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Abstract. The Complete Data Fusion is a method that combines independent measurements of an atmospheric vertical 

profile. Recently a new formula for the Complete Data Fusion, which does not contain matrices that can be singular and 

overcomes the generalized inverse approximation used when singular matrices have to be inverted, has been proposed. We 

show that the new formula is a generalization of the original one and analyze the analytical relationship between the two 

formulas when generalized inverse matrices are used for singular matrices. We extend the new formula to include 10 

interpolation and coincidence errors, which must be considered when the profiles to be fused are measured on different 

vertical grids and at either different times or locations. Finally, we use a real measurement of the IASI instrument to show 

the improved performances of the new formula with respect to the original one. 

1 Introduction 

The Complete Data Fusion (CDF) is a new data processing method that allows to combine several independent 15 

measurements of an atmospheric vertical profile (Ceccherini et al., 2015), and more generally of any vectorial quantity that 

is retrieved using the optimal estimation method (Rodgers, 2000). It is called ”complete” for its capability of considering all 

the features of the measurements that are being combined, that is not only their errors, but also their vertical resolution. The 

inputs of the method are the profiles retrieved from the individual measurements using the optimal estimation method 

together with their a priori profiles, averaging kernel matrices (AKMs) and noise covariance matrices (CMs), and an a priori 20 

profile with its CM is used to constrain the fused profile. The output of the method is a single profile (the fused profile) with 

its AKM and CM. The a priori information used to constrain the fused profile can be freely chosen independently of the a 

priori information used in the retrievals of the individual profiles. The method is equivalent to the simultaneous retrieval of 

all the measurements that are combined when the linear approximation of the forward models is appropriate in the variability 

range of the results of the individual retrievals. 25 

The method has been extended to fuse profiles retrieved on different vertical grids for which an interpolation on a common 

grid is needed and to deal with measurements obtained either at different times or from different platforms and, therefore, 

referred to different true profiles. This extension required the introduction of interpolation and coincidence errors in the 

fusion process (Ceccherini et al., 2018). 

The performances of the method have been studied on ozone profiles retrieved from simulated measurements in the 30 

ultraviolet, visible, and thermal infrared spectral ranges for the Sentinel-4 and Sentinel-5 missions of the Copernicus 

program (Tirelli et al., 2020, Zoppetti et al., 2021). The results of these studies show that the CDF is able to provide products 

of improved quality with respect to the input products in terms of reduced errors and increased number of degrees of 

freedom. 

A problem connected with the application of the CDF formula is the presence of the inverse matrices of the noise CMs of the 35 

input profiles and this implies that the formula can be rigorously applied only when the noise CMs are nonsingular. When 

the profiles are retrieved solving ill-posed inverse problems (which is a very common case), this condition is not satisfied. In 

this case, we can still apply the CDF formula replacing the inverse matrices of the noise CMs with the generalized inverse 

matrices (Kalman, 1976), but the result is an approximation. Furthermore, a practical problem in the use of the generalized 
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inverse matrices is the definition of the threshold for the eigenvalues for which eigenvalues smaller than this threshold have 40 

their inverses replaced with zeros. Too small values for this threshold determine significant numeric noise in the products; on 

the other hand, too large values of this threshold determine a loss of useful information. 

Recently, following the approach of the Kalman filter (Rodgers, 2000), a different formula for the CDF has been derived 

(Ceccherini, 2021). This formula contains the inverse matrices of the retrieval error CMs, which include both the noise and 

the smoothing errors, instead of the inverse matrices of the noise CMs. Differently from the noise CMs, the retrieval error 45 

CMs are always nonsingular matrices and the new formula can be used without having to resort to the use of generalized 

inverse matrices. 

In this paper we introduce the new formula showing that it is a generalization of the original CDF formula given in 

Ceccherini et al. (2015) and analytically analyze the differences between the new formula and the original one when the 

generalized inverse matrices are used for the inverse of the noise CMs. Since in the application of the CDF to real 50 

measurements it is common practice to interpolate between different grids and to consider not perfect coincidence of the 

fusing profiles, the new formula is also used to derive the operational expression that takes into account interpolation and 

coincidence errors. 

Finally, we use a measurement of the IASI instrument (Clerbaux et al., 2009) to show the improved performances of the new 

formula with respect to the original one in the case of real data. 55 

In Section 2, we show that the new formula is a generalization of the original one and extend it to handle the cases where 

coincidence and interpolation errors are present. In Section 3, we compare the performances of the two formulas using an 

IASI measurement and in Section 4 we draw the conclusions. 

2 Theoretical analysis of the CDF formula 

2.1 The new formula as a generalization of the original one 60 

We assume to have N profiles ˆ ix  retrieved on the same vertical grid with the optimal estimation method (Rodgers, 2000) 

from N independent measurements of a true atmospheric profile tx . The profiles ˆ ix  are characterized by the AKMs 

t

ˆ i
i

∂
=
∂

x
A

x , which measure the sensitivities of the profiles ˆ ix  to tx  and by the CMs iS , which measure the retrieval errors. 

Before introducing the new formula for the CDF, let us recall some useful relationships. The quantities iA  and iS  can be 

written as a function of the two quantities that characterize the retrievals, that is the Fisher information matrices (Fisher, 65 

1935) 1
n i

T
i i i

−= yF K S K  ( iK  being the Jacobian matrices of the forward models and n iyS  the CMs of the noise errors of the 

measured radiances iy ), which characterize the measurements, and the a priori CMs aiS used in the retrievals, which 

characterize the constraints. The expressions of iA  and iS  as a function of these two quantities are: 

( ) 11
ai i i i

−−= +A F S F  (1) 

( ) 11
ai i i

−−= +S F S . (2) 

We also recall that the iS  are the sum of two contributions: niS , the CMs of the noise errors, and siS , the CMs of the 

smoothing errors, that are respectively equal to: 70 

( ) ( )1 11 1
n a ai i i i i i

− −− −= + +S F S F F S  (3) 
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( ) ( )1 11 1 1
s a a ai i i i i i

− −− − −= + +S F S S F S  (4) 

and as we can see from Eq. (2), the inverse matrices of iS  always exist. 

The new formula for the CDF was obtained using the Kalman filter (Rodgers, 2000) in Ceccherini (2021) in the case of the 

fusion of two profiles. With an iterative procedure that adds one by one the extra profiles to the fused product, it can be 

generalized to the fusion of N retrieved profiles ˆ ix  with the following formula: 

1
1 1 1 1

f a a a
1 1

N N

i i i i
i i

−
− − − −

= =

   = + +   
   
∑ ∑x S A S S α S x , (5) 

where fx  is the fused profile, ax  and aS  are the a priori profile and its CM used to constrain the fused profile and 75 

a aˆi i i i i= − +α x x A x , (6) 

aix  being the a priori profiles used in the retrievals of the individual ˆ ix , in general different among them and from ax . In 

the following we refer to the CDF formula given in Eq. (5) as CDF(2021). 

From Eqs. (1-3) we see that we can express niS  in terms of iA  and iS  

n
T

i i i i i= =S S A A S  (7) 

and in the hypothesis that the CMs of the noise errors are nonsingular matrices we can obtain 1
i
−S  

1 1
n

T
i i i
− −=S A S . (8) 

Substituting them in Eq. (5) we obtain the original formula for the CDF given in Ceccherini et al. (2015). 80 
1

1 1 1 1
f n a n a a

1 1

N N
T T

i i i i i i
i i

−
− − − −

= =

   = + +   
   
∑ ∑x A S A S A S α S x , (9) 

which, differently from Eq. (5), holds only in the case that the CMs of the noise errors niS  are nonsingular matrices. 

Therefore, Eq. (5) is more general than Eq. (9). In the following we refer to the CDF formula given in Eq. (9) as CDF(2015). 

As already stated, the output of the CDF is not only the fused profile, but also its AKM and CM. The AKM and the CM of 

the fused profile calculated using Eq. (9) also contained the inverse of niS  in the formulas (Ceccherini et al., 2015). We can 

now calculate these quantities for the products of Eq. (5) aiming at obtaining expressions that do not contain the inverse of 85 

matrices that may be singular. From Eq. (5) the AKM of fx  is given by: 

1 1
1 1 1 1 1 1f

a a
1 1 1 1t t

N N N N
i

f i i i i i i i
i i i i

− −
− − − − − −

= = = =

∂∂    = = + = +   ∂ ∂   
∑ ∑ ∑ ∑αxA S A S S S A S S A

x x , (10) 

where we have used Eq. (6) for the calculation of the derivative. 

The noise CM of fx  is obtained exploiting the fact that the noise CMs of iα  are niS , therefore, 

1 1
1 1 1 1 1 1

nf a n a
1 1 1

N N N

i i i i i i i
i i i

− −
− − − − − −

= = =

   = + +   
   
∑ ∑ ∑S S A S S S S S A S . (11) 

Substituting niS  given in Eq. (7) in Eq. (11), we obtain 

1 1
1 1 1 1 1

nf a a
1 1 1

N N N

i i i i i i
i i i

− −
− − − − −

= = =

   = + +   
   
∑ ∑ ∑S S A S S A S A S . (12) 

The CM of fx  is obtained adding to Eq. (12) the CM of the smoothing errors 90 
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1 1
1 1 1 1 1

sf a a a
1 1

N N

i i i i
i i

− −
− − − − −

= =

   = + +   
   
∑ ∑S S A S S S A S , (13) 

obtaining 
1

1 1
f nf sf a

1

N

i i
i

−
− −

=

 = + = + 
 
∑S S S S A S . (14) 

2.2 Relationship between CDF(2021) and CDF(2015) with generalized inverse matrices 

In the introduction we mentioned that, using the approximation of the generalized inverse matrices (Kalman, 1976), the 

original formula CDF(2015) can also be used in the case of niS  singular. Therefore, in this Section, we investigate the 

differences between CDF(2021) and CDF(2015) when in the latter the generalized inverse matrices of niS  are used. In Eq. 95 

(9) we replace the matrices 1
ni
−S  with the generalized inverse matrices #

niS  

 #
1

1 1
f n a n a a

1 1

#
N N

T T
i i i i i i

i i

−
− −

= =

   = + +   
   
∑ ∑x A S A S A S α S x . (15) 

#
n

 
iS  appear in two terms. For the first term it has already been demonstrated in the appendix of Ceccherini et al. (2012) that 

  1
n

#T
i i i i i i

−= =A S A F S A , (16) 

where the second equality follows from Eqs. (1) and (2). Therefore, the first term is equal in the two CDF formulas. 

We can elaborate the second term using Eqs. (1-3) 

( ) ( )( ) ( )1 1 11 1 1 1 1
n a n a a a n n

 #  #  #  #
n

T
i i i i i i i i i i i i i i i i i

− − −− − − − −= + = + + + =A S F F S S F S F S F F S S S S S , (17) 

which, in general, are different from 1
i
−S , because  

n n
#

i iS S  are different from the identity matrices when niS  are singular 100 

matrices. 

Therefore, in the case of singular niS , the CDF(2015) used with the generalized inverse matrices of niS , Eq. (15), is 

equivalent to 
1

1 1 1 1
f a n n a a

1 1

#
N N

i i i i i i
i i

−
− − − −

= =

   = + +   
   
∑ ∑x S A S S S S α S x

. 
(18) 

Therefore, the CDF(2015) used with the generalized inverse matrices is an approximation of the more rigorous CDF(2021) 

and the quality of the approximation depends on how much n n
#

i iS S  is close to the identity matrix. 105 

2.3 The new formula in presence of coincidence and interpolation errors 

We know that in the applications of the CDF to real measurements it is often necessary to fuse vertical profiles measured on 

different grids and at either different times or locations, so that, interpolation and coincidence errors must also be considered. 

The expression of the CDF with interpolation and coincident errors, that can be called the operational CDF, was calculated 

in Ceccherini et al. (2018) and was derived from the equation of the CDF(2015) that, as we have seen above, is not valid 110 

when there are singular matrices. In this Section, we show how the expression of the operational CDF, can be written in a 

more general form, using the CDF(2021) exploiting the equivalence of CDF(2015) and CDF(2021) in the case that the CMs 

of the noise errors are nonsingular.  

We start from the formula that deals with interpolation and coincidence errors, given in Ceccherini et al., (2018) based on the 

CDF(2015) and equal to: 115 
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1
1 1 1 1

f n a n a a
1 1

N N
T T T T

i i i i i i i i i
i i

−
− − − −

= =

   = + +   
   
∑ ∑x R A S A R S R A S α S x 

 , (19) 

where iR  are the generalized inverse matrices of the linear interpolation matrices iH , which interpolate the profiles from 

the retrieval grids to the fusion grid. Furthermore, 

( )( ) (f )
a,fine

i
i i i i= − −α α A C R C x  (20) 

( ) ( )( ) (f ) ( ) (f ) ( ) ( )
n n a,fine coin

Ti i T i i T T
i i i i i i i i= + − − +S S A C R C S C R C A A C S C A , (21) 

where a,finex  is the a priori profile used to constrain the data fusion represented on a fine grid that includes all the levels of 

the fusion grid and of the N retrievals grids. ( )iC  and (f )C  are the sampling matrices from this fine grid to the grid of the i-th 

retrieval and to the fusion grid, respectively. a,fineS  and coinS  are respectively the fusion a priori CM and the CM describing 120 

the variability of the true profiles related to the measurements that we fuse: both CMs are represented on the fine grid. The 

same limit of Eq. (9) applies also to Eq. (19) that, evidently, can be written only in the hypothesis that niS  are nonsingular 

matrices. 

In order to write an equation similar to Eq. (7) for niS , we define the matrix iS  

( ) ( )( ) (f ) ( ) (f ) ( ) ( )
a,fine coin

Ti i i i T
i i i i i i= + − − +S S A C R C S C R C A C S C  (22) 

and from Eqs. (7, 21 and 22) we see that the following equation holds 125 

n
T

i i i=S S A  . (23) 

We observe that the matrix iS  is not symmetric and, therefore, does not represent a CM. However, this only concerns the 

physical meaning of the quantities and does not interfere with the validity of the equations. On the other hand, we can see 

from Eq. (21) that niS  is symmetric and, therefore, equal to its transpose, so that also the following equation holds: 

n
T

i i i=S A S  . (24) 

We substitute Eq. (23) in Eq. (19) and obtain:  

( ) ( )
1

1 11 1
f a a a

1 1

N N
T T T T T T

i i i i i i i i i i i
i i

−
− −− −

= =

   = + +   
   
∑ ∑x R A S A A R S R A S A α S x 

 . (25) 

From Eq. (23) we see that the hypothesis of niS  nonsingular implies that also iA  and iS  are nonsingular, therefore, from 130 

Eq. (25) we obtain the new formula for operational CDF that does no longer contain inverse of matrices that can be singular 
1

1 1 1 1
f a a a

1 1

N N
T T

i i i i i i i
i i

−
− − − −

= =

   = + +   
   
∑ ∑x R S A R S R S α S x 

 . (26) 

It is simple to see that in case of absence of interpolation and coincidence errors (that is all the vertical grids coincide and  

coinS  is zero) Eq. (26) becomes Eq. (5). Therefore, Eq. (26), which coincides with the operational CDF of Eq. (19) when niS  

are nonsingular and coincides with the CDF(2021) in absence of interpolation and coincidence errors, can be used as the new 

operational CDF rigorously valid also when the noise CMs of the retrieved products are singular matrices. 135 

We can also calculate the AKM and the CMs of the fused profile obtained using Eq. (26). The AKM of fx  is given by 

1 1
1 1 1 1 1 1f

f a a
1 1 1 1

N N N N
T T T Ti

i i i i i i i i i i i i i i
i i i i

− −
− − − − − −

= = = =

∂∂    = = + = +   ∂ ∂   
∑ ∑ ∑ ∑αxA R S A R S R S R S A R S R S A R

x x


    , (27) 
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where x  is the unknown profile estimated by the data fusion, which for example can be the mean value of the true profiles 

of the measurements that are fused. The value of the derivative i
i i

∂
=

∂
α

A R
x


 is obtained from Eq. (17) of Ceccherini et al. 

(2018). 

Exploiting the fact that the noise CMs of iα  are niS  (Ceccherini et al., 2018), the noise CM of fx  is equal to: 140 

( ) ( )
1 1

1 1 1 1 1 1
n a n a

1 1 1

N N NT TT T T T
f i i i i i i i i i i i i i

i i i

− −
− − − − − −

= = =

   = + +   
   
∑ ∑ ∑S R S A R S R S S S R R A S R S     . (28) 

In order to simplify this equation, we consider the symmetric matrix given by the product ( )1 1
n

T

i i i
− −S S S    and use Eq. (24) 

( ) ( ) ( )1 1 1 1 1 1
n

T T TT T
i i i i i i i i i i i
− − − − − −= = =S S S S A S S S A A S        , (29) 

where the last equality is obtained making the transpose and exploiting the fact that the matrix ( )1 1
n

T

i i i
− −S S S    is symmetric. 

Using Eq. (29) in Eq. (28), the noise CM of fx becomes: 

1 1
1 1 1 1 1

n a a
1 1 1

N N N
T T T

f i i i i i i i i i i i i
i i i

− −
− − − − −

= = =

   
= + +   
   
∑ ∑ ∑S R S A R S R S A R R S A R S   . (30) 

The smoothing error CM of fx  is equal to 

1 1
1 1 1 1 1

sf a a a
1 1

N N
T T

i i i i i i i i
i i

− −
− − − − −

= =

   = + +   
   
∑ ∑S R S A R S S R S A R S   (31) 

and the CM of fx  , obtained adding to the nfS given in Eq. (30) the smoothing error CM given in Eq. (31), is equal to: 145 

1
1 1

f nf sf a
1

N
T

i i i i
i

−
− −

=

 = + = + 
 
∑S S S R S A R S . (32) 

3 Performance comparison of the original and the new formula using an IASI measurement 

In this Section, we show an example of the error that we make using CDF(2015) instead of CDF(2021) on real data, using a 

METOP-B IASI ozone measurement acquired in the geolocation 43.45° of latitude and 10.77° of longitude, at 8:45:56 UTC 

of 18 October 2021. 

In Fig. 1 we report the retrieved ozone profile of this measurement obtained with the Fast Optimal Retrieval on Layers for 150 

IASI (Hurtmans et al., 2012, Astoreca et al., 2014). This product was downloaded from the webpage “IASI Combined 

Sounding Products – Metop”. 
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Figure 1: Retrieved ozone profile of the IASI measurement. 

In Fig. 2, we report the eigenvalues of iS  and niS  for this IASI measurement. 155 

 

Figure 2: Eigenvalues of the CMs iS  and niS  of the IASI measurement. 

We can see that the eigenvalues of iS  are all different from zero, on the other hand, only 6 eigenvalues of niS  have large 

values, while the others have values smaller than the numeric noise. The distribution of the eigenvalues of niS  is due to the 

fact that the AKM and the retrieval error CM provided to the users are compressed (Astoreca et al., 2017) and are 160 

reconstructed using the 6 largest eigenvalues of the Fisher information matrix. 

This product is used to perform a consistency check using the two CDF formulas, as described below. 

The CDF formula can also be used to estimate, in the linear approximation, how the retrieved profile ˆ ix changes when the a 

priori profile aix  and its CM aiS  are changed. This operation, explained in detail in Ceccherini et al. (2014), consists in using 

the CDF formula with a single input retrieved profile ˆ ix , obtained with its a priori profile aix  and a priori CM aiS , and with 165 

the application of a new constraint ai
′x  and ai

′S . The new profile ˆ i
′x , that is the original measurement with a new constraint, 

can be obtained using either CDF(2021) or CDF(2015): 
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( ) ( )1
1 1 1

CDF(2021)
  1

a a aii i i i i i i

−
− −− −′ ′ ′ ′= + +x S A S S α S x  (33) 

( ) ( )1
1 1

CDF(2015) n a n a
 #  

a
#T T

i i i i i i i i i i

−
− −′ ′ ′ ′= + +x A S A S A S α S x , (34) 

where in the expression derived from CDF(2015) we have used the generalized inverse matrices of niS  to deal with the most 

general case in which niS  is singular. 

When in Eqs. (33) and (34) we use a new constrain that is equal to the original one: ai ai
′ =x x  and ai ai

′ =S S , the formulas 170 

should provide the retrieved profile ˆ ix . This is a check that we use to validate the self-consistency of the input data and that 

we can here use to assess the differences between the two CDF formulas. 

Substituting iα  from Eq. (6) in Eq. (33) and using Eqs. (2) and (16), we obtain that actually 

CDF(2021) a a a a ˆ,i i i i i i
 ′ ′ ′= = =
 

x x x S S x . (35) 

On the other hand, substituting iα  from Eq. (6) in Eq. (34) we obtain: 

( ) ( )11
CDF(2015) a a a a n a n

 # #
a

 ˆ ˆ, T T
i i i i i i i i i i i i i i

−−  ′ ′ ′= = = + + − −    
x x x S S x A S A S A S I x x , (36) 

where I is the identity matrix. The second term of Eq. (36) measures the error made using the generalized inverse and, using 175 

Eqs.(1, 3) and (16), we see that, in the case that niS  is nonsingular, is equal to zero. 

We have calculated the difference CDF(2015) a a a a ˆ,i i i i i i
 ′ ′ ′= = −
 

x x x S S x  for several values of the threshold used to 

determine the eigenvalues that are neglected in the calculation of the generalized inverse matrix of niS . In Fig. 3 we report 

the consistency test provided by this difference in the case of three values of the threshold that correspond to selecting, 

respectively, the 5, 6 and 7 largest eigenvalues. 180 

 
Figure 3: Results of the consistency test with CDF(2015) considering only the 5, 6 and 7 largest eigenvalues in the calculation of the 

generalized inverse matrix of niS . 

We can see that the smallest differences are obtained for the case of 6 eigenvalues, as expected from the distribution of the 

eigenvalues. The case of 5 eigenvalues is affected by the loss of useful information, on the other hand the case of 7 185 

eigenvalues is affected by the amplification of the numeric noise. In this case, the choice of the threshold value can be 

simply done looking at Fig. 2, where the abrupt variation of the eigenvalues values clearly indicates the threshold. In a 
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general case, in which the variation of the eigenvalues is smooth, this test can be used to define the threshold for the 

eigenvalues choosing the value that minimizes the difference CDF(2015) a a a a ˆ,i i i i i i
 ′ ′ ′= = −
 

x x x S S x . 

Using the optimum number of eigenvalues for CDF(2015), in Fig. 4 we compare the differences 190 

CDF(2021) ai ai ai ai ˆ,i i
 ′ ′ ′= = −
 

x x x S S x  and CDF(2015) ai ai ai ai ˆ,i i
 ′ ′ ′= = −
 

x x x S S x  of the consistency test for the two 

CDF formulas with the retrieval error of the profile estimated by the square root of the diagonal elements of the CM iS . 

 
Figure 4: Results of the consistency test applied to the IASI measurement for the two formulas CDF(2015) and CDF(2021) 

compared with the retrieval error of the profile. 195 

As expected the consistency test provides zero differences using CDF(2021) and detectable differences, although much 

smaller than the retrieval errors, are present when using CDF(2015). These differences are an estimate of the errors 

introduced by CDF(2015) in the fusion process with respect to the results of CDF(2021). 

The errors introduced by CDF(2015) depend on the compression used to represent the matrices in the files provided to the 

users. If less compression was applied to the data a greater number of eigenvalues could be considered in the calculation of 200 

the generalized inverse matrix of niS  and the errors introduced by CDF(2015) would be further reduced. 

When no compression is applied, the errors introduced by CDF(2015) are due to the numerical precision with which the data 

are provided, because the eigenvalues smaller than the numerical precision of the largest eigenvalue will usually only 

contribute to the noise of the generalized inverse. Therefore, less compression and improved numerical precision can reduce 

the approximation introduced by CDF(2015). 205 

4 Conclusions 

The original formula CDF(2015) of the CDF requires the calculation of the inverse matrices of the noise CMs niS of the 

input profiles and, therefore, can be rigorously applied only when these CMs are nonsingular. In the other cases, the 

CDF(2015) can still be used replacing the inverse matrices of the noise CMs with the generalized inverse matrices, but the 

result is an approximation. Furthermore, a variable exists in this operation and a threshold has to be identified for the choice 210 

of how many eigenvalues are used in the calculation of the generalized inverse matrices. 

A new formula CDF(2021) has been presented that contains the inverse matrices of the retrieval error CMs (the CMs that 

include both the noise and the smoothing errors), instead of the inverse matrices of the noise CMs. Since the retrieval error 

CMs are always nonsingular matrices, the new formula can be used without resorting to generalized inverse matrices. 
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We deduced the analytical relationship between the two formulas and observed that the quality of the approximation 215 

provided by the old formula depends on how much n n
#

i iS S  is close to the identity matrix. 

Furthermore, we have obtained the expression of the operational CDF(2021), which can handle interpolation and 

coincidence errors. The operational CDF(2021) is indispensable for the application of the CDF to real measurements, which 

are often measured on different vertical grids and at either different times or locations. 

Finally, we have introduced a consistency check that can be used to define the threshold for the eigenvalues of the noise 220 

CMs and applied it to a real IASI measurement to evaluate the errors made using CDF(2015) instead of CDF(2021). We 

observed that in practice the errors introduced by the use of CDF(2015) are much smaller than the retrieval errors and 

depend on the data compression and numerical precision with which the data are provided to the users. 

The use of the new CDF(2021) and operational CDF(2021) is recommended for data fusion processing, but the errors made 

with the old CDF(2015) do not appear to be important, even in the case of a significant data compression. 225 

 

Data availability. The IASI data used in the paper are available at the webpage “IASI Combined Sounding Products – 

Metop”: https://navigator.eumetsat.int/product/EO:EUM:DAT:METOP:IASSND02, last access 27 April 2022. The results of 

the analysis performed on these data are available from the authors upon request. 
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