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Abstract. This study estimated raindrop size distribution (DSD) and rainfall intensity with an infrared surveillance camera in 7 

dark conditions. Accordingly, rain streaks were extracted using a k-nearest neighbor (KNN)-based algorithm. The rainfall 8 

intensity was estimated using DSD based on physical optics analysis. The estimated DSD was verified using a disdrometer for 9 

the two rainfall events. The results are summarized as follows. First, a KNN-based algorithm can accurately recognize rain 10 

streaks from complex backgrounds captured by the camera. Second, the number concentration of raindrops obtained through 11 

closed-circuit television (CCTV) images had values between 100 mm-1m-3 and 1,000 mm-1m-3, the RMSE for the number 12 

concentration by CCTV and PARticle SIze and VELocity (PARSIVEL) was 72.3 mm-1m-3 and 131.6 mm-1m-3 in the 0.5 to 1.5 13 

mm section. Third, maximum raindrop diameter and the number concentration of 1 mm or less produced similar results during 14 

the period with a high ratio of diameters of 3 mm or less. Finally, after comparing with the 15-min cumulative PARSIVEL 15 

rain rate, the mean absolute percent error (MAPE) was  49% and 23%, respectively. In addition, the differences according to 16 

rain rate can be found that the MAPE was 36% at a rain rate of less than 2 mm h-1 and 80% at a rate above 2 mm h-1. Also, 17 

when the rain rate was greater than 5 mm h-1, MAPE was 33%. We confirmed the possibility of estimating an image-based 18 

DSD and rain rate obtained based on low-cost equipment during dark conditions. 19 

1 Introduction 20 

Precipitation data is vital in water resource management, hydrological research, and global change analysis. The primary means 21 

of measuring precipitation is to use a rain gauge (Allamano et al., 2015) to collect raindrops from the ground. Due to the 22 

restrictions on the installation environment of the rain gauge, it is difficult to understand the spatial rainfall distribution in 23 

mountains and urban areas (Kidd et al., 2017). Furthermore, the tipping-bucket-type rain gauge, which accounts for most rain 24 

gauges, has a discrete observation resolution (0.1 or 0.5 mm) for the discrete time-steps, producing uncertainty in temporal 25 

rainfall variation. For this reason, weighing gauges are nowadays used very often instead of tipping-bucket-type. the weighing 26 

gauge is a meteorological instrument used to observe and analyze various precipitation, including rainfall and snowfall. Also, 27 

the tipping bucket has a large error due to the observation time delay when the rainfall is less than 10 mm h-1 compared to the 28 
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weighing gauge. However, when the observation time size is set to 10 to 15 minutes, the relative percentage error has a very 29 

low value of -6.7~2.5%, resulting in high accuracy (Colli et al., 2014).  30 

In contrast, it is possible to obtain spatial rainfall information on a global scale with remote sensing techniques (Famiglietti 31 

et al., 2015). However, remote sensing techniques provide only indirect measurements that must be continuously calibrated 32 

and verified through ground-level precipitation measurements (Michaelides et al., 2009). Recently, a disdrometer capable of 33 

investigating the microphysics characteristics of rainfall has been used for observation instead of the traditional rainfall 34 

observation instrument (Kathiravelu et al., 2016). However, these devices cannot be widely installed because of their high cost 35 

and difficulty in accessing observational data. Consequently, a high-resolution and low-cost ground precipitation monitoring 36 

network has not yet been established.  37 

With the advent of the Internet of Things (IoT) era, using non-traditional sources is attractive for improving the spatio-38 

temporal scale of existing observation networks (McCabe et al., 2017). In recent years, such cases have been common in 39 

rainfall observation. For example, there have been attempts to estimate rainfall using sensors to capture signal attenuation 40 

characteristics in commercial cellular communication networks (Overeem et al., 2016), vehicle wipers (Raibei et al., 2013), 41 

and smartphones (Guo et al., 2019). Furthermore, crowdsourcing information has been used to confirm the utility of estimating 42 

regional rainfall (Haberlandt and Sester, 2010; Rabiei et al., 2016; Yang and Ng, 2017). 43 

In a similar context, a surveillance camera is a sensor with high potential. Surveillance cameras are often referred to as 44 

closed-circuit television (CCTV). Compared with other crowdsourcing methods, the visualization data of surveillance cameras 45 

are highly intuitive (Guo et al., 2017). Therefore, they have been used in various fields (Cai et al., 2017; Nottle et al., 2017; 46 

Hua, 2018). In Korea, public surveillance camera installations have been rapidly increasing, from approximately 150,000 in 47 

2008 to 1.34 million in 2020—approximately a public CCTV camera per 0.07 km2. Thus, the potential for precipitation 48 

estimation using camera sensing is expected to be greater in Korea. 49 

Recently, various studies have been conducted to estimate rainfall intensity using the rain streak image obtained from 50 

surveillance camera videos. Many studies attempted to use artificial intelligence to capture changes in the image captured by 51 

the camera when it rains (Zen et al., 2019; Avanzato and Beritelli, 2020; Wang et al., 2022). In contrast, some studies have 52 

tried to estimate rainfall intensity using geometrical optics and photographic analyses. Typically, the rain streak layer is 53 

separated from the raw image or video. A rain streak is the visual appearance of raindrops caused by visual persistence—54 

raindrops falling because of the blur phenomenon of raindrop movement from the camera’s exposure time appears as streaks 55 

on the image. Garg and Nayar (2005) made one of the first attempts to measure this rainfall.  56 

Since then, many studies have been conducted to develop and improve efficient algorithms. Allamano et al. (2015) 57 

proposed a framework to estimate the quantitative rainfall intensity using camera images based on physical optics from a 58 

hydrological perspective. Dong et al. (2017) proposed a more robust approach to identifying raindrops and estimating rainfall 59 

using a grayscale function, making grayscale subtraction nonlinear. Jiang et al. (2019) proposed an algorithm that decomposes 60 

rain-containing images into rain streak layers and rainless background layers using convex optimization algorithms and 61 

estimates instantaneous rainfall intensity through geometric optical analysis.  62 
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Some studies (e.g., Dong et al., 2017) have sought to estimate raindrop size distribution (DSD) using a surveillance camera. 63 

However, the existing studies have focused on the time when video can be captured with visible light. It is impossible to obtain 64 

input data without visible light using the existing image-based rainfall measurement method. Thus, these methodologies are 65 

only applicable in daytime conditions. However, when recording using infrared rays, it is possible to obtain a rainfall image 66 

even when there is no sunlight. No study has estimated the rain in dark conditions to our knowledge. Furthermore, most 67 

previous studies did not verify the estimated DSD using a disdrometer. In contrast, this study estimated DSD with an infrared 68 

surveillance camera in dark conditions, based on which rainfall intensity was also estimated. Rain streaks were extracted using 69 

a k-nearest neighbor (KNN)-based algorithm. The DSD was used to calculate rainfall intensity with physical optics analysis 70 

and verified using a PARticle SIze and VELocity (PARSIVEL) disdrometer (Löffler-Mang and Joss, 2000). 71 

2 Methodology 72 

2.1 Recording video containing rain streaks using infrared surveillance camera  73 

The surveillance camera records video. The video looks continuous, but it is also composed of discrete still images, so-called 74 

frames. The frequency of recording frames (i.e., acquisition rate) is called frame per second (fps). In other words, fps is how 75 

many images are taken per second for recording video. Another important factor in video recording is exposure time. Exposure 76 

time, also called shutter speed, refers to the time the camera sensor is exposed to light to capture a single frame. The real 77 

raindrops are close to a circle, but in a single image, the raindrops look like a streak. This is because raindrops move at a high 78 

speed during the exposure time. Therefore, the raindrops that moved during the exposure time are visualized in the rain streaks 79 

in a single frame.  80 

Fig. 1 shows an example of capturing a raindrop for a single frame. Here, only the raindrops near the point of focus are 81 

visible, and objects that are more than a certain distance appear invisible. That is, the point where the focus is best is called the 82 

focus plane, and there is a range in which it can be recognized that objects are focused before and after the focus plane. The 83 

closest plane that can be considered to be in focus is called the near-focus plane, and the farthest plane is called the far-focus 84 

plane. This range is generally called depth of field (DoF). Ultimately, the rainfall intensity can be estimated based on the 85 

volume and raindrops in the DoF.  86 

In this study, an infrared surveillance camera was considered under dark conditions. Here, the dark condition refers to a 87 

condition in which raindrops cannot be captured by a general surveillance camera with visible light. Infrared cameras emit 88 

near-infrared rays through an infrared emitter and receive the reflected light from the objects. Accordingly, it has the advantage 89 

of being able to detect raindrops that are invisible to the human eye. 90 
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Figure 1: Schematic diagram of the photographed rain streak in the image and the movement of a raindrop during the exposure 91 
time.  92 

2.2 Algorithm for identifying rain steaks and estimating DSD and rain rate 93 

Image-based rainfall estimation can be divided into two processes: identifying rainfall streaks and estimating DSD. Fig. 2 94 

illustrates these processes in a flowchart. Identifying rain streaks requires an algorithm that separates the moving rain streaks 95 

from the background layer. Next, in estimating DSD, raindrops are extracted from the image of the rain streaks, and the overall 96 

distribution is obtained. 97 
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Figure 2: Flowchart of the methodology for estimating DSD and rainfall intensity. 98 

 99 

Most existing algorithms aim to remove raindrops in images because raindrops are considered noise in object detection 100 

and tracking (Duthon et al., 2018). Such algorithms are categorized into multiple-image-based and single-image-based 101 

approaches (Jiang et al., 2018).  102 
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For example, Garg and Nayar (2007) classified the conditions in which the brightness difference between the previous 103 

pixel and that of the next pixel exceeds a specific threshold over time, assuming that the background is fixed. Improved 104 

algorithms were then developed considering the temporal correlation of raindrops (Kim et al., 2015) and chromatic properties 105 

(Santhaseelan and Asari, 2015). Tripathi and Mukhopadhyay (2014) proposed a framework that removes rain that reduces the 106 

visibility of the scene to improve the detection performance of image feature information. However, single-image-based 107 

algorithms rely more on the properties of raindrops (Deng et al., 2018). The central idea of a single-image-based algorithm is 108 

to decompose rain-containing images into rainless layers (Li et al., 2016; Deng et al., 2018; Jiang et al., 2018).  109 

An image including grayscale rainfall may be mathematically expressed in a two-dimensional (2D) matrix in which each 110 

element has a grayscale value. A single image (m×n) is expressed as follows (Jiang et al., 2018): 111 

𝑂𝑂 = 𝐵𝐵 + 𝑅𝑅,               (1) 112 

where 𝑂𝑂 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, 𝐵𝐵 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛, and 𝑅𝑅 ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛 are the raw image, rain-free background layer, and rain streak layer.  113 

Accordingly, various algorithms are available for rain streak identification. Different still image and video-based algorithms 114 

have been proposed to eliminate objects such as moving objects for application to actual surveillance cameras. However, most 115 

of these algorithms face optimization problems because of the vast number of decision variables (Jiang et al., 2019). This task 116 

is not easy to solve or requires excessive computation time. Therefore, existing studies present techniques suitable for post-117 

analysis rather than application in real-time. The use of complex algorithms can increase versatility and accuracy, but there is 118 

a trade-off that reduces computational speed. The time required for such computing is a critical disadvantage in practical 119 

applications for estimating rainfall intensity.  120 

In this study, a KNN-based segmentation algorithm (Zivkovic and Heijden, 2006), a popular non-parametrical method for 121 

background subtraction, was considered for segmenting the rain streaks (foreground) and background layers. KNN is used in 122 

classification and regression problems (Bouwmans et al., 2010). The concept of KNN is that similar things are close—the 123 

KNN-based segmentation algorithm finds the closest k samples (neighbors) to the unknown sample using Euclidean distance 124 

to determine the class (i.e., foreground or background). Thus, the KNN-based segmentation method to detect foreground 125 

changes in the video was used to identify rain streaks by recording infrared videos under conditions with little background 126 

influence. In the algorithm, The KNN subtractor works by updating the parameters of a Gaussian mixture model for more 127 

accurate kernel density estimation (Trnovszký et al., 2017). KNN is more efficient for local density estimation (Qasim et al., 128 

2021); therefore, the algorithm is highly efficient if the number of foreground pixels is low.  129 

We used the package provided by OpenCV to implement the KNN-based segmentation algorithm (Zivkovic and Heijden, 130 

2006). Accordingly, three main parameters (history, dist2Threshold, detectShadows) needed to be set. Table 1 presents the 131 

description of the parameters used for the KNN background subtractor package. 132 
Table 1: Parameters in KNN background subtractor package in OpenCV. 133 

Parameter Description 
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history  Length of the history 

dist2Threshold  
Threshold on the squared distance between the pixel and the sample to decide whether a 

pixel is close to that sample. This parameter does not affect the background update. 

detectShadows 
If true, the algorithm will detect shadows and mark them. This decreases the speed slightly, 

so if you do not need this feature, set the parameter to false. 

It is essential to capture raindrops within the camera’s depth of field (DoF) to calculate the final DSD and rainfall intensity. 134 

Accordingly, this study proposed a novel algorithm to extract each rain streak from the rain streaks image. First, we applied a 135 

low-pass filter to the rain streaks image to remove unfocused raindrops that may remain in the image, which smooths each 136 

pixel using a 2D kernel. Videos from infrared mode have usually a blur effect. Thus, the additional 2D kernel was applied to 137 

remove the pixels having blur. Highly detailed parts (e.g., out-of-focus raindrops and some noises) are erased, leaving some 138 

clear rain streaks. A background layer with a value of 0 and a part not in the image were separated to extract the rain streaks 139 

and labeled one by one to identify each rain streak from the image.  140 

Because the rain streak observed in the surveillance camera image causes an angle difference (influenced by the wind), a 141 

diameter estimation process considering the angle of the rain streak (fall angle of a raindrop) is required. If the angle of rain 142 

steak is considered and converted to the raindrop diameter through the horizontal pixel size in the image, the shape change in 143 

the raindrop because of air buoyancy (i.e., during the falling of the raindrop) may not be reflected, and overestimation can 144 

occur.  145 

Accordingly, the representative angle of each extracted rain streak was calculated. The border information of each rain 146 

streak was obtained, and center axis information of the rain streak was obtained based on the border information to calculate 147 

the drop angle. Moreover, the rain streak was rotated to set the long and short axes of the streak at 0° and 90°, using the angle 148 

information.  149 

The size of raindrops in the rain streaks image can be estimated through the analysis of microphysical characteristics of 150 

raindrop and geometric optical analysis (Keating, 2002). The instantaneous velocity of a raindrop on the ground can be 151 

estimated from the exposure time and the size of the raindrop. However, the distance from the raindrop to the lens surface (i.e., 152 

the object distance) is unknown and should be inferred. Object distance can be calculated through physical optics analysis 153 

because it causes perspective distortion. Assuming a raindrop is spherical, the length of the trajectory where the raindrop falls 154 

when the camera is exposed and the diameter of the raindrop can be inferred through the lens equation (Keating, 2002): 155 

𝐿𝐿(𝑠𝑠) = 𝑑𝑑𝑓𝑓−𝑓𝑓

𝑑𝑑𝑓𝑓 ∙ 𝑓𝑓
ℎ𝑠𝑠
ℎ𝑝𝑝
𝑙𝑙𝑝𝑝𝑠𝑠,              (2) 156 

𝐷𝐷(𝑠𝑠) = 𝑑𝑑𝑓𝑓−𝑓𝑓

𝑑𝑑𝑓𝑓 ∙ 𝑓𝑓
𝑤𝑤𝑠𝑠
𝑤𝑤𝑝𝑝
𝑑𝑑𝑝𝑝𝑠𝑠,              (3) 157 

where s is the distance from the raindrop to the lens plane (mm). L(s) and D(s) are the length of falling trajectory during camera 158 

exposure (rain streak) and the raindrop’s diameter. df is the focus distance (mm), f is focal length (mm). hs and ws are the 159 

vertical and horizontal sizes of the active area of the image sensor (mm), and hp and wp are the vertical and horizontal sizes of 160 
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the captured image (in number of pixels). lp and dp are the length and width of the rain streaks in the image (in number of 161 

pixels).  162 

It is then possible to infer the falling speed of raindrops using the camera’s exposure time (Jiang et al., 2019), as follows:  163 

𝑣𝑣(𝑠𝑠) = 𝐿𝐿(𝑠𝑠)
1000𝜏𝜏

,               (4) 164 

where 𝜏𝜏 is the exposure time of the camera (seconds) and v(s) is the fall velocity of the raindrop from the image. Furthermore, 165 

the fall velocity of a raindrop can be approximated by an empirical formula for raindrop diameter. The most frequently used 166 

equation is as follows (Atlas et al., 1973; Friedrich et al., 2013): 167 

𝑣𝑣(𝐷𝐷) = 9.65 − 10.3exp (−0.6𝐷𝐷),             (5) 168 

where D is the raindrop diameter and v is the fall velocity of raindrop. The actual diameter of raindrops can be obtained by 169 

solving the equation with the fall velocity obtained through the exposure time and Eqs. (4) and (5). Furthermore, the DoF for 170 

the images using the camera’s setting information can be calculated, and the effective volume for estimating rainfall intensity 171 

can be obtained. Details of the process are described in previous studies (Allamano et al., 2015; Jiang et al., 2019).  172 

The control volume must be determined to estimate the rainfall intensity using the diameter of each raindrop. An understanding 173 

of DoF is required to achieve the volume. The DoF, is simply the range at which the camera can accurately focus and capture 174 

the raindrops. Calculating this range requires obtaining the near and far focus planes as follows: 175 

𝑠𝑠𝑛𝑛 = 𝑑𝑑𝑓𝑓 ∙ 𝑓𝑓2

𝑓𝑓2+𝑁𝑁 ∙ 𝑐𝑐𝑝𝑝 ∙(𝑑𝑑𝑓𝑓−𝑓𝑓)
,              (6) 176 

𝑠𝑠𝑓𝑓 = 𝑑𝑑𝑓𝑓 ∙ 𝑓𝑓2

𝑓𝑓2−𝑁𝑁 ∙ 𝑐𝑐𝑝𝑝 ∙(𝑑𝑑𝑓𝑓−𝑓𝑓)
,              (7) 177 

where sn and sf are the distances from the near and far focus planes. cp is the maximum permissible circle of confusion, a 178 

constant determined by the camera manufacturers. N is the F-number of the lens relevant to the aperture diameter. Accordingly, 179 

the theoretical sampling volume (V, m3) indicate the truncated rectangular pyramid between the near and far focus planes: 180 

𝑉𝑉 = 1
3 ∙ 109

�𝑑𝑑𝑓𝑓−𝑓𝑓
𝑑𝑑𝑓𝑓 ∙ 𝑓𝑓

�
2
𝑤𝑤𝑠𝑠ℎ𝑠𝑠(𝑠𝑠𝑓𝑓3 − 𝑠𝑠𝑛𝑛3),             (8) 181 

 182 

Then, we used the gamma distribution equation, Eq. (6), proposed by Ulbrich (1983), to calculate DSD parameters using 183 

data at every 1 min interval. 184 

𝑁𝑁(𝐷𝐷) = 𝑁𝑁0𝐷𝐷𝜇𝜇exp (−𝛬𝛬𝛬𝛬),             (9) 185 

where N(D) (mm–1m–3) is the number concentration value per unit volume for each size channel, and N0 (mm–1–μm–3) is an 186 

intercept parameter representing the number concentration when the diameter has 0 value. D (mm) and Λ (mm–1) are the drop 187 
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diameter and slope parameter. Raindrops smaller than 8.0 mm were used to avoid considering non-weather data such as leaps 188 

and bugs (Friedrich et al., 2013). 189 

The gamma distribution relationship is a function of formulating the number concentration per unit diameter and unit 190 

volume. It was proposed by Marshall and Palmer (1948) as improved model of exponential distribution as a favorable form to 191 

reflect various rainfall characteristics. By including the term containing µ in the distribution function, the shape of the number 192 

concentration distribution for small drops smaller than 1 mm is improved. 193 

𝑁𝑁(𝐷𝐷) = 𝑁𝑁0exp (−𝛬𝛬𝛬𝛬),              (10) 194 

As the Λ decreases, the slope of the distribution shape decreases and the proportion of large drop increases. Conversely, as 195 

the value increases, the distribution slope becomes steeper, and the weight of the large particles decreases. When μ has a large 196 

value, the distribution is convex upward, and it has a distribution with a sharp decrease in number concentration at small 197 

diameters. Whereas when it has a negative value, the distribution is convex downward with an increase in the concentration 198 

of drops smaller than 1 mm. In the gamma distribution, the µ is mainly affected by the difference in concentration of raindrops 199 

smaller than 3 mm (Vivekanandan et al., 2004).  200 

Vivekanandan et al. (2004) explained the reason for using the gamma distribution as follows. First, it is sufficient to 201 

calculate the rainfall estimation equation using only the first, third, and fourth moments (Eq. (11)) (Smith, 2003). Second, the 202 

long-term raindrop size distribution has an exponential distribution shape (Yuter and Houze, 1997). 203 

The raindrop size distribution observed from the ground is the result of the microphysical development of raindrops falling 204 

from precipitation clouds. The drop size distribution shape is changed during fall by microphysical processes such as collision, 205 

merging, and evaporation, and changes in the concentration of drops larger than 7.5 mm and small drops occur mainly. As a 206 

result, the drop size distribution observed on the ground mainly follows the gamma distribution shape (Ulbrich, 1983; Tokay 207 

and Short, 1996). The gamma distribution relationship should be used to analyze the distribution of raindrops that are actually 208 

floating and falling. 209 

𝑀𝑀𝑛𝑛 = ∫ 𝐷𝐷𝑛𝑛𝑁𝑁(𝐷𝐷)𝑑𝑑𝑑𝑑𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

,              (11) 210 

Eq. (11) indicate a moment expression for the nth order. For example, the second moment is calculated as the product of 211 

the square of the diameter of each channel and the number concentration and the diameter of each channel. Each moment value 212 

has a different microphysical meaning. Therefore, the gamma distribution including three dependent parameters is more 213 

advantageous in reflecting the microphysical characteristics of the precipitation system than the exponential distribution 214 

including two dependent parameters. Eq. (11) can be expressed in gamma distribution format as follows: 215 

𝑀𝑀𝑛𝑛 = ∫ 𝐷𝐷𝑛𝑛𝑁𝑁(𝐷𝐷)𝑑𝑑𝑑𝑑𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

= 𝑁𝑁0𝛬𝛬−(𝜇𝜇+𝑛𝑛+1)Γ(𝜇𝜇 + 𝑛𝑛 + 1),          (12) 216 

where NT (total number concentration, m–3) is the zero-order moment (M0) and represents the total number concentration of 217 

raindrops per unit volume. 𝜂𝜂 was determined for calculating 𝜇𝜇 and 𝛬𝛬. In this study, a combination of moments in the ratio of 218 
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M2, M4, and M6, which accurately represents the characteristics of small rainfall particles, was applied (Vivekanandan et al., 219 

2004): 220 

𝜂𝜂 = 〈𝑀𝑀4〉2

〈𝑀𝑀2〉〈𝑀𝑀6〉
= (𝜇𝜇+3)(𝜇𝜇+4)

(𝜇𝜇+5)(𝜇𝜇+6)
,              (13) 221 

𝜇𝜇 and 𝛬𝛬 are calculated as follows: 222 

𝜇𝜇 = (7−11𝜂𝜂)−�(7−11𝜂𝜂)2−4(𝜂𝜂−1)(30𝜂𝜂−12)�
1/2

2(𝜂𝜂−1)
,            (14) 223 

𝛬𝛬 = �𝑀𝑀2Γ(𝜇𝜇+5)
𝑀𝑀4Γ(𝜇𝜇+3)

�
1/2

= �𝑀𝑀2(𝜇𝜇+4)(𝜇𝜇+3)
𝑀𝑀4

�
1/2

,            (15) 224 

A larger value of Dm (mm) estimated using Eq. (16), the diameter of the average mass of raindrops contained in the unit 225 

volume, indicates that predominantly larger drops are distributed. 226 

𝐷𝐷𝑚𝑚 = 𝑀𝑀4
𝑀𝑀3

,                (16) 227 

R (mm h-1) is the rain rate calculated using Eq. (17). 228 

𝑅𝑅 = 6𝜋𝜋
104 ∫ 𝐷𝐷3𝑁𝑁(𝐷𝐷)𝑉𝑉(𝐷𝐷)𝑑𝑑𝑑𝑑𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚

𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚
,             (17) 229 

3 Study site and observation equipment 230 

This study used a building’s rooftop as the study site. The building is the Chung-Ang University’s Bobst Hall, located in the 231 

central region of Seoul in Korea. It is located at 37° 30’ 13” north latitude and 126° 57’ 27” east longitude, at an elevation of 232 

42 m. Fig. 3 illustrates the CCTV (marked with a red circle) and PARSIVEL installed at the study point. The CCTV was used 233 

for the main analysis, and PARSIVEL was considered for verification purposes. 234 
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(a) Surveillance camera (b) PARSIVEL 
Figure 3: Observation measurements considered in this study.  235 

The CCTV model used in this study is DC-T333CHRX, developed by IDIS. The camera has a 1/1.7 inch complementary 236 

metal-oxide semiconductor (CMOS) with a height and width of 5.70 mm and 7.60 mm. The focal length is 4.5 mm, and the 237 

F-number of the lens is 1.6. The shutter speed was set to 1/250 s, and the frame per second (fps) was set to 30. The infrared 238 

ray distance is 50 m. The maximum permissible circle of confusion is 0.005 mm. The camera’s resolution is 1,080 pixels for 239 

the height and 1,920 pixels for the width, but the cropped images (640×640 pixels) were considered for the analysis. 240 

The PARSIVEL is a ground meteorological instrument that can observe precipitation particles’ diameter and fall speed 241 

(e.g., raindrops, snow particles, hail). The meteorological information, including raindrop size, is used to estimate the 242 

quantitative precipitation amount and reveal the precipitation system’s microphysical characteristics and development 243 

mechanism. 244 

The PARSIVEL used in this study is the second version of the instrument manufactured by OTT in Germany, and it is 245 

improved observation accuracy of small particles. The PARSIVEL uses a laser-based optical sensor to send a laser from the 246 

transmitter and continuously receive it from the receiver (Fig. 4). As the laser beam moves from the transmitter to the receiver, 247 

the precipitation particle passes over the laser beam, and the size and velocity of the precipitation particle are observed (Nemeth 248 

and Hahn, 2005). The diameter and velocity of the particle are calculated by calculating the time the particle passes through 249 

the laser and the laser intensity that decreases during the passage (Fig. 5). 250 

 

Figure 4: Functional principle of the PARSIVEL disdrometer.  251 
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Figure 5: (a) Signal changes whenever a particle falls through the beam anywhere within the measurement area. (b) The degree of 252 
dimming is a measure of the particle’s size; together with the duration of the signal, the fall velocity can be derived. 253 

Parameters such as rain rate, reflectivity, and momentum of raindrops are calculated through particle concentration values 254 

for each diameter and falling speed channel obtained through PARSIVEL observation. In this study, the temporal resolution 255 

of the observation data was set to 1 minute. The particle diameters from 0.2 to 25 mm (Table 1 in Appendix) and fall velocity 256 

from 0.2 to 20 m s-1 (Table 2 in Appendix) can be observed by the PARSIVEL. The particle diameter and the fall speed each 257 

have 32 observation channels, so the number of observed particles for the time resolution set in 1,024 channels (32×32) is 258 

observed. The first and second channels of diameter are not included in the observable range of the PARSIVEL and are treated 259 

as noise. Therefore, the observation data of the first and second diameter channels were not considered in the actual analysis. 260 

The detailed information on the specifications of the PARSIVEL is presented in Table 2. 261 

 262 
Table 2: Technical information of the PARSIVEL disdrometer. 263 

 264 

Wavelength of optical sensor 780 nm 
Measuring area 30 × 180 mm (54 cm2) 

Measuring range 
Size 0.2 ~ 25 mm (32 channel class) 

Fall velocity 0.2 ~ 20 m s–1 (32 channel class) 
Precipitation intensity 0.001 ~ 1,200 mm h–1 

Measurement time interval 10 sec ~ 60 min 
Instrument dimensions (H×W×D) 670 × 600 × 114 mm 
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4 Application result 265 

4.1 Rainfall event 266 

We considered two rainfall events from 1945 LST on March 25, 2022, to 0615 LST on March 26, 2022 (case 1), and 2100 267 

LST on September 5, 2022, to 0300 LST on September 5, 2022 (case 2). Fig. 6 illustrates the hyetographs of the rainfall event 268 

considered in this study according to the time resolution. The total rainfall of case 1 and 2 is 19.5 and 48.7 mm based on the 269 

PARSIVEL, respectively. The maximum rain rate is 10.0 and 20.7 mm h-1 based on the 1 min resolution, and 5.0 and 14.5 mm 270 

h-1 based on the 15 min resolution for case 1 and case 2.  271 
 272 

 
(a) Case 1 
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(b) Case 2 
Figure 6: Hyetograph of PARSIVEL and rain gauge observation data for the rainfall events considered in this study (left: 1 min 273 
resolution, right: 10 min resolution). 274 

4.2 Identifying rainfall streaks 275 

The rain streaks were distinguished from the original raw images using the KNN-based algorithm described in Section 2.2. 276 

Accordingly, two parameters (history and dist2Threshold) were set to default values (500 and 400). The other parameter 277 

(detectShadows) was set to “false.” Fig. 7 illustrates the raw, background, and rain streaks images for an example time image 278 

(20:30:57 March 25, 2022), scaled in yellow to make it easier to verify the visual change.  279 

   

(a) Raw image (b) Background image (c) Rain streaks image 
Figure 7: Segmentation example of raw image into background and rain streaks image based on KNN-based algorithm (20:30:57 280 
March 25, 2022). 281 

As confirmed in Fig. 7, adequate background separation performance can be achieved using the KNN-based method used 282 

in this study. Because it is an infrared camera and the camera’s exposure time is 1/250 s, the length of rain streaks is relatively 283 

short. The longer the exposure time, the longer the raindrops appear on the image (Schmidt et al., 2012; Allamano et al., 2015). 284 

If the exposure time is too long, some rain streaks may penetrate the image. In this case, it is difficult to estimate the rain streak 285 

length, a clue for estimating raindrop size. 286 

The identification algorithm was implemented using Anaconda Software Distribution on a workstation with an AMD Ryzen 287 

5 5600X 6-Core Processor and 32 GB RAM. The computing time for the 15 min video was approximately 50 s using only 288 

CPU computation. As described previously, the KNN-based algorithm used in this study has high-speed computing 289 

performance compared with various algorithms based on optimization, so it will likely have an advantage in real-time 290 

applications. 291 
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4.3 Estimation of DSD and rain rate 292 

The rain streaks image presented in Fig. 7(c) was not considered for the final DSD estimation because of noise and factors 293 

other than rain caused by the sudden brightness change. As described in Section 3, a low-pass filter was first applied rain 294 

streaks image.  295 

The 10×10 kernel was applied considering the total image size (640×640), and each grid value of the kernel was set to 296 

0.01. The set kernel was filtered by convolution pixel by pixel. Moreover, the convolution was performed once more using the 297 

following 2D kernel [0 1 0; -1 0 1; 0 -1 0] to highlight the rim of the rain streaks. A background layer with a value of 0 and a 298 

part not in the image were separated to extract the rain streaks, which were labeled one by one to identify each rain streak from 299 

the image. Fig. 8(a) illustrates the example result after performing the processes described above to Fig. 7(c). Each rain streak 300 

was then separated and labeled, as in Fig. 8(b). 301 

  

(a) Rain streaks image refined by low-pass filter (b) Separated and labeled rain streaks  
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(c) Center axis for a rain streak (d) Rotated rain streak considering canting angle 
Figure 8. Extraction example of rain streak based on the proposed algorithm. 302 

The border information of each rain streak needed to be obtained. The center axis was calculated by connecting the center 303 

(median) of the minimum pixel and maximum pixel values of the x-axis for each y-axis using border information. The angle 304 

of rain steak was obtained from the slope value obtained by calculating the linear function through the center axis’s x and y 305 

pixel number values. Fig. 8(c) is an example of the extraction of a rain streak extracted from the image of Fig. 8(b).  306 

The drop angle was then calculated, and the rain streak was rotated using the angle information. Raindrops can be broken 307 

up by strong wind or collisions between raindrops during falling. The maximum difference value between the minimum and 308 

maximum pixel number values of y-axis calculated using border information of the rotated rain steak was used to calculate the 309 

raindrop diameter and exclude the influence of the distorted shape of rain steak by break up (Fig. 8(d)) (Testik, 2009; Testik 310 

and Pei, 2017). Fig. 8(d) illustrates the result of the final process. If the rain streaks overlap, the diameter of the raindrops can 311 

be estimated as large. To reduce the overestimation of raindrop diameter, this study tried to find the main central axis 312 

coordinates of overlapping rain streaks and set the longest central axis as the representative value. Then, estimate the primary 313 

diameter by calculating the distance between each pixel value of the set central axis and the edge pixels of rain streaks. 314 

Fig. 9 illustrates the time series of the number concentration and Dm obtained from CCTV and PARSIVEL. From 1945 315 

LST to 2350 LST, the maximum number concentration of lower than 1,000 mm-1m-3 was observed from the PARSIVEL 316 

observation, and from 2000 LST to 2010 LST, a number concentration lower than 100 mm-1m-3 was observed. At 2005 LST, 317 

large raindrops (of 3.8 mm) were observed, resulting in a sharp increase in Dm above 2 mm. In contrast, in the results based on 318 

CCTV images, the number concentration of less than 10,000 mm-1m-3 was continuously demonstrated during the entire analysis 319 

period, and a number concentration greater than 5,000 mm-1m-3 was observed before 2200 LST. Because the proportion of 320 

small drops was high, Dm was predominantly less than 1.5 mm. 321 
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From 0000 LST to 0100 LST, both CCTV and PARSIVEL-based data had a predominant maximum diameter of about 2.4 322 

mm. At 0035 LST, raindrops larger than 3.2 mm were observed in PARSIVEL, but raindrops less than 3 mm were not observed 323 

in CCTV. However, the number concentration of small diameters of 0.5 mm or less had similar values between 1,000 and 324 

5,000 mm-1m-3. Despite the difference in the maximum size of the drops, there was no predominant difference in the Dm 325 

because the number concentration of raindrops smaller than 1 mm had similar values. 326 

From 0300 LST to 0530 LST, number concentrations higher than 5,000 mm-1m-3 in the raindrops smaller than 1 mm were 327 

observed using PARSIVEL. However, CCTV data revealed that number concentrations less than 5,000 mm-1m-3 were 328 

consistently observed. From 0500 LST to 0510 LST, CCTV image-based number concentration consistently appeared as about 329 

1.2 mm, whereas Dm was smaller than 0.7 mm in PARSIVEL. The cause for the rapid decrease in Dm of the PARSIVEL was 330 

that the CCTV-based maximum diameter is about 2.4 mm, which was similar to the PARSIVEL observation data, but the 331 

number concentration of 0.5 to 0.6 mm raindrops observed by PARSIVEL had a large value of more than 10,000 mm-1m3. 332 

 333 
 334 

 
(a) CCTV 
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(b) PARSIVEL 

Figure 9: Time series of number concentration and Dm (black coloured line) from (a) the surveillance camera images, (b) the 335 
PARSIVEL observation data from 2145 LST on March 25 to 0600 LST on March 26, 2022 (case 1). 336 

Fig. 10 illustrates the average number concentration versus diameter of raindrops calculated using CCTV image and 337 

PARSIVEL observation data from 1945 LST on March 25 to 0600 LST on March 26, 2022. The PARSIVEL disdrometer data 338 

has a fixed raindrop diameter channel; thus, it can differ in number concentration depending on the diameter channel setting. 339 

Therefore, in this study, the simulated DSD through the gamma model was also analyzed to compare the distribution of rainfall 340 

particles. 341 

For raindrop diameters from 0.7 to 1.5 mm, the simulated and observed number concentrations produced similar values. 342 

However, above 1.5 mm, the model-based number concentration was under-simulated. From these results, in the precipitation 343 

case selected in this study, the gamma model appears limited in simulating the number concentration of raindrops larger than 344 

3 mm. In diameters from 0.2 to 1.0 mm and above 1.5 mm, the number concentration obtained from CCTV images tended to 345 

be higher than that from PARSIVEL observation. PARSIVEL observation data decreased sharply for diameters smaller than 346 

0.3 mm. In contrast, CCTV gradually increased the number concentration as the diameter decreased. 347 
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Figure 10: Average number concentration versus diameter from the surveillance camera images and the PARSIVEL (case 1). 348 

Rainfall intensity was estimated based on the obtained number concentration from CCTV images and PARSIVEL. The 349 

near (sn) and far (sf) focus planes were calculated as 718 and 1,648 mm from Eqs. (8) and (9). The DoF was calculated as 930 350 

mm. The focal distance was set to 1 m, referring to previous studies (Dong et al., 2017; Jiang et al., 2019). The control volume 351 

was 2.9 m-3, applying Eq. (10) with the variables determined above. Fig. 11 illustrates the rain rate time series calculated using 352 

CCTV images and PARSIVEL observation data. The increase or decrease in rain rate according to time change based on 353 

CCTV data followed the trend of rainfall intensity change based on PARSIVEL observation data.  354 

 At 2037 LST, the PARSIVEL based rain rate was 5.9 mm h-1, but the CCTV based rain rate was overestimated to be higher 355 

than 10 mm h-1. On the other hand, the CCTV based rain rate was underestimated by about 2 mm h-1 than the PARSIVEL 356 

based rain rate at 0514 LST. Quantitative changes in CCTV based rain rate showed a similar tendency to increase and decrease 357 

the number concentration of raindrops smaller than 1 mm and the maximum diameter. From 0100 LST to 0200 LST, when the 358 

number concentrations of CCTV and PARSIVEL had similar values, the rain rate also showed similar results. 359 
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Figure 11: The rain rate time series calculated from the surveillance camera images (gray bar) and PARSIVEL observation data 360 
(red line) from 2145 LST on March 25 to 0600 LST on March 26, 2022 (case 1). 361 

Fig. 12 illustrates the scatter plot of the average rain rate every 15 min from the PARSIVEL observation and the CCTV 362 

images. Uncertainty exists in the resolution of the rain gauge in the 1 min step. Accordingly, the time step for analysis is set 363 

to 15 min.  The slope of the regression line was 0.71 because the CCTV based rain rate tended to be overestimated at a rain 364 

rate of weaker than 2 mm h-1. 365 

The cumulative average rainfall intensity every 15 min was weaker than 10 mm h-1, concentrated at a rain rate less than 6 366 

mm h-1, so the correlation coefficient (CC) was 0.64. Furthermore, the mean absolute error (MAE), root mean square error 367 

(RMSE), and mean absolute percent error (MAPE) were 0.61 mm h-1, 0.99 mm h-1, and 48%. Differences according to rain 368 

rate can also be determined. The accuracy is higher at a rain rate smaller than 2 mm h-1 as a boundary. The MAE, RMSE, and 369 

MAPE were 0.29 mm h-1, 0.72 mm h-1, and 38% for a rain rate of 2 mm h-1 or less, and 0.58 mm h-1, 1.17 mm h-1, and 55% for 370 

a rain rate above 2 mm h-1. 371 

The statistical values of the rain rate and DSD parameters for the rainfall cases analyzed in this study are summarized in 372 

Table 3. The rain rate and Dm calculated using CCTV images were 0.459 mm h-1 and 0.025 mm more than the values calculated 373 

using PARSIVEL observation data on average, respectively. A high rain rate and Dm were caused by overestimating the number 374 

concentration for raindrops larger than 1.5 mm confirmed in Fig. 10. The number concentration for the small diameter (less 375 

than 0.3 mm) was higher in the CCTV data than in the PARSIVEL data. Due to the high concentration value of the number 376 

concentration of raindrops below 0.5 mm and above 2 mm, the CCTV based rain rate had a large value. 377 

In the Dm calculated through the PARSIVEL observation data, the concentration change of small drops over time was large, 378 

and the variance (0.063 mm) of Dm was large due to the rapid change in number concentration. The variability of the maximum 379 
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diameter was greater in the PARSIVEL observation data, but the variance of the rain rate was greater in the CCTV data. The 380 

large variability of the concentration of raindrops below 3 mm was effected the change in the rain rate. Also, due to the high 381 

number concentration of small drops, the skewness of CCTV (1.903) based rain rate had a higher value than that of the 382 

PARSIVEL (1.589) based rain rate. The low variability (0.063 mm) of the Dm calculated from CCTV data means that the 383 

change in the shape of the raindrop size distribution was small, supported by the low variance of Λ (3.016 mm-1). 384 

 385 
Table 3: Statistical values of the rain rate and DSD parameters for case 1. 386 

 R (mm h-1) Dm (mm) log10N0  
(mm-1-μm-3) 𝝁𝝁 (unitless) 𝜦𝜦 (mm-1) 

PARSIVEL 

Mean 1.905 1.091 7.379 7.394 11.829 
Variance 1.667 0.063 15.170 35.975 88.288 
Skewness 1.589 0.551 2.470 2.015 2.714 
Kurtosis 5.189 1.233 7.751 5.132 9.165 

CCTV 

Mean 2.364 1.116 4.857 2.131 5.713 
Variance 1.998 0.021 0.472 1.680 3.016 
Skewness 1.903 0.536 1.109 0.628 1.151 
Kurtosis 6.073 1.041 2.188 0.739 2.506 

 387 

 

 

Fig. 12. Scatter plot of average rain rate every 15 minutes from the PARSIVEL observation and the surveillance camera images 388 
(case 1). Red line is linear regression. Scatter plot displays CC, MAE, RMSE, MAPE for R > 0 mm h-1, R < 2 mm h-1, and R ≥ 2 mm 389 
h-1 (sequentially from left to right). 390 

 391 
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Fig. 13 illustrates the time series of the number concentration and Dm obtained from CCTV and PARSIVEL for case 2. In 392 

both CCTV and PARSIVEL observation data, the number concentration for a diameter between 0.5 mm and 1.5 mm had a 393 

value between 500 mm-1m-3 to 5,000 mm-1m-3, and there was no significant change in the number concentration with time. 394 

The maximum diameter also consistently had a value close to about 3 mm, and the Dm was also similar to about 1.5 mm 395 

because the maximum diameter and the number concentration of 1 mm intermediate drop had similar values. 396 

From 0100 LST to 0230 LST, the maximum particle diameter through CCTV was overestimated, resulting in a large value 397 

close to 3.5 mm. As a result, the Dm value increased significantly to more than 2 mm. PARSIVEL data showed a sharp decrease 398 

in the number concentration of 1 mm drops at 0030 LST, and an increase in Dm under the influence of the decreased number 399 

concentration. However, in the case of CCTV, only raindrops smaller than of 1.5 mm were observed at the time, and there was 400 

similar in that Dm was decrease (about 1.1 mm). 401 

 
(a) CCTV 
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(b) PARSIVEL 

Figure 13: Time series of number concentration and Dm (black coloured line) from (a) the surveillance camera images, (b) the 402 
PARSIVEL observation data from 2100 LST on September 5 to 0300 LST on September 6, 2022 (case 2). 403 

As clearly shown in Fig. 13, there was no significant difference in number concentration according to the time change. The 404 

average number concentration distribution also showed similar results because the number concentration values were 405 

concentrated at 1,000 mm-1m-3 concentration in both observation instruments. (Fig. 14). As in case 1, PARSIVEL observation 406 

data showed a tendency to underestimate in sections less than 0.5 mm and underestimated in sections larger than 2 mm 407 

compared to CCTV data. The diameter section where CCTV data is underestimated compared to PARSIVEL data was from 1 408 

mm to 2 mm. Since the number concentration of the CCTV data was underestimated in this section, the rain rate based on the 409 

number concentration data was also underestimated compared to the rainfall intensity based on the PARSIVEL data. 410 
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Figure 14: Average number concentration versus diameter from the surveillance camera images and the PARSIVEL (case 2). 411 

Between 2100 LST on September 5 and 0100 LST on September 6, when the number concentration of about 1 mm 412 

raindrops is similar and the maximum diameter size is similar, the rain rate time series distribution has a value of about 5 mm 413 

h-1 and has a very similar flow. However, between 0130 LST and 0300 LST, which is a time period with overestimation of 414 

raindrop diameter in CCTV observation data, the increase and decrease in rain rate was similar. However, the magnitude of 415 

the increase and decrease rain rate differed every 15 minutes. During that time, the maximum rain rate was less than 20 mm h-416 
1 in the PARSIVEL observation data, while strong rainfall of 30 mm h-1 or more was observed in the CCTV observation data. 417 
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Figure 15: The rain rate time series calculated from the surveillance camera images (gray bar) and PARSIVEL observation data 418 
(red line) from 2100 LST on September 5 to 0300 LST on September 6, 2022 (case 2). 419 

Fig. 16 illustrates the scatter plot of the average rain rate every 15 min from the PARSIVEL observation and the CCTV 420 

images for case 2. Compared to case 1, case 2 was a strong rainfall case with a rain rate of about 8.94 mm h-1. Compared to 421 

the PARSIVEL observation data, the CCTV observation data showed a larger Dm by 0.221 mm, while the Log10N0 showed a 422 

small feature of 1.1 mm-1-μm-3. As the weight of medium and large drops over 1 mm increased, μ and Λ showed lower values 423 

of 4.262 and 5.397 mm-1, respectively (Table 4). According to the 15-minute cumulative rain rate comparison result, the rain 424 

rate based on CCTV image data tends to be underestimated when it is less than 10 mm h-1. Conversely, there was a tendency 425 

to overestimate the rainfall period of 10 mm h-1 or more. This tendency was confirmed in case 1 which may be caused by 426 

recognizing overlapping rain streaks as a single big raindrop. MAPE had a low value of 0.3% or less regardless of the rain rate, 427 

and even though the rainfall intensity was relatively large compared to case 1, MAE and RMSE did not significantly increase. 428 

This is because there was no abnormally large value of CCTV rainfall during the rainfall period of case 2 compared to case 1. 429 
Table 4: Statistical values of the rain rate and DSD parameters for case 2. 430 

 R (mm h-1) Dm (mm) log10N0  
(mm-1-μm-3) 𝝁𝝁 (unitless) 𝜦𝜦 (mm-1) 

PARSIVEL 

Mean 8.12 1.445 5.900 6.379 7.341 
Variance 13.82 0.020 1.160 6.498 5.596 
Skewness 0.65 0.447 1.061 0.9467 1.198 
Kurtosis -0.13 0.472 2.480 1.818 2.792 

CCTV 

Mean 8.94 1.666 4.813 4.262 5.397 
Variance 69.33 0.121 1.185 4.577 6.714 
Skewness 2.75 0.355 2.596 1.903 2.640 
Kurtosis 11.71 -0.202 8.962 5.714 9.756 
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 431 

 

Fig. 16. Scatter plot of average rain rate every 15 minutes from the PARSIVEL observation and the surveillance camera images 432 
(case 2). Red line is linear regression. Scatter plot displays CC, MAE, RMSE, MAPE for R > 0 mm h-1, R < 5 mm h-1, and R ≥ 5 mm 433 
h-1 (sequentially from left to right). 434 

6 Conclusion 435 

This study estimated DSD with an infrared surveillance camera, based on which rainfall intensity was also estimated. Rain 436 

streaks were extracted using a KNN-based algorithm. The rainfall intensity was estimated based on DSD using physical optics 437 

analysis. A rainfall event was selected, and the applicability of the method in this study was examined. The estimated DSD 438 

was verified using a PARSIVEL. The results from this study can be summarized as follows. 439 

KNN-based algorithm illustrates suitable performance in separating the rain streaks and background layers. Furthermore, 440 

the possibility of separation for each rain streak and estimation of DSD was sufficient.  441 

The number concentration of raindrops obtained through the CCTV images was similar to the actual PARSIVEL observed 442 

number concentration in the 0.5 to 1.5 mm section. In the small raindrops in the section of 0.4 mm or less, the PARSIVEL 443 

observation data underestimates the actual DSD. However, the CCTV image-based rain rate had an advantage over the 444 

raindrop-based data—the number concentration decreased rapidly as the number concentration gradually increased in the 0.2–445 

0.3 mm diameter section.  446 

The maximum raindrop diameter and number concentration of less than 1 mm produced similar results during the period 447 

with a high ratio of diameters less than 3 mm. However, the number concentration was overestimated during the period when 448 
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raindrops larger than 3 mm were observed. The CCTV image-based data revealed that the rain rate was overestimated because 449 

of the overestimation of raindrops larger than 3 mm. After comparing with the 15-min cumulative PARSIVEL rain rate, the 450 

CCs—MAE, RMSE, and MAPE of case 1 (case 2)—were 0.61 mm h-1 (1.55 mm h-1), 0.99 mm h-1 (1.43 mm h-1), and 48% 451 

(44%). The differences according to rain rate can be identified. The accuracy is higher at a rain rate smaller than 10 mm h-1 as 452 

a boundary.  453 

The rain rate and Dm calculated using CCTV images exhibited similar average values. The overestimated number 454 

concentration of 1.5 mm or larger caused high kurtosis for the rain rate and Dm of CCTV-based data and a low µ value. Because 455 

of the high number concentration for raindrops larger than 3 mm of CCTV, the PARSIVEL observation data had a higher Λ 456 

value than the result based on the CCTV data. 457 

In this study, DSD was estimated using an infrared surveillance camera; the rain rate was also estimated. Consequently, 458 

we could confirm the possibility of estimating an image-based DSD and rain rate obtained based on low-cost equipment in 459 

dark conditions. Though, the infrared surveillance camera considered in this study will not be able to replace traditional 460 

observation devices, if future studies can be continued to secure robustness, it will be an excellent complement to the existing 461 

observation system in terms of spatiotemporal resolution and accuracy improvement. 462 

Appendix. The diameter and fall velocity information for each diameter channel class. 463 

Table 1: The representative diameter and spread for each diameter channel class. 464 

Class number Class average (mm) 
Class spread 

(mm) 
Class number Class average (mm) 

Class spread in 
(mm) 

1 0.062 0.125 17 3.250 0.500 
2 0.187 0.125 18 3.750 0.500 
3 0.312 0.125 19 4.250 0.500 
4 0.437 0.125 20 4.750 0.500 
5 0.562 0.125 21 5.500 1.000 
6 0.687 0.125 22 6.500 1.000 
7 0.812 0.125 23 7.500 1.000 
8 0.937 0.125 24 8.500 1.000 
9 1.062 0.125 25 9.500 1.000 

10 1.187 0.125 26 11.000 2.000 
11 1.375 0.250 27 13.000 2.000 
12 1.625 0.250 28 15.000 2.000 
13 1.875 0.250 29 17.000 2.000 
14 2.125 0.250 30 19.000 2.000 
15 2.375 0.250 31 21.500 3.000 
16 2.750 0.500 32 24.500 3.000 

Table 2: The representative fall velocity and spread for each diameter channel class. 465 
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Class number 
Class average  

(m s-1) 
Class spread  

(m s-1) 
Class number 

Class average  
(m s-1) 

Class spread  
(m s-1) 

1 0.050 0.100 17 2.600 0.400 
2 0.150 0.100 18 3.000 0.400 
3 0.250 0.100 19 3.400 0.400 
4 0.350 0.100 20 3.800 0.400 
5 0.450 0.100 21 4.400 0.800 
6 0.550 0.100 22 5.200 0.800 
7 0.650 0.100 23 6.000 0.800 
8 0.750 0.100 24 6.800 0.800 
9 0.850 0.100 25 7.600 0.800 

10 0.950 0.100 26 8.800 1.600 
11 1.100 0.200 27 10.400 1.600 
12 1.300 0.200 28 12.000 1.600 
13 1.500 0.200 29 13.600 1.600 
14 1.700 0.200 30 15.200 1.600 
15 1.900 0.200 31 17.600 3.200 
16 2.200 0.400 32 20.800 3.200 

Data availability 466 

The data and code can be provided by the corresponding author (hjkim22@cau.ac.kr) upon request. 467 
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