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Abstract. The Complete Data Fusion is a method that combines independent measurements of atmospheric vertical profiles. 

Recently a new formula for the Complete Data Fusion, which does not contain matrices that can be singular and overcomes 

the generalized inverse approximation used when singular matrices have to be inverted, has been proposed. We show that the 

new formula is a generalization of the original one and analyze the analytical relationship between the two formulas when 

generalized inverse matrices are used for the inversion of singular matrices. We extend the new formula to include 10 

interpolation and coincidence errors, which must be considered when the profiles to be fused are measured on different 

vertical grids and at different times and/or locations. Finally, we use a real measurement of the IASI instrument to show the 

improved performances of the new formula with respect to the original one. 

1 Introduction 

The Complete Data Fusion (CDF) was firstly introduced in Ceccherini et al. (2015) as a new data processing method that 15 

allows to combine several independent measurements of an atmospheric vertical profile, and more generally of any vectorial 

quantity that is retrieved using the optimal estimation method (Rodgers, 2000). It is called ”complete” for its capability of 

considering all the features of the measurements that are being combined, that is not only their errors, but their vertical 

resolution as well. The inputs of the method are the profiles retrieved from the individual measurements using the optimal 

estimation method together with their a priori profiles, averaging kernel matrices (AKMs) and noise covariance matrices 20 

(CMs), and an a priori profile with its CM is used to constrain the fused profile. The output of the method is a single profile 

(the fused profile) with its AKM and CM. The a priori information used to constrain the fused profile can be freely chosen 

independently of the a priori information used in the retrievals of the individual profiles so that the method can also be used 

to change the a priori of a retrieved product. When in the variability range of the results of the individual retrievals the linear 

approximation of the forward models is appropriate, the method is equivalent to the simultaneous retrieval of all the 25 

measurements that are combined (see Appendix of Ceccherini et al. (2015) for the proof). The implementation of the 

simultaneous retrieval requires the integration into a single inversion system of the different radiative transfer models that 

simulate the measurements of the different sensors and the access to the different (Level 1) measurements, implying the use 

of large computational resources specifically developed for each fusion operation. The CDF overcomes these complications 

by combining the Level 2 products separately supplied by the different retrieval processors. 30 

The method has been extended to fuse profiles retrieved on different vertical grids for which an interpolation on a common 

grid is needed and to deal with measurements obtained either at different times or from different platforms and, therefore, 

referred to different true profiles. This extension required the introduction of interpolation and coincidence errors in the 

fusion process (Ceccherini et al., 2018). 

The performance of the method has been studied on ozone profiles retrieved from simulated measurements in the ultraviolet, 35 

visible, and thermal infrared spectral ranges for the Sentinel-4 and Sentinel-5 missions of the Copernicus program (Tirelli et 

al., 2020, Zoppetti et al., 2021). The results of these studies show that the CDF is able to provide products of improved 

quality with respect to the input products in terms of reduced errors and increased number of degrees of freedom. 
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A problem connected with the application of the CDF formula is the presence of the inverse matrices of the noise CMs of the 

input profiles and this implies that the formula can be rigorously applied only when the noise CMs are nonsingular. When 40 

the profiles are retrieved solving ill-posed inverse problems (which is a very common case), this condition is not satisfied. In 

this case, we can still apply the CDF formula replacing the inverse matrices of the noise CMs with the generalized inverse 

matrices (Kalman, 1976), but the result is an approximation. Furthermore, a practical problem in the use of the generalized 

inverse matrices is the definition of the threshold for the eigenvalues for which eigenvalues smaller than this threshold have 

their inverses replaced with zeros. Too small values for this threshold determine significant numeric noise in the products; on 45 

the other hand, too large values of this threshold determine a loss of useful information. 

Recently, following the approach of the Kalman filter (Kalman, 1960, Rodgers, 2000) as done in Schneider et al. (2022), a 

different formula for the CDF has been derived (Ceccherini, 2022) for the fusion of two profiles. This formula contains the 

inverse matrices of the retrieval error CMs, which include both the noise and the smoothing errors, instead of the inverse 

matrices of the noise CMs. Differently from the noise CMs, the retrieval error CMs are always nonsingular matrices and the 50 

new formula can be used without having to resort to the use of generalized inverse matrices. 

In this paper we extend the new formula to the fusion of any number of profiles and show that it is a generalization of the 

original CDF formula given in Ceccherini et al. (2015). Furthermore, we analytically analyze the differences between the 

new formula and the original one when the generalized inverse matrices are used for the inverse of the noise CMs. Since in 

the application of the CDF to real measurements it is common practice to interpolate between different grids and to consider 55 

not perfect coincidence of the fusing profiles, the new formula is also used to derive the operational expression that takes 

into account interpolation and coincidence errors. 

Finally, we use a measurement of the IASI instrument (Clerbaux et al., 2009) to show the improved performances of the new 

formula with respect to the original one in the case of real data. 

In Section 2, we show that the new formula is a generalization of the original one and extend it to handle the cases where 60 

coincidence and interpolation errors are present. In Section 3, we compare the performances of the two formulas using an 

IASI measurement and in Section 4 we draw the conclusions. 

2 Theoretical analysis of the CDF formula 

2.1 The new formula as a generalization of the original one 

We assume to have N profiles ˆ ix  retrieved on the same vertical grid with the optimal estimation method (Rodgers, 2000) 65 

from N independent measurements of a true atmospheric profile tx . The profiles ˆ ix  are characterized by the AKMs 

t

ˆ i
i

∂
=
∂

x
A

x , which determine the sensitivities of the profiles ˆ ix  to tx  and by the CMs iS , which determine the retrieval 

errors. 

Before introducing the new formula for the CDF, let us recall some useful relationships. The quantities iA  and iS  can be 

written as a function of the two quantities that characterize the retrievals, that is the Fisher information matrices (Fisher, 70 

1935) 1
n i

T
i i i

−= yF K S K  ( iK  being the Jacobian matrices of the forward models and n iyS  the CMs of the noise errors of the 

measured radiances iy ), which characterize the measurements, and the a priori CMs aiS used in the retrievals, which 

characterize the constraints. The expressions of iA  and iS  as a function of these two quantities are: 

( ) 11
ai i i i

−−= +A F S F  (1) 
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( ) 11
ai i i

−−= +S F S . (2) 

We also recall that the iS  are the sum of two contributions: niS , the CMs of the noise errors, and siS , the CMs of the 

smoothing errors, that are respectively equal to: 75 

( ) ( )1 11 1
n a ai i i i i i

− −− −= + +S F S F F S  (3) 

( ) ( )1 11 1 1
s a a ai i i i i i

− −− − −= + +S F S S F S  (4) 

and, as we can see from Eq. (2), the inverse matrices of iS  always exist. 

Using the Kalman filter (Kalman, 1960, Rodgers, 2000) the new formula for the CDF was obtained in Ceccherini (2022) in 

the case of the fusion of two profiles. With an iterative procedure that adds one by one the extra profiles to the fused product 

(see Appendix A), it can be generalized to the fusion of N retrieved profiles ˆ ix  and expressed by  the following formula: 

1
1 1 1 1

f a a a
1 1

N N

i i i i
i i

−
− − − −

= =

   = + +   
   
∑ ∑x S A S S α S x , (5) 

where fx  is the fused profile, ax  and aS  are the a priori profile and its CM used to constrain the fused profile and 80 

a aˆi i i i i= − +α x x A x , (6) 

aix  being the a priori profiles used in the retrievals of the individual ˆ ix , in general different among them and from ax . In 

the following we refer to the CDF formula given in Eq. (5) as CDF(2022). 

From Eqs. (1-3) we see that we can express niS  in terms of iA  and iS  

n
T

i i i i i= =S S A A S  (7) 

and in the hypothesis that the CMs of the noise errors are nonsingular matrices we can obtain 1
i
−S  

1 1
n

T
i i i
− −=S A S . (8) 

Substituting them in Eq. (5) we obtain the original formula for the CDF given in Ceccherini et al. (2015). 85 
1

1 1 1 1
f n a n a a

1 1

N N
T T
i i i i i i

i i

−
− − − −

= =

   = + +   
   
∑ ∑x A S A S A S α S x , (9) 

which, differently from Eq. (5), holds only in the case that the CMs of the noise errors niS  are nonsingular matrices. 

Therefore, Eq. (5) is more general than Eq. (9). In the following we refer to the CDF formula given in Eq. (9) as CDF(2015). 

As already stated, the output of the CDF is not only the fused profile, but also its AKM and CM. The AKM and the CM of 

the fused profile calculated using Eq. (9) also contained the inverse of niS  in the formulas (Ceccherini et al., 2015). We can 

now calculate these quantities for the products of Eq. (5) aiming at obtaining expressions that do not contain the inverse of 90 

matrices that may be singular. From Eq. (5) the AKM of fx  is given by: 

1 1
1 1 1 1 1 1f

f a a
1 1 1 1t t

N N N N
i

i i i i i i i
i i i i

− −
− − − − − −

= = = =

∂∂    = = + = +   ∂ ∂   
∑ ∑ ∑ ∑αxA S A S S S A S S A

x x , (10) 

where we have used Eq. (6) for the calculation of the derivatives. 

The noise CM of fx  is obtained exploiting the fact that the noise CMs of iα  are niS , therefore, 

1 1
1 1 1 1 1 1

nf a n a
1 1 1

N N N

i i i i i i i
i i i

− −
− − − − − −

= = =

   = + +   
   
∑ ∑ ∑S S A S S S S S A S . (11) 

Substituting niS  given in Eq. (7) in Eq. (11), we obtain 
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1 1
1 1 1 1 1

nf a a
1 1 1

N N N

i i i i i i
i i i

− −
− − − − −

= = =

   = + +   
   
∑ ∑ ∑S S A S S A S A S . (12) 

The CM of fx  is obtained adding to Eq. (12) the CM of the smoothing errors 95 

1 1
1 1 1 1 1

sf a a a
1 1

N N

i i i i
i i

− −
− − − − −

= =

   = + +   
   
∑ ∑S S A S S S A S , (13) 

obtaining 
1

1 1
f nf sf a

1

N

i i
i

−
− −

=

 
= + = + 

 
∑S S S S A S . (14) 

In this Section, following the recent results published in the literature, we started from the formula CDF(2022) and 

demonstrated that it is a generalization of CDF(2015). An alternative line of thought can also be followed. One can start 

from the formula CDF(2015), valid only in the hypothesis that the noise CMs are nonsingular matrices, and using Eq. (8) 

derive the formula CDF(2022). Noticing that the use of this formula does not require anymore the hypothesis that the CMs 100 

of the noise errors are nonsingular matrices, one can assume its general validity. The correctness of this assumption is then 

confirmed by the fact that CDF(2022) can also be obtained using the Kalman filter as shown in Ceccherini (2022). 

In Appendix B we re-write some equations in a way that better highlights their physical meaning, although Eqs. (5) and (9) 

remain the CDF equations that can be used operationally. 

2.2 Relationship between CDF(2022) and CDF(2015) with generalized inverse matrices 105 

In the introduction we mentioned that, using the approximation of the generalized inverse matrices (Kalman, 1976), the 

original formula CDF(2015) can also be used in the case of niS  singular. Therefore, in this Section, we investigate the 

differences between CDF(2022) and CDF(2015) when in the latter the generalized inverse matrices of niS  are used. In Eq. 

(9) we replace the matrices 1
ni
−S  with the generalized inverse matrices #

niS  

#
1

1 1
f n a n a

1

#
a

1

N N
T T
i i i i i i

i i

−
− −

= =

   = + +   
   
∑ ∑x A S A S A S α S x . (15) 

#
niS  appear in two terms. For the first term it has already been demonstrated in the appendix of Ceccherini et al. (2012) that 110 

# 1
n

T
i i i i i i

−= =A S A F S A , (16) 

where the second equality follows from Eqs. (1) and (2). Therefore, the first term is equal in the two CDF formulas. 

We can elaborate the second term using Eqs. (1-3) 

( ) ( )( ) ( )1 1 11 1 1 1 1
n a n a a a n n n
# # # #T

i i i i i i i i i i i i i i i i i

− − −− − − − −= + = + + + =A S F F S S F S F S F F S S S S S , (17) 

which, in general, are different from 1
i
−S , because n n

#
i iS S  are different from the identity matrices when niS  are singular 

matrices. 

Therefore, in the case of singular niS , the CDF(2015) used with the generalized inverse matrices of niS , Eq. (15), is 115 

equivalent to 
1

1 1 1 1
f a n n a a

1 1

#
N N

i i i i i i
i i

−
− − − −

= =

   
= + +   
   
∑ ∑x S A S S S S α S x . (18) 

This equation shows that the CDF(2015) used with the generalized inverse matrices is an approximation of the more rigorous 

CDF(2022) and the quality of the approximation depends on how much n n
#

i iS S  is close to the identity matrix. 
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2.3 The new formula in presence of coincidence and interpolation errors 

We know that in the applications of the CDF to real measurements it is often necessary to fuse vertical profiles measured on 120 

different grids and at either different times or locations, so that, interpolation and coincidence errors must also be considered. 

The expression of the CDF with interpolation and coincidence errors, that can be called the operational CDF, was calculated 

in Ceccherini et al. (2018) and was derived from the CDF(2015) that, as we have seen above, is not valid when there are 

singular matrices. In this Section, we show how the expression of the operational CDF can be written in a more general 

form, using the CDF(2022) and exploiting the equivalence of CDF(2015) and CDF(2022) in the case that the CMs of the 125 

noise errors are nonsingular. 

We start from the formula that deals with interpolation and coincidence errors, given in Ceccherini et al. (2018), based on the 

CDF(2015) and equal to: 
1

1 1 1 1
f n a n a a

1 1

N N
T T T T
i i i i i i i i i

i i

−
− − − −

= =

   = + +   
   
∑ ∑x R A S A R S R A S α S x 

 , (19) 

where iR  are the generalized inverse matrices of the interpolation matrices iH , which interpolate the profiles from the 

retrieval grids to the fusion grid. Furthermore, 130 

( )( ) (f )
a,fine

i
i i i i= − −α α A C R C x  (20) 

( ) ( )( ) (f ) ( ) (f ) ( ) ( )
n n a,fine coin

Ti i T i i T T
i i i i i i i i= + − − +S S A C R C S C R C A A C S C A , (21) 

where a,finex  is the a priori profile used to constrain the data fusion represented on a fine grid that includes all the levels of 

the fusion grid and of the N retrievals grids. ( )iC  and (f )C  are the sampling matrices from this fine grid to the grid of the i-th 

retrieval and to the fusion grid, respectively. a,fineS  and coinS  are respectively the fusion a priori CM and the CM describing 

the variability of the true profiles related to the measurements that we fuse: both CMs are represented on the fine grid. The 

same limit of Eq. (9) applies also to Eq. (19) that, evidently, can be written only in the hypothesis that niS  are nonsingular 135 

matrices. 

In order to write an equation similar to Eq. (7) for niS , we define the matrix iS  

( ) ( )( ) (f ) ( ) (f ) ( ) ( )
a,fine coin

Ti i i i T
i i i i i i= + − − +S S A C R C S C R C A C S C  (22) 

and from Eqs. (7, 21 and 22) we see that the following equation holds 

n
T

i i i=S S A  . (23) 

We observe that the matrix iS  is not symmetric and, therefore, does not represent a CM. However, this only concerns the 

physical meaning of the quantities and does not interfere with the validity of the equations. On the other hand, we can see 140 

from Eq. (21) that niS  is symmetric and, therefore, equal to its transpose, so that also the following equation holds: 

n
T

i i i=S A S  . (24) 

We substitute Eq. (23) in Eq. (19) and obtain:  

( ) ( )
1

1 11 1
f a a a

1 1

N N
T T T T T T
i i i i i i i i i i i

i i

−
− −− −

= =

   = + +   
   
∑ ∑x R A S A A R S R A S A α S x 

 . (25) 

From Eq. (23) we see that the hypothesis of niS  nonsingular implies that also iA  and iS  are nonsingular, therefore, from 

Eq. (25) we obtain the new formula for operational CDF that does no longer contain inverse of matrices that can be singular 
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1
1 1 1 1

f a a a
1 1

N N
T T
i i i i i i i

i i

−
− − − −

= =

   = + +   
   
∑ ∑x R S A R S R S α S x 

 . (26) 

It is simple to see that in case of absence of interpolation and coincidence errors (that is all the vertical grids coincide and  145 

coinS  is zero) Eq. (26) becomes Eq. (5). Therefore, Eq. (26), which coincides with the operational CDF of Eq. (19) when niS  

are nonsingular and coincides with the CDF(2022) in absence of interpolation and coincidence errors, can be used as the new 

operational CDF rigorously valid also when the noise CMs of the retrieved products are singular matrices. 

We can also calculate the AKM and the CMs of the fused profile obtained using Eq. (26). The AKM of fx  is given by 

1 1
1 1 1 1 1 1f

f a a
1 1 1 1

N N N N
T T T Ti
i i i i i i i i i i i i i i

i i i i

− −
− − − − − −

= = = =

∂∂    = = + = +   ∂ ∂   
∑ ∑ ∑ ∑αxA R S A R S R S R S A R S R S A R

x x


    , (27) 

where x  is the unknown profile estimated by the data fusion, which for example can be the mean value of the true profiles 150 

of the measurements that are fused. The value of the derivative i
i i

∂
=

∂
α

A R
x


 is obtained from Eq. (17) of Ceccherini et al. 

(2018). 

Exploiting the fact that the CMs of iα  due to noise, interpolation and coincidence errors are niS  (Ceccherini et al., 2018), the 

corresponding CM of fx  is equal to: 

( ) ( )
1 1

1 1 1 1 1 1
nf a n a

1 1 1

N N NT TT T T T
i i i i i i i i i i i i i

i i i

− −
− − − − − −

= = =

   = + +   
   
∑ ∑ ∑S R S A R S R S S S R R A S R S     . (28) 

In order to simplify this equation, we consider the symmetric matrix given by the product ( )1 1
n

T

i i i
− −S S S    and use Eq. (24) 155 

( ) ( ) ( )1 1 1 1 1 1
n

T T TT T
i i i i i i i i i i i
− − − − − −= = =S S S S A S S S A A S        , (29) 

where the last equality is obtained making the transpose and exploiting the fact that the matrix ( )1 1
n

T

i i i
− −S S S    is symmetric. 

Using Eq. (29) in Eq. (28), the CM nfS  becomes: 

1 1
1 1 1 1 1

nf a a
1 1 1

N N N
T T T
i i i i i i i i i i i i

i i i

− −
− − − − −

= = =

   
= + +   
   
∑ ∑ ∑S R S A R S R S A R R S A R S   . (30) 

The smoothing error CM of fx  is equal to 

1 1
1 1 1 1 1

sf a a a
1 1

N N
T T
i i i i i i i i

i i

− −
− − − − −

= =

   = + +   
   
∑ ∑S R S A R S S R S A R S   (31) 

and the CM of fx  , obtained adding to the nfS given in Eq. (30) the smoothing error CM given in Eq. (31), is equal to: 

1
1 1

f nf sf a
1

N
T
i i i i

i

−
− −

=

 = + = + 
 
∑S S S R S A R S . (32) 

This is an useful new equation that was not considered in Ceccherini et al. (2018). 160 

3 Performance comparison of the original and the new formula using an IASI measurement 

In this Section, we show an example of the error that we make using CDF(2015) instead of CDF(2022) on real data, using a 

METOP-B IASI ozone measurement acquired in the geolocation 43.45° of latitude and 10.77° of longitude, at 8:45:56 UTC 

of 18 October 2021. 
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In Fig. 1 we report the retrieved ozone profile with its a priori profile, errors and averaging kernels obtained with the Fast 165 

Optimal Retrieval on Layers for IASI (FORLI), described in Hurtmans et al. (2012) and Astoreca et al. (2014). This product 

was downloaded from the webpage “IASI Combined Sounding Products – Metop”. FORLI retrieves the ozone profiles by 

means of the optimal estimation method and the radiative transfer calculation is performed using tabulated absorption cross 

sections at various pressures and temperatures in order to speed up the calculation time. The derivatives of the direct model 

with respect to the state vector are computed analytically. The retrieval spectral range is 1025-1075 cm-1 and the a priori 170 

information relies on the McPeters/Labow/Logan climatology of ozone profiles (McPeters et al., 2007). The ozone product 

of FORLI is a profile retrieved on 40 layers between surface and 40 km, with an extra layer from 40 km to the top of the 

atmosphere. 

 
Figure 1: Panel (a) shows the retrieved ozone profile and the a priori profile, panel (b) shows the  errors and panel (c) shows the 175 

averaging kernels of the IASI measurement. The dots in panel (c) represent the diagonal values of the AKM. 

From Fig. 1 we can see that the profile used in this study is a typical product obtained with the optimal estimation method 

where most of the information is provided by the a priori as it results from the number of degrees of freedom, obtained by 

the sum of the diagonal values of the AKM, equal to 3.3 that is much smaller than the number of retrieved points. 

In Fig. 2, we report the eigenvalues of iS  and niS  for this IASI measurement calculated with the linalg.eigvals function of 180 

numpy Python 3 module version 1.20.2 (Numpy.linalg.eigvals). 

 

Figure 2: Eigenvalues of the CMs iS  and niS  of the IASI measurement. 
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As expected, the eigenvalues of iS  are all different from zero, on the other hand, only 6 eigenvalues of niS  have large 

values, while the others have values smaller than the numeric noise. The distribution of the eigenvalues of niS  is due to the 185 

fact that the AKM and the retrieval error CM provided to the users are compressed (Astoreca et al., 2017) and are 

reconstructed using the 6 largest eigenvalues of the Fisher information matrix. 

This product is used to perform a consistency check using the two CDF formulas, as described below. 

The CDF formula can also be used to estimate, in the linear approximation, how the retrieved profile ˆ ix changes when the a 

priori profile aix  and its CM aiS  are changed. This operation, explained in detail in Ceccherini et al. (2014), consists in using 190 

the CDF formula with a single input retrieved profile ˆ ix , obtained with its a priori profile aix  and a priori CM aiS , and with 

the application of a new constraint ai′x  and ai′S . The new profile ˆ i
′x , that is the original measurement with a new constraint, 

can be obtained using either CDF(2022) or CDF(2015): 

( ) ( )11 1 1 1
  CDF(2022) a a ai i i i i i i i

−− − − −′ ′ ′ ′= + +x S A S S α S x  (33) 

( ) ( )11 1
  CDF(2015) n a

# #
n a a

T T
i i i i i i i i i i

−− −′ ′ ′ ′= + +x A S A S A S α S x , (34) 

where in the expression derived from CDF(2015) we have used the generalized inverse matrices of niS  to deal with the most 

general case in which niS  is singular. 195 

When in Eqs. (33) and (34) we use a new constrain that is equal to the original one: a aii′ =x x  and a aii′ =S S , the formulas 

should provide the retrieved profile ˆ ix . This is a check that we use to validate the self-consistency of the input data and that 

we can here use to assess the differences between the two CDF formulas. 

Substituting iα  from Eq. (6) in Eq. (33) and using Eqs. (2) and (16), we obtain that actually 

[ ]  CDF(2022) a ai a ai ˆ,i i i i′ ′ ′= = =x x x S S x . (35) 

On the other hand, substituting iα  from Eq. (6) in Eq. (34) we obtain: 200 

[ ] ( ) ( )# #11
  CDF(2015) a ai a ai n a n aˆ ˆ, T T
i i i i i i i i i i i i

−− ′ ′ ′= = = + + − −  
x x x S S x A S A S A S I x x , (36) 

where I is the identity matrix. The second term of Eq. (36) measures the error made using the generalized inverse and, using 

Eqs.(1, 3) and (16), we see that, in the case that niS  is nonsingular, is equal to zero. 

We have calculated the difference [ ]  CDF(2015) a ai a ai ˆ,i i i i′ ′ ′= = −x x x S S x  for several values of the threshold used to 

determine the eigenvalues that are neglected in the calculation of the generalized inverse matrix of niS . In Fig. 3 we report 

the consistency test provided by this difference in the case of three values of the threshold that correspond to selecting, 205 

respectively, the 5, 6 and 7 largest eigenvalues. The generalized inverse matrices are calculated with the linalg.pinv function 

of numpy Python 3 module version 1.20.2 (Numpy.linalg.pinv), which calculates the Moore-Penrose pseudo-inverse of a 

matrix using the singular value decomposition and a threshold for the eigenvalues. 
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Figure 3: Results of the consistency test with CDF(2015) considering only the 5, 6 and 7 largest eigenvalues in the calculation of the 210 

generalized inverse matrix of niS . 

We can see that the smallest differences are obtained for the case of 6 eigenvalues, as expected from the distribution of the 

eigenvalues. The case of 5 eigenvalues is affected by the loss of useful information, on the other hand the case of 7 

eigenvalues is affected by the amplification of the numeric noise. In this case, the choice of the threshold value can be 

simply done looking at Fig. 2, where the abrupt variation of the eigenvalues clearly indicates the threshold. In a general case, 215 

in which the variation of the eigenvalues is smooth, this test can be used to define the threshold for the eigenvalues choosing 

the value that minimizes the difference [ ]  CDF(2015) a ai a ai ˆ,i i i i′ ′ ′= = −x x x S S x . 

Using the optimum number of 6 eigenvalues for CDF(2015), in Fig. 4 we compare the differences 

[ ]  CDF(2022) a ai a ai ˆ,i i i i′ ′ ′= = −x x x S S x  and [ ]  CDF(2015) a ai a ai ˆ,i i i i′ ′ ′= = −x x x S S x  of the consistency test for the two CDF 

formulas with the retrieval error of the profile estimated by the square root of the diagonal elements of the CM iS . 220 

 
Figure 4: Results of the consistency test applied to the IASI measurement for the two formulas CDF(2015) and CDF(2022) 

compared with the retrieval error of the profile. 

As expected the consistency test provides zero differences using CDF(2022) and detectable differences, although much 

smaller than the retrieval errors, are present when using CDF(2015). These differences are an estimate of the errors 225 
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introduced by CDF(2015) in the fusion process with respect to the results of CDF(2022). The comparison between Fig. 3 and 

Fig. 4 shows that the use of a number of eigenvalues that differs from the optimum value by one unity produces an error 

comparable with the retrieval error, therefore, it is very important to identify the optimum number of eigenvalues with the 

test described above. 

The errors introduced by CDF(2015) depend on the compression used to represent the matrices in the files provided to the 230 

users. If less compression was applied to the data a greater number of eigenvalues could be considered in the calculation of 

the generalized inverse matrix of niS  and the errors introduced by CDF(2015) would be further reduced. 

When no compression is applied, the errors introduced by CDF(2015) are due to the numerical precision with which the data 

are provided, because the eigenvalues smaller than the numerical precision of the largest eigenvalue will usually only 

contribute to the noise of the generalized inverse. Therefore, less compression and improved numerical precision can reduce 235 

the approximation introduced by CDF(2015). 

4 Conclusions 

The original CDF(2015) formula requires the calculation of the inverse matrices of the noise CMs niS of the input profiles 

and, therefore, can be rigorously applied only when these CMs are nonsingular. In the other cases, the CDF(2015) can still 

be used replacing the inverse matrices of the noise CMs with the generalized inverse matrices, but the result is an 240 

approximation. Furthermore, a variable exists in this operation and a threshold has to be identified for the choice of how 

many eigenvalues are used in the calculation of the generalized inverse matrices. 

A new formula CDF(2022) has been presented that contains the inverse matrices of the retrieval error CMs (the CMs that 

include both the noise and the smoothing errors), instead of the inverse matrices of the noise CMs. Since the retrieval error 

CMs are always nonsingular matrices, the new formula can be used without resorting to generalized inverse matrices. 245 

We deduced the analytical relationship between the two formulas and observed that the quality of the approximation 

provided by the old formula depends on how much n n
#

i iS S  is close to the identity matrix. 

Furthermore, we have obtained the expression of the operational CDF(2022), which can handle interpolation and 

coincidence errors. The operational CDF(2022) is indispensable for the application of the CDF to real measurements, which 

are often measured on different vertical grids and at different times and/or locations. 250 

Finally, we have introduced a consistency check that can be used to define the threshold for the eigenvalues of the noise 

CMs and applied it to a real IASI measurement to evaluate the errors made using CDF(2015) instead of CDF(2022). We 

observed that in practice the errors introduced by the use of CDF(2015) are much smaller than the retrieval errors and 

depend on the data compression and numerical precision with which the data are provided to the users. 

The errors made with the old CDF(2015) do not appear to be too large, even in the case of a significant data compression, 255 

however, the use of the new CDF(2022) and operational CDF(2022) is recommended for data fusion processing. 

Appendix A 

In this appendix, we proof Eq. (5) that is the generalization to N profiles of the new formula for the CDF obtained using the 

Kalman filter in Ceccherini (2022) in the case of the fusion of two profiles.  

At the basis of this proof there is the consideration that the product of the CDF is characterized by the same quantities that 260 

characterize the retrieval product: CMs, AKM and a priori information, therefore, it can be used as input for successive 

fusion operations. 

Here we demonstrate that if Eq. (5) is valid for N it is valid also for N+1 and, since we know that is valid for N=2, using the 

induction principle, we deduce that is valid for any N. 
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We suppose to have fused N profiles and, therefore, for hypothesis we have obtained the profile fx  given by Eq. (5). Now 265 

we fuse fx  with another profile 1ˆ N +x  using the Kalman filter. From Eq. (16) of Ceccherini (2022), we obtain the new fuse 

profile given by: 

( ) ( ) ( )11 1 1 1 1 1 1
f f f 1 1 a f f 1 1 a a
N

N N N N

−+ − − − − − −
+ + + += + + + +x S A S A S S α S α S x , (A1) 

where fα  is given by: 

f f a f a= − +α x x A x . (A2) 

Using Eqs. (10) and (14) we derive that:  

1 1
f f

1

N

i i
i

− −

=

= ∑S A S A . (A3) 

and using Eqs. (5, 10, 14) and (A2) we derive that: 270 

1 1
f f

1

N

i i
i

− −

=

= ∑S α S α . (A4) 

Substituting Eqs. (A3-A4) in Eq. (A1) we obtain: 

( )
11 1

1 1 1 1 1
f a a a

1 1

N N
N

i i i i
i i

−+ +
+ − − − −

= =

   = + +   
   
∑ ∑x S A S S α S x , (A5) 

which is Eq. (5) written for the fusion of N+1 profiles. Therefore, as anticipated above, using the induction principle, we can 

state that Eq. (5) is valid for any N. 

Appendix B 

In this appendix, we re-write some equations of the CDF presented in the paper in a way that better highlights their physical 275 

meaning. 

If we expand to the first order the relationships between the retrieved profiles ˆ ix  and the true profile tx  around the a priori 

profiles aix , we obtain: 

( ) ( )a t a t aˆ i i i i i i i i i i i= + − + = + − +x x A x x G ε A x I A x G ε , (B1) 

where ( ) 11 1 1
n a ni i

T T
i i i i i

−− − −= +y yG K S K S K S  are the gain matrices and iε  are the noise errors of the measured radiances iy . 

Using Eqs. (6) and (B1) we can re-write iα  as: 280 

ti i i i= +α A x G ε , (B2) 

that is iα  is the true profile smoothed by the averaging kernels of the i-th measurement plus the error. Therefore, iα  can be 

interpreted as a measurement of the true profile performed with the weighting functions given by the rows of iA . 

Substituting Eq. (B2) in Eq. (5) we obtain: 
1

1 1 1 1 1
f a t a a n

1 1 1
i

N N N
T

i i i i i i
i i i

−
− − − − −

= = =

   = + + +   
   
∑ ∑ ∑ yx S A S S A x S x K S ε  (B3) 

and using Eq. (16), Eq. (B3) becomes: 
1

1 1 1
f a t a a n

1 1 1
i

N N N
T

i i i i
i i i

−
− − −

= = =

   = + + +   
   
∑ ∑ ∑ yx F S F x S x K S ε . (B4) 
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Eq. (B4) clearly shows that the CDF profile is the weighted mean of the true profile, weighted N times with the Fisher 285 

information matrices of the N different measurements, and of the a priori profile weighted with the matrix 1
a
−S . 

Using this formalism we can re-write also Eqs. (10) and (14), which give the expressions of the AKM and CM of the fused 

profile: 
1

1
f a

1 1

N N

i i
i i

−
−

= =

 = + 
 
∑ ∑A F S F  (B5) 

1
1

f a
1

N

i
i

−
−

=

 = + 
 
∑S F S . (B6) 

Eq. (B4) is equivalent to Eq. (5) and reveals the physical meaning of the CDF as a weighted mean of a set of measurements. 

However, while Eq. (5) is expressed using the retrieval products ( iα  quantities obtained from the retrieved profiles, AKMs 290 

and CMs) and, therefore, can be operatively used, the same does not apply to Eq. (B4) which is expressed using unknown 

quantities (such as the true profile and the errors). 

As a final consideration, we notice that the CDF can be traced back to the general approach outlined in Section 4.1.1 of 

Rodgers (2000), once that the new linearized independent measurements iα  have been introduced. Indeed, if in Eq. (4.20) of 

Rodgers (2000) we replace the measurements iy  with iα , the Jacobians iK  with iA and the CMs 
iε

S  with niS , we obtain 295 

the CDF formula in the formalism of Eq. (9), apart from the difference that in Eq. (9) the a priori is made explicit. Therefore, 

the CDF can be interpreted as an optimal estimate obtained by all the considered measurements linearized around the 

individual solutions. However, the general formalism exposed in Section 4.1.1 of Rodgers (2000) cannot be directly applied 

to the profiles retrieved with the optimal estimation method because affected by the bias of the a priori and the merit of the 

CDF is the individuation of the iα  quantities that overcome this limitation. 300 
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