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Abstract. The relationship between geostationary radiances and ice water path (IWP) is complex, and traditional retrieval

approaches are not optimal. This work applies machine learning to improve the IWP retrieval from Meteosat-9 observations,

with a focus on low latitudes, training the models against retrievals based on CloudSat. Advantages of machine learning include

avoiding explicit physical assumptions on the data, an efficient use of information from all channels, and easily leveraging

spatial information.5

Thermal infrared (IR) retrievals are used as input to achieve a performance independent of the solar angle. They are compared

with retrievals including solar reflectances, as well as a subset of IR channels for compatibility with historical sensors. The

retrievals are accomplished with quantile regression neural networks. This network type provides case-specific uncertainty

estimates, compatible with non-Gaussian errors, and is flexible enough to be applied to different network architectures.

Spatial information is incorporated into the network through a convolutional neural network (CNN) architecture. This choice10

outperforms architectures that only work pixelwise. In fact, the CNN shows a good retrieval performance by using only IR

channels. This allows computing diurnal cycles, a problem that CloudSat cannot resolve due to its limited temporal and spatial

sampling. These retrievals compare favourably with IWP retrievals in CLAAS, a thoroughly validated dataset based on a

traditional approach. These results highlight the possibilities to overcome limitations from physics-based approaches using

machine learning while providing efficient, probabilistic IWP retrieval methods. Moreover, they suggest extending this first15

work to higher latitudes as well as considering geostationary data as a complement to the upcoming Ice Cloud Imager mission,

for example, to bridge the gap in temporal sampling with respect to space-based radars.

1 Introduction

Clouds remain among the main factors that hinder climate models to give a confident value for the climate sensitivity. According

to the Sixth Assessment Report, the last report from the Intergovernmental Panel on Climate Change (IPCC, 2021), there is20

now high confidence in the feedbacks associated with the subtropical marine low-cloud regime and altitude of high clouds.

There has been less progress on the tropical high-cloud amount feedback and this component is the largest contributor to the

overall cloud feedback uncertainty (Forster et al., 2021). That said, global warming is ongoing and will continue. One of the

critical aspects of this warming is changes in precipitation, that also are difficult to predict with accuracy. A quantity with

relations to both these modelling challenges is the mass of ice hydrometeors. At low ice concentrations, the radiative forcing of25
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ice clouds follows the ice water content (IWC, kgm−3), albeit altitude and time of day must also be considered. Precipitation

in the form of snow, graupel and hail is directly linked to the masses of ice hydrometeors inside the atmosphere, but also rain

is affected by the ice water contents above.

The total amount of ice hydrometeors is normally reported as the ice water path (IWP, kgm−2), which is one of the essential

climate variables from the Global Climate Observing System (GCOS, 2021). Despite it is an integrated value and should30

be easier to constrain than level-specific IWC, there has been little progress around IWP in both measurements and models

(Waliser et al., 2009; Eliasson et al., 2011; Duncan and Eriksson, 2018). The most accurate global data on IWP should be

provided by retrievals based on CloudSat reflectivites such as DARDAR (Cazenave et al., 2019). Where the CloudSat 94 GHz

radar measures it gives accurate information at high vertical resolution, except for high IWP values where attenuation and

multiple scattering decrease the retrieval accuracy. However, the swath width of CloudSat is only 1.4 km.35

Passive instruments offer a much higher horizontal coverage. Therefore, passive observations are a good complement to

CloudSat. In 2025 the Ice Cloud Imager (ICI) will be launched aboard Metop Second Generation (Metop-SG) B and will

provide information on IWP over a swath 1500 km wide with a 16 km horizontal resolution (Eriksson et al., 2020). That is,

the geographical coverage of the ICI radiometer is more than a factor 100 higher than CloudSat, and close to global coverage

is obtained on a daily basis. The ICI IWP retrieval accuracy should be comparable to the one allowed by a 94 GHz radar40

(Pfreundschuh et al., 2020) and retrievals of coarse IWC profiles should be possible (Brath et al., 2018), but cloud radars are

still far superior in terms of spatial resolution.

Microwave instruments are so far only operated on satellites in low orbits. Observations from geostationary satellites are an

important complement as they provide short revisit times. For instance, the Spinning Enhanced Visible and InfraRed Imager

(SEVIRI) instrument aboard the Meteosat Second Generation (MSG) of geostationary satellites (Schmetz et al., 2002) provides45

full disc images every 15 minutes. The main challenge with retrievals from geostationary satellites is the complex relationship

between visible and infrared (VISIR) radiances and IWP.

Nakajima and King (1990) found that the reflectances at 0.75 µm are primarily sensitive to cloud optical thickness τ ,

while reflectances at 2.16 µm are primarily sensitive to effective droplet radius re. Assuming a sufficiently representative re

value, then IWP can be estimated from these two parameters (Stephens, 1978). This solar bispectral method constitutes the50

foundation of several IWP retrieval methods based on VISIR radiances. This includes: the Cloud Physical Properties algorithm

(CPP, first published by Roebeling et al., 2006), the Daytime Cloud Optical and Microphysical Properties (DCOMP) algorithm

used in Pathfinder Atmospheric Extended (PATMOS-X, Walther and Heidinger, 2012), the Moderate Resolution Imaging

Spectroradiometer (MODIS) cloud properties product (Platnick et al., 2017) or the NASA Clouds and the Earth’s Radiant

Energy System (CERES) project algorithms (Minnis et al., 2011, 2021), the latter originally developed for MODIS but also55

adapted for other polar-orbiting (Minnis et al., 2016a) and geostationary imagers (Minnis et al., 2008) in the Satellite Cloud

and Radiation Property retrieval System (SatCORPS). All these retrieval algorithms estimate IWP from τ and re, where the

last two properties are derived by solar reflectances using physics-based methods. The CERES algorithms have a nighttime

retrieval algorithm for these parameters, but according to Minnis et al. (2011, p. 4 386) its τ and re values should be considered

experimental.60
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Machine learning (ML) methods, and in particular artificial neural network (NN) approaches, are promising candidates for

remote sensing retrievals. This is primarily due to that they do not require explicit assumptions used in pure physics-based

models. ML methods instead can find non-linear relationships by learning from data, whether these data consist of physical

observations or are obtained through physical simulations. Only concerning ice optical thickness, Yost et al. (2021) remark that

new editions of the CERES algorithms must consider NNs to improve its estimates, such as the work from Kox et al. (2014)65

and Minnis et al. (2016b). The Cirrus Properties from SEVIRI (CiPS, Strandgren et al., 2017) directly retrieves IWP from

SEVIRI using a NN trained against Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The CALIOP

lidar signal quickly attenuates in thick clouds. Therefore, thick clouds and large IWPs are not well represented by CALIOP

observations, which constrains CiPS to thin ice clouds. Holl et al. (2014), Islam and Srivastava (2015) and Mastro et al. (2022)

also directly retrieve IWP with NNs, but they make use of combinations of microwave and infrared observations, as they found70

this advantageous compared to just using infrared data.

In any case, the use of NNs for IWP retrieval from VISIR passive imagers remains largely unexplored. This work con-

tributes to fill this gap for the SEVIRI instrument. Neural networks with low-latitude, Meteosat-9 SEVIRI observations are

trained against DARDAR collocations. This choice of reference data for the NNs does not constrain the retrieval to small IWP

values, but rather targets the full IWP range. Retrievals with only thermal infrared (IR) channels are analyzed to overcome75

the daylight-only limitation of VISIR retrievals. Moreover, IR retrievals with a selection of channels based on the previous

Meteosat generation are also evaluated. Additionally, the retrievals obtained here are compared with retrievals from CLAAS

edition 2.1 (Finkensieper et al., 2020), a dataset based on the CPP algorithm and SEVIRI observations.

The NN method used here, quantile regression neural networks (QRNNs), was analyzed by Pfreundschuh et al. (2018)

in the context of remote sensing retrievals. QRNNs estimate the posterior distribution of Bayesian retrievals, and thus can80

provide uncertainties for individual retrievals. QRNN is a flexible method that allows using different NN architectures: a

convolutional neural network (CNN) architecture is integrated in a QRNN to evaluate whether using of spatial information

from the observations is advantageous. Both providing case-specific ML errors and using multiple footprints in the ML retrieval

are new features for IWP retrievals.

IWP retrievals are the primary focus of this work. Nonetheless, two other properties are also retrieved from SEVIRI obser-85

vations: the mean ice mass height and the mean ice mass size. These two variables, planned to be retrieved by the ICI product

released right after its commissioning (Eriksson et al., 2020), are referred here as auxiliary variables.

2 Data

2.1 Reference data: DARDAR

The DARDAR-cloud product (Delanoë and Hogan, 2010) synergistically combines radar and lidar measurements from the90

CloudSat and CALIPSO tandem to provide cloud properties at a horizontal and vertical resolution of 1.4 km and 60 m,

respectively. The CloudSat satellite mission was designed to cross the equator in ascending orbit after 13:30 local mean time,

with a repeat cycle of 16 days (Stephens et al., 2002). For a given location, CloudSat-derived products, such as DARDAR, can
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then only be provided at two different times, corresponding to the observations in the ascending and descending orbits, with

a large time span in between. We refer to this as daytime and nighttime observations. In April 2011 CloudSat was forced to95

switch to daylight-only operations due to a battery anomaly, thus only allowing daytime observations (Nayak et al., 2012).

Ice water path (IWP), mean mass height (Zm) and mean mass size (Dm) for an atmospheric ice column can be derived from

the DARDAR cloud properties. In discrete form, these quantities are defined as

IWP =
∑
i∈Z

IWCi∆zi (1)

Zm =

∑
i∈Z ziIWCi∆zi

IWP
(2)100

Dm =
4

(πρw)1/4

∑
i∈Z

(
IWC5

i /N
∗
0,i

)1/4∑
i∈Z IWCi

(3)

where Zm and Dm are only defined for IWP > 0, Z is the set of indices defining the variable values at each DARDAR bin

height, IWCi ice water content, ∆zi bin height range, N∗
0,i the intercept parameter of the normalised size distribution of ice

particles (Delanoë et al., 2005, 2014), all at bin height zi, i ∈ Z , and ρw = 1000 kgm−3 the density of water. In this work, Z
consisted of all indices for heights above sea level. A comprehensive derivation of these variables is provided in Appendix A.105

2.2 Input data: SEVIRI from Meteosat-9

Meteosat-9 carries the SEVIRI instrument (Aminou et al., 1997; Schmid, 2000), the MSG imager. SEVIRI allows observing

the Earth in 12 spectral channels (Table 1) with a maximum repeat cycle of 15 minutes for the full Earth disc scan. The images

have a sampling distance of 3 km at sub-satellite point for all channels except the high resolution visible (HRV) channel, which

is 1 km. That is, the channels provide a ground resolution of 3× 3 km2 at nadir, with this resolution becoming worse when110

increasing the incidence angle. Therefore, SEVIRI offers a better temporal resolution and spatial coverage than DARDAR,

although at a worse, varying ground resolution.

Launched in December 2005, Meteosat-9 was the primary operational satellite located at a nominal longitude of 0◦ between

April 2007 and January 2013 (WMO, 2022). It has also been located at the commissioning longitude of −6.5◦, and operational

longitudes of 9.5◦, 3.5◦, and, currently, 45.5◦ (EUMESTAT, 2022). These changes in longitude make the ground resolution115

have a dependence on time; for a given position on Earth, only observations taken from the same operational longitude are

strictly directly comparable.

The SEVIRI images are provided in a geostationary projection specified by Wolf (1999), which we refer to as SEVIRI

projection. Satpy (Raspaud et al., 2021) was used to read the SEVIRI images, which retains the native SEVIRI observation

grid and projection. In addition, this library automatically handles the erroneous georeferencing offset present in Meteosat120

images until 2017 (EUMETSAT, 2017, Sect. 3.1.4).

4



Table 1. The SEVIRI channels specification.

Channel number 1 2 3 4 5 6 7 8 9 10 11 HRV

Nominal wavelength µm 0.635 0.81 1.64 3.92 6.25 7.35 8.70 9.66 10.80 12.00 13.40 0.75

Lower bound µm 0.56 0.74 1.50 3.48 5.35 6.85 8.30 9.38 9.80 11.00 12.40 0.6

Upper bound µm 0.71 0.88 1.78 4.36 7.15 7.85 9.10 9.94 11.80 13.00 14.40 0.9
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Figure 1. Illustration of the spatial resampling performed. The projection used is the SEVIRI projection.
:::
Note

:::
that

:::
the

::::
units

:
of
:::
the

:::::::::
coordinates

::
are

:::::::::
kilometres. The DARDAR profiles are replicated from the profile in the centre of the track to the swath edges 700m on each side. The

curves enclose the profiles used to derive the averaged values in each cell.

2.3 Collocations

Rectified level 1.5 Meteosat-9 SEVIRI data (EUMETSAT, 2017) and DARDAR-cloud version 2.1.1 between 6 May 2008 and

31 March 2011 were collocated to form the dataset used in this work. All but a few, for practical reasons, publicly available

samples in this time range were used.125

A DARDAR profile taken during a SEVIRI scan was collocated with this scan, and profiles taken in between consecutive

scans were assigned the closest scan in time.

Temporally collocated DARDAR profiles were duplicated at the edges of the horizontal swath, calculated on the SEVIRI

projection, to account for the DARDAR horizontal resolution. IWP, Zm and Dm were computed for each DARDAR profile. All

variable values in a SEVIRI pixel were averaged, weighted by the profile IWP, to obtain one DARDAR value per SEVIRI pixel130

(Fig. 1). It can be seen that averaging all profiles and then computing IWP, Zm, and Dm from an averaged DARDAR profile is

equivalent to the IWP-weighted average (see Appendix A).

Finally, the collocated images were divided in non-overlapping samples of 32× 32 pixels with the DARDAR swath in the

centre. The division grid of the samples was randomly placed to diminish any possible bias. Figure 2 shows the region of

interest (ROI), which ranges [−17◦,+40◦] in longitude and [−17◦,+15◦] in latitude. All samples covering any part of the ROI135

were randomly split in a training, validation and test sets of sizes 60%, 20%, and 20%, respectively, totalling more than 106

pixels with reference data.
:::::
Based

:::
on

::::::::
DARDAR

:::::
flags,

::::
68%

::
of

:::
all

:::::::
32× 32

:::::
pixels

:::::::
samples

::::
have

::
at

::::
least

:::
one

:::::
pixel

::::::
flagged

::::
with

:::
ice
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Figure 2. Region of interest used
::::
with

:::::::
DARDAR

::::::::::
collocations

:::
(not

::
to

::::
scale), and ocean and land areas used in the diurnal cycles comparison

(Sect. 5.2). Ocean (land) area delimited by [1◦,4.5◦] ([−3.55◦,0◦]) in latitude and [4◦,7.5◦] ([24.95◦,29◦]) in longitude.

::::::
content;

:::::
56%

::
of

::
all

::::::
pixels

::
are

:::::::
flagged

::
as

:::::
such.

::::::
Further

::::::
details

::
on

:::
the

:::::::::
collocated

::::
data,

::::::
which

:::::::
includes

:::
the

:::::::::::
relationships

:::::::
between

::
the

:::::::
SEVRI

:::::::
channels

::::
and

:::
the

::::::::
collocated

:::::::::
DARDAR

::::
IWP,

::::
can

::
be

:::::
found

::
in
:::
the

:::::::::::::
supplementary

:::::::
material

::::
Sect.

:::
S1.

:

3 Machine learning140

3.1 Quantile regression neural networks

For a cumulative distribution function Fx|y(x), the quantile xτ at level τ ∈ [0,1] is the value such that

xτ = inf{x : Fx|y(x)≥ τ}. (4)

The expectation with respect to x of the loss function

Lτ (x̂τ ,x) =

τ |x− x̂τ | if x̂τ < x

(1− τ) |x− x̂τ | otherwise
(5)145

is minimized by the quantile xτ (Koenker, 2005, pp. 5–6). A quantile regression neural network (QRNN) is an artificial neural

network (NN) that seeks to minimize Lτ . In this work, QRNNs are employed in a multi-task learning setting for multiple

quantile regression, minimizing

L(x) = 1

|T |
∑
τ∈T

Lτ (x̂τ ,x) (6)

where T = {0.01,0.02,0.03, . . . ,0.98,0.99}, that is, all percentiles, and |T | is the cardinality of T . By extension, we use the150

term QRNN also for this multiple quantile regression.
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Figure 3. Simplified retrieval example of x from y. A model trained to minimize the MSE can only aspire to predict the expected value of x

at a given y, indicated by the line µ, while a quantile regression can describe the aleatoric uncertainty estimating quantiles at level τ . These

quantiles can then be used to estimate Fx|y(x) and derive µ from it. However, quantile crossing can occur if the quantiles are not perfectly

estimated.

The main advantage of QRNNs with respect to NNs that minimize the mean squared error (MSE) is that QRNNs can

model aleatoric uncertainty. This type of uncertainty describes the inability of the observations y to fully determine x due to

hidden variables, therefore it cannot be reduced by increasing the amount of training data. QRNNs model this uncertainty by

estimating Fx|y(x) at multiple quantile levels as illustrated in Fig. 3. This not only makes the regression robust against outliers155

but also provides a more complete description of the data distribution: a case-specific uncertainity can be assigned to each

prediction. Pfreundschuh et al. (2018) observed that QRNNs approximate well the posterior distribution of Bayesian remote

sensing retrievals, with uncertainty estimates consistent with non-Gaussian retrieval errors. In addition, quantile regression

enjoys the equivariance to monotone transformations property (Koenker, 2005). This allows training on a log-transformed

response variable and back-transform the estimates, a useful property for right-skewed data distributions.160

Quantile crossing is the major drawback of QRNNs. This problem consists of a lack of monotonicity in the quantile estima-

tion, and is illustrated also in Fig. 3. Values derived from a QRNN experiencing severe quantile crossing can then be inaccurate.

Several approaches exist to overcome quantile crossing. In this work quantile crossing is corrected a posteriori. The correc-

tion consists of an isotonic regression of the predicted quantiles x̂τ constrained at all quantile levels. That is, the optimization

problem165

minimize
∑

τi∈T (x̂
(c)
τi − x̂τi)

2

subject to x̂
(c)
τi ≤ x̂

(c)
τj ∀τi ≤ τj , τj ∈ T

(7)

is solved to find the corrected quantiles x̂(c)
τ , τ ∈ T .
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Table 2. Input features used
::
for

:::
each

:::::
input

::::::
settings. Numbers are SEVIRI channels, and SZA satellite zenith angle.

Settings name VISIR IR IR-subset

Input features 1–11, SZA 5–11, SZA 5, 9+10, SZA

3.2 Network architectures

The QRNN approach was implemented in two different network architectures. Retrievals based on single SEVIRI pixels were

done using a multilayer perceptron (MLP). The MLP used rectified linear units as activation functions, with 16 hidden layers170

with 128 hidden neurons at each hidden layer. This setup
:
,
:::::::::
determined

:::
by

::::::::
repeatedly

:::::::
training

:::
and

::::::
testing

::
a

:::::
subset

::
of

:::
the

:::::::
training

:::
data

::::
over

:::
the

::::::
regular

::::
grid

::
of

:::::::::::::::::::
{8,16,32,64,128,256}

::::::
hidden

:::::::
neurons

:::
and

::::::::::::::::::::::::
{1,2,4,8,16,32,64,128,256}

::::::
hidden

::::::
layers, generally

maximized the performance of the different retrieval configurations.

To exploit spatial correlations among neighbouring SEVIRI pixels the CNN presented in Fig. 4 was used. This CNN consists

of convolutional blocks, based on the Xception network (Chollet, 2017), with an asymmetric encoder-decoder, U-net-like175

architecture (Ronneberger et al., 2015), and residual connections.
:::
The

:::::
CNN

::::::::::::::
hyperparameters

:::::
were

::::::
chosen

:::::
with

:::
the

:::::
same

::::::
method

:::
as

:::
the

:::::
MLP,

:::::
using

:
a
::::::
regular

::::
grid

::
of

:::::::::
{64,128}

:::::
filters

:::
and

:::::::::
{0,1,2,4}

::::::::
Xception

::::::
blocks.

3.3 Training methodology

The 32× 32 pixels images were fed to the networks using a batch size of 128 images in all trainings and network models. The

input data were standardized with the training set statistics, and invalid input values replaced with −999999. The networks180

were trained with the Adam optimizer (Kingma and Ba, 2015) with base learning rate set to 0.001. All networks were evaluated

on the validation loss as well as the number of quantile crossings, both only computed for pixels with reference values. Early

stopping on the validation loss determined the selected network state. A log transform was applied to train for IWP and

Dm. Each time the data was accessed, zero IWP values were replaced with samples from a log-uniform distribution between

10−8 kgm−2 and 10−6 kgm−2 (the minimum non-zero IWP in the dataset is of the order of 10−6 kgm−2), and the images185

were randomly mirrored and rotated 0◦, 90◦, 180◦ or 270◦. After the first epoch, one additional pass of the training data was

used to average the batch normalization statistics of each batch. These averaged statistics were then frozen and used throughout

the rest of the training, empirically observed to help generalization.

The three input features settings presented in Table 2 were explored. The HRV channel was disregarded in all cases. The

channel selection for the IR-subset was made to represent the Meteosat visible and infrared imager (MVIRI), the imager in the190

previous Meteosat generation. MVIRI only had two IR channels with spectral ranges 5.7–7.1 µm and 10.5–12.5 µm; SEVIRI

channel 5 covers the former range, while channel 9 and 10 cover the latter. The IR-subset had a special treatment: channel 9

and 10 inputs were averaged with weights inversely proportional to the difference between their central wavelengths and the
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Figure 4. The CNN architecture used, for an input image of spatial size H ×W pixels and C channels, producing an output of the same

dimensions with M channels. Here M = 99, corresponding to all percentiles. Block widths relate to the spatial sizes at each stage (not to

scale). 128 filters were used in all convolutional layers, and n Xception means that n consecutive Xception blocks are applied, where it was

chosen n= 2. Depthwise separable convolutions (SepConv), with a 3×3 kernel, preserve the spatial size using a replicate padding of 1 at the

depthwise convolution. GELU: Gaussian Error Linear Unit (Hendrycks and Gimpel, 2020), BN: Batch Normalization (Ioffe and Szegedy,

2015), 1× 1 Conv: pointwise convolution. Strides of 1, otherwise indicated.
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MVIRI central wavelength. That is, these channels were combined and fed to the network as

xMVIRI,11.5 =
w9x9 +w10x10

w9 +w10
(8)195

w9 = (|11.5− 10.8|)−1
= 0.7−1

w10 = (|11.5− 12.0|)−1
= 0.5−1

where x9 and x10 are the standardized channel 9 and 10 values. This aimed to synthesise the MVIRI channel with central

wavelength 11.5 µm. The satellite zenith angle was included in all three settings to take into account the varying ground

resolution.200

3.3
:::::::

Training
:::::::::::
methodology

:::
The

:::::::
32× 32

:::::
pixels

::::::
images

:::::
were

:::
fed

::
to

:::
the

:::::::
networks

:::::
using

::
a

::::
batch

::::
size

::
of

::::
128

::::::
images

::
in

::
all

::::::::
trainings

:::
and

:::::::
network

:::::::
models.

::::
The

::::
input

::::
data

:::::
were

::::::::::
standardized

:::::
with

:::
the

:::::::
training

::
set

::::::::
statistics,

::::
and

::::::
invalid

:::::
input

:::::
values

::::::::
replaced

::::
with

:::::::::
−999999.

::::
The

::::::::
networks

::::
were

::::::
trained

::::
with

:::
the

:::::
Adam

::::::::
optimizer

::::::::::::::::::::
(Kingma and Ba, 2015)

:::
with

::::
base

:::::::
learning

::::
rate

::
set

::
to

::::::
0.001.

:::
All

:::::::
networks

:::::
were

::::::::
evaluated

::
on

:::
the

:::::::::
validation

:::
loss

:::
as

::::
well

::
as

:::
the

:::::::
number

::
of

:::::::
quantile

:::::::::
crossings,

::::
both

::::
only

::::::::
computed

:::
for

::::::
pixels

::::
with

::::::::
reference

::::::
values.

::::
The205

:::::::
learning

:::::
curves

:::
for

:::
all

::::::::
networks

::::::::
presented

::
in

::::
this

::::
work

::::
can

::
be

:::::
found

:::
in

:::
the

::::::::::::
supplementary

:::::::
material

::::
(Fig.

::::
S7).

:::::
Early

::::::::
stopping

::
on

:::
the

::::::::
validation

::::
loss

::::::::::
determined

:::
the

::::::
selected

::::::::
network

::::
state.

::
A

:::
log

:::::::::
transform

:::
was

:::::::
applied

::
to

::::
train

:::
for

::::
IWP

:::
and

::::
Dm.

:::::
Each

::::
time

::
the

::::
data

::::
was

::::::::
accessed,

::::
zero

:::::
IWP

:::::
values

:::::
were

:::::::
replaced

:::::
with

:::::::
samples

::::
from

::
a
::::::::::
log-uniform

::::::::::
distribution

:::::::
between

::::::::::::
10−8 kgm−2

:::
and

:::::::::::
10−6 kgm−2

::::
(the

:::::::::
minimum

:::::::
non-zero

:::::
IWP

::
in

:::
the

::::::
dataset

::
is
:::

of
:::
the

:::::
order

::
of

:::::::::::::
10−6 kgm−2).

:::
The

:::::::
images

::::
were

:::::::::
randomly

:::::::
mirrored

:::
and

:::::::
rotated

:::
0◦,

::::
90◦,

::::
180◦

::
or

:::::
270◦

::::
each

::::
time

:::
the

:::::::
training

::::
data

:::
was

::::::::
accessed,

:::
for

::
a
:::::
better

::::::::::::
generalization

:::::
ability

:::
of

:::
the210

:::::::
network.

:::::
After

:::
the

::::
first

:::::
epoch,

::::
one

:::::::::
additional

::::
pass

::
of

:::
the

:::::::
training

::::
data

:::
was

:::::
used

::
to

:::::::
average

:::
the

:::::
batch

:::::::::::
normalization

::::::::
statistics

::
of

::::
each

:::::
batch.

::::::
These

:::::::
averaged

::::::::
statistics

::::
were

::::
then

::::::
frozen

:::
and

::::
used

::::::::::
throughout

::
the

::::
rest

::
of

:::
the

:::::::
training,

::::::::::
empirically

::::::::
observed

::
to

:::
help

:::::::::::::
generalization.

4 Retrieval results

We examined two aspects for retrieving IWP from Meteosat-9 SEVIRI images: the channel selection and the use of spatial215

information. The evaluation of QRNNs or, more generally, probabilistic predictions is not straightforward. The common sum-

mary statistics root mean squared error (RMSE), mean absolute error (MAE), and bias require a point estimate. QRNNs do not

provide a unique point estimate, therefore one value has to be selected to compute these statistics.

Throughout this section, we use the expected value (mean) of the distribution as the QRNN point estimate. The distribution

was obtained by constructing a cumulative distribution function from linearly interpolating the predicted quantiles, as illustrated220

in Fig. 3, and linearly extrapolating quantiles at level τ ∈ {0,1} from the two nearest quantiles. That is, a continuous distribution

function was constructed from each QRNN prediction. Quantiles at level τ = 0 were clipped to zero to avoid implausible

negative values resulting from the linear extrapolation.

10



A probabilistic measure of performance is the continuous ranked probability score (CRPS), which here is defined for each

prediction as225

CRPS =

+∞∫
−∞

[
F̂ x′|yx|y

::
(x′)−1

(
x′ ≥ x′

)]2
dxdx

::
(9)

where 1 is the indicator function, x
:
x′

:
is the scalar reference value, and F̂x′|y(x

′)
:::::::
F̂x|y(x):is the cumulative distribution

function estimated with the QRNN. We denote the mean and median of all CRPS values from a QRNN as CRPSµ and CRPSm,

respectively.

The RMSE, MAE, and bias can be relatively misleading if the data ranges several orders of magnitude, as in the case of230

IWP. Therefore, the QRNNs should not be judged only on these summary statistics but rather mainly with the plots presented

in, for example, Fig. 5. Furthermore, it should not be concerning that quantiles at extremal quantile levels, such as levels

τ ∈ {0.01,0.02,0.98,0.99}, show unrealistic values. These quantiles have a small contribution and we observed that they can

show noticeable variations between different trainings.

Another summary statistic can be computed from point estimates: the correlation between the retrieved value and the refer-235

ence value. The Spearman correlation coefficient rS is used here. This statistic measures the monotonic relationship between

two variables, where rS =±1 imply perfect correlation, and 0 no correlation at all.

Finally, the shape of a predicted distribution by a QRNN can be analyzed computing its skewness γ1 and kurtosis β2. For a

random variable X , they are defined by

γ1 = µ3/µ
3/2
2 (10)240

β2 = µ4/µ
2
2 (11)

µt = E[(X −E[X])t]. (12)

The skewness measures the distribution asymmetry about its mean: the more positive γ1 is, the larger the right-skew, and the

more negative γ1, the larger the left-skew. On the other hand, kurtosis measures the contribution of the tails to the rest of the

distribution.245

4.1 Channel selection

We used MLPs to analyze the selection of input features. The trainings performed for this analysis only used daytime samples

to facilitate the networks to leverage the visible channels. Figure 5 summarises the findings for the test set.

We make two main observations. Firstly, the predicted distributions are right-skewed, as the expected value is larger than

the median (τ = 0.5). Figure 6 shows skewness and kurtosis frequencies for MLP predictions. It is observed that the retrieval250

distributions tend to be non-Gaussian. As a reference, Gaussian distributions have γ1 = 0 and β2 = 3. It can also be observed

that VISIR retrievals tend to be more skewed and have more information in the tails than the two other options. Secondly, the

visible channels are useful for the retrieval of larger IWP values. This is not only observed from the expected value being closer

11
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Figure 5. IWP predictions with MLP networks for the different SEVIRI channels as input (Table 2). Networks trained only with daytime

observations. The solid curves indicate the median value of each prediction at the local DARDAR IWP. The statistics are computed for the

expected value. In brown the best value, and in bold font the second best value. Summary statistics in kgm−2. Statistics and predictions

computed using all
::::::
daytime test data

:
,
:::
with

:::
an

::::::
average

:::::::
DARDAR

::::
IWP

::
of

::::::::::::::::
1.14× 10−1 kgm−2.

to the identity line in the range 10−1–10+1 kgm−2, but also from that the model is more confident as there is less spread in

the predicted quantiles, particularly for larger IWP values.255

Although using the VISIR setting favours the retrieval, this setting is restricted to daytime retrievals. This implies that the

retrieval performance has a dependence on the solar angles. Because of the CloudSat orbit (Sect. 2), there is little variation in

the solar angles range in the DARDAR data used. It is erroneous to execute QRNN VISIR retrievals from observations with

solar angles not found in the training data. An IR-only retrieval is thus preferred for a constant performance throughout the full

day, as it is independent of the solar angles.260

Concerning the IR and IR-subset settings, the main difference between the retrievals resides in the confidence of the models.

Particularly at low IWP, there is more spread among the quantiles for the IR-subset retrieval. All summary statistics except bias

also disfavour the IR-subset setting, although it can be argued the two options have a similar performance.

4.2 Spatial information

Building on the previous section arguments for IR-only retrievals, we examined the use of spatial information for the IR input265

setting. Figure 7 shows the retrieval performance with and without the use of spatial information, corresponding to the CNN

and MLP, respectively. In this case, both daytime and nighttime observations were used for training and evaluation of the

models. It can be observed that using spatial information improves the retrieval of IWP: not only it tends to be closer to the

identity line, but also shows better summary statistics, except for the bias.

The main advantage of using the CNN is a decrease in uncertainty. This argument comes from a lower CRPS for the CNN,270

as well as smaller spread for the expected value with respect to the reference values. That is, the CNN network likely leverages

12
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Figure 6. Skewness (a) and kurtosis (b) frequencies for all QRNN predictions with DARDAR IWP between 10−3 kgm−2 and 10+1 kgm−2,

indicating the network architecture, input settings and training observations used (corresponds to results shown in Figs. 5 and 7). Same legend

for (a) and (b).

local spatial patterns to improve the retrieval uncertainty. Analogously to Sect. 4.1 and based on Fig. 6, it can also be inferred

that retrieval distributions constructed from the predicted quantiles are not necessarily Gaussian. In this case, however, the

CNN distributions tend to be less skewed and have lighter tails than the MLP, which can be considered preferable.

4.3 Auxiliary variables275

::::
IWP

::
is

::
an

:::::::::
integrated

::::
value

:::
of

:::
ice

:::::
water

:::::::
content,

:::
but

:
it
:::::
does

:::
not

::::::
provide

::::
any

::::::::::
information

:::::
about

::
at

::::
what

::::::
height

::::
IWC

::
is
:::::::
located

:::
nor

::::::::::
information

::::
about

:::
the

::::
size

::
of

:::
the

:::
ice

::::::
crystals

::::::::::
constituting

:::
the

:::::
IWC.

:::::::::
Estimating

:::
the

:::::::
auxiliary

::::::::
variables

:::
Zm::::

and
:::
Dm::::::::

provides

:::::::::
information

:::
of

::::
these

::::
two

::::::::
problems,

::::
and

:::
they

::::
help

::
to
:::::::::::
characterize

:::::
better

::::::::::
atmospheric

:::
ice.

:

Given that the CNN showed to reduce the retrieval uncertainty, we analysed the retrieval of Zm and Dm with the same

CNN architecture. The data employed for training and evaluating the networks was the same as in Sect. 4.2. Nevertheless,280

the networks struggled to model Dm when this variable was derived from columns with low IWP. Excluding all Dm with

IWP ≤ 10−3 kgm−2 from the dataset enabled the networks to model it. This situation was not experienced when training for

Zm, but for simplicity Zm values with IWP ≤ 10−3 kgm−2 were also excluded.
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Figure 7. IWP predictions using spatial information (CNN) and without using spatial information (MLP). Networks trained with both

daytime and nighttime observations with the IR input settings (Table 2). The solid curves indicate the median value of each prediction at the

local DARDAR IWP. The statistics are computed for the expected value, and the bold font indicates the best value. Summary statistics in

kgm−2. Statistics and predictions computed using all test data,
::::
with

::
an

::::::
average

::::::::
DARDAR

::::
IWP

::
of

::::::::::::::::
1.19× 10−1 kgm−2. The rightmost plot

corresponds to the black curves from the other plots.

The retrievals of Zm and Dm as well as the distributions of the training set are presented in Fig. 8. The expected value of

Zm (Fig. 8a) follows closely the identity line for 10–15 km, and the expected value of Dm (Fig. 8b) for 0–200 µm, in both285

cases with relatively low spread. Nevertheless, comparing them with the probability distribution functions (PDFs), it should

not be surprising, as the models can leverage a priori information for the retrieval in these cases. Furthermore, any effects of

multilayer clouds in the Zm retrieval are unclear, as well as the relationship between retrievals of Zm and cloud top heights,

questions which can be considered for further research.

5 Comparison with CLAAS290

The CLAAS dataset edition 2.1 (Finkensieper et al., 2020) provides cloud properties derived from MSG satellites. One of the

cloud properties provided in this dataset is IWP. The retrieval in CLAAS is based on the two-stage CPP algorithm (CM SAF,

2016). In the first stage of the algorithm the cloud type is determined using an IR-based algorithm. The cloud type is then

reduced to a cloud top phase indicator: clear, liquid or ice. In the second stage, the cloud optical thickness τ and the particle

effective radius re are computed for cloudy pixels. This retrieval uses the SEVIRI channels 1 and 3, and compares the observed295

reflectances to look-up tables of simulated reflectances. Following Stephens (1978), IWP in CLAAS is calculated as

IWP = 2τreρ/3 (13)
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Figure 8. Predictions of Zm (a) and Dm (b) with the CNN for the test set, and training set PDF. Networks trained with both daytime and

nighttime observations. Statistics plotted by the orange curves derived from the distributions indicated by the colour bar.

using ρ= 930 kgm−3 for the ice density. An inconvenience with the CPP algorithm is the variability of re throughout thick

ice clouds. This may make re totally unrepresentative of the ice column in Eq. (13). A further inconvenience is the channel

selection, which only allows retrieving IWP for daytime observations, and can be affected by sunglints.300

CLAAS has been thoroughly validated
:::
IWP

::::
has

::::
been

::::::::
analyzed

::::::
against

:::::::::
DARDAR

::::
and

::::::::
compared

:::::
with

:::::::
MODIS

::::::::
retrievals

(Benas et al., 2017; CM SAF, 2020b) and, despite its limitations for IWP retrieval
:::::::
retrievals, it can be considered a reasonable
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Figure 9. IWP predictions from our approach (QRNN with CNN architecture, IR input settings) and from CLAAS. The QRNN is trained

with daytime and nighttime observations, but the test data in both cases contains only daytime observations. The QRNN expected value is

used as its retrieval estimate. The solid curves indicate the median value of each measure at the local DARDAR IWP. Summary statistics in

kgm−2. Predictions and statistics computed for all test set samples also available in CLAAS.

dataset of reference. We compared our CNN, IR-only, QRNN IWP retrieval with two products in CLAAS: the IWP instanta-

neous retrieval and its monthly mean diurnal cycle.

5.1 Instantaneous IWP retrieval305

The instantaneous IWP product from CLAAS corresponds to retrieving IWP from each Meteosat observation with the CPP

algorithm. For the observations in our test set, all matching CLAAS retrievals used Meteosat-9 observations. All daytime

observations in the test set also present in CLAAS were used in this comparison.

The CLAAS-2.1 instantaneous IWP is provided at the SEVIRI native grid, and it also suffers from the erroneous georefer-

encing offset in Meteosat images (CM SAF, 2020a, pp. 14–15). The offset in the CLAAS data was also handled with Satpy310

(Raspaud et al., 2021). DARDAR data was collocated with CLAAS following the method described in Sect. 2.3, assuming

zero IWP for the CLAAS data when the cloud phase indicated by CLAAS is not ice.

Figure 9 compares the retrieval in CLAAS and the QRNN approach. It is seen that the QRNN mean has a tendency to be

closer to DARDAR. This should not be surprising given that the network learns from DARDAR data. Furthermore, the retrieved

re with the CPP algorithm is likely smaller than the DARDAR retrieval (CM SAF, 2020b), and therefore the estimated IWP315

with Eq. (13) should be smaller. The CPP algorithm also characterizes a cloud as either of water or ice phase, ignoring mixed-

phase states. This restriction is not done in the QRNN retrieval. This dichotomy in the CPP algorithm might be related with
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the abrupt drop of its curve in Fig. 9. Besides this, the QRNN retrieval has a better monotonic relationship with DARDAR,

indicated by the higher rS.

The CLAAS dataset evaluation from Benas et al. (2017) provides an analogous Fig. 9, which is different from the results320

presented here. We note, however, their different collocation strategy, that they do not restrict the collocations to the region of

interest of this work, and, significantly, that they exclude any DARDAR profiles that are not only of ice cloud phase.

0 10 3 10 2 10 1 100 101
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10 5

10 3

10 1

101

103

105

PD
F

DARDAR CNN mean
CNN sample

CLAAS

Figure 10. PDFs from the different IWP retrievals in Fig. 9 (CNN mean, CLAAS, and DARDAR curves), estimated with a histogram. CNN

sample indicates the QRNN retrieval where one QRNN sample replaces the mean as the point estimate. Linear scale in the horizontal axis

between 0 and 10−3 kgm−2 and log scale afterwards.

The IWP probability distribution functions of the retrievals under comparison are shown in Fig. 10. It is observed that the

expected value of the QRNN can retrieve larger values of IWP than the CPP algorithm. The difference of the CNN PDF

with respect to the DARDAR PDF might be corrected a posteriori, and can be considered for further research. Figure 10 also325

presents the case when one sample from the QRNN is used as a point estimate instead of the mean. The PDF constructed

from this point estimate follows closer the DARDAR PDF, and shows that the QRNN uncertainty can capture DARDAR IWP

values well from IR-only observations, even the larger values. The ability to capture larger IWP values combined with a better

correlation with DARDAR show that the CNN, IR-only QRNN retrieval performs better than the CPP algorithm retrieval for

IWP retrievals.330

5.2 Monthly mean diurnal cycles

The monthly mean diurnal cycles product in CLAAS is obtained by averaging hour-wise all observations over all days of a

month (CM SAF, 2020a). The files for this CLAAS product covering the full 2012 year indicate that Meteosat-9 was the data

source. Consequently, and because the training did not contain data for 2012, we replicated this product for the CNN, IR input

settings QRNN retrieval using all Meteosat-9 observations taken in 2012, except for one clearly faulty observation.335
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Figure 11. Monthly mean diurnal cycles for
:::
four

::::::
months

:
in
:
2012 from CLAAS and the CNN, IR-only QRNN retrieval for the areas in Fig. 2.

The QRNN expected value is used as the retrieval value. Local solar time (LST) approximated from UTC as LST = UTC+12hours/180◦ ·

longitude. The grey areas indicate the LST coverage of the DARDAR profiles in the training set. Note the different vertical axes.

Two tropical areas were used for comparing the monthly mean diurnal cycles, denominated as ocean and land areas (Fig. 2).

These areas were chosen based on Fig. 10e from Benas et al. (2017), where it is seen that they have high IWP on average. All

pixel values in them were averaged to compute a single monthly mean diurnal cycle per area, and the results are shown in
:
.

:::::
Figure

:::
11

:::::
shows

:::
the

::::::
diurnal

::::::
cycles

:::
for

:::
four

:::::::
months,

::::
and Fig. 11

::
S6

::
in

:::
the

::::::::::::
supplementary

:::::::
material

:::
for

:::
all

::
12

:::::::
months.

There are two primary differences between the diurnal cycles from the two methods. There is a general discrepancy in the340

IWP magnitude, with this being lower in CLAAS. This agrees well with the remarks in the previous section, where CLAAS

IWP results smaller than the QRNN retrieval, as well as than DARDAR IWP. Mean IWP values significantly lower than

DARDAR ones are also observed in similar retrievals, such as retrievals from MODIS (Duncan and Eriksson, 2018). Secondly,

CLAAS does not retrieve IWP during nighttime, an inconvenience that our IR-only retrieval does not present.

Figure 11 also shows the local solar time (LST) coverage of all samples in the training set. It is seen that the network learnt345

to make use of the physical information from only roughly 25 minutes of LST in either daytime or nighttime to make retrievals

at other times. This was possible as a consequence of selecting the QRNN that only uses IR channels.

It is worth noting that an exhaustive validation of the diurnal cycles is impossible as there is no DARDAR data outside these

time ranges for both areas. In addition, currently available DARDAR version 2.1.1 data for 2012 is scarce and only for daytime:

the number of DARDAR retrievals in a month ranges from zero to six overpasses for the chosen areas. This makes the spatial350

and temporal coverage excessively sparse to estimate a comparable monthly mean value from DARDAR. Bearing this in mind,

and that IR retrievals do not depend on solar angles, it is reasonable again to assume that the QRNN retrievals using the CNN

and IR input settings are more accurate than the physics-based CPP algorithm.

6 Discussion

The performance of any ML retrieval will depend on, among other factors, its capacity to learn from the training data, its355

expressivity to represent the retrieval complexity, and its ability to generalize to unforeseen data. In the case of NNs, these
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factors can be tackled by exploring different architectures and training methodologies. Achieving better ML results depends

on the computational resources available. However, the quality of the training data is a main determinant.

The results presented here show that QRNNs learn to represent DARDAR retrievals from SEVIRI observations to a certain

extent, where DARDAR is considered a ground truth. However, DARDAR contains retrieval errors; it does not necessarily360

represent the exact atmospheric state. In DARDAR-cloud version 3, the retrievals show a 24% reduction in IWP on average

(Cazenave et al., 2019). Nonetheless, this work used an older version to compare with the validation works of the CLAAS

dataset (Benas et al., 2017; CM SAF, 2020b). If a product is to be created from this work, then a subsequent refined DARDAR

product should be used for the best quality of the reference data.

Concerning NN architectures, the CNN improved the IWP retrieval performance by decreasing the QRNN uncertainty.365

Moreover, it generally presents better summary statistics than its MLP counterpart, except for the bias. There is no reason to

believe that a CNN approach inherently leads to a worse bias. Training the selected CNN is hard: nearly twice more parameters

are optimized in the CNN than in the MLP (532787 and 304169 parameters, respectively). Therefore, better trainings or other

CNNs can reduce the bias.

The retrievals for an image with the CNN can appear smoothed out when compared to the MLP retrievals. A particular370

example is presented in Fig. 12. This can be a consequence of using spatial information. DARDAR consists of narrow stripes,

hence there is few neighbouring SEVIRI pixels with collocated reference data: this scarcity in spatial reference information

may discourage predicting large differences between neighbouring pixels.

The DARDAR narrow stripes also make it unfeasible to determine, visually, which network architecture would produce re-

trievals from SEVIRI IR images that differ less from a hypothetical analogous DARDAR image. The networks performance can375

then only be evaluated on the results presented here, on visual animations, or compared with retrievals from non-geostationary

satellites, which consequently cannot provide the same temporal coverage.

Visual animations for the ocean and land areas for retrievals from all observations in January 2012 are provided as a video

supplement, where Fig. 13 illustrates few of these retrievals. These animations show the IWP retrieval by the MLP and the

CNN, both using only IR channels, and the QRNN expected value as the point estimate. It is observed that while both networks380

generally agree when there is IWP, they can show clear differences in the retrieved values: in Fig. 13a-b, the CNN retrieval

clearly differentiates between the left and right sides with respect to the MLP retrieval. Additional research might be able to

explain the cause of such differences. On the other hand, it can be considered that the CNN qualitatively favours the IWP

retrieval in the time dimension, since the MLP temporal evolution for one pixel exhibits a small noise-like pattern (Fig. 13c-f

show a few contiguous retrievals, but it is clear in the video supplement).385

This work covered only retrievals from Meteosat-9, constrained by the range of daytime and nighttime observations from

CloudSat. Retrievals from Meteosat-9 can complement DARDAR, in both time and spatial dimensions, by providing nearly-

instantaneous retrievals for positions not even sampled by CloudSat. The models developed can further complement DARDAR

if they are transferred to other MSG satellites. This would allow covering a much larger time span of IWP retrievals. This

model transferability should, in principle, be possible as all carry the SEVIRI instrument, and can be a line of research.390
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Figure 12. IWP retrievals (same colour scale) from a sample where the CNN may smooth out the retrieved value. The RGB composite is

generated with channels 1 (blue), 2 (green), and 3 (red), using the natural_color composite from Satpy (Raspaud et al., 2021). Ice

clouds strongly absorb in λ= 1.64 µm, hence appear bluish.
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Figure 13. In (a-b), one frame from the visual animations showing IWP retrievals from the IR input setting corresponding to the first

observation of 2012 (nighttime) over the land area. MLP retrievals in (a), where the mean is used as a point estimate, and analogously for

CNN retrievals in (b). Panels (c-f) show the retrieval at t observations from the retrieval in (a), zoomed into the area shown in red in (b);

analogously for (g-j) for (b). Same colour scale as in Fig. 12.

A more demanding challenge would be that of transferring the models to the previous or next Meteosat generation for an

even larger coverage: approaches such as the one performed here, where a subset of IR channels were used to approximate
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the previous Meteosat imager (Sect. 3.3), may be too simplistic to represent data from the actual instruments. Whether the

models are transferred to other MSG satellites or other Meteosat generations, or even for the shifts in the Meteosat-9 nominal

longitude, a comprehensive validation against DARDAR is impossible due to the time period it has covered.395

SEVIRI is an instrument that was not specifically designed to characterize atmospheric ice. Comparing with the expected

retrieval performance from ICI (Eriksson et al., 2020, Fig. 9a), the IWP retrievals obtained here are not too distant from the

upcoming ICI retrievals, where the latter follows closely the identity line for IWP > 3×10−2 kgm−2, but the IR-only, QRNN

IWP retrievals from SEVIRI are better for IWP < 10−2 kgm−2. However, the IWP retrievals from ICI will, in principle, have

much less uncertainty. The same can be said for Zm. Nevertheless, ICI is expected to be able to retrieve Dm much better: the400

ICI retrieval follows closely the identity line, even for the larger Dm values, and it also presents less uncertainty. Overall, ICI

will provide more accurate retrievals.

Nonetheless, the sun-synchronous orbit of Metop-SG B, the satellites that will carry ICI, poses a similar challenge for

temporal coverage as CloudSat, although the ICI wide swath will provide semi-global coverage on a daily basis. If the models

developed here are transferred to other current or upcoming Meteosat satellites, then near-instantaneous retrievals from a405

Meteosat satellite can complement the more accurate ICI retrievals. In addition, the finer spatial resolution of SEVIRI can

further complement the coarser ICI resolution. A further consideration is that there will be no collocations between ICI and

space-based cloud radars (CloudSat and EarthCARE) at lower latitudes as they are all in sun-synchronous orbits but will cross

the equator at different local times. One way to overcome the time difference in observations would be to use retrievals like the

ones presented here as a common reference.410

Covering the observational gaps from ICI and space-based cloud radars with geostationary data allows obtaining diurnal

cycles as in Sect. 5.2. Cloud diurnal cycles are a feature often overlooked. Concerning IWP on a regional scale, limb sounding

observations have revealed discrepancies with global climate models (Eriksson et al., 2014; Jiang et al., 2015). Discrepancies

of the diurnal cycle of clouds in such models increase uncertainties in climate projections (Yin and Porporato, 2017). The avail-

ability of diurnal cycles from satellite observations should help obtain more realistic model simulations by better constraining415

them.

The results presented in this work lead to extending the work to a larger ROI. However, the worse resolution of geostationary

images when increasing the incidence angle comes at a cost. Firstly, it implies more difficulties in accurately resolving the actual

atmospheric state. Secondly, the DARDAR data results of less quality when resampled to match the geostationary images. On

the one hand, the larger the incidence angle, the more DARDAR profiles are located in one SEVIRI pixel. On the other hand,420

pixels at large incidence angles contain more aggregated information than at smaller angles. These inconveniences, all product

from the worse resolution, create a significant irregularity in the reference data. Extending this work to a full-disc retrieval

can benefit from handling this quality irregularity; more advanced approaches than just using the satellite zenith angle can be

considered for this issue. Further research can include using uncertainty in the reference data when training the models, where

this uncertainty can be based on the disagreement among the DARDAR profiles in a SEVIRI pixel.425
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7 Conclusions

Progress in characterizing the mass of ice hydrometeors helps to model better the climate sensitivity and changes in pre-

cipitation. The frequent observations from geostationary satellites can contribute to this progress, but IWP retrievals from

geostationary radiances are complex. Traditional approaches for these retrievals present limitations: among others, they rely on

solar reflectances and estimate IWP indirectly. Machine learning models designed to avoid such inconveniences can be trained430

to approximate IWP retrievals from active sensors.

In this work, QRNNs are used to retrieve IWP from the SEVIRI instrument aboard Meteosat-9. QRNNs reproduce Bayesian

retrievals, and it is seen that the IWP retrievals tend to be non-Gaussian in the different configurations explored. The use of

solar reflectances helps the QRNN retrieval, but this restricts the retrieval to the small range of daytime solar angles in the

reference data. Hence, thermal IR retrievals are preferred. A subset of IR channels based on the previous Meteosat generation435

satellites shows promising results, but further work is required to evaluate the compatibility with their imagers.

Spatial information incorporated in the QRNN through a CNN improves the IWP retrieval. Therefore, retrievals from a

CNN, IR-only QRNN trained with daytime and nighttime observations are advantageous. The QRNN retrievals based on an

IR-only CNN not only provide retrievals at any time of the day but also approximate better DARDAR than the physics-based

CPP algorithm. Overall, these IR retrievals suggest extending the work to cover larger ROIs, as well as considering machine440

learning retrievals in the preparations for upcoming missions.

There will be no collocations between the upcoming ICI and space-based cloud radars at tropical latitudes. Geostationary

data can then act as a bridge in time between the two types of observations. For the ROI used in this work, which consists

of low latitudes, retrievals of IWP as well as Zm from geostationary radiances can complement in time and space ICI, but

Dm retrievals are far from the expected ICI performance. In addition, the models trained in this work also provide a basis for445

retrievals from other Meteosat satellites in the current and next generations.

Code and data availability. The code used to produce the results in this work is publicly available at https://doi.org/10.5281/zenodo.6570587

(Amell, 2022a). The code also indicates how to replicate the dataset used in this work, where the source data DARDAR-cloud version 2.1.1

is available at https://www.icare.univ-lille.fr/dardar/data-access/ (last access 8 May 2022), Meteosat-9 level 1.5 data at https://data.eumetsat.

int/data/map/EO:EUM:DAT:MSG:HRSEVIRI (last access 8 May 2022), and the CLAAS-2.1 products used consisted of the instantaneous450

COT, CPH and CWP (CPP) product and the monthly mean diurnal-cycle product (Finkensieper et al., 2020).

Video supplement. IWP retrievals from all January 2012 Meteosat-9 observations for both ocean and land areas are found at https://doi.org/

10.5281/zenodo.6639443 (Amell, 2022b).
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Appendix A: Derivation of IWP, Zm and Dm from DARDAR

Let z0 and zmax be the range of heights in which we are interested, P define the set of indexes identifying the profiles we want455

to combine, and |P| its cardinality. DARDAR variables are provided at a discrete range of heights. Let Z contain the set of

indexes identifying the DARDAR heights between z0 and zmax, and ∆zi the bin height range at height zi, i ∈ Z . Furthermore,

let wl define the importance of profile l ∈ P . Throughout these derivations, we assume that all profiles are equally important,

and the subindexes refer to the DARDAR variable values at the corresponding height and profile. The variables Zm and Dm are

only defined when IWP > 0, that is, IWCi ̸= 0 for some zi.460

Concerning the average IWP from a set of profiles we have

IWP =

zmax∫
z0

IWC(z)dz =
∑

l∈P
∑

i∈Z wlIWCil∆zil∑
l∈P wl

(A1)

=
1

|P|
∑
l∈P

∑
i∈Z

IWCil∆zil (A2)

where we see that IWP from a set of profiles is the arithmetic mean of each profile IWP.

Regarding Zm we have465

Zm =

∫ zmax

z0
zIWC(z)dz∫ zmax

z0
IWC(z)dz

(A3)

=

(∑
l∈P wl

)−1∑
l∈P

∑
i∈Z wlzilIWCil∆zil(∑

k∈P wk

)−1∑
k∈P wkIWPk

(A4)

=
∑
l∈P

IWPl

IWPl

∑
i∈Z zilIWCil∆zil∑

k∈P IWPk
=

∑
l∈P IWPlZm,l∑

k∈P IWPk
. (A5)

Therefore, the Zm of a set of profiles is given by averaging the Zm of each profile weighted by its IWP.

To derive the expression for Dm we first need to introduce the diameter of an equivalent melted particle deq, the particle size470

distribution for diameter deq and height z as n(deq,z), and ρw = 1000 kgm−3, the water density. From Delanoë et al. (2014),

we have that

IWC(z) =
πρw

6

+∞∫
0

d3eqn(deq,z)ddeq (A6)

and

+∞∫
0

d4eqn(deq,z)ddeq =

44
(∫ +∞

0
d3eqn(deq,z)ddeq

)5

6N∗
0 (z)


1/4

(A7)475

=

[
44

6

(
IWC(z)
πρw/6

)5
1

N∗
0 (z)

]1/4

. (A8)
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The Dm for a profile l results

Dm,l =

∫ zmax

z0

∫ +∞
0

d4eqn(deq,z)ddeqdz∫ zmax

z0

∫ +∞
0

d3eqn(deq,z)ddeqdz
(A9)

=

∑
i∈Z ∆zil

∫ +∞
0

d4eqn(deq,zil)ddeq∑
i∈Z ∆zil

∫ +∞
0

d3eqn(deq,zil)ddeq
(A10)

=

∑
i∈Z ∆zil

[
44

6 IWC5
il/N

∗
0,il

(
6

πρw

)5
]1/4

∑
i∈Z ∆zil

6
πρw

IWCil

(A11)480

=
4

(πρw)1/4

∑
i∈Z ∆zil

(
IWC5

il/N
∗
0,il

)1/4

IWPl
. (A12)

Then, the Dm for a set of profiles indexed by P is

Dm =

∫ zmax

z0

∫ +∞
0

d4eqn(deq,z)ddeqdz∫ zmax

z0

∫ +∞
0

d3eqn(deq,z)ddeqdz
(A13)

=

∑
l∈P

∑
i∈Z wl∆zil

∫ +∞
0

d4eqn(deq,zil)ddeq∑
k∈P

∑
i∈Z wk∆zik

∫ +∞
0

d3eqn(deq,zik)ddeq
(A14)

=

∑
l∈P

∑
i∈Z ∆zil

∫ +∞
0

d4eqn(deq,zil)ddeq∑
k∈P

∑
i∈Z ∆zik

∫ +∞
0

d3eqn(deq,zik)ddeq
·485

·

∑
i∈Z ∆zil

∫ +∞
0

d3
eqn(deq,zil)ddeq∑

i∈Z ∆zil
∫ +∞
0

d3
eqn(deq,zil)ddeq

1
(A15)

=

∑
l∈P

∑
i∈Z ∆zil

∫ +∞
0

d3eqn(deq,zil)ddeqDm,l∑
k∈P

∑
i∈Z ∆zik

∫ +∞
0

d3eqn(deq,zik)ddeq
(A16)

=

∑
l∈P

∑
i∈Z ∆zilIWCilDm,l∑

k∈P
∑

i∈Z ∆zikIWCik
=

∑
l∈P IWPlDm,l∑

k∈P IWPk
. (A17)

That is, it is also given by averaging the Dm of each profile weighted by its IWP.
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