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Abstract 

In this work we used a Zeppelin NT equipped with six sensor setups, each composed of four different low-cost electrochemical 

sensors (ECS) to measure nitrogen oxides (NO and NO2), carbon monoxide, and Ox (NO2 + O3) in Germany. Additionally, a 10 

MIRO MGA laser absorption spectrometer was installed as a reference device for in-flight evaluation of the ECS. We report 

the influence of temperature on the NO and NO2 sensor outputs, but also find a shorter time scale (1 s) dependence of the 

sensors on the relative humidity gradient. To account for these dependencies, we developed a correction method that is 

independent of the reference instrument. After applying this correction to all individual sensors, we compare the sensor setups 

with each other and to the reference device. For the intercomparison of all six setups we find good agreements with R² ≥ 0.8, 15 

but different precisions for each sensor in the range of 1.45 to 6.32 ppb. The comparison to the reference device results in an 

R² of 0.88 and a slope of 0.92 for NOx (NO + NO2). Furthermore, the average noise (1 σ) of the NO and NO2 sensors reduces 

significantly from 6.25 ppb and 7.1 ppb to 1.95 ppb and 3.32 ppb, respectively. Finally, we highlight the potential use of ECS 

in airborne applications, by identifying different pollution sources related to industrial and traffic emissions during multiple 

commercial and targeted Zeppelin flights in spring 2020. These results are a first milestone towards the quality-assured use of 20 

low-cost sensors in airborne settings without a reference device, e.g., on unmanned aerial vehicles (UAVs). 
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1 Introduction 25 

The effects of poor air quality are manifold – they are environmental (e.g., Mclaughlin, 1985; Bytnerowicz et al., 2007), 

economic (e.g., Quah and Boon, 2003), and health-related (e.g., Kampa and Castanas, 2008; Von Schneidemesser et al., 2020). 

Ambient air quality is dependent on the level of pollutant concentrations in the lower troposphere that includes both airborne 

particles and gaseous substances. Increasing concentrations of target pollutants, i.e., particulate matter, PM, nitrogen dioxide 

(NO2), and ozone (O3) increase the risk of cardiovascular, respiratory, and cerebrovascular mortality for short-term (Orellano 30 
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et al., 2020) as well as long-term exposure (Huangfu and Atkinson, 2020; Chen and Hoek, 2020). Furthermore, these pollutants 

can influence climate change with either cooling or warming effects (IPCC, 2021). Historically, in order to limit such impacts 

the World Health Organization (WHO, 2021) and the Intergovernmental Panel for Climate Change (IPCC, 2021) set global 

guidelines for countries to achieve. Quantification of pollutants is, therefore, an essential procedure for assessing air quality 

and climate change and the first step through which subsequent action can be taken.  35 

In Europe, this has been largely achieved via ground-based monitoring networks, such as the European Environment Agency's 

European Monitoring and Evaluation Programme (EMEP; http://ebas.nilu.no), or even infrastructures such as the Aerosols, 

Clouds, and Trace Gases Research Infrastructure (ACTRIS; https://www.actris.eu), that provide high-quality data for criteria 

pollutant concentrations around the world. The EU Air Quality Directive 2008/50/EC with its amendment 2015/1480/EC was 

introduced to create uniform requirements for air quality measurements. In Germany, the measuring stations are operated by 40 

the State Environmental Agencies and the Federal Environment Agency in accordance with the Air Quality Directive’s 

specifications. However, such ground-based measurements are typically stationary and thus cover local air quality trends with 

limited insights on the vertical distribution of pollutants or small-scale spatial gradients (Apte et al., 2017; Messier et al., 2018). 

Furthermore, maintenance and operation of such networks at the spatial resolution needed to inform decision makers, may 

exceed available budgets. 45 

In the last years, development of low-cost sensors e.g., electrochemical sensors (ECS), whose costs are two to three orders of 

magnitude lower than those of typical laboratory-grade devices, have been used as an alternative and affordable option to 

perform measurements that cover multiple locations (Popoola et al., 2018; Rai et al., 2017; Shusterman et al., 2016; Sun et al., 

2016; Mead et al., 2013). Such sensors have been extensively used and evaluated alongside measuring stations (Popoola et al., 

2018; Sahu et al., 2021; Mead et al., 2013; Dallo et al., 2021; Spinelle et al., 2017, 2015) and have recently been extended for 50 

airborne applications (Villa et al., 2016; Schuyler and Guzman, 2017; Gu et al., 2018; Mawrence et al., 2020; Pochwala et al., 

2020; Pang et al., 2021; Bretschneider et al., 2022). ECSs are light, compact in size, and of low power consumption 

(Alphasense, 2019b, a, f, e, d) - properties required for use on unmanned aerial vehicles (UAV); however, evaluation compared 

to reference devices in such airborne applications still remains a challenge.  

Data quality assurance of ECSs is an essential step due to their cross-sensitivities to a wide range of influencing factors. These 55 

include meteorological parameters such as temperature (Mead et al., 2013; Popoola et al., 2016) and relative humidity (Samad 

et al., 2020; Wei et al., 2018), as well as cross-sensitivities to other gases (Mueller et al., 2017; Pang et al., 2018; Lewis et al., 

2016). Furthermore, the gradients of meteorological parameters like the rate of relative humidity changes (% s-1) can influence 

the sensor signal with slow recovery times of up to hours (Mueller et al., 2017; Pang et al., 2018; Pang et al., 2017). There are 

two possible scenarios to compensate for such interferences: hardware modifications and post-processing of the data. Examples 60 

for hardware modifications are the introduction of a fourth electrode in the typical three-electrode electrochemical sensor to 

compensate for zero shifts (Baron and Saffell, 2017) and the implementation of a filter for specific cross interfering gases, e. 

g. for O3 in an NO2 ECS (Hossain et al., 2016). On the post-processing side, a growing variety of methods are used to obtain 

sufficient data quality. These include parametric algorithms such as multiple linear regressions (Wei et al., 2018), but also non-
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parametric methods such as decision trees (Zimmerman et al., 2018), artificial neural networks (Han et al., 2021) or other 65 

numerical models (Cross et al., 2017). Machine learning is often used as an equivalent term for non-parametric models (WMO, 

2018). It has the advantage to identify more complex interferences in large datasets, such as non-linearities, time dependencies, 

or combined interferences. A limitation, however, is that the cause of these interferences remains unknown when using 

machine learning models, in contrast to e.g., linear regression methods where such dependencies can be identified. 

In this work, we evaluate the performance of low-cost sensors and develop a correction method that accounts for ECS 70 

interferences based on real-time airborne observations onboard a Zeppelin NT. This includes the measurements of CO, NO, 

NO2 and Ox (NO2 + O3) that are compared to the MIRO MGA (Tillmann et al., 2022) used as a reference device to evaluate 

the performance of the sensors. We show that ECSs can be used for reliable, in situ trace gas measurements and highlight their 

potential for airborne applications aboard UAVs. 

2 Methods 75 

2.1 Experimental setup / platform 

 

Figure 1: (a) Hatch box including the sensor setups located on the bottom of the (b) Zeppelin NT (© Forschungszentrum Jülich / 

Ralf-Uwe Limbach) that was used as the measurement platform in this work. The reference device, MIRO MGA, was installed 

inside the gondola, but with the inlet line right beside the sensor setups, shown in the top right of panel (a). 80 

Figure 1 shows the experimental setup for the in situ airborne measurements. This includes a Zeppelin NT (b) as a measurement 

platform equipped with a hatch box (a), located on the bottom of the airship. The Zeppelin NT is particularly suitable for 

planetary boundary layer (PBL) measurements due to its long flight duration (up to 20 h) at low altitudes below 1 km, a high 
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payload of around 1000 kg, and good manoeuvrability. This allows measurements within the PBL to investigate the influence 

of different urban emission sources on air quality (Tillmann et al., 2022). 85 

Six electrochemical sensor (ECS) setups are installed at the hatch box, together with a GPS module (Adafruit Ultimate GPS), 

Long Term Evolution (LTE) – a standard for wireless broadband communication for mobile devices – equipment for remote 

access, ventilation fans to regulate the hatch box pressure, two optical particle counters, and fuses to protect the electronics. 

The hatch box dimensions are 738×538×162 (length × width × height in mm). The sensor inlets are located outside of the 

hatch box and exposed to ambient air via diffusion. A sensor setup, as shown in Fig S1, consists of four ECS to measure the 90 

trace gases CO, NO, NO2 and Ox (NO2 + O3), a Telaire ChipCap 2 sensor for temperature and relative humidity measurements 

and a self-developed printed circuit board (PCB) for managing and saving the incoming data with a frequency of 1 Hz. Further 

specifications of the sensors are given in Table 1. The setups are powered from the Zeppelin NT and further supported by two 

batteries to provide uninterrupted power to the sensors.  

 95 

Table 1: Specifications of each sensor setup. 

Parameter Sensor Principle 
Response 

timea 
Accuracya Rangea 

CO Alphasense 

CO-B4 
Amperometric < 30 s (t90) 

±4 ppb 

(precision, 2σ) 
0-1000 ppm 

NO Alphasense 

NO-B4 
Amperometric < 45 s (t90) 

±15 ppb 

(precision, 2σ) 
0-20 ppm 

NO2
 Alphasense 

NO2-B43F 
Amperometric < 80 s (t90) 

±15 ppb 

(precision, 2σ) 
0-20 ppm 

Ox (NO2 + O3) 
Alphasense 

Ox-B431 
Amperometric < 80 s (t90) 

±15 ppb 

(precision, 2σ) 
0-20 ppm 

Aerosol  

(Size distribution, 

PM1, PM2.5, PM10)b 

Alphasense 

OPC-N3 
Light scattering 

1-30 s 

(sampling 

interval) 

- 0.35 - 40 µm 

Temperature 

Telaire 

ChipCap 2 

CMOS 5 s (t63) ±0.3 °C -40 to 125 °C 

Relative Humidity Capacitive 4 s (t63) 
±2.0 % RH 

(20-80 % RH) 

0 - 100 % RH 

(Non-

Condensing) 
a Specifications given in the corresponding data sheets. 

b Connected to setup #1 and #4 but not used in this work. 

 

In this study we focus on the measurements of NO and NO2 (NOx) using electrochemical sensors from Alphasense (UK, 100 

Essex). Laboratory evaluation and optimization of the CO and Ox sensor performance is currently ongoing, and the focus of a 

future study as further discussed in section 2.3.3. Here, the NOx measurements are performed using amperometric gas sensors 

that have four electrodes: a working electrode (WE), a counter electrode (CE), a reference electrode (RE), and the auxiliary 

electrode (AUX). The measuring principle is based on a redox reaction that takes place at the WE and the CE (reduction, 

oxidation). The RE keeps the WE at a constant potential to force the desired electrochemical reaction of the analyte on the 105 

three-phase boundary (electrode, electrolyte, gas). The resulting charges are transferred to each electrode in the form of ions 
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via the electrolyte solution and in the form of electrons via an external circuit. The resulting current of the electron transfer is 

the measurement signal of the sensor. This current is exactly proportional to the concentration of the analyte when the sensor 

is operated under appropriate diffusion-limited conditions. Many kinetic factors, such as the mass transfer of the analyte to the 

electrode as well as the electrocatalytic activity of the electrode material, can be adjusted via the design of the sensor (Stetter 110 

and Li, 2008). AUX has the same design as the WE, but is fully immersed in the electrolyte and has no interface with the gas 

phase (Baron and Saffell, 2017). Therefore, the AUX signal can be used to correct the WE signal from influences on the WE 

other than the analyte (e.g., temperature). The measured WE and AUX currents are converted into a voltage signal using an 

individual sensor board (ISB, Alphasense). Finally, this signal is digitised by the measurement board and then recorded on an 

SD card in binary format and can also be transferred serially. 115 

Besides the measurement equipment in the hatch box, a MIRO MGA10-GP multi-compound gas analyzer was installed in the 

gondola. The MIRO MGA measures the amount fractions of ten trace gases (NO, NO2, O3, SO2, CO, CO2, CH4, H2O, NH3, 

N2O) by direct laser absorption spectroscopy. In this study it is used as a reference system for the ECS and enables a direct 

performance evaluation of the ECS in an airborne setting. Hundt et al. (2018) and Liu et al. (2018) provide more in-depth 

details about the MIRO, while more information on its use on the Zeppelin NT are given by Tillmann et al. (2022). For an 120 

accurate intercomparison to the ECSs, a perfluoroalkoxy alkane (PFA) inlet line with a length of 8 m was placed next to the 

ECSs in the hatch box (Fig. 1 (a)) and connected to the MIRO. The volumetric flowrate used for the MIRO was 1.2 SLM 

resulting in a residence time of the gas inside the line of around 5 s. 
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2.2 Location and dates 125 

 

Figure 2: (a) Map with flight paths in North Rhine-Westphalia, Germany (© OpenStreetMap contributors 2021. Distributed under 

the Open Data Commons Open Database License (ODbL) v1.0), and (b) frequency distribution of the corresponding temperature 

and relative humidity in-flight values for the targeted (blue) and commercial (orange) flights - illustrated in violin plots. The 

manufacturer-specified limits within which the sensors should be used are depicted in shaded green in the background. 130 

Figure 2 (a) depicts a map with the flight paths for our measurements in 2020. The flights took place within two periods in 

mid to late spring, with targeted research flights performed from 29 April 2020 to 09 May 2020 and measurements during 

commercial flights from 27 May 2020 to 15 June 2020. All flights were over Germany, and predominantly over North Rhine-

Westphalia except for the transfer flights on 29 April 2020 and 27 May 2020 from Friedrichshafen to North Rhine-Westphalia, 

and from North Rhine-Westphalia back to Friedrichshafen on 09 May 2020 and 15 June 2020. During the targeted flights, 135 

specific emission sources e.g., a power plant were targeted as well as cities and rural areas. More detailed information on 

individual flights is provided by Tillmann et al. (2022). Figure 2 (b) shows the in-flight measured temperature and relative 

humidity values. According to the manufacturers specifications the sensors should be used in the range from -30 °C to 40 °C 

and 15 % to 85 % relative humidity (Alphasense, 2019b, a, e, d). Nearly the entire data set is within these specifications with 

1 % and 99 % percentiles at 8.4 °C (1 %), 25.7 °C (99 %) and 28.0 % RH (1 %), 84.0 % RH (99 %), respectively. Furthermore, 140 

the manufacturer recommendations are given for continuous exposure at high or low RH which was not observed for the whole 

dataset hence limiting the influence of such interferences for this study. 
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2.3 Data processing 

The quality of sensor data can be influenced by various parameters including transmission errors to the measurement board 

and electromagnetic interference between the devices (Alphasense, 2013), as well as defective sensor components. In this 145 

work, we use multiple ECS sensors in parallel to track defective sensors after following the steps that are outlined below. 

2.3.1 Time synchronization and noise reduction 

The clocks on each of the six sensor setups were manually pre-set, therefore time synchronization was not ensured. In the first 

step we chose a master setup, here setup #2 that was operational throughout all flights with a data coverage of 99 %. Next, a 

time shift was applied to the other setups to match it. To find the optimal values for this time shift, setup X was shifted from -150 

60 s to +60 s stepwise by 1 s, performing a linear regression analysis (setup X(t+-x) vs. setup #2). The linear regression 

resulting in the highest coefficient of determination, R², was used to correct for the time difference of each setup to the master 

setup. This was done using the full dataset of each period of flights, targeted and commercial, resulting in shifts within ±15 s 

and an average time drift of ±0.31 s week-1, leading to a maximum drift of < ±1 s during each single period of flights. 

In the next step the data of the sensors and the MIRO MGA whose clock is set via LTE were synchronized. This 155 

synchronization step made it possible to properly compare the sensors with each other and with the reference instrument. 

Lastly, to reduce the noise of the ECS signals, a Savitzky-Golay filter (Savitzky and Golay, 1964) was used. Here, a polynomial 

regression with a window size of 2 n + 1 adjacent data points is solved by linear least squares. A window of 11 s (n = 5) and a 

polynomial degree of 3 was found to be optimal to smooth the signals without altering the analyte peaks. Fig. S3 shows the 

difference between the sensor signal before and after applying the filter at different NO and NO2 concentrations. The signal 160 

reduction is within 10 ppb (2 σ, corresponding to around 95 % of the data), i.e., similar to the noise levels of the sensors (Fig. 

S2), independent of the NO and NO2 concentrations, which highlights the minor influence of the Savitzky-Golay filter at larger 

peaks.  

2.3.2 Temperature and relative humidity data 

In addition, six ChipCap 2 sensors were used for temperature and relative humidity measurements. The sensors measurement 165 

principle is based on a capacity change for relative humidity and a resistance variation for temperature. To evaluate the 

performance of these sensors, we intercompared the differences between the six sensors as shown in Fig. S4. From these results 

it is evident that the temperature and relative humidity sensors of setups #4, #6 and partly #5 provide erroneous data. We 

therefore calculate and use throughout this work the mean values and standard deviations of the remaining, quality-assured 

temperature and relative humidity measurements, assuming response times within 5 s as shown in Table 1. 170 
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2.3.3 Determination of amount fractions 

In this work, we develop a correction method to accurately determine the amount fractions of NO and NO2 using regression 

parameters determined with the ECS in-flight data (Sect. 3). A detailed description of the correction procedure is given in the 

supplement and is based on the method of Mead et al. (2013). After applying this correction method, the sensor voltage signals 

in mV are converted to amount fractions using sensitivity values in mV/ppb provided by the manufacturer (Table S1). Here, 175 

we assume constant sensitivities given that their dependency, e.g., to temperature, is a 2nd order effect (Mead et al., 2013; 

Popoola et al., 2016). 

To account for sensor response times, a low pass filter, in this case a centred moving average with a window size of 31 seconds 

is used that corresponds to the t90, defined as the duration the sensor needs to reach 90 % of the final signal after a step change 

in concentration. This value is derived from the combined information given by the laboratory measurements (Table S2), in 180 

agreement with the manufacturer and published measurements (Mead et al., 2013): the manufacturer provides a t90 of < 45 s 

for NO and < 80 s for NO2 from 0 to 2 ppm, whereas Mead et al. provide a t90 of 21 s for NO2.  

As a reference correction method, we use the recommended correction described by the manufacturer (Alphasense, 2019c) 

following the above equations to correct the NO and NO2 WE output for effects of temperature: 

𝑊𝐸𝑁𝑂,𝑐 = (𝑊𝐸𝑢 − 𝑊𝐸𝑒) − 𝑘𝑇 × (
𝑊𝐸0

𝐴𝑈𝑋0
) × (𝐴𝑈𝑋𝑢 − 𝐴𝑈𝑋𝑒),       (1) 185 

𝑊𝐸𝑁𝑂2,𝑐 = (𝑊𝐸𝑢 − 𝑊𝐸𝑒) − 𝑛𝑇 × (𝐴𝑈𝑋𝑢 − 𝐴𝑈𝑋𝑒),        (2) 

where WE and AUX are the working and auxiliary electrode voltages. The subscripts u, e and 0 stand for the uncorrected, i.e., 

measured signal, the electronic offset, and the sensor zero, respectively. The electronic offsets and sensor zero values are 

provided by the manufacturer and given in Table S1. WENO,c and WENO2,c are the corrected working electrode voltages for NO 

and NO2, respectively. The temperature compensation factors kT and nT are given in the range of -30 °C to 50 °C in 10 °C 190 

steps. For temperatures within these 10 °C steps, a linear interpolation is advised. 

ECSs were also used to measure CO and Ox (NO2 + O3). A comparison of the ECS measurements to the MIRO reference 

instrument was performed after following the manufacturers recommendations to estimate amount fractions for CO and Ox. 

However, high uncertainties were found due to the high CO and O3 backgrounds creating an offset to the sensors that was not 

accurately accounted for based on the manufacturer’s correction procedure (Fig. S5). Additionally, the described correction 195 

procedure in the supplement used in this work for NO and NO2 relies on periods with low analyte concentrations, ideally zero, 

to account for offsets of the background signal. While this is a good approximation for NO and NO2 it is not applicable to CO 

and O3 because of their higher background concentrations often above several tens of ppb. Laboratory evaluation and 

optimization of the CO and Ox sensor performance is currently ongoing and the focus of a future study. In this work we 

evaluate the performance and highlight the potential of the NO and NO2 sensors for accurate airborne applications. 200 
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3 Results and discussion 

3.1 Sensor signal dependencies 

All Zeppelin measurements were filtered for periods of low NO and NO2 concentrations (< 2 ppb) using the measurement data 

of the reference instrument in order to find possible interferences on the WE signal of the electrochemical sensors. This 

procedure reduces the data to only background concentration periods and provides the signal that is influenced by cross 205 

interferences. The correction method developed and described in the following is entirely independent of a reference device 

and requires only the sensors used. Figure 3 and Figure S6 show the correlation of WE to AUX, T, and dRH/dt at different time 

resolutions (i.e., averaging intervals) for NO and NO2, respectively. For 1 s resolution, coefficients of determination (R2) are 

0.86, 0.71, 0.83 for NO and 0.57, 0.13, 0.86 for NO2, for AUX, T, and dRH/dt, respectively. For this data set, we could not 

detect any other significant dependencies including dT/dt (Fig. S7). As described in Sect. 2.1 AUX can be used to correct the 210 

WE signal from external interferences. The collinearity between AUX and T, that is shown by the colored dataset in Fig. 3 

further promotes the significant influence of temperature on the sensor measurements. However, other unknown interferences 

could have a simultaneous effect on WE and AUX, such as changes of the electrolyte composition or influences on the sensor 

boards electronics that control the voltages of the electrodes. Therefore, we also consider AUX as an additional correction 

parameter despite the observed collinearity with temperature.  215 
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Figure 3: Scatterplots of NO sensor (setup #2) for WE vs. AUX, T and dRH/dt with different time resolutions of (a) 1 s, (b) 30 s and 

(c) 120 s provided per row. The colors are used to show collinearity between AUX and T, and that the shift of WE voltages in the 220 
dRH/dt plot is a temperature interference. 

Figure 3 shows that temperature and AUX dependencies are effective on a longer timescale since the relationship with WE 

does not change with lower time resolutions transitioning from 1 s to 30 s and 120 s. On the contrary, the correlation with 

dRH/dt decreases progressively with decreasing time resolution. Since ECS are mostly deployed for long-term monitoring of 

air quality at e.g., stationary monitoring stations, mean values of up to 1 hour are often used (Mijling et al., 2018). Therefore, 225 

at longer time resolutions such effects are filtered out. However, for mobile applications, a high time resolution results in a 

better spatial resolution of the pollutant distributions, making this effect relevant.  
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Previous publications have shown the influence of humidity changes on the WE signal, after which there is a spike in the signal 

followed by a slow decay (Mueller et al., 2017; Pang et al., 2018; Pang et al., 2017). Mueller et al. (2017) conducted laboratory 

tests with relative humidity changes of 5 % RH every 20 minutes between 40 % RH and 60 % RH. They observed that this 230 

changed the sensor signal by a similar order of magnitude as the addition of 70 ppb NO2. Afterwards, the signal decreased 

exponentially in time back to equilibrium. Through further measurements, they found that the effect was dependent on the 

magnitude and rate of the relative humidity variation that can affect the measurement accuracy over minutes to hours – but the 

physical reason for this is currently unknown. Pang et al. (2017) came to a similar conclusion. Rapid RH changes (≈ 20 %/min) 

had an immediate influence on the sensor signal followed by a required recovery period of up to 40 min to restore the original 235 

value whereas small humidity changes of about 0.1 %/min had no significant effect. When compared to our measurements, 

the humidity changes in these laboratory experiments are unidirectional and over a longer time scale. During the flights, we 

observe both negative and positive humidity changes on a short time scale. For example, the mentioned 20%/min RH change 

that triggers the long recovery phase results in 0.33 %/s, assuming a linear increase. During the Zeppelin flights we observe 

such a longer lasting effect starting at about 0.7 %/s, after which it takes up to 5 min, for the signal to stabilise again, depending 240 

on the magnitude of the rate of change. Since we do not have an exact analytical solution for correcting this dependency yet, 

these values were removed from the data set. However, we were able to describe the dependence of the WE voltages to the 

temporally small-scale changes in relative humidity (max. ± 0.6 %/s), which affect the signals only immediately and briefly, 

with a linear relationship (see Fig. 3).  

In the following, we use the above correlations on temperature, AUX, and dRH/dt to develop a correction method using the 245 

equations below for NO and NO2. 

𝑊𝐸𝑁𝑂,𝑐(𝑡) = 𝑊𝐸𝑁𝑂,𝑎(𝑡) − 𝛽0 ×
𝑑𝑅𝐻

𝑑𝑡
(𝑡) − (𝛼 + 𝛽1 × exp(𝛽2 × 𝑇(𝑡)) + 𝛽3 × 𝐴𝑈𝑋(𝑡)),   (3) 

𝑊𝐸𝑁𝑂2,𝑐(𝑡) = 𝑊𝐸𝑁𝑂2,𝑎(𝑡) − 𝛽0 ×
𝑑𝑅𝐻

𝑑𝑡
(𝑡) − (𝛼 + 𝛽1 × 𝑇(𝑡) + 𝛽2 × 𝐴𝑈𝑋(𝑡)),    (4) 

where WEa is the WE signal after the preparation steps from Sect. 2.3.1, T is the temperature in °C, and α, βz (z = 0, 1, 2, 3) are 

the determined regression parameters. We give a more detailed description of how to obtain Eq. (3) and (4) in the supplement 250 

and show the regression parameters in Table S3. To calculate the amount fractions, WENO,c and WENO2,c are then divided by 

the corresponding sensitivities of the sensors (Table S1). In the following sections we will often use NOx (NO + NO2). For the 

ECS, this means 

𝑥𝑁𝑂𝑥
(𝑡) =

𝑊𝐸𝑁𝑂,𝑐(𝑡)

𝑆𝑁𝑂
+

𝑊𝐸𝑁𝑂2,𝑐(𝑡)

𝑆𝑁𝑂2

,          (5) 

in which the summands are moving averages as described in Sect. 2.3.3 to consider the response time of the ECSs. 255 
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3.2 Validation of ECSs performance 

3.2.1 Intercomparison of ECS setups 

Table 2: From left to right: (a) slopes, (b) intercepts, and (c) R² of the linear regressions between one setup and any other setup for 

≈ 286 hours of measurements (≈ 75 hours in-flight). The lower triangle, depicted with black framed rectangles are the NO sensors 260 
results. The grey diagonally striped rectangles in the upper triangle show the results of the NO2 sensors. The light to dark color map 

indicates the range from worst to best values, respectively. 

 

Table 2 shows the intercomparison of all ECS setups after applying the corrections presented in Sect. 3.1, by performing linear 

regression analysis including their slopes, the intercepts, and coefficients of determination R2. All NO sensors are in good 265 

agreement with slopes ranging from 0.92 to 1.12, intercepts from ±0.09 ppb to ±5.91 ppb and R2 > 0.99, whereas for NO2 

slopes range from 0.82 to 1.07, intercepts from ±0.07 ppb to ±4.29 ppb, and R² from 0.80 to 0.94. Although the R² is high for 

all setups, the regressions of setups #4 and #5 with the NO sensors show greater variability in terms of intercepts and slopes. 

For NO, setup #5 has the highest offset of 5.91 ppb and a larger slope compared to all other setups. For NO2 the results are not 

as definite but the R² is generally lower for setups #4 and #5, indicating higher noise of the sensors. This is also further 270 

supported by Fig. S8 with the noise of the sensor setups #4 and #5 at 5.03 ppb and 3.59 ppb for NO, and 6.32 ppb and 5.43 ppb 

for NO2, respectively. Setups #3 and #6 have similar precisions for NO compared to setup #2 with values of 1.45 ppb and 

1.98 ppb compared to 1.95 ppb, respectively; however, their noise for NO2 is approximately 55 % and 61 % higher than for 

setup #2. Therefore, we exclusively use setup #2 in the following given the consistent agreement to other sensors, the lower 

noise, and the high in-flight data coverage > 98 %. 275 

The regression parameters for NO2 are more variable than for NO. One possible reason is the smaller temperature dependence 

for NO2. As a result, AUX, for example for setup #2, varies only between 220 to 240 mV, whereas NO varies between 300 to 

400 mV (Fig. 3 and S6). This indicates that the temperature influence is the dominant contribution for the baseline correction 

of the NO sensor, whereas the WE of the NO2 sensor could additionally be influenced by other interfering factors that do not 
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affect the AUX and are not accounted for here. Another factor is the much larger number of data points for NO (n = 4026) than 280 

for NO2 (n = 155) for amount fractions above 50 ppb, leading to a more stable regression line for NO. 

3.2.2 Noise reduction 

 
Figure 4: Distributions of standard deviations calculated inside 31 s windows shown for (a) NO and (b) NO2 sensors of setup #2 

filtered for flights above 100 m to avoid engine exhaust peaks (number of data points = 270 198). Adding dRH/dt to the correction 285 
procedure leads to a narrower distribution by reducing high changes of the signal on a short timescale. 

Figure 4 shows the distributions of the standard deviations of the NO (a) and NO2 (b) sensors for each 31 s windows which 

were used to calculate the moving average (Sect. 2.3.3). The data were filtered for periods with height above 100 m 

(n = 270 198) to avoid engine exhaust peaks that would result in high standard deviations because of the high changes in 

concentrations inside these time windows. The correction used here, shown in blue and green, results in the lowest noise with 290 

modal values for NO of 2.03 ppb for the correction with T and AUX, and 1.95 ppb when dRH/dt is additionally included in the 

correction, whereas for NO2, the noise modal values are 3.66 ppb and 3.32 ppb. Besides the change in peak position, the 

distributions become narrower when correcting with dRH/dt. This leads to significantly higher peaks of around 60 % for both 

analytes because the number of data points with standard deviations above 3 ppb for NO and above 5 ppb for NO2 decreases, 

highlighting the significant noise reduction when including dRH/dt in the correction procedure. 295 
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3.2.3 Comparison of ECSs with the MIRO MGA 

 

Figure 5: Scatterplots of the in-flight (≈ 75 hours) corrected NOx sensor data (setup #2) vs. MIRO MGA data (reference) classified 

in 2 ppb bins and two times the standard deviations (± 2σ). Shown in (a) and (c), are the accuracies for each bin, i.e., the absolute 

difference between sensor and MIRO MGA data per bin. Plots (a) and (b) represent the corrections as recommended by the 300 
manufacturer, whereas (c) and (d), provide the results of our correction method. The dashed blue line marks the 1:1 line and the 

range of 2:1 and 1:2 is shaded in grey. The inlet plots show the data in a higher resolution from 0 to 50 ppb of the reference 

instrument. In addition, the linear regression results are shown on the bottom right. 

Figure 5 (a) and (b) show the amount fractions of NOx for sensor setup #2 (master setup, see section 2.3.1) following the 

corrections recommended by the manufacturer as described in Sect. 2.3.3 whereas Figure 5 (c) and (d) show the correction 305 

method developed in this work compared to the MIRO MGA used as a reference device. Additionally, comparisons of all 

setups with the MIRO MGA are shown in Figure S10. As shown in Fig. 5 (a) and (c) the deviations of the sensor values to 

MIRO decreased from an absolute average of 27.3 ± 4.8 ppb to 3.5 ± 3.1 ppb. This means an absolute accuracy improvement 

by nearly an order of magnitude. The accuracy increase is mainly the result of the improved offsets changing 

from -13.15 ppb, -8.29 ppb, and -19.76 ppb to 9.12 ppb, -6.76 ppb, and 3.15 ppb for NO, NO2 (Fig. S9), and NOx, respectively. 310 

Precision also improved, reflected by the decrease of the associated error bars in Fig. 5 resulting in a higher coefficient of 

determination from 0.54 to 0.88. In general, NO and NO2 measurements corrected with our method, and the resulting NOx 



15 

 

values are close to the 1:1 line. Moreover, the two standard deviations corresponding to 95 % of the data in each bin, are within 

a factor of 2 above 20 ppb, which is particularly driven by the dRH/dt correction, as also shown in Fig. 4.  

While on average there is agreement within 3.5 ppb for NOx between the MIRO and ECSs at both high and low concentrations 315 

this agreement is not evident for the lower amount fractions of NO or NO2 (Fig. S9). For NO an average overestimation of 

34.4 % is observed below 40 ppb, that increases to an average deviation of up to 600 % in the range of 0 to 5 ppb, whereas for 

NO2 an underestimation of 31.3 % is observed for amount fractions below 25 ppb, increasing to 300 % below 5 ppb, because 

of the small absolute numbers. It is possible that the 8 m sampling line to the MIRO could influence the composition of NO 

and NO2 as an in-line reaction of NO with O3 could lead to higher NO2 and lower NO concentrations, compared to the sensors 320 

that have no sampling line. However, this effect is expected to be minor due to the short sample residence time of 5 s. In 

addition, other parameters may influence the performance of the electrochemical sensors compared to the MIRO, such as cross 

sensitivities to other gases, the wind speed (Mead et al., 2013) or the atmospheric pressure. In this study, measurements of 

gases are limited to CO, CO2, CH4, N2O, H2O, and O3 performed by the MIRO MGA (Tillmann et al., 2022). No significant 

cross interference was observed under the present atmospheric concentrations, as shown in Fig. S12. To quantify possible 325 

influences from wind speed and atmospheric pressure, a measuring chamber of a constant volumetric flow together with 

pressure sensors will be used in future campaigns. 

Besides the above direct influences, there is also the possibility of sensor drifts, i.e., a change of the sensor signal with time. 

Wei et al. (2018) estimated a possible drift of < 2 ppb/month whereas Mead et al. (2013) state that the sensitivity of the sensors 

remained unchanged over an 11-month measurement period. For our deployment duration of 1.5 months, sensor drifts are 330 

therefore expected to be within the uncertainty of the measurements which is also reflected by the good agreement of the ECS 

and the MIRO in Fig. 5 and S10. Furthermore, Fig. S11 shows the timeseries of all sensors during different flight days in May 

and June to evaluate the influence of such sensor drifts. The consistent correlation of all setups to the MIRO highlights the 

stability of the sensors during this study. However, we promote the need for controlled laboratory measurements in the future 

to evaluate long-term influences on the stability of the ECS signals including sensor drifts. 335 

Evidently, with the manufacturer’s correction, amount fractions (Fig. 5 (a)) cannot be accurately quantified predominantly due 

to the high offset of -19.76 ppb. One possible reason is that in Eq. (1) and (2) the same temperature compensation factors are 

used for all sensors, whereas each sensor may react differently to a temperature change, which is also shown by our regression 

parameters in Table S3. Another cause could be a drift of the zero value, which is not caught by the temperature and AUX 

correction in these equations. In our method, sensor drifts are corrected by using minimum values of measured WE voltages 340 

following the procedure described in Mead et al. (2013) as discussed in Sect. 2.3 and the supplement. 
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3.3 Detection of anthropogenic NOx emission sources 

 
Figure 6: Amount fractions of NOx are shown by color and size for the MIRO MGA (a, c) and the corrected sensor data of setup #2 

(b, d) during flights in North Rhine-Westphalia, Germany, near and in the cities of Eschweiler and Duisburg, respectively (© 345 
OpenStreetMap contributors 2022. Distributed under the Open Data Commons Open Database License (ODbL) v1.0). The arrows 

orientation and length indicate the wind direction and wind speed (2.1 to 7.2 m s-1 for (a, b) and 1.0 to 2.6 m s-1 for (c, d); data from 

EURAD-IM, WRF), respectively. With this, the emission sources can be narrowed down to a lignite-fired power plant located 

southeast of the detected peak (a, b) and to a steel industry (c, d), located in the grey shaded area. 

 350 



17 

 

After the successful validity check by comparing the corrected sensor data with the reference device in the former section, we 

now present possible applications and the potential of ECS for airborne measurements. Figure 6 (a) and (b) show the flight 

path on 06 May 2020 between 07:30 and 08:30 UTC in Eschweiler, North Rhine-Westphalia, Germany when using the 

reference instrument and the ECS sensors, respectively. Another example is shown in Fig. 6 (c) and (d) during a Zeppelin 

flight over Duisburg Nord (Hamborn), North Rhine-Westphalia, Germany on 07 May 2020 between 13:30 and 14:15 UTC. 355 

As depicted in Fig. 6 (a) NOx background concentrations are 4.9 ± 2.0 ppb and increase significantly in the northwest to a 

maximum of 21.3 ± 2.2 ppb due to the emissions from the lignite-fired power plant located near the flight path (Tillmann et 

al., 2022), further supported by the wind data that were extracted from high-resolution model simulations. When applying the 

correction method recommended by the manufacturer for the ECSs (Sect. 2.3.3), background concentrations of NOx are at -

8.6 ± 5.2 ppb and the industrial plume emissions at 11.3 ± 17.3 ppb highlighting the limitations of this method. However, after 360 

applying the correction method developed in this work, shown in Fig. 6 (b), a significant improvement is observed with 

background concentrations at 3.5 ± 4.2 ppb and the power plant plume average at 21.4 ± 6.6 ppb (Fig. S13 (a)). This results in 

40 % higher background concentrations for the sensor measurements in comparison to the MIRO and 5 % lower concentrations 

for the in-plume measurements.  

Similar results can be seen in Fig. (c) and (d); Duisburg is known for its industry – there is a steel mill in this district, which is 365 

supplied with electricity by the gas-fired combined heat and power plant located on the site. In addition, the motorways A42 

and A59 run through the area. Westerly winds indicate that the source of emissions during the observed maximum amount 

fractions of 37.7 ± 6.1 ppb for the MIRO and 47.1 ± 6.4 ppb (Fig. S13 (b)) for the sensor measurements, are from the steel 

mill and the heat power plant. The influence of highway emissions on the NOx concentrations is observed at around 51.48° N 

and 6.77° E when Southerly wind directions transported emissions from the A42 and A59 highways to our sampling line. This 370 

is especially evident for the sensor data (d) but also observable for the MIRO (c). Here, the peak values are 13.8 ± 0.7 ppb and 

22.6 ± 3.6 ppb for the MIRO and the ECS, respectively.  

These case examples, highlight the potential of the ECS to detect emission sources with concentrations down to 20 ppb. 

Although, there are larger relative uncertainties due to the deviations of the individual NO and NO2 sensors (see Sect. 3) the 

ECSs show better agreement with the MIRO at higher concentrations, especially for NOx further promoting their potential for 375 

airborne applications. 

4 Conclusions 

We showed that electrochemical sensors (ECS) can be successfully used for airborne in situ measurements in the PBL. For 

this, we used a Zeppelin NT to perform an in-flight comparison of six sensor setups with a reference device during two 

measurement campaigns, including targeted and commercial flights, in Germany from April to June 2020. Each setup consisted 380 

of four electrochemical sensors for CO, NO, NO2, and Ox (NO2 + O3) and one sensor for temperature and relative humidity. 
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These were installed in a custom-built hatch box mounted under the gondola. A quantum cascade laser-based multi-compound 

gas analyzer, called MIRO MGA, was placed as a reference instrument inside the gondola with an inlet line beside the ECSs. 

We developed a stand-alone correction method, i.e., independent of a reference device, for the ECSs that accounts for external 

influences on the NO and NO2 sensor signals by using the variability of the auxiliary electrode voltage, temperature, and the 385 

relative humidity gradient. We show that this correction method substantially improves the accuracy down to 6.3 ± 5.7 ppb 

and 8.7 ± 5.9 ppb and lowers the noise (1 σ) of the ECS to 1.92 ppb and 3.32 ppb for NO and NO2, respectively. The 

combination of both sensor types (NO and NO2) leads to a further improved accuracy of 3.5 ± 3.1 ppb for NOx. When 

compared to the MIRO MGA good agreement with a coefficient of determination of 0.88 and a slope of 0.92 is achieved for 

NOx measurements. However, at lower concentrations below 40 ppb and 25 ppb average deviations of 34.4 % and -31.3 % for 390 

NO and NO2, respectively, were evident. Below 5 ppb, these deviations increased up to 300 % and -600 %, because of the 

small absolute values, indicating the limitations of ECSs for accurate quantification at lower amount fractions.  

We highlight the potential to use the sensors for emission source identification during the Zeppelin flights by identifying 

emissions from a lignite-fired power plant with a peak of approximately 21 ppb of NOx and from a large industrial area in 

Duisburg with a peak above 40 ppb.  395 

Results from this work emphasize the potential of these sensors for in situ airborne applications and provide a first milestone 

for future quality-assured use onboard UAVs without the need of a reference device. A comprehensive characterization in the 

laboratory, including the simulation of airborne conditions, before and after such applications, will improve the ECS data 

quality even further.  

 400 

Data availability. The data are available at https://doi.org/10.26165/JUELICH-DATA/6D8B70 (Schuldt et al., 2022). 

 

Author contribution. RT, FR, and AKS designed the experiments and flight campaigns. BW, CW, and FR carried them out. 

GIG and TS visualized the data. AKS, TAJK, GIG, RT, and TS contributed to the interpretation of the results. GIG and TS 

prepared the manuscript with contributions from all co-authors. 405 

 

Acknowledgments. We acknowledge the support of Deutsche Zeppelin Reederei (DZR) and Zeppelin Luftschifftechnik GmbH 

(ZLT). We would like to thank Anne Caroline Lange, Elmar Friese and Philipp Franke for the high-resolution Weather 

Research and Forecasting Model (WRF) and EURopean Air pollution Dispersion-Inverse Model (EURAD-IM) simulations, 

Achim Grasse for the laboratory measurements, and Morten Hundt and Oleg Aseev for instrumentation support of the MIRO 410 

MGA. The authors gratefully acknowledge the computing time granted through JARA on the supercomputer JURECA at 

Forschungszentrum Jülich. 

 

The authors declare that they have no conflict of interest. 

https://doi.org/10.26165/JUELICH-DATA/6D8B70


19 

 

References 415 

Alphasense: AAN 103 Shielding Toxic Sensors from Electromagnetic Interference, 2013. 

Alphasense: Datasheet: NO2-B43F Nitrogen Dioxide Sensor 4-Electrode, 2019a. 

Alphasense: Datasheet: NO-B4 Nitric Oxide Sensor 4-Electrode, 2019b. 

Alphasense: AAN 803-05 Correcting for background currents in four electrode toxic gas sensors, 2019c. 

Alphasense: Datasheet: OX-B431 Oxidising Gas Sensor 4-Electrode; Ozone + Nitrogen Dioxide, 2019d. 420 

Alphasense: Datasheet: CO-B4 Carbon Monoxide Sensor 4-Electrode, 2019e. 

Alphasense: Datasheet: Individual Sensor Board (ISB) Alphasense B4 4-Electrode Gas Sensors, 2019f. 

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstetter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J., Vermeulen, 

R. C. H., and Hamburg, S. P.: High-Resolution Air Pollution Mapping with Google Street View Cars: Exploiting Big Data, 

Environmental Science & Technology, 51, 6999-7008, 10.1021/acs.est.7b00891, 2017. 425 

Baron, R. and Saffell, J.: Amperometric Gas Sensors as a Low Cost Emerging Technology Platform for Air Quality Monitoring 

Applications: A Review, ACS Sens, 2, 1553-1566, 10.1021/acssensors.7b00620, 2017. 

Bretschneider, L., Schlerf, A., Baum, A., Bohlius, H., Buchholz, M., Düsing, S., Ebert, V., Erraji, H., Frost, P., Käthner, R., 

Krüger, T., Lange, A. C., Langner, M., Nowak, A., Pätzold, F., Rüdiger, J., Saturno, J., Scholz, H., Schuldt, T., Seldschopf, 

R., Sobotta, A., Tillmann, R., Wehner, B., Wesolek, C., Wolf, K., and Lampert, A.: MesSBAR—Multicopter and 430 

Instrumentation for Air Quality Research, Atmosphere, 13, 629, 10.3390/atmos13040629, 2022. 

Bytnerowicz, A., Omasa, K., and Paoletti, E.: Integrated effects of air pollution and climate change on forests: A northern 

hemisphere perspective, Environmental Pollution, 147, 438-445, 10.1016/j.envpol.2006.08.028, 2007. 

Chen, J. and Hoek, G.: Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-

analysis, Environment International, 143, 105974, 10.1016/j.envint.2020.105974, 2020. 435 

Cross, E. S., Williams, L. R., Lewis, D. K., Magoon, G. R., Onasch, T. B., Kaminsky, M. L., Worsnop, D. R., and Jayne, J. 

T.: Use of electrochemical sensors for measurement of air pollution: correcting interference response and validating 

measurements, Atmospheric Measurement Techniques, 10, 3575-3588, 10.5194/amt-10-3575-2017, 2017. 

Dallo, F., Zannoni, D., Gabrieli, J., Cristofanelli, P., Calzolari, F., de Blasi, F., Spolaor, A., Battistel, D., Lodi, R., Cairns, W. 

R. L., Fjæraa, A. M., Bonasoni, P., and Barbante, C.: Calibration and assessment of electrochemical low-cost sensors in remote 440 

alpine harsh environments, Atmospheric Measurement Techniques, 14, 6005-6021, 10.5194/amt-14-6005-2021, 2021. 

Gu, Q., D, R. M., and Jia, C.: Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling, 

Sensors (Basel), 18, 4363, 10.3390/s18124363, 2018. 

Han, P., Mei, H., Liu, D., Zeng, N., Tang, X., Wang, Y., and Pan, Y.: Calibrations of Low-Cost Air Pollution Monitoring 

Sensors for CO, NO2, O3, and SO2, Sensors (Basel), 21, 256, 10.3390/s21010256, 2021. 445 

Hossain, M., Saffell, J., and Baron, R.: Differentiating NO2 and O3 at Low Cost Air Quality Amperometric Gas Sensors, ACS 

Sensors, 1, 1291-1294, 10.1021/acssensors.6b00603, 2016. 



20 

 

Huangfu, P. and Atkinson, R.: Long-term exposure to NO2 and O3 and all-cause and respiratory mortality: A systematic 

review and meta-analysis, Environment International, 144, 105998, 10.1016/j.envint.2020.105998, 2020. 

Hundt, P. M., Tuzson, B., Aseev, O., Liu, C., Scheidegger, P., Looser, H., Kapsalidis, F., Shahmohammadi, M., Faist, J., and 450 

Emmenegger, L.: Multi-species trace gas sensing with dual-wavelength QCLs, Applied Physics B, 124, 108, 10.1007/s00340-

018-6977-y, 2018. 

IPCC, Masson-Delmotte, V. Z., P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, 

M.I.; Huang, M.; Leitzell, K.; Lonnoy, E.; Matthews, J.B.R.; Maycock, T.K.; Waterfield, T.; Yelekçi, O.; Yu, R.; Zhou, B. 

(Ed.): Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of 455 

the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, 

NY, USA, In press, 10.1017/9781009157896, 2021. 

Kampa, M. and Castanas, E.: Human health effects of air pollution, Environ Pollut, 151, 362-367, 

10.1016/j.envpol.2007.06.012, 2008. 

Lewis, A. C., Lee, J. D., Edwards, P. M., Shaw, M. D., Evans, M. J., Moller, S. J., Smith, K. R., Buckley, J. W., Ellis, M., 460 

Gillot, S. R., and White, A.: Evaluating the performance of low cost chemical sensors for air pollution research, Faraday 

Discuss, 189, 85-103, 10.1039/c5fd00201j, 2016. 

Liu, C., Tuzson, B., Scheidegger, P., Looser, H., Bereiter, B., Graf, M., Hundt, M., Aseev, O., Maas, D., and Emmenegger, 

L.: Laser driving and data processing concept for mobile trace gas sensing: Design and implementation, Review of Scientific 

Instruments, 89, 065107, 10.1063/1.5026546, 2018. 465 

Mawrence, R., Munniks, S., and Valente, J.: Calibration of Electrochemical Sensors for Nitrogen Dioxide Gas Detection Using 

Unmanned Aerial Vehicles, Sensors (Basel), 20, 7332, 10.3390/s20247332, 2020. 

Mclaughlin, S. B.: Effects of Air Pollution on Forests - a Critical Review, Japca J Air Waste Ma, 35, 512-534, Doi 

10.1080/00022470.1985.10465928, 1985. 

Mead, M. I., Popoola, O. A. M., Stewart, G. B., Landshoff, P., Calleja, M., Hayes, M., Baldovi, J. J., McLeod, M. W., Hodgson, 470 

T. F., Dicks, J., Lewis, A., Cohen, J., Baron, R., Saffell, J. R., and Jones, R. L.: The use of electrochemical sensors for 

monitoring urban air quality in low-cost, high-density networks, Atmospheric Environment, 70, 186-203, 

10.1016/j.atmosenv.2012.11.060, 2013. 

Messier, K. P., Chambliss, S. E., Gani, S., Alvarez, R., Brauer, M., Choi, J. J., Hamburg, S. P., Kerckhoffs, J., Lafranchi, B., 

Lunden, M. M., Marshall, J. D., Portier, C. J., Roy, A., Szpiro, A. A., Vermeulen, R. C. H., and Apte, J. S.: Mapping Air 475 

Pollution with Google Street View Cars: Efficient Approaches with Mobile Monitoring and Land Use Regression, 

Environmental Science & Technology, 52, 12563-12572, 10.1021/acs.est.8b03395, 2018. 

Mijling, B., Jiang, Q., de Jonge, D., and Bocconi, S.: Field calibration of electrochemical NO2 sensors in a citizen science 

context, Atmospheric Measurement Techniques, 11, 1297-1312, 10.5194/amt-11-1297-2018, 2018. 



21 

 

Mueller, M., Meyer, J., and Hueglin, C.: Design of an ozone and nitrogen dioxide sensor unit and its long-term operation 480 

within a sensor network in the city of Zurich, Atmospheric Measurement Techniques, 10, 3783-3799, 10.5194/amt-10-3783-

2017, 2017. 

Orellano, P., Reynoso, J., Quaranta, N., Bardach, A., and Ciapponi, A.: Short-term exposure to particulate matter (PM10 and 

PM2.5), nitrogen dioxide (NO2), and ozone (O3) and all-cause and cause-specific mortality: Systematic review and meta-

analysis, Environment International, 142, 105876, 10.1016/j.envint.2020.105876, 2020. 485 

Pang, X., Shaw, M. D., Gillot, S., and Lewis, A. C.: The impacts of water vapour and co-pollutants on the performance of 

electrochemical gas sensors used for air quality monitoring, Sensors and Actuators B: Chemical, 266, 674-684, 

10.1016/j.snb.2018.03.144, 2018. 

Pang, X., Chen, L., Shi, K., Wu, F., Chen, J., Fang, S., Wang, J., and Xu, M.: A lightweight low-cost and multipollutant sensor 

package for aerial observations of air pollutants in atmospheric boundary layer, Sci Total Environ, 764, 142828, 490 

10.1016/j.scitotenv.2020.142828, 2021. 

Pang, X. B., Shaw, M. D., Lewis, A. C., Carpenter, L. J., and Batchellier, T.: Electrochemical ozone sensors: A miniaturised 

alternative for ozone measurements in laboratory experiments and air-quality monitoring, Sensor Actuat B-Chem, 240, 829-

837, 10.1016/j.snb.2016.09.020, 2017. 

Pochwala, S., Gardecki, A., Lewandowski, P., Somogyi, V., and Anweiler, S.: Developing of Low-Cost Air Pollution Sensor-495 

Measurements with the Unmanned Aerial Vehicles in Poland, Sensors (Basel), 20, 3582, 10.3390/s20123582, 2020. 

Popoola, O. A. M., Stewart, G. B., Mead, M. I., and Jones, R. L.: Development of a baseline-temperature correction 

methodology for electrochemical sensors and its implications for long-term stability, Atmospheric Environment, 147, 330-

343, 10.1016/j.atmosenv.2016.10.024, 2016. 

Popoola, O. A. M., Carruthers, D., Lad, C., Bright, V. B., Mead, M. I., Stettler, M. E. J., Saffell, J. R., and Jones, R. L.: Use 500 

of networks of low cost air quality sensors to quantify air quality in urban settings, Atmospheric Environment, 194, 58-70, 

10.1016/j.atmosenv.2018.09.030, 2018. 

Quah, E. and Boon, T. L.: The economic cost of particulate air pollution on health in Singapore, Journal of Asian Economics, 

14, 73-90, 10.1016/S1049-0078(02)00240-3, 2003. 

Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., Yasar, A., and Rickerby, D.: End-user perspective 505 

of low-cost sensors for outdoor air pollution monitoring, Sci Total Environ, 607-608, 691-705, 

10.1016/j.scitotenv.2017.06.266, 2017. 

Sahu, R., Nagal, A., Dixit, K. K., Unnibhavi, H., Mantravadi, S., Nair, S., Simmhan, Y., Mishra, B., Zele, R., Sutaria, R., 

Motghare, V. M., Kar, P., and Tripathi, S. N.: Robust statistical calibration and characterization of portable low-cost air quality 

monitoring sensors to quantify real-time O3 and NO2 concentrations in diverse environments, Atmospheric Measurement 510 

Techniques, 14, 37-52, 10.5194/amt-14-37-2021, 2021. 



22 

 

Samad, A., Obando Nunez, D. R., Solis Castillo, G. C., Laquai, B., and Vogt, U.: Effect of Relative Humidity and Air 

Temperature on the Results Obtained from Low-Cost Gas Sensors for Ambient Air Quality Measurements, Sensors (Basel), 

20, 5175, 10.3390/s20185175, 2020. 

Savitzky, A. and Golay, M. J. E.: Smoothing and Differentiation of Data by Simplified Least Squares Procedures, Analytical 515 

Chemistry, 36, 1627-1639, 10.1021/ac60214a047, 1964. 

Schuldt, T., Georgios, I. G., Christian, W., Franz, R., Benjamin, W., Thomas, A. J. K., Astrid, K.-S., and Ralf, T.: Replication 

Data for: Zeppelin flights 2020: Electrochemical sensors (V1), Jülich DATA [dataset], 10.26165/JUELICH-DATA/6D8B70, 

2022. 

Schuyler, T. and Guzman, M.: Unmanned Aerial Systems for Monitoring Trace Tropospheric Gases, Atmosphere, 8, 206, 520 

10.3390/atmos8100206, 2017. 

Shusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., and Cohen, R. C.: The BErkeley Atmospheric CO2 

Observation Network: initial evaluation, Atmos Chem Phys, 16, 13449-13463, 10.5194/acp-16-13449-2016, 2016. 

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost 

available sensors for air quality monitoring. Part A: Ozone and nitrogen dioxide, Sensors and Actuators B: Chemical, 215, 525 

249-257, 10.1016/j.snb.2015.03.031, 2015. 

Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and Bonavitacola, F.: Field calibration of a cluster of low-cost 

commercially available sensors for air quality monitoring. Part B: NO, CO and CO2, Sensors and Actuators B: Chemical, 238, 

706-715, 10.1016/j.snb.2016.07.036, 2017. 

Stetter, J. R. and Li, J.: Amperometric gas sensors: a review, Chem Rev, 108, 352-366, 10.1021/cr0681039, 2008. 530 

Sun, L., Wong, K. C., Wei, P., Ye, S., Huang, H., Yang, F., Westerdahl, D., Louie, P. K., Luk, C. W., and Ning, Z.: 

Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality 

Monitoring, Sensors (Basel), 16, 211, 10.3390/s16020211, 2016. 

Tillmann, R., Gkatzelis, G. I., Rohrer, F., Winter, B., Wesolek, C., Schuldt, T., Lange, A. C., Franke, P., Friese, E., Decker, 

M., Wegener, R., Hundt, M., Aseev, O., and Kiendler-Scharr, A.: Air quality observations onboard commercial and targeted 535 

Zeppelin flights in Germany – a platform for high-resolution trace-gas and aerosol measurements within the planetary 

boundary layer, Atmos. Meas. Tech., 15, 3827-3842, 10.5194/amt-15-3827-2022, 2022. 

Villa, T. F., Salimi, F., Morton, K., Morawska, L., and Gonzalez, F.: Development and Validation of a UAV Based System 

for Air Pollution Measurements, Sensors (Basel), 16, 2202, 10.3390/s16122202, 2016. 

Von Schneidemesser, E., Driscoll, C., Rieder, H. E., and Schiferl, L. D.: How will air quality effects on human health, crops 540 

and ecosystems change in the future?, Philosophical Transactions of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, 378, 20190330, 10.1098/rsta.2019.0330, 2020. 

Wei, P., Ning, Z., Ye, S., Sun, L., Yang, F., Wong, K. C., Westerdahl, D., and Louie, P. K. K.: Impact Analysis of Temperature 

and Humidity Conditions on Electrochemical Sensor Response in Ambient Air Quality Monitoring, Sensors (Basel), 18, 59, 

10.3390/s18020059, 2018. 545 



23 

 

WHO: WHO global air quality guidelines: particulate matter (PM2.5 and PM10, ozone, nitrogen dioxide, sulfur dioxide and 

carbon monoxide), World Health Organization, 978-92-4-003422-8, 2021. 

WMO, Lewis, A. C., von Schneidemesser, E., and Peltier, R. E. (Eds.): Low-cost sensors for the measurement of atmospheric 

composition: overview of topic and future applications, World Meteorological Organization (WMO), Geneva, 978-92-63-

11215-6, 2018. 550 

Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., and Robinson, A. L.: A machine 

learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, 

Atmospheric Measurement Techniques, 11, 291-313, 10.5194/amt-11-291-2018, 2018. 

 


