), confirming the importance of atmospheric transport to account for some of the seasonal cycle during periods of net release and is similar in both the curve fitting methods. Furthermore, we find that using the FDT method of CUP estimation resulted in smaller spread across the bootstrap samples for both the curve fitting methods (Fig. 4). This suggests that the period within the onset and termination defined by the FDT method, which includes only part of the drawdown period, is less variable than the time period between the inter-annual variations in CO₂ observed at Mauna Loa. Murayama et al. (2007) showed how year-to-year changes in the atmospheric transport create significant inter-annual variations in the downward zero-crossing dates, which includes parts of both the drawdown and release periods. Here we have shown how this approach can be used to improve estimate of the CUP date of the CO₂ seasonal cycle that cannot be neglected. Hence, we recommend that while using the EFD method, the contribution of atmospheric transport at the studied background sites should be evaluated before interpreting and relating the CUP metrics to sources/sinks. This could be extended to improve estimates of
The approach presented here could be performed on hourly or daily in-situ data, which are accepted as representing background conditions. However, there is considerable auto-correlation between consecutive days in daily measurements which reduces the degrees of freedom of variability. This limits the number of independent events to five or six per month, which is comparable to the scale of our weekly measurements. We recommend that before applying this approach to in-situ data, a comparison on the number of registered independent events for selected sites be made. In this study we show that CO₂ seasonal cycle metric estimates can be strongly sensitive to the method used, hence any method must be thoroughly evaluated before it can be used to draw conclusions from the data. The metric estimate across the ensemble members provides an uncertainty range, hence allowing to evaluate the robustness of estimated values. Here this approach was used to test a novel method against an existing method for estimating the timing and duration of the CUP. In a similar fashion, this could be used to evaluate a newly proposed method or select an optimal method for evaluating any other metric.

6 Conclusions

We propose Here, we discuss a method for estimating the timing and duration, duration, and uncertainty of the CUP and related metrics from a discrete time series of CO₂ dry air mole fraction data. The uncertainty in the metric estimate metrics is quantified using an ensemble of fitted time series generated through residual bootstrap sampling, a novel addition to the method presented in Barlow et al. (2015). Previous studies have used the timing of the zero-crossing date ZCD as a proxy for defining the CUP, however we find that the timing of the upward zero-crossing point UZCD is influenced by the shape of the seasonal cycle, leading to large variability in the estimated CUP duration across the ensemble members for a given year for some of the studied sites, particularly at lower latitudes. The variability spread in the CUP duration across the ensemble members for a given year is lower (for all the studied sites) when it is (i.e., the annual uncertainty) is lower for all studied sites when calculated using the FDT EFD method. The FDT EFD method depends directly on the timing and rate of the maximum CO₂ uptake; hence the method is not affected by the shape change of the seasonal cycle outside the time period during which the CO₂ uptake is larger than the CO₂ release. With the EFD method the onset and termination is tightly constrained by considering the year-to-year change in the seasonal cycle. To test the impact of the curve-fitting method used, we generated bootstrap samples using both loess-fitted residuals and CCGCRV. The CUP duration estimated using the FDT EFD method results in smaller spread for both curve-fitting methods. Further, for both curve-fitting methods, the standard deviation in the estimates across the ensemble members is smaller when using the FDT EFD method, suggesting that the FDT EFD method gives robust estimates. Thus, the FDT EFD method allows for a robust estimate of the CUP that better reflects the CO₂ drawdown period. Here, estimates from multiple bootstrap samples were used to estimate the uncertainty in the estimate of the CUP onset and duration. This approach could be extended to other metrics of seasonal cycle analysis or to other curve-fitting methods, as was shown with the comparison to the CCGCRV results.
Table 2. The inter-quartile range of the standard deviation in the CUP duration across all years as described in Fig. 226 (b), rounded to the nearest integer (day). Values are given for three different method of estimation for each site.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Time period</th>
<th>sd CUP duration (days)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLO</td>
<td>1977-2017</td>
<td>4-7 zero1-2</td>
<td>max.min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-6</td>
<td>ZCD</td>
</tr>
<tr>
<td>ASK</td>
<td>1996-2018</td>
<td>2-43-4 zero2-5 max.min</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3</td>
<td>ZCD</td>
</tr>
<tr>
<td>MID</td>
<td>1986-2018</td>
<td>5-7 zero1-2</td>
<td>max.min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-6</td>
<td>ZCD</td>
</tr>
<tr>
<td>WIS</td>
<td>1996-2018</td>
<td>5-821-35 zero12-37 max.min</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-42-3</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-6</td>
<td>ZCD</td>
</tr>
<tr>
<td>AZR</td>
<td>1996-2018</td>
<td>5-152-8 zero2-22 max.min</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-63-5</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6-8</td>
<td>ZCD</td>
</tr>
<tr>
<td>NWR</td>
<td>1976-2018</td>
<td>5-102-3 zero2-4 max.min</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2-3</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7-10</td>
<td>ZCD</td>
</tr>
<tr>
<td>SHM</td>
<td>1986-2018</td>
<td>3-64-8 zero3-13 max.min</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-42-3</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td>BRW</td>
<td>1972-2017</td>
<td>3-4 zero7-14 max.min</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-4</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td>ZEP</td>
<td>1995-2018</td>
<td>2-36-9 zero5-11 max.min</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-31-2</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2</td>
<td>ZCD</td>
</tr>
<tr>
<td>ALT</td>
<td>1986-2017</td>
<td>2-38-22 zero3-24 max.min</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-32-3</td>
<td>FDT-EFD method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1-2</td>
<td>ZCD</td>
</tr>
</tbody>
</table>
Data availability. The CO$_2$ dry air mole fraction data for ALT, BRW and MLO is available from (Dlugokencky et al., 2019) and for the other stations used in this study from (Dlugokencky et al., 2020).

6.1

Author contributions. The coding and analysis was performed by TK with contributions of MR. The study was conceptualised by JM, AB and MR with contributions from WP. JM, AB, WP, MR and PT contributed with expert knowledge. The original manuscript was drafted by TK which was reviewed and edited by WP, JM, AB, MR and PT.

Competing interests. The authors declare that they have no conflict of interest.
References

