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Response to comments from Anonymous Referee #1

General comments

This paper proposes an IWP retrieval method using machine learning. Combining a quantile
regression neural network (QRNN) and a convolutional neural network (CNN), the measurements
from Meteosat-9 SEVIRI IR-only channels can be used to retrieve IWP. The retrieval using
QRNN and CNN is encouraging because the results show good agreement with the DARDAR
dataset. The paper is clearly written and the study is well explained. I believe the manuscript
should be published in AMT but I have a major concern and some minor comments.

My main concern is that I don’t see any statistics and analysis results for the collocation database.
More statistical plots of the retrieval database are suggested to provide. Since the collocation
database essentially represents the prior knowledge about the ice cloud distribution, these plots
could help to verify if the collocation database captures the right statistics.

We thank the referee for the nice and concise summary of the paper, as well as for the comments
below. We address the major concern through the answers to the specific comments.

Specific comments

1. Line 75: In general, the TIR band does not penetrate as well as microwave band and is
only sensitive to signals from cloud tops, which means that for large IWPs, the IR-only
measurement is likely to lack valid IWP information, especially when compared to the 94
GHz CPR of CloudSat. Therefore, the question is, if the range of IWP is not limited, are
the IWPs in the results that do not fall within the sensitive range of the IR band inferred
from a priori information rather than from the measurement? Are such results reliable?
Also, are the results better without constraining the range of IWP than constraining the
range of IWP?

We break down the answer to this comment to address the three questions asked.

• If the range of IWP is not limited, are the IWPS in the results that do not fall within
the sensitive range of the IR band inferred from a priori information rather than from
the measurement?

Let Q represent the distribution of the IWP in the training data, and P the distri-
bution that can be constructed from the models prediction. We consider here Q as
the prior information. We can see that the measurements are not inferred from a
priori information but rather from the measurement, as the expected value of P is
very different from the expected value of Q (1.18× 10−1 kgm−2), particularly for the
largest IWP values, which we understand is the range where the referee asks for. We
can see that from Figures 5 and 7, and, albeit the expected value of Q is not reported,
estimate it from the distribution in Figure 10, which is very similar to Q.

If this is not sufficient to clarify this doubt, we provide a mathematical-statistical
argument. In Figure RC1.1 we show the Kullback-Leibler divergence between all
predicted distributions P from the test set, using the IR-only CNN network, and Q.
The Kullback-Leibler divergence is a statistical distance that measures how different
P is from a reference distribution Q, denoted as D(P ∥ Q). The larger its value, the
more different the distributions are. Two distributions are equal if their divergence
is 0. It is explained in the next paragraph how we numerically computed it. We can
see that it tends to not be zero for any IWP, from which we can conclude that IWPs
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in the results are inferred from the measurement rather than a priori information, as
the predicted P is different from Q.

In the general case, the Kullback-Leibler divergence for two probability measures P
and Q is defined as

D(P ∥ Q) =

∫
Ω

dP log2
dP

dQ

where Ω is the set over which P and Q measure, and requires that P is absolutely
continuous with respect to Q, indicated as P ≪ Q. If P and Q are defined over the
reals and have a density, then it can be expressed as

D(P ∥ Q) =

∫
R
p(x) log2

[
p(x)

q(x)

]
dx

where p and q are the respective density functions. We define FX|Y(x) = P (X ≤
x) and FX = Q(X ≤ x), which implies that P ≪ Q for this problem. We avoid
mathematical rigurosity to be able to provide an intuition of how different P and Q
tend to be, and approximate D(P ∥ Q) with the Riemann sum

D̂(P ∥ Q) =

n∑
i=1

∆F
(i)
X|Y log2

∆F
(i)
X|Y

∆F
(i)
X


where ∆F

(i)
X|Y = FX|Y(xi)− FX|Y(xi−1), analogously for ∆F

(i)
X , FX is the empirical

cumulative distribution (CDF) of the training data, FX|Y is the continuous piecewise
linear extension of the predicted distribution to provide values for any x ∈ X, and
X = {x0, x1, . . . , xn} are all IWP values in the training data set.
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Figure RC1.1: The Kullback-Leibler computed as described in text, for the test set
predictions with the CNN. The median curve shows the trend at the local DARDAR
IWP, and the quantiles indicate the dispersion at the local IWP. Linear scale until
1× 10−3 kgm−2, and log scale afterwards.

3



• Are such results [that do not fall in the sensitive range of the IR band] reliable?

We can interpret the question in two ways. The first one is whether the quantile for
values outside the sensitive range of the IR band are good estimates. This would
require predicting another type of uncertainty in the problem, the uncertainty of
the predicted quantiles. How to estimate this uncertainty when predicting quantiles
(combining epistemic uncertainty with aleatoric uncertainty) is yet to be studied for
retrievals, to the best of our knowledge. This is not discussed in the paper as we
consider it to be completely out of the scope of this work.

The second interpretation we make is whether the predicted distribution P captures
better the reference value than the prior Q. We can see that the results are reliable
because, on the test set, the expected value of P tends to follow the identity line,
although for the largest values the curve starts to deviate. It is sensible to assume
this range (large IWPs) is where the machine cannot leverage differences between the
IR measurements, if there are any. Note that, in both training and test set, values
above 10 kgm−2 (the right limit of the abscissa in Figures 5 and 7) represent less than
1.6% of the values. Thus, we expect IWP above this threshold to be very rare for the
given region of interest.

• Are the results better without constraining the range of IWP than constraining the
range of IWP?

We make two interpretations of this question: on the one hand, that the results are
evaluated on a constrained range of IWP on the networks trained on all IWP data,
and on the other hand that the networks are trained and evaluated on a constrained
IWP range. In the former case, what we call summary statistics (RMSE, MAE, BIAS,
CRPS, rS) will change. For instance, if in the test set only IWP < 1 kgm−2 values are
considered, the CNN summary statistics presented in Figure 7 will change to RMSE =

2.09E-1, MAE = 4.03E-2, bias = 3.04E-2, CRPSµ= 1.84E-2, CRPSm= 5.04E-4, all
in kgm−2, and rS= 0.85. Except the bias and rS which are worse, although rS is
almost equal, the other parameters show better results. This is due to the influence
that large values can have over small values in the summary statistics, and can be
misleading to evaluate results only on these parameters (line 212). This is the reason
why such parameters should be computed on the same set of values when comparing
the results of different methods, as done in the paper. Concerning the graphical
evaluation, as in Figures 5 and 7, then it is only necessary to look at the desired
range.

If we trained the networks on a constrained range of IWP, then the network would
have a different a priori information. While it could achieve better results when
evaluating against IWP in the constrained range, it raises two questions. Firstly, how
it would perform for IWP values outside the constrained range. Secondly, if values
outside the range are to be excluded from the retrieval, as they are not values which
the network has been exposed during training, the retrieval algorithm should have a
way to identify them. One could also argue in favour or against the values for the
limits of the constrained range, which could be considered arbitrary. For all these
reasons, we think it is better to train using the full range of IWP for retrievals under
any circumstances. Nevertheless, we show in Figure RC1.2 the results of training
and evaluating the MLP network corresponding to Figure 7 with constrained ranges,
where it is seen that training under constrained ranges is actually worse, based on
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the curves presented (the best of five trainings for each range is presented). However,
this MLP was tuned to have a good performance for any IWP range, and not the
contrained ranges used.
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Figure RC1.2: Results on the test set for the MLP network corresponding to Figure
7, but trained and evaluated on the constrained range of IWP indicated by each
subplot title.

2. Line 130: How many DARDAR observations will there be in a SEVIRI cell in the best
case? Figure 1 shows the DARDAR observations do not fill the SEVIRI cell due to the
different resolution. How to illustrate that the DARDAR profile can represent the scene in
the SEVIRI image?

We first clarify what we mean with DARDAR observation in this answer. Using Figure
1, we refer to a DARDAR observation as either the original (blue + symbol) or replicated
(orange + symbol) DARDAR profile. In the best case, there are 12 DARDAR observations
per pixel. However, this correspond to edges of the region of interest, predominantly in
the lower right corner. This is a consequence of the projection used, as it is the furthest
area from the centre of the projection. However, an analysis of Figure RC1.3 shows that
9 profiles is probably a better answer, as this is seen uniformly throughout the region of
interest (ROI).

In the second question of this comment, we understand the word “scene” (and consequen-
tially the question) as, “given a pixel P in the SEVIRI image, how can collocated DARDAR
profiles in P represent the complete IWP in P , given that they can only partially cover
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P?”. We argue that this is a problem that does not have a good solution, as one could set a
threshold on the numbers of profiles required to represent a “scene”. However, we consider
any threshold value completely arbitrary. Therefore, to not lose any information, we con-
sidered all pixels with collocations. In the worst collocation case, where there is only one
collocated profile in P completely irrepresentative of the “scene”, the networks will ideally
interpret it as noise, as long as such case is very rare in the training data. We also suggest
(in line 403) that this concern can be addressed in further research by incorporating the
disagreement between profiles in a pixel P during training.
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Figure RC1.3: Each dot represents a SEVIRI pixel (not to scale) in the ROI. Each
subplot title indicates how many DARDAR profiles, as described in text, are located in
the SEVIRI pixel and therefore were used to obtain the collocated value for the pixel. The
subplot title also indicates how often the given number of profiles are found in a SEVIRI
pixel. All numbers computed from the training set data.

3. Line 136: All data is randomly divided into training, validation and testing sets, which
means that the features of the test set are also learned by the neural network. I think it
is better to use a separate set of data such as data in 2012 for testing the generalization
ability of the network.

We understand the concerns raised by using a random division of the data available for
testing the generalization ability instead of using, for example, a temporal division, as the
referee thinks. We interpret the concerns as that neighbour image samples, which can be
allocated to different sets, can correspond to similar or related atmospheric states. We
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think it is a sensible point. However we made this choice motivated by the data available
and that no information is re-used between the training and (validation and) test sets.
Note that the image samples do not overlap. We elaborate below.

The collocations database consist of nearly 3 years of day and night collocations. The
upper time bound is due to that day and night collocations are only available before April
2011 because of the CloudSat battery anomaly (line 96). The lower time bound is due to
the files provided by the EUMETSAT Data Store: files before 6 May 2008 were processed
with another algorithm version than those posterior to this date. We have not found a
citable reference that clearly explains this. This information is scattered on the Internet
and can be noticed from the SEVIRI file names. Therefore, our database contains nearly all
possible day and night collocations for SEVIRI images processed with the same algorithm
version. That is, using data in 2012 is not suitable to test the overall generalization, as
it lacks nighttime collocations. For completeness, we also state here “nearly all” instead
of “all” as, at the time of finalizing the manuscript, we noticed that relatively very few
random DARDAR files had not been downloaded; we cannot foresee how re-doing all steps
and analyses with “all” collocations would bring any benefit, and in our opinion it would
only have consumed a substantial amount of time.

One could argue to use, for example, 2009 and 2010 for training (and validation), and the
remaining data (from 2008 and 2011) for testing. Figure RC1.4 shows that such strategy
would miss to test the generalization ability for certain time ranges (or even train it), and
can even miss valuable information in the training. If several more years of data were
available, then a train-test split based on years would be fair. A more strategic approach
with our database would be to differentiate between orbits, that is no samples from the
same orbit should be in training and test sets. However, this approach should ensure that
all areas are well represented in the different sets: given an area, how to handle if, in two
consecutive overpasses at the same time of day (which are 16 days apart), assigned to the
training and test sets, respectively, the training samples capture a common state, but the
test set samples an unusual one? More convolved approaches could be thought, but that
does not imply they test better the generalization ability.

7



01-Jan 01-Feb 01-Mar 01-Apr 01-May 01-Jun 01-Jul 01-Aug 01-Sep 01-Oct 01-Nov 01-Dec
0

25

50

75

100

125

150

Sa
m

pl
e 

co
un

t p
er

 d
ay

2008

01-Jan 01-Feb 01-Mar 01-Apr 01-May 01-Jun 01-Jul 01-Aug 01-Sep 01-Oct 01-Nov 01-Dec
0

25

50

75

100

125

150

Sa
m

pl
e 

co
un

t p
er

 d
ay

2009

01-Jan 01-Feb 01-Mar 01-Apr 01-May 01-Jun 01-Jul 01-Aug 01-Sep 01-Oct 01-Nov 01-Dec
0

25

50

75

100

125

150

Sa
m

pl
e 

co
un

t p
er

 d
ay

2010

01-Jan 01-Feb 01-Mar 01-Apr 01-May 01-Jun 01-Jul 01-Aug 01-Sep 01-Oct 01-Nov 01-Dec
0

25

50

75

100

125

150

Sa
m

pl
e 

co
un

t p
er

 d
ay

2011

Figure RC1.4: Samples (32×32 pixels images) in the training, validation and test sets
aggregated.

4. Sec. 2.3: It is necessary to analyse the statistical characteristics of the distribution of the
collocations with a plot. Although the relationships between IWP and visible and infrared
(VISIR) radiances have been stated, it is not sufficiently visual. I suggest adding a plot
here to illustrate the relationship between these parameters and IWP to show that the
collocations are valid. What also needs to be illustrated is the coverage of the observations
in the dataset and whether it is representative of the majority scenarios. Also, what is the
proportion of scenes with and without ice clouds in the dataset and is there a problem with
uneven data distribution?

Figure RC1.5 provides the plot requested by the referee, although for the daytime obser-
vations. If the same plot is produced using daytime and nighttime data, or nighttime data
only, then the plots for channels 1-3, and to a lesser extent 4, change abruptly, as these
channels depend on a solar contribution; there are small diferences between the thermal
infrared channels between day and night, which we believe can be caused by the diurnal
cycle of atmospheric ice itself. It can be observed that the distributions are reasonable: for
infrared channels, the colder a SEVIRI pixel is, the higher the IWP; for the solar channels,
the higher the reflectance is, the higher the IWP.
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Figure RC1.5: Distributions of the SEVIRI channels plotted against the DARDAR IWP,
daytime data only.

Concerning the request to illustrate the observations coverage, it is partially answered by
Figure RC1.4 and complemented by Figure RC1.6, which will replace Figure 2 in the paper.
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Figure RC1.6: Figure 2 updated, with the DARDAR profiles (not to scale).

Regarding the last question from the Anonymous Referee, we can understand the word
“scene” in the question “what is the proportion of scenes with and without ice clouds in the
dataset” as either a SEVIRI pixel (case A) or a “sample” (case B), the word we used in our
paper to describe the 32×32 pixels images used. DARDAR provides a flag for each vertical
bin, describing its content. Among these flags, exist the values ice, ice + supercooled,
liquid warm, and supercooled. We tagged profiles with any of these flags present as
cloudy. In case A, nearly 78% of pixels have a cloud, of which 72% have the flag ice, and
thus are ice clouds (the same result is obtained if ice + supercooled is also considered).
That is, 56% of the pixels have an ice cloud. These numbers change for case B, as 128
pixels are included per sample. 97% of the samples have pixels with cloud flags, of which
70% have ice clouds, which implies that 68% of the samples have ice clouds.

Finally, the problem with an uneven data distribution is that the most challenging range to
retrieve IWP from the thermal IR channels has limited data. This implies that, even if it
would be physically possible to perform excellent retrievals of large IWP from IR radiances,
any machine learning model would struggle as there is not much data to learn from. For
example, in the training set there are only 374 pixels with IWP > 10 kgm−2 compared
to more than 13 000 pixels in the range IWP ∈ [10−1, 1] kgm−2. In this particular case,
techniques to combat uneven data distributions, such as oversampling, would alter any
prior information for the retrievals. We then argue that, while this might produce better
results for the oversampled range, it may worsen the retrievals for other ranges if such a
technique is not used carefully, and are skeptical whether that would bring a substantial
general retrieval improvement. We refer to the answer of the specific comment #1 that
complements this comment.

5. Line 181: What is the purpose of random image mirroring and rotation?

Better generalization. Note that rotating multiples of 90 degrees does not alter the pixel
information (no resampling has to be done, which would happen for non-multiples of 90
degrees). With this technique, the samples are presented differently to the convolutional
filters, which have no information about whether the samples had any transformation, but
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the network has to retrieve the same values for each input value. Therefore, these filters are
trained on data that is presented differently in each epoch, helping the network be better
prepared for inference with non-training data.

6. Line 250: Does the spatial information refer to the correlation between pixels? Why it is
useful for retrieval?

It corresponds to exploiting the correlation between neighbouring pixels by using the CNN.
We state it is useful from the results, which are summarized also in line 250. Intuitively,
making good use of information surrounding an image pixel (the neighbouring pixels)
should help to constrain better the retrieval and obtain a better performance.

7. Line 281: In the comparison between the two products, is the instantaneous IWP retrieval
using the test dataset? Why not use the data for 2012 as used in the monthly mean diurnal
cycles?

Yes, it uses the test dataset (with few SEVIRI samples excluded as those observations are
not present in CLAAS, line 285). The reason for using the test set is to not introduce yet
another data set, such that, if it is desired, one can compare with the results from the other
sections where the test set is used. Note that the diurnal cycles do not have DARDAR
data, they only consist of the CLAAS diurnal cycles and the predictions of the CNN using
IR-only channels.

Manuscript changes after the comments from Anonymous Referee #1

• Fig. RC1.6 replaces Fig. 2, and updated caption accordingly

• Included the percentage of ice cloud “scenes” (pixels and samples).

• Created a section in the supplementary material, which is referred to in the paper if a
reader wants more details, with an analysis and statistics of the collocation database, with:

– More explicit explanation of the coverage of the collocations, covering why the lower
time bound is 6 May 2008.

– Figures RC1.4, RC1.3 to detail the temporal coverage of the collocations and how
many profiles are used per collocation, repectively.

– Figures describing the percentage of cloudy “scenes” (pixels and samples).

– Relationships between the collocated DARDAR IWP and the visibile and infrared
radiances, separated by daytime and nighttime data (this includes Fig. RC1.5).

– A table with several quantiles and mean value of the different data sets used in the
paper.

• Split the line where it is mentioned that random rotation and mirroring is used, to clarify
that it is done on each data access, and mentioned that it is to have a better generalization.

Concerning the Kullback-Leibler analysis presented as a second answer to comment #1 (in the
form of a mathematical-statistical argument), we do not plan to update the manuscript with this
nor include it in the supplementary material. We think that it would only distract the average
reader, and that the first answer we provide to comment #1 (large IWPs are inferred from the
measurements as they do not match the expected value of the a priori information) is the general
understanding.
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Response to comments from Anonymous Referee #2

The paper proposed by Adrià Amell and colleagues presents an inversion technique based on
machine learning for the estimation of ice wather path (IWP) form Meteosat-9 observations with
a focus on low latitudes. In their work, the authors both introduce and describe the topic with
good details and discuss the potential and advantages of using artificial intelligence quantile-
based regression methodologies over physics-based methods present in the literature.

In this context, the authors test various neural network architectures and compare the use of ob-
servations in the thermal infrared (IR) and/or visible bands as inputs. Finally, authors conclude
that the architecture based on convolutional neural networks (CNNs) in which spatial informa-
tion is integrated is the architecture that performs better, using, moreover, only observations in
the infrared band as input. The presented approach offers several advantages over traditional
methods, such as the ability to calculate diurnal cycles, a problem that for example CloudSat
cannot solve due to its limited temporal and spatial sampling. Then, since the methodology is
quantile based, it allows the developed methodology to obtain directly and in an integrated way
an estimate of the uncertainty of the regressions.

The authors validated their work using CLASS that is thoroughly validated dataset based on tra-
ditional approaches. The obtained retrievals compare favourably with IWP retrievals in CLAAS.
In my opinion, this last result arguably demonstrates the potential of this methodology highlight
the possibilities to overcome limitations from physics-based approaches as demonstrated in other
works recently published in literature Holl et al. (2014), Islam and Srivastava (2015) and Mastro
et al. (2022).

We thank the referee for the nice summary of the paper, as well as for the comments and
suggestions below.

However, in my opinion, some shortcomings are present in the paper framework that require a
major review.

1. In section 3.2 authors describe the Network architecture and specifically they discuss the
multilayer percepton (MLP) and the CNN configurations indicating their structural hyper-
parameters. I would argue that it is essential to describe in more detail this information
and how the choice of these configurations was made. For example, for the MLP configu-
ration, the authors indicate an architecture consisting of 16 hidden layers each composed
of 128 hidden units assuming that it is the setup that achieves the best performance. How
did they reach this finding? Has a tuning framework been used? If so, how was the hy-
perparameter space configured from which to begin the search for the best configuration?
Also, were configurations with fewer hidden layers explored?

We understand that it can be concerning to not provide more information about the design
choices, particularly for those readers who are more knowledgeable in machine learning. We
want the reader to be focused on the retrieval performance with machine learning, and not
distracted by details of the choices in the machine learning models. In the three works cited
that use neural networks to retrieve IWP, no description is given for the network choice (Holl
et al., 2014), a rule of thumb is used without any hyperparameter search employed (Islam
and Srivastava, 2015) or, the most recent work, only states what framework was used but
not how it was configured (Mastro et al., 2022). Despite the level of detail clearly differs,
we are updating the paper with some information at a very high-level. Nevertheless we
answer the questions in detail here, as the hyperparameter tuning represented a substantial
amount of work.
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A subset St of the training data set S was used to train different models, which are described
in the next two paragraphs. Another subset Sv ⊂ S, Sv ∩ St = ∅ was used to evaluate
the performance of each model. The performance on Sv determined our model choice.
All models were trained and evaluated several times to make solid choices. No software
tuning framework was used for this step. Instead, the (human) evaluation explained in the
manuscript (line 175) was used for this step.

The CNN configuration and choices comes from experience and expertise acquired through
previous or parallel projects from the authors. All these projects consists of retrievals with
QRNNs. Furthermore, choices for the CNN are imposed by data and hardware constraints.
In using a similar network as in those other projects we were able to adapt existing code
for this work. This reduced the chances of running into silent bugs or inapproriately using
the ML libraries. We find that presenting the choices for the blocks in the CNN model
itself would require a paper of its own, since we also evaluated small changes in the CNN
choices, which did not present remarkable benefits in this retrieval problem. The number of
Xceptions blocks n was searched thoroughly over the grid n = {0, 1, 2, 4}, and the number
of filters in k = {64, 128}. We observed that with n = 2 and k = 128 the performance
tended to be better, yet only marginally better than the other choices in several repetitions
of this hyperparameter exploration. Therefore, we did not explore deeper for a better final
configuration.

Concerning the MLP, the goal was to have a simple MLP without any elaborated design
choice as a benchmark base for any CNN network. This also made it computationaly
cheaper to train and define a hyperparameter space. In this case, we explored configurations
with l = {1, 2, 4, 8, 16, 32, 64, 128, 256} hidden layers, n = {8, 16, 32, 64, 128, 256} hidden
neurons, and the three input settings used. Through the manual evaluation, we observed
that l = 16 and n = 128 tended to perform equal or better than the other choices in several
repetitions of the hyperparameter exploration. More details could be given on the MLP
performance for this problem, but as in the CNN case, we also think this would deserve
a paper of its own: only determining the MLP network candidate to then train with S
represents |l| × |n| × (3 input settings) = 162 options to compare, but since more than one
training execution was performed for each hyperparameter configuration, there would be
many more results to discuss.

2. The authors indicate that Table 2 shows the input characteristics used by the analyzed
architectures. I believe that as presented, the table does not make it easy to understand
which of the inputs shown are used of the architectures presented. I understand that
various configurations of inputs were used for each architecture. Anyway, I sugges the
authors reformulate more clearly the information in Table 2 and contextualize it better.

We think that the information in Table 2 is clear, but we are updating the Table caption
sentence “Input features used.” to “Input features used for each input settings.”. Through-
out the text, the input settings for each network are indicated whenever they cannot be
determined from the context, whether they are contained in the Figure (as in Figure 5),
in the Figure caption (Figure 7, Figure 9), or in the text itself, for example, lines 247 or
259. This also implies that various configurations of inputs were used only for the MLP,
as described in Sect. 4.1, and the rest of results, including the features used for the CNN,
build only on using the features referred as IR input settings, as the first line (line 247) of
Sect. 4.2 states and the following (sub)sections remind.
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3. In section 3.3 the authors discuss the training of the proposed configurations. Here they
also introduce information regarding the inputs used. In general as presented the section is
very confusing and a possible reader might find it difficult to read. I propose to move the
choice of inputs to section 3.2 following the corrections of Table 2 indicated previously and
to focus section 3.3 in providing details concerning only the training phase. In addition, a
useful piece of information would be to show the learning curves (for each epoch of training
and validation) of the two configurations in order to demonstrate the absence of overfitting
and underfitting problems.

We appreciate this observation and are moving the text accordingly. We would also like
to remark that we did observe overfitting, which is why early stopping on the validation
loss was used (line 178). Therefore, we do not see any added value in adding the learning
curves of the seven networks presented in the paper, but we will provide Figure RC2.1
as supplementary material. For comparison with the three works cited that use neural
networks to retrieve IWP, only Mastro et al. (2022) present a learning curve, but only
for one of the networks therein (cf. comment #1). As a side note, we identified that the
bursts in the loss function are related to the behaviour of the chosen optimizer (and its
hyperparameters) in the landscape of the loss function for this problem, but we consider
any further discussion and analysis on this regard out of the scope of the paper.
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Figure RC2.1: Learning curves, with the early stopping epochs indicated.
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4. Figure 4 shows the CNN architecture and in my opinion it is a bit misleading. I would like
to propose to the authors to change the position of the DXception and Xception blocks
next to the blocks themselves, because as they look they appear to be part of the input
and output blocks.

Figure 4 is designed such that it fits nicely in a two-column paper, and the suggestion does
not fit our intention. We understand that it can be misleading. Figure RC2.2 will replace
the current Figure in the paper (the colour choice is arbitrary).
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Figure RC2.2: Diagram that will replace Figure 4.

Manuscript changes after the comments from Anonymous Referee #2

• Added a high-level info on how the hyperparemeters for the networks were selected in
Sect. 3.2.

• Table 2 caption from “Input features used.” to “Input features used for each input set-
tings.”.

• Move text according to referee comment #3.

• All learning curves from all networks presented in the paper (Fig. RC2.1) added as supple-
mentary material.

• Figure 4 replaced by Fig. RC2.2.
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Response to comments from Anonymous Referee #3

The paper, “Ice water path retrievals from Meteosat-9 using quantile regression neural networks,”
develops a new approach toward estimating cloud ice water path during any time of the day using
a machine learning method. The technique is trained with matched SEVIRI pixels and DARDAR
profiles using a quantile regression neural network that permits an estimate of the uncertainty
for each retrieval. Two versions are applied, a single pixel method (MLP) and a single pixel plus
surrounding pixel data, a convolutional neural net (CNN). The latter was found to be superior to
the former in that the average uncertainty was reduced, although the CNN tends to “smear” the
IWP signal across neighboring pixels. Three input datasets were tested: VISIR (daytime) using
all but one SEVIRI channel, an infrared (IR) only method using all non-solar SEVIRI channel,
and a subset IR case using only two channels to simulate an historical Meteosat imager. All were
trained using DARDAR data and their results were compared to DARDAR data taken within
the same time frame as the training set. The VISIR performed best, but is limited to daytime
and would require training for various solar angles that are not available for the DARDAR. The
IR input produced quite acceptable results that are consistent in relative terms with the daytime
portions of diurnal cycles of IWP determined from other passive sensor methods. The IR subset
input shows less skill but provides information that is not obtainable with more physically based
retrievals. This approach shows promise for improving the estimation of IWP at all times of day.

We thank the referee for the nice summary of the paper, as well as for the comments and
suggestions below.

I recommend publication with a few revisions.

1. It would help in section 2.3 to use the same terminology in the text and Figure 1 description
of the collocation. “Cell” is only mentioned in the caption, not in the text. SEVIRI “pixel”
is used in the text. Also, the caption should note the units used for lat and lon, as degree
is the usual unit. Is it correct to assume that the SEVIRI pixels used for given image were
at least 16 km apart?

The assumption is not correct. We believe this question comes from confusing the limits of
the abscissa in the plot with the size of a SEVIRI pixel in the projection used, delimited by
the green lines. We are replacing “cell” with “pixel” in Figure 1, as suggested. This should
reduce the risk of assuming that pixels are at least 16 km apart. We will also indicate in
the Figure 1 caption that the units for the coordinates are kilometres.

2. The units of the statistical parameters in Figure 5 and 7 are given in kg m-3. That is
good. But, the mean DARDAR value should be noted for each plot, or the values given in
percent of the mean DARDAR value in the text.

We are adding in the captions of Figure 5 and 7 the DARDAR mean of the observations
in the test set.

3. Line 280: By stating that “CLAAS has been thoroughly validated” suggests that the
CLAAS IWP values agreed well with actual IWP measurements. The cited studies showed
that CLAAS agreed well with similar passive remote sensing techniques, but not particu-
larly well with DARDAR, the “ground truth” used here. For the most part, the CLAAS
values are significantly lower than their DARDAR counterparts, as indicated later in the
discussion. As the results shown in the citations vary, and none arise from an actual com-
parison with any in situ data, “thoroughly validated” is a bit of an overstatement. I would
suggest rewriting this line, so that it is no surprise to find the CLAAS mean running below
that from the CNN in Fig. 9.
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Thank you for this remark. Our original intention with the expression “CLAAS has been
thoroughly validated” is to show that this dataset has works that compared IWP retrievals
in the CLAAS dataset with other sources. We are updating the paragraph that starts that
line to avoid this surprise, as well as removing “thoroughly validated” in the abstract, for
consistency.

4. Figure 10. This plot is difficult to examine closely. I think it would be easier to compare
the two methods by putting them on the same graph with the two scales, and maybe only
using 4 months instead of all twelve, just to illustrate the relative consistency.

We assume the referee meant Figure 11 instead of 10. We have prepared Figure RC3.1
to replace Figure 11, and we are updating the text accordingly. Note that the choice of
dashed and solid lines for the CLAAS dataset and CNN retrievals, respectively, and the
colour choice for each month is only for the best clarity in the plot. For the curious reader,
we are also including the current Figure 10 in supplementary material.
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Figure RC3.1: Diurnal cycles for four arbitrary months in 2012. Note the different ver-
tical ranges. The default matplotlib (Python library for plotting) method for determining
the vertical limits was used. This Figure will replace Fig 10.

5. Mean mass height (Zm) and mean mass size (Dm) are derived with somewhat mixed results.
It would be helpful if the authors could remind us of the importance of these parameters.

Ice water path (IWP) is an integrated value of the ice water content (IWC), but neither
can we have any information about at what height IWC is located nor about the size of the
ice crystals constituting the IWC. Estimating Zm and Dm gives some information about
these two problems and, therefore, can help to characterize better atmospheric ice. We are
adding to the paper that these parameters help characterize better atmospheric ice.

Manuscript changes after the comments from Anonymous Referee #3

• Figure 1: “pixel” replaces “cell”, and coordinate units remarked in the caption.

• Added mean of DARDAR IWP in the test set in Figs. 5 and 7. Also, added “daytime” to
“test data” in Fig. 5, to clearly indicate that no nighttime observations were used there.

• Replaced the expression “CLAAS has been thoroughly validated” with “CLAAS IWP has
been analyzed against DARDAR and compared with MODIS retrievals”, and removed
“thoroughly validated” from the abstract sentence “[in CLAAS], a thoroughly validated
dataset based on a traditional approach.”.

• Fig. RC3.1 replaces Fig 11, and Fig. 11 is moved to supplementary material. Text and
captions adapted to match that four months are presented in the main text.

• Motivated the the importance of Zm and Dm in the beginning of section 4.3, before pre-
senting their retrieval results.
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