1	GNSS Radio Occultation Soundings from Commercial Off-the-Shelf Receivers Onboard		
2	Balloon Platforms		
3 4	Kevin J. Nelson ^{1,*} , Feiqin Xie ¹ , Bryan C. Chan ² , Ashish Goel ² , Jonathan Kosh ² , Tyler G. R. Reid ² , Corey R. Snyder ² , Paul M. Tarantino ²		
5 6	¹ Texas A&M University – Corpus Christi, Corpus Christi, TX		
7	² Night Crew Labs, LLC, Woodside, CA		
8	* Author now at Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA: kevin.j.nelson@jpl.nasa.gov		
9	Abstract		
10	The global Navigation Satellite System (GNSS) radio occultation (RO) technique has		
11	proven to be an effective tool for Earth atmosphere profiling. Traditional spaceborne RO		
12	satellite constellations are expensive with relatively low sampling <u>density for specific regions of</u>		
13	interest, In contrast, airborne RO platforms can provide much higher spatial and temporal	~~~~	Deleted: rates for individual satellites
14	sampling of ROs around regional weather events. This <u>study</u> explores the capability of a low-		Deleted: A Deleted: paper
15	cost and scalable Commercial-Off-The-Shelf (COTS) GNSS receiver onboard high-altitude		
16	balloons. The refractivity retrievals from balloon-borne RO payloads obtained from two flight		
17	campaigns (World View and ZPM-1) are presented. The balloon-borne RO soundings from the		
18	World View campaign show high-quality refractivity profiles between 6 and 19 km with near-	*****	Deleted: in the troposphere
19	zero median difference from the colocated ECMWF ERA5 reanalysis data and variability		
20	comparable to spaceborne RO missions (~2.3% median-absolute-deviation), Soundings from the		Deleted: from the colocated ECMWF ERA5 reanalysis da
21	ZPM-1 campaign show a relatively large positive bias (~2.5%). In summary, low-cost COTS RO		Deleted: the
22	payloads onboard balloon platforms are worth further engineering and study in order to provide		
23	capabilities for dense, targeted atmospheric soundings that can, improve regional weather		Deleted: improvement for
24	forecasts <u>via data assimilation</u> .		(Deleted: to
25	1. Introduction		

1
Т

34	The radio occultation (RO) atmospheric profiling method was first developed to measure	
35	planetary atmospheres in our solar system. The first major use of RO was part of the mission to	
36	examine atmospheric profiles of Venus as part of the Mariner V mission launched in 1967	
37	(Fjeldbo and Eshleman, 1969; Fjeldbo et al., 1971). Due to vertical atmospheric density	
38	gradients, radio signals transmitted from the spacecraft will bend and be slightly delayed when	 Deleted: change
39	passing through the limb of the planetary atmosphere before arriving at a receiving antenna, on	Deleted: R
40	Earth. This bending accumulation along the ray path can be precisely measured using excess	 Deleted: er
41	phase delay, and can be used to derive atmospheric pressure, temperature, and concentration of	
42	atmospheric constituents (e.g., sulfuric acid concentrations on Venus). The same method was	 Deleted: carbon dioxide
43	later applied to Mars (Mariner IX, Kliore et al., 1972; Lindal et al., 1979) and Neptune (Voyager	
44	II, Lindal, 1992). Even as recently as 2017, additional RO missions to Venus were underway	
45	(AKATSUKI, Imamura et al., 2017).	
46	It was not until the mid, 1990s that scientists began to apply RO techniques to the Earth's	 Deleted: late
47	atmosphere using Global Navigation Satellite System (GNSS) signals as transmitting sources	 Deleted:
48	(Kursinski et al., 1996, 1997; Ware et al., 1996). To date, most Earth GNSS RO observations are	
49		
50	taken from low-Earth orbiting (LEO) satellite constellations such as the Constellation Observing	
	taken from low-Earth orbiting (LEO) satellite constellations <u>such as the Constellation Observing</u> <u>System for Meteorology, Ionosphere, and Climate (COSMIC-1, Anthes et al., 2008), the GNSS</u>	
51	taken from low-Earth orbiting (LEO) satellite constellations <u>such as the Constellation Observing</u> System for Meteorology, Ionosphere, and Climate (COSMIC-1, Anthes et al., 2008), the GNSS <u>Receiver for Atmospheric Sounding (GRAS, Luntama et al., 2008) onboard the MetOp satellite</u>	
51 52	taken from low-Earth orbiting (LEO) satellite constellations <u>such as the Constellation Observing</u> System for Meteorology, Ionosphere, and Climate (COSMIC-1, Anthes et al., 2008), the GNSS <u>Receiver for Atmospheric Sounding</u> (GRAS, Luntama et al., 2008) <u>onboard the MetOp satellite</u> <u>series, and COSMIC-2</u> (Schreiner et al., 2020). More recently, several private companies (e.g.,	
51 52 53	taken from low-Earth orbiting (LEO) satellite constellations <u>such as the Constellation Observing</u> <u>System for Meteorology, Ionosphere, and Climate (COSMIC-1, Anthes et al., 2008), the GNSS</u> <u>Receiver for Atmospheric Sounding (GRAS, Luntama et al., 2008) onboard the MetOp satellite</u> <u>series, and COSMIC-2 (Schreiner et al., 2020).</u> More recently, several private companies (e.g., <u>Spire, GeoOptics, PlanetjQ) launched CubeSat constellations that can offer RO soundings with</u>	Deleted: PIRE
51 52 53 54	taken from low-Earth orbiting (LEO) satellite constellations <u>such as the Constellation Observing</u> <u>System for Meteorology, Ionosphere, and Climate (COSMIC-1, Anthes et al., 2008), the GNSS</u> <u>Receiver for Atmospheric Sounding (GRAS, Luntama et al., 2008) onboard the MetOp satellite</u> <u>series, and COSMIC-2 (Schreiner et al., 2020).</u> More recently, several private companies (e.g., <u>Spire, GeoOptics, PlanetiQ) launched CubeSat constellations that can offer RO soundings with</u> comparable quality to the more sophisticated satellite RO missions (Bowler, 2020). The impact	Deleted: PIRE Deleted: I Deleted: such as both COSMIC missions

66	among satellite measurements (Cardinali and Healy, 2014), with its impact varying depending on	
67	assimilation methods (Boullot et al., 2014; Harnisch et al., 2013; Ruston and Healy, 2020).	
68	RO observations are also possible from receivers inside the atmosphere, as opposed to the	
69	LEO receivers in space. One of the more common in-atmosphere RO platforms is an airplane or	
70	drone. Airborne radio occultation (ARO) typically uses custom-built receiver payloads onboard a	
71	modified aircraft with additional antennae and is capable of significantly higher spatial sampling	
72	density than spaceborne RO (Wang et al., 2016) due to their slower velocities compared to the	
73	LEO receiver satellites (e.g., COSMIC-1, COSMIC-2). This allows ARO receivers to potentially	
74	track more GNSS signals, creating the potential for more frequent, localized occultations (Chan	
75	et al., 2022, 2021; Xie et al., 2008). ARO platforms also have the benefit of providing on-	
76	demand RO profiles around transient weather events such as mid-latitude or tropical cyclones.	
77	ARO is limited primarily by flight restrictions regulated by the U.S. Federal Aviation	
78	Administration, by fuel range of the aircrafts, and by increased tangent point drifting, potentially	
79	leading to variations in the sampled atmosphere over the distance of the ray path.	
80	Early ARO studies developed and tested research instruments as a baseline for in-	
81	atmosphere RO, as well as modified the traditional spaceborne retrieval algorithms (Garrison et	
82	al., 2007; Healy et al., 2002; Xie et al., 2008; Zuffada et al., 1999). Open-loop signal tracking	
83	was successfully implemented recently to reduce unwrapping and tracking errors from airborne	
84	platforms_(Murphy et al., 2015; Wang et al., 2016). Radio-holographic retrieval methods_have	
85	also been modified for in-atmosphere radio occultations (Adhikari et al., 2016; Wang et al.,	Deleted: , such as the full-spectrum-inversion
86	2016) have, also been implemented to improve upon geometric optics retrievals (Kursinski et al.,	Deleted: were
87	1997, 2000)_in the moist lower troposphere that suffer from multi-path errors.	Deleted: due to
1		

91	Another option for an RO observation platform is a high-altitude balloon, but few	
92	attempts have been successfully implemented thus far. The Concordiasi Project_(Rabier et al.,	
93	2013, 2010) is the only field campaign to date during which balloon-borne RO (BRO)	Deleted: [Rabier
94	observations were targeted as part of the overall research goal. Haase et al., (2012) detailed the	
95	proof-of-concept BRO payload and platform design, along with some preliminary results	
96	indicating the feasibility of BRO measurements. Other remote sensing projects have used	
97	balloon platforms for other purposes_(e.g., GNSS Reflectometry (GNSS-R), Carreno-Luengo et	
98	al., 2016) but GNSS RO payloads on balloon platforms are still otherwise underrepresented.	
99	Balloon-borne RO has many advantages over spaceborne RO and ARO. Like ARO	
100	observations, BRO platforms move slowly compared to spaceborne platforms, and are therefore	
101	capable of offering high spatial and temporal sounding densities. Additionally, BRO platforms	
102	can remain aloft and collect observations for weeks to months, depending on the design and	
103	capabilities of the platforms (Chan et al., 2022, 2021), BRO platforms can also be tactically	Deleted:
104	launched en masse above and around transient weather events such as tropical cyclones and	
105	supercell thunderstorms to provide spatially dense sampling of atmospheric thermodynamic	
106	profiles inside and surrounding dangerous weather events.	
107	Multiple agencies of the U.S. federal government are also invested in obtaining	
108	supplementary RO data for the purposes of supporting operational needs. The U.S. National	
109	Oceanic and Atmospheric Administration (NOAA) is undergoing a multi-year program intended	
110	to incentivize commercial participation in data-as-a-service that can be used for improving	
111	weather forecasting through data assimilation (National Oceanic and Atmospheric	
112	Administration and National Environmental Satellite. Data, and Information Service. 2020).	
113	Furthermore, low-cost, on-demand RO data would be highly useful for conducting research	

116	primarily in the planetary boundary layer (PBL). A targeted observable in the NASA 2017	
117	decadal survey is the PBL (National Academies of Sciences, 2018), and BRO data would be a	
118	low-cost alternative or supplement to spaceborne and airborne radio occultation data for	
119	identifying PBL characteristics.	
120	The remainder of this paper is structured as follows. Section 2 briefly introduces a newly	
121	developed, low-cost and scalable COTS GNSS receiver onboard high-altitude balloons and the	Deleted: commercial-off-the-shelf (
122	associated flight campaigns, along with the detailed description on BRO data and methodology.	Deleted:)
123	Section 3 shows the refractivity retrieval process and quality control procedures based on one	
124	representative BRO case. Section 4 examines the overall statistics of the BRO observations and	
125	provides a preliminary error analysis. Finally, conclusions and future studies are summarized in	
126	Section 5.	
127	2. Data and Methodology	
128	a. Balloon-borne GNSS RO Payload and High-altitude Balloon Platforms	Deleted: the
129	A detailed description of the balloon-borne GNSS RO payload developed by Night Crew	
130	Labs (NCL) can be found in (Chan et al., 2022, 2021) a summary is presented here. The	
131	instrumentation is comprised of two major components: a mission system support component,	
132	and a science payload for GNSS RO profiling. The Balloon Re-Programmable Integrated	
133	Computer (BRIC) is a third-generation flight management computer supporting data logging as	
134	well as power management, flight control, and thermal control. The GNSS Radio Occultation	
135		
	and Observable Truth (GROOT) is a first-generation balloon-borne GNSS RO science	
136	and Observable Truth (GROOT) is a first-generation balloon-borne GNSS RO science instrument based on COTS GNSS equipment. The GROOT payload includes a Swift Navigation	Deleted: commercial off-the-shelf (
136 137	and Observable Truth (GROOT) is a first-generation balloon-borne GNSS RO science instrument based on COTS GNSS equipment. The GROOT payload includes a Swift Navigation Piksi Multi GNSS receiver for raw RO measurements (e.g., carrier phase, SNR, and Doppler	Deleted: commercial off-the-shelf (Deleted:)

system and an L-band <u>GNSS</u> corrections service, in addition to the BRIC flight computer and
other ancillary needs. All balloon-borne RO data described in this study were collected from the
GROOT payload. The Piksi GNSS RO receiver is particularly noteworthy, as it is about the size
of a credit card, which is quite small compared to most other custom-built GNSS RO receivers
for airborne and spaceborne observations.

Figure 1: a) GROOT payload used in balloon RO flight missions. Numbers indicate the following components – 1) Patch heaters,
2) Raspberry Pi data logger, 3) Trimble BX992 receiver, 4) BRIC flight computer, 5) Power board/Swift Piksi Multi stack for
phase and amplitude measurements (adapted from Chan et al., (2022)); b) World View Stratolite balloon being filled prior to
launch. c) Balloon RO payload being prepared for launch during World View BRO flight campaigns. GNSS antennae are
indicated by red circles. d) NCL ZPM balloon being filled prior to launch. e) ZPM-1 RO payload and GNSS antennae

156 In this study, the RO profiles collected from two high-altitude balloon flight campaigns

157 equipped with the GROOT payload were analyzed. Figure 1a shows the GROOT payload as

158 described above, with each component labeled. The first of a series of high-altitude balloon

159 campaigns occurred in August 2020 on a zero-pressure balloon as a secondary payload hosted on

160 the World View Stratolite balloon bus platform (Fig. 1b, c). The World View flight launched out

161 of Page, AZ and maintained 18+ km (60,000+ ft) altitude, enabling five days (120 hours) of

162 continuous data collection. During the flight, GROOT continuously collected balloon state data

163	and RO data from the GPS (United States), GLONASS (Russia), Galileo (European Union),	
164	BeiDou (China), and QZSS (Japan) constellations. The World View balloon platform was	
165	equipped with yaw control equipment to keep it from spinning during flight. After mission	
166	termination, the data was recovered and processed.	
167	The second flight campaign was the NCL Zero Pressure Balloon Mission 1 (ZPM-1),	
168	which launched near Empire, NV on November 28, 2020 (Fig. 1d, e). The ZPM-1 balloon	Deleted: was
169	reached a maximum altitude of 31.7 km (104,567 ft), traveling southeast towards Utah.	
170	Overnight, ZPM-1 dropped to a lower-than-expected altitude of 17.9 km (59,000 ft) due to	
171	colder ambient temperature, which caused the balloon to drift eastwards towards the Rocky	
172	Mountains and led to termination of the mission after 12 hours. During the flight, GROOT	
173	collected balloon state data and RO data from GPS, GLONASS, Galileo, BeiDou and QZSS	
174	constellations. The payload was later recovered in southern Utah.	
175	b. Balloon-Borne RO Measurements	
176	Figure 2 shows the ground tracks for the two balloon flight campaigns along with the	
177	predicted occultation tangent point locations at the lowest elevation angle, labeled by their	
178	respective GNSS RO satellites. The selected occultation events extracted for analysis are	
179	highlighted for both flight campaigns.	

 181
 -120
 -115
 -110

 182
 Figure 2: High-altitude balloon flight trajectory (red) and predicted occultation tangent point drifting paths and their respective

 183
 GPS satellites (black) for a) World View and b) ZPM. Pink circles with red text indicate the selected RO cases and the occulting

 184
 GPS satellite number presented in this study.

185 The GROOT receiver can potentially track all currently operational GNSS satellite constellations

186	such as GPS, GLONASS, Galileo, BeiDou, and QZSS. However, only the GPS signals were	(Deleted: due to the limited bandwidth and capability of the receiver,
187	chosen to be tracked due to the limited bandwidth capability of the receiver, Out of a total	(Deleted: with high enough quality
188	number of 680 predicted occultation soundings for the World View flight (based on balloon and		
189	GNSS real trajectories), approximately 71% of observations came from non-GPS occultations		
190	and were not analyzed (see Fig. A1). This decision was made because GROOT processing on		
191	non-GPS satellites data from several previous flights consistently resulted in poor quality ROs as		Deleted: 0
192	a result of receiver frequency capabilities. In addition, the closed-loop tracking receiver in the		
193	GROOT payload can only track setting (vs. rising) occultations, filtering out another 50% of the		
194	available occultations. Of the remaining occultations, only the RO events having measurements		
195	with 1) minimum elevation angle less than 0° , and 2) excess phase greater than 50 meters were		
196	processed. This subset of occultations were divided into those that are good quality and those		

201	that require additional quality control such as cycle-slip corrections (Fig. A1). Of the original	
202	680 occultations from the World View flight, only 15 cases were extracted for analysis (see	 Deleted: 3
203	Appendix A). Cycle slip corrections were required for 7 of the 15 cases, and one World View	 (Deleted: good
204	case was removed after failing quality control procedures. The same pre- and post-processing	 Deleted: Similar
205	algorithms, were applied to ZPM-1 measurements. Unfortunately, the ZPM-1 flight encountered	 Deleted: processes
206	power failures during the segments of the flight, resulting in the loss of altitude and a much	
207	shorter flight time with fewer occultations being collected, and only 8 occultations out of 84	
208	were selected for processing.	
209	c. Balloon-Borne RO Data Processing and Retrieval Methods	
210	After the flight data is logged, several processing steps are required to retrieve bending	
211	angle and refractivity. The full retrieval process is detailed in_(Chan et al., 2022), but is	
212	summarized here. The first step in the BRO retrieval is to pre-process the data for ingestion into	
213	the retrieval algorithms. Raw line-of-sight (LOS) GNSS observables, along with satellite	
214	ephemeris data, and balloon state (position/velocity) data are extracted from payload storage.	
215	Once the LOS data is parsed and aligned, the next step is to compute the excess phase delay (or	
216	excess phase) by subtracting the receiver's measured phase from the LOS geometric distance	
217	between the GNSS satellite and the receiver, based ephemeris data from a high-elevation	 Deleted: on
218	satellite, Step three is receiver clock calibration, where the excess phase is calibrated by	 Deleted: ephemeris data
219	differencing the excess phase of the occulting and high-elevation GNSS satellites. Step four is	
220	cycle slip correction, where an exponential curve is fitted to the data to both smooth and remove	
221	medium to large discontinuities. Step five uses a Gaussian Process Regression_(GPR, Shi and	
222	Choi, 2011) to further remove any smaller discontinuities as needed in processing the individual	
223	cases. Steps three through five, clean and smooth the excess phase data so that it can be used in	 Deleted: 5
I		

231 the retrieval downstream in the retrieval processing. Finally, the processed result: RO excess

- phase <u>delay</u>, excess Doppler <u>shift</u>, SNR, and balloon state are exported as a NetCDF file, a
- 233 format convenient for downstream GNSS RO retrieval processing.

-(Deleted: The
•(Deleted: h
1	Formatted: Font: Italic
Y	Formatted: Font: Italic, Subscript
1	Deleted: is shown
Y	Formatted: Font: Italic
Ľ	Deleted: The

Deleted: 3	
Deleted: [Xie et al., 2008]	

256	processing system includes four main components: (a) a geometric optics ray-tracer (i.e., Radio	
257	Occultation Simulations for Atmospheric Profiling (ROSAP, Høeg et al., 1996)), which	
258	simulates the GNSS RO signal excess phase <u>delay</u> /Doppler as it travels through a <u>Earth's</u>	Deleted: spherically symmetric
259	atmosphere defined as either spherically symmetric or oblately symmetric prescribed by a given	
260	atmospheric refractivity profile and accumulates bending at each iteration. The oblate	
261	atmosphere option is used in our study.; (b) a module that derives the bending angle from the	
262	LOS excess phase/Doppler measurements through a modified geometric-optics (GO) retrieval	
263	(i.e., Doppler-to-alpha, (Lesne et al., 2002; Vorob'ev and Krasil'nikova, 1994; Xie et al., 2008))	
264	and radio-holographic retrieval (i.e., full-spectrum-inversion, FSI) modified for in-atmosphere	
265	retrievals (Adhikari et al., 2016; Jensen et al., 2003); (c) a forward Abel integrator (FAI)	Deleted: [Adhikari et al., 2016; Jensen et al., 2003]
266	modified for in-atmosphere retrievals that generates the bending angle profile through the	
267	forward integration of an input refractivity profile_(Fjeldbo and Eshleman, 1969; Fjeldbo et al.,	
268	1971; Xie et al., 2008); and (d) an inverse integrator that retrieves a refractivity profile via an	
269	Inverse Abel Transform (IAT, Fjeldbo and Eshleman, 1969) modified for in-atmosphere RO	Deleted: airborne
270	(Healy et al., 2002; Xie et al., 2008).	

11

278	Note that the GO retrieval method has limited vertical resolution and encounters multipath
279	problems in the moist lower troposphere. Therefore, the FSI method adapted for airborne and
280	balloon-borne RO retrieval will also be used (Adhikari et al., 2016).
281	After the bending angle (a) profiles are retrieved using either GO or FSI methods, the
282	partial bending angle (a_{part}), i.e., the difference between negative and positive elevation bending
283	angles (α_{neg} and α_{pos}) at same impact parameter, can be derived. The partial bending angle profile
284	is then converted to the refractivity profile using the modified IAT, which requires a priori
285	knowledge of the refractivity at the receiver during the occultation event. In addition, the local
286	radius of curvature of the earth is also required for conversion of bending angle impact parameter
287	to geometric height as part of the IAT. Due to the very low excess phase delay, the raw
288	observation of α_{pos} as well as the α_{neg} near the receiver height is generally very small and can <u>also</u>
289	be rather noisy or reach a singularity, which would lead to large errors in partial bending angle
290	and the <u>following</u> refractivity retrieval. Therefore, in this study, the ρ_{pos} and the α_{neg} within 1.5
291	km of the receiver were substituted by the simulated bending angle (e.g., FAI or ROSAP bending
292	angle simulation) based on a colocated refractivity profile (Adhikari et al., 2016; Xie et al.,
293	2018). By doing this, the top 1.5 km of the α_{pos} and the α_{neg} profiles are significantly less noisy
294	and chaotic, preventing failure of the IAT.
295	d. ERA5 Model Reanalysis Data

To evaluate the quality of balloon-borne RO measurements, we use 3-hourly ERA5 model reanalysis (Hersbach et al., 2020)_from the European Centre for Medium-range Weather Forecasting (ECMWF) to provide estimates of atmospheric conditions near the BRO sounding locations. The native ERA5 model grid has 0.25°x0.25° horizontal resolution and 137 vertical levels. The ERA5 profiles are referenced to geopotential heights, which are converted to

Deleted: c	
Deleted: so	
Deleted: full	
Deleted: ~	
Deleted: below	
Deleted: the	
Deleted: reanalysis	

308	geometric heights for direct comparisons to BRO profiles. The atmospheric refractivity profiles	
309	can be derived from the gridded temperature, humidity, and pressure profiles.	
310	In addition, during an occultation event, the tangent point is located at the receiver	
311	position, when the occulting satellite is at the zero elevation. In-atmosphere RO bending angle	Deleted: The airborne
312	retrieval requires a priori atmospheric refractivity at the receiver, which can be provided by the	
313	colocated ERA5 profile, when high-quality in-situ measurements are not available (Xie et al.,	
314	2018, 2008; Adhikari et al., 2016). Thus, for simplicity, each occultation event uses one	
315	refractivity profile from the colocated ERA5 grid (at the zero-elevation ($\theta = 0$) angle tangent	Deleted: zero elevation
316	point location) to compute the time series of refractivity at the receiver by interpolating the	
317	refractivity profile to the receiver height at each time stamp throughout the occultation	
318	observations. Furthermore, considering the high horizontal resolution of ERA5 reanalysis and	
319	the potential fine scale variations of refractivity that are smaller than RO horizontal footprint, we	Deleted: resolution
320	use a median refractivity profile of a 1°x1° horizontal grid surrounding the zero-elevation	Deleted: space
321	location for input into the initial ROSAP and FAI simulations. The tangent point locations during	
322	the occultation event can therefore be derived from ROSAP ray-tracing simulation with the real	
323	occultation geometry. It is important to consider the potentially large horizontal drift associated	
324	with the tangent point of BRO observations. To better evaluate the quality of the individual	
325	retrieved BRO refractivity profiles, the ERA5 profile tangent point location at 5 km altitude will	Deleted:
226		Deleted: considering the large tangent point drifting distance
326	be treated as the BRO colocated profile for the final refractivity comparison,	Deleted: above mean-sea-level (MSL)
327	3. Case Study: BRO from the World View Campaign	Deleted: purposes

Nelson et al.: COTS Balloon RO

354 855 856 Figure 6: WVG26 time series of a) excess phase, b) excess Doppler, c) signal-to-noise ratio, and d) elevation angle from calibrated observations (blue), and ROSAP ray-tracing simulation (red). Dashed lines in panels a) and b) represent 357 Figure 6a shows the WVG26 calibrated excess phase delay observations (blue) alongside 358 the excess phase delay from the ROSAP simulation (red) and their differences (black dashed 359 line). The calibrated excess phase delay compares favorably with the colocated ROSAP excess 360 phase delay, with differences between the two within three meters of each other throught the 361 whole time series. The high consistency throughout the time series is also seen in the excess 362 Doppler comparison (Fig. 5b) with differences only exceeding 0.01 m s⁻¹ at the end of the time series. The observed signal-to-noise ratio (SNR) for the WVG26 case is shown in Figure 6c. As 363 364 the signal penetrates deeper into the atmosphere (i.e., the elevation angle dipping below the local 365 horizon to approximately - 4.5°, Fig. 6d), the SNR typically decreases and becomes much more 366 variable due to high signal dynamics resulting from the fine moisture variations in the lower troposphere. The overall mean SNR from the GROOT receiver (141.79 V V-1) is on the same 367 368 order of magnitude (order of 100) as the mean SNR from the COSMIC-1 and SAC-C GNSS RO

Deleted: 5	
Deleted: raw observations (black),	
Deleted: red	
Deleted: green	
Deleted: 5	
Deleted: raw and	
Deleted: ERA5	
Deleted: -derived	

Deleted: (obtained using ROSAP raytracing simulation)

Deleted: but shows larger variation in the ROSAP results, likely due to satellite-receiver geometry fluctuations.

Deleted: 5

15

382	satellite missions (approximately 700 V V ⁻¹ , Ao et al., 2009; Ho et al., 2020), While the SNR		Deleted: [700 V V ⁻¹ , <i>Ao et al.</i> , 2009; <i>Ho et al.</i> , 2020]
383	values from the Piksi receiver are still approximately 5 times less than the values from		
384	spaceborne RO missions, the compact size of the Piksi receiver makes such high SNR values		
385	quite impressive,		Deleted: Considering the size of the Piksi receiver on the GROOT payload, this is quite impressive.
386	Figure 7a shows the BRO bending angle profiles from GO and FSI retrievals as a		
387	function of impact height (impact parameter minus the local curvature radius of the Earth) for the		
388	<u>WVG26 case.</u> Note that as discussed in Section 2c, the noisy α_{pos} and α_{neg} within 1.5 km below		Deleted: Given the excess phase/Doppler measurements, the accumulated bending angle from GO and ESI retrievals as a
389	the receiver height were replaced by the simulated FAI bending angle based on the colocated		function of impact height (impact parameter minus the local curvature radius of the Earth) for the WVG26 case are shown in Fig. 6a.
390	ERA5 refractivity profile (Fig. 5). Fig. 7a also shows a conceptual calculation of the partial	·····	Deleted: 4
201	handian angle of discussed in Section 2. At each impact height a lie systemated from a to	and the second se	Deleted: 6
591	behaving angle as discussed in Section 2 \underline{c} , At each impact neight, a_{pos} is subtracted from a_{neg} to		(Deleted: b
392	calculate <u>the partial bending angle (α_{part}</u>), which is later used to retrieve the final refractivity		
393	profile. Figure 7 shows the partial bending angle calculated using the method shown in Fig. 7 a		Deleted: 6
394	with 100 m log-linear vertical smoothing applied. It is worth noting that BRO bending angle		Deleted: 6
395	observations from both the GO and FSI retrievals match the colocated ERA5 FAI and ROSAP		
396	simulations quite well from the balloon altitude (just over 18 km) all the way down to impact		
397	heights of around 6 km (corresponding to approximately 4 km above MSL, Fig. 7). Differences		Deleted: 6
398	between the retrievals and the ROSAP simulation between ~ 6 and 8 km are most likely caused		
399	by differences between oblate and spherical Earth geometry assumptions. While an Earth		
400	oblateness correction is performed as part of the transmitter/receiver geometry processing, these		
401	effects may not be completely removed.		

430 methods. This is primarily due to the improvement from FSI on resolving the multipath problem

431 over the GO method in the moist lower troposphere.

	- ERA5 - GO - FSI - GO-ERA5 FSI-ERA5	
	- $- $ $- $ $- $ $- $ $- $ $- $ $-$	
432 433 434 435	Refractivity [N-units] Refractivity Difference [%] Figure &: a) BRO refractivity retrieval for WVG26 case from GO (blue) and FSI (purple) compared to the colocated refractivity profile from ERA5. b) Fractional refractivity difference between BRO retrieval and ERA5 (GO, black; FSI, red). Local terrain at the location of BRO tangent point at 5 km above MSL is marked by tan polygons.	Deleted: 7
436	In order to quantify the differences between the retrievals and the colocated ERA5	
437	profile, the fractional refractivity difference profile is calculated. Figure & shows the fractional	eleted: 7
438	refractivity difference between the <u>refractivity</u> retrievals (GO and FSI) and their colocated ERA5	Peleted: GO/FSI
439	profiles, respectively. The GO retrieval is highly consistent with FSI retrieval above ~7.5 km and	Peleted: s
440	start showing small differences below. Above 10 km, the median refractivity difference profiles	
441	for the GO-ERA5 and FSI-ERA5, are -0.27% to -0.26% with a median-absolute-deviation	eleted: s
442	(MAD) of approximately 0.62%. Both retrievals continue to perform very well in the middle	beleted: between the retrievals and the colocated 5 km angent height ERA5 profile
443	troposphere, between 5 km and 10 km with median refractivity differences of -0.21±0.74% for	beleted: /MAD
444	the GO retrieval and -0.38±0.59% for the FSI retrieval. Once more water vapor is encountered	
445	below 5 km altitude, the magnitude of the median difference for the GO retrieval increases to	

478	negative N -bias below approximately 6 km, but with a smaller median difference of -3.60%	
479	(MAD: 3.26%). The higher magnitude <i>N</i> -bias in the lowest portions of the troposphere have a	
480	variety of potential causes. The lowest level negative N-bias is likely caused by the tracking	
481	errors (e.g., cycle slips) introduced by the closed-loop tracking receiver, which is a well-known	
482	problem (Ao et al., 2009; Wang et al., 2013) that could easily degrade the BRO observation	
483	quality, Additionally, high spatial variations in moisture content can also cause low SNR or high	
484	signal dynamics ultimately resulting in unwrapping errors in excess phase and hence a negative	(
485	bending angle bias (Wang et al., 2016). It is also important to consider that there is likely to be	
486	increased low-sampling bias closer to the surface, weakening the robustness of the statistics.	

487
488Table 1: Summary statistics for median refractivity differences between GO/FSI retrievals and the colocated ERA5 with
corresponding median absolute deviation over varying height ranges from the World View flight campaign.

Height Range [km]	GO Median N Difference [%]	FSI Median N Difference [%]
0-5	-5.86 ± 1.99	-3.60 ± 3.26
5-10	-0.25 ±2.97	0.32 ± 3.06
10-15	0.57 ± 2.44	1.06 ± 2.29
15-20	0.53 ± 0.71	0.23 ± 0.94
Overall	0.03 ± 2.28	0.24 ± 2.61

Moved (insertion) [1]

Moved up [1]: (Ao et al., 2009; Wang et al., 2013)

Deleted: Furthermore

489

Nelson et al.: COTS Balloon RO

Table 2: Same as Table 1, but for the ZPM-1 flight campaign. Height Range [km] **GO Median** *N* **Difference** [%] FSI Median *N* Difference [%] 0-5 4.05 ± 0.99 4.01 ± 2.15 3.59 ± 2.29 2.94 ± 1.56 5-10 2.57 ± 1.78 3.03 ± 1.73 10-15 -1.33 ± 0.47 15-20 -0.94 ± 0.64 3.13 ± 2.03 Overall 2.57 ± 1.38

513

514

515 Reasons for errors and bias in BRO refractivity retrievals can come from a variety of

pio potential causes. The infitations of closed-loop tracking receivers may affect the BRO	516	potential causes.	The limitations of	closed-loop tracking	receivers may	affect the BRO
--	-----	-------------------	--------------------	----------------------	---------------	----------------

517 refractivity retrieval quality as discussed above. Additionally, low SNR in airborne (in-

518 <u>atmosphere</u>) GNSS RO observations <u>can potentially</u> result in approximately $\pm 5\%$ refractivity

519 error (Wang et al., 2016). This estimate is consistent with the overall results showed here,

520 meaning that an improvement to SNR in the lower atmosphere would be extremely beneficial.

521 However, it is important to note that despite the overall positive bias in the ZPM-1 cases, the

522 median absolute deviation of the cases minimizes in the upper and middle troposphere, much

523 like the World View campaign data. One important caveat for the ZPM-1 campaign data is the

524 small number of available occultations. Power loss issues on the platform during the flights

525 caused a decrease in the number of occultations. The low sampling numbers could also lead to

526 larger median refractivity differences.

527 5. Summary and Conclusions

- 528 In this study, the GNSS RO atmospheric profiling technique has been adapted for use on
- 529 high-altitude balloon platforms. Most of the past airborne and balloon-borne RO payloads
- 530 require custom made parts and costly operational expenses that require significant investments.
- 531 We show the successful implementation of the Night Crew Labs GROOT payload developed
- 532 from commercial off-the-shelf components on high-altitude balloon platforms. This approach is

Deleted: also Deleted: the Deleted: could

536	simpler and significantly more affordable than current airborne and space-based methods. The	Deleted: their
537	results from the low-cost, highly compact GROOT payload are promising.	
538	Utilizing a balloon platform for GNSS RO observations has been done only once in the	
539	past. Haase et al., (2012)_showed the proof-of-concept for balloon-borne GNSS RO using a	
540	custom-built receiver and found excess Doppler agreement that would correspond to	
541	approximately 1% refractivity difference. The BRO retrievals from the GROOT payload have	
542	refractivity differences in the middle and upper troposphere comparable to previous airborne and	
543	balloon-borne RO studies_(Adhikari et al., 2016; Haase et al., 2012; Xie et al., 2008; Healy et al.,	
544	2002). The added benefit of using BRO platforms is the dense spatial and temporal sampling	
545	available due to the low platform velocities relative to the LEO-based RO satellites.	
546	Additionally, BRO platforms are scalable and can potentially be launched in advance of	
547	significant weather events and remain aloft for long periods of time to collect abundant RO	
548	observations.	
549	Currently, the major limitation of BRO platforms with COTS payloads is the use of	
550	closed-loop tracking GNSS receivers. For GNSS RO purposes, closed-loop tracking can limit	Deleted: , which is commercially available
551	penetration of retrieved refractivity profiles into the lower troposphere due to the large variations	
552	in moisture content. Additionally, closed-loop tracking also prohibits the tracking of rising	
553	occultations, cutting the potential number of RO soundings in half. For these reasons, design and	
554	implementation of COTS payloads capable of open-loop tracking is the next natural step to	
555	improving balloon-borne RO. Furthermore, BRO platform orientation can be uncontrolled, so a	
556	sudden change in winds aloft can alter the antenna position and cause signal loss. Additionally,	
557	the comparatively slow-moving receivers result in longer occultations (approximately 20-30	
558	minutes for one balloon-borne RO event, in comparison to ~1 minute for one spaceborne RO	

561	event), which can result in larger unwrapping error (Wang et al., 2016) and lead to further	
562	underestimates of bending angle in the moist lower troposphere.	
563	An analysis of the quality of the retrieved refractivity profiles reveals that the median	
564	refractivity difference for the World View campaign is generally less than 1%. The same	
565	analysis of the ZPM-1 campaign data shows that the median is slightly positively biased overall	
566	(approximately 3%), but with similar median absolute deviation values. While both GO and FSI	
567	retrieval methods offer promising results, it appears that the FSI retrievals tend to outperform the	
568	GO retrievals in terms of atmospheric penetration. The limitation of the close-loop tracking	
569	could be the primary cause of the negative N-bias below 6 km as seen in World View BRO	
570	soundings. In addition, the relatively low SNR in the lower troposphere could also lead to	
571	negative bending angle bias, which could also be another likely cause of the negative refractivity	
572	bias in the lower troposphere.	
573	Overall, we show that high-altitude balloons with RO payloads can be launched over	Deleted: in all weather conditions,
573 574	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms.	Deleted: in all weather conditions, Deleted: and
573 574 575	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes.	Deleted: in all weather conditions, Deleted: and
573 574 575 576	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes. Furthermore, the balloon-borne RO platform can offer unprecedented high spatial and temporal	Deleted: in all weather conditions, Deleted: and Deleted: Therefore
573 574 575 576 577	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes. Furthermore, the balloon-borne RO platform can offer unprecedented high spatial and temporal BRO sampling over targeted regions far higher than traditional spaceborne RO (see Fig. 2).	Deleted: in all weather conditions, Deleted: and Deleted: Therefore
573 574 575 576 577 578	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes. Furthermore, the balloon-borne RO platform can offer unprecedented high spatial and temporal BRO sampling over targeted regions far higher than traditional spaceborne RO (see Fig. 2). Additionally, balloon-borne RO data could be much more cost effective to retrieve due to the	Deleted: in all weather conditions, Deleted: and Deleted: Therefore
573 574 575 576 577 578 579	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes. Furthermore, the balloon-borne RO platform can offer unprecedented high spatial and temporal BRO sampling over targeted regions far higher than traditional spaceborne RO (see Fig. 2). Additionally, balloon-borne RO data could be much more cost effective to retrieve due to the low-cost COTS GNSS receiver and overall affordability of the high-altitude balloon flight	Deleted: in all weather conditions, Deleted: and Deleted: Therefore
573 574 575 576 577 578 579 580	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes. Furthermore, the balloon-borne RO platform can offer unprecedented high spatial and temporal BRO sampling over targeted regions far higher than traditional spaceborne RO (see Fig. 2). Additionally, balloon-borne RO data could be much more cost effective to retrieve due to the low-cost COTS GNSS receiver and overall affordability of the high-altitude balloon flight platform, as the instrument can be retrieved and reused after each deployment. We wish to	Deleted: in all weather conditions, Deleted: and Deleted: Therefore
573 574 575 576 577 578 579 580 581	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes. Furthermore, the balloon-borne RO platform can offer unprecedented high spatial and temporal BRO sampling over targeted regions far higher than traditional spaceborne RO (see Fig. 2). Additionally, balloon-borne RO data could be much more cost effective to retrieve due to the low-cost COTS GNSS receiver and overall affordability of the high-altitude balloon flight platform, as the instrument can be retrieved and reused after each deployment. We wish to emphasize that results from this proof-of-concept study are likely not enough to truly determine	Deleted: and Deleted: Therefore
 573 574 575 576 577 578 579 580 581 582 	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes. Furthermore, the balloon-borne RO platform can offer unprecedented high spatial and temporal BRO sampling over targeted regions far higher than traditional spaceborne RO (see Fig. 2). Additionally, balloon-borne RO data could be much more cost effective to retrieve due to the low-cost COTS GNSS receiver and overall affordability of the high-altitude balloon flight platform, as the instrument can be retrieved and reused after each deployment. We wish to emphasize that results from this proof-of-concept study are likely not enough to truly determine the full capability and limitation of COTS BRO, and that further investment and development	Deleted: in all weather conditions, Deleted: and Deleted: Therefore
 573 574 575 576 577 578 579 580 581 582 583 	Overall, we show that high-altitude balloons with RO payloads can be launched over areas of complex terrain, can potentially remain aloft for far longer than airborne RO platforms, and would hypothetically be deployable in all weather conditions, similar to radiosondes. Furthermore, the balloon-borne RO platform can offer unprecedented high spatial and temporal BRO sampling over targeted regions far higher than traditional spaceborne RO (see Fig. 2). Additionally, balloon-borne RO data could be much more cost effective to retrieve due to the low-cost COTS GNSS receiver and overall affordability of the high-altitude balloon flight platform, as the instrument can be retrieved and reused after each deployment. We wish to emphasize that results from this proof-of-concept study are likely not enough to truly determine the full capability and limitation of COTS BRO, and that further investment and development will likely yield a more complete picture. We believe the advances on the COTS GNSS receiver	Deleted: in all weather conditions, Deleted: and Deleted: Therefore

587	development and high-altitude balloon platform control in the future will lead to large increases	
588	in high-quality localized BRO soundings over targeting weather events (e.g., severe	
589	thunderstorms etc.) and improve regional weather forecasts through data assimilation.	
590	6. Acknowledgements	
591	This paper is supported by NOAA grant 1305M2-19-C-NRMW-0015, Author K. Nelson	Deleted: (
592	acknowledges the research assistantship support from Coastal Marine System Science Program	Deleted:)
593	at Texas A&M University – Corpus Christi. Authors from Night Crew Labs acknowledge	
594	additional support from NASA grant 80NSSC20K0106. This work was done as a private venture	
595	and not in the authors' capacity as an employee of the Jet Propulsion Laboratory, California	
596	Institute of Technology. The authors would also like to thank Dr. Loknath Adhikari from the	
597	University of Maryland for productive discussion. The anonymous reviewers are also	
598	acknowledged for their insight and comments to improve this paper.	
599	7. Appendix A: Balloon-Borne RO Cases and Sampling	
600	Balloon-borne RO can collect high density observations around the platform, particularly	
601	compared to spaceborne RO. As was discussed in Section 2a, the Piksi GNSS receiver onboard	
602	World View balloon could observe a predicted total of 680 potential occultations. Because of	
603	frequency restrictions built into the Piksi receiver, signals from GLONASS, BeiDou, QZSS, and	
604	Galileo are less reliable due to slight frequency differences compared to the GPS system.	
605	Figure A1 shows a Sankey plot filtering visualization of the World View predicted	
606	occultations. Of the original 680 predicted ROs, a total of 485 were incomplete from all	

- 627 Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D.
- 628 C., Trenberth, K. E., Wee, T. K., Yen, N. L., and Zeng, Z.: The COSMIC/FORMOSAT-3
- 629 Mission: Early Results, Bulletin of the American Meteorological Society, 89, 313–334,
- 630 https://doi.org/10.1175/bams-89-3-313, 2008.
- 631 Ao, C. O., Hajj, G. A., Meehan, T. K., Dong, D., Iijima, B. A., Mannucci, A. J., and Kursinski,
- E. R.: Rising and setting GPS occultations by use of open-loop tracking, Journal of Geophysical
 Research, 114, https://doi.org/10.1029/2008jd010483, 2009.
- 634 Boullot, N., Rabier, F., Langland, R., Gelaro, R., Cardinali, C., Guidard, V., Bauer, P., and
- 635 Doerenbecher, A.: Observation impact over the southern polar area during the Concordiasi field
- 636 campaign, Quarterly Journal of the Royal Meteorological Society, 142, 597-610,
- 637 https://doi.org/10.1002/qj.2470, 2014.
- 638 Bowler, N. E.: An assessment of GNSS radio occultation data produced by Spire, Quarterly
- Journal of the Royal Meteorological Society, 146, 3772–3788, https://doi.org/10.1002/qj.3872,
 2020.
- 641 Cardinali, C. and Healy, S.: Impact of GPS radio occultation measurements in the ECMWF
- system using adjoint-based diagnostics: Impact of GPS radio occultation measurements, Q.J.R.
 Meteorol. Soc., 140, 2315–2320, https://doi.org/10.1002/qj.2300, 2014.
- 644 Carreno-Luengo, H., Camps, A., Querol, J., and Forte, G.: First Results of a GNSS-R
- 645 Experiment From a Stratospheric Balloon Over Boreal Forests, IEEE Transactions on
- 646 Geoscience and Remote Sensing, 54, 2652–2663, https://doi.org/10.1109/tgrs.2015.2504242, 647 2016.
- Chan, B. C., Goel, A., Kosh, J., Reid, T. G. R., Snyder, C. R., Tarantino, P. M., Soedarmadji, S.,
 Soedarmadji, W., Nelson, K. J., Xie, F., and Vergalla, M.: GNSS Radio Occultation on Aerial
- Platforms with Commercial Off-the-Shelf Receivers, ION GNSS Proceedings, 2021.
- 651 Chan, B. C., Goel, A., Kosh, J., Reid, T. G. R., Snyder, C. R., Tarantino, P. M., Soedarmadji, S., 652 Soedarmadji, W., Nelson, K. J., Xie, F., and Vergalla, M.: Commercial GNSS Radio Occultation
- on Aerial Platforms with Off-The-Shelf Receivers, Navigation, 2022.
- 654 Fjeldbo, G. and Eshleman, V. R.: Atmosphere of Venus as Studied with the Mariner 5 Dual
- 655 Radio-Frequency Occultation Experiment, Radio Science, 4, 879–897,
- 656 https://doi.org/10.1029/RS004i010p00879, 1969.
- Fjeldbo, G., Kliore, A. J., and Eshleman, V. R.: The neutral atmosphere of Venus as studied with
 the Mariner V radio occultation experiments, The Astronomical Journal, 76, 123, 1971.
- 659 Garrison, J. L., Walker, M., Haase, J. S., Lulich, T., Xie, F., Ventre, B., Boehme, M. H.,
- Wilmhoff, B., and Katzberg, S. J.: Development and Testing of the GISMOS Instrument, IEEEInternational, 2007.
- Gelaro, R.: GEOS-5 Data Assimilation and Forecast Impacts for Concordiasi, THORPEX DAOS
 Working Group, 2011.

- 664 Haase, J. S., Maldonado-Vargas, J., Rabier, F., Cocquerez, P., Minois, M., Guidard, V., Wyss,
- P., and Johnson, A. V.: A proof-of-concept balloon-borne Global Positioning System radio 665
- 666 occultation profiling instrument for polar studies, Geophysical Research Letters, 39, n/a-n/a,
- https://doi.org/10.1029/2011gl049982, 2012. 667
- 668 Harnisch, F., Healy, S. B., Bauer, P., and English, S. J.: Scaling of GNSS Radio Occultation
- Impact with Observation Number Using an Ensemble of Data Assimilations, Monthly Weather 669 670 Review, 141, 4395-4413, https://doi.org/10.1175/mwr-d-13-00098.1, 2013.
- 671 Healy, S. B., Haase, J. S., and Lesne, O.: Abel transform inversion of radio occultation
- measurements made with a receiver inside the Earth's atmosphere, Annales Geophysicae, 20, 672
- 673 2002.
- 674 Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J.,
- 675 Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo,
- 676 G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
- 677 Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L.,
- 678 Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C.,
- 679 Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
- Global Reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049, 680
- https://doi.org/10.1002/qj.3803, 2020. 681
- 682 Ho, S., Anthes, R. A., Ao, C. O., Healy, S., Horanyi, A., Hunt, D., Mannucci, A. J., Pedatella,
- N., Randel, W. J., Simmons, A., Steiner, A., Xie, F., Yue, X., and Zeng, Z.: The 683
- 684 COSMIC/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments,
- 685 Remaining Challenges, and Potential Impacts of COSMIC-2, Bulletin of the American
- 686 Meteorological Society, 101, E1107-E1136, https://doi.org/10.1175/bams-d-18-0290.1, 2020.
- 687 Høeg, P., Hauchecorne, A., Kirchengast, G., Syndergaard, S., Belloul, B., Leitinger, R., and
- Rothleitner, W.: Derivation of Atmospheric Properties using a Radio Occultation Technique, 688
- 689 Danish Meteorological Institute, Copenhagen, Denmark, 1996.
- 690 Imamura, T., Ando, H., Tellmann, S., Pätzold, M., Häusler, B., Yamazaki, A., Sato, T. M.,
- Noguchi, K., Futaana, Y., Oschlisniok, J., Limaye, S., Choudhary, R. K., Murata, Y., Takeuchi, 691
- 692 H., Hirose, C., Ichikawa, T., Toda, T., Tomiki, A., Abe, T., Yamamoto, Z., Noda, H., Iwata, T.,
- Murakami, S., Satoh, T., Fukuhara, T., Ogohara, K., Sugiyama, K., Kashimura, H., Ohtsuki, S., 693
- 694 Takagi, S., Yamamoto, Y., Hirata, N., Hashimoto, G. L., Yamada, M., Suzuki, M., Ishii, N.,
- 695 Hayashiyama, T., Lee, Y. J., and Nakamura, M.: Initial performance of the radio occultation
- experiment in the Venus orbiter mission Akatsuki, Earth, Planets and Space, 69, 696
- 697 https://doi.org/10.1186/s40623-017-0722-3, 2017.
- 698 Jensen, A. S., Lohmann, M. S., Benzon, H.-H., and Nielsen, A. S.: Full Spectrum Inversion of radio occultation signals, Radio Science, 38, n/a-n/a, https://doi.org/10.1029/2002rs002763, 699
- 700 2003.
- 701 Kliore, A. J., Cain, D. L., Fjeldbo, G., Seidel, B. L., Sykes, M. J., and Rasool, S. I.: The
- 702 Atmosphere of Mars from Mariner 9 Radio Occultation Measurements, Icarus, 17, 484-516, 703
- 1972.

- Kursinski, E. R., Hajj, G. A., Bertiger, W. I., Leroy, S. S., Meehan, T. K., Romans, L. J., 704
- 705 Schofield, J. T., McCleese, D. J., Melbourne, W. G., Thornton, C. L., Yunck, T. P., Eyre, J. R.,
- 706 and Nagafini, R. N.: Initial Results of Radio Occultation Observations of Earth's Atmosphere Using the Global Positioning System, Science, 271, 1107–1110, 1996. 707
- 708 Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing
- Earth's atmosphere with radio occultation measurements using the Global Positioning System, 709
- 710 Journal of Geophysical Research: Atmospheres, 102, 23429-23465,
- https://doi.org/10.1029/97jd01569, 1997. 711
- 712 Kursinski, E. R., Hajj, G. A., Leroy, S. S., and Herman, B.: The GPS Radio Occultation 713 Technique, Terrestrial, Atmospheric, and Oceanic Sciences, 11, 53-114, 2000.
- 714 Lesne, O., Haase, J. S., Kirchengast, G., Ramsauer, J., and Poetzi, W.: Sensitivity analysis for
- 715 airborne sounding of the troposphere by GNSS radio occultation, Physics and Chemistry of the 716 Earth, 27, 2002.
- 717 Lindal, G. F.: The atmosphere of Neptune-an analysis of radio occultation data acquired with Voyager 2, The Astronomical Journal, 103, 967-982, 1992. 718
- 719 Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., Spear,
- 720 R. T., and Michael, W. H.: Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking, Journal of Geophysical 721
- Research, 84, https://doi.org/10.1029/JB084iB14p08443, 1979. 722
- 723 Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., von Engeln,
- 724 A., O'Clerigh, E., and Marquardt, C.: Prospects of the EPS GRAS Mission for Operational
- 725 Atmospheric Applications, Bulletin of the American Meteorological Society, 89, 1863-1875,
- 726 https://doi.org/10.1175/2008BAMS2399.1, 2008.
- 727 Murphy, B. J., Haase, J. S., Muradyan, P., Garrison, J. L., and Wang, K. N.: Airborne GPS radio occultation refractivity profiles observed in tropical storm environments, Journal of Geophysical 728 729 Research: Atmospheres, 120, 1690-1709, https://doi.org/10.1002/2014jd022931, 2015.
- 730 National Academies of Sciences, E.: Thriving on Our Changing Planet: A Decadal Strategy for Earth Observation from Space, The National Academies Press, Washington, DC, 2018. 731
- 732 National Oceanic and Atmospheric Administration and National Environmental Satellite, Data, and Information Service: Commercial Weather Data Pilot (CWDP) Round 2 Summary, 2020. 733
- 734 Rabier, F., Bouchard, A., Brun, E., Doerenbecher, A., Guedj, S., Guidard, V., Karbou, F., Peuch,
- V.-H., El Amraoui, L., Puech, D., Genthon, C., Picard, G., Town, M., Hertzog, A., Vial, F., 735
- 736 Cocquerez, P., Cohn, S. A., Hock, T., Fox, J., Cole, H., Parsons, D., Powers, J., Romberg, K.,
- VanAndel, J., Deshler, T., Mercer, J., Haase, J. S., Avallone, L., Kalnajs, L., Mechoso, C. R., 737
- 738 Tangborn, A., Pellegrini, A., Frenot, Y., Thépaut, J.-N., McNally, A., Balsamo, G., and Steinle,
- P.: The Concordiasi Project in Antarctica, Bulletin of the American Meteorological Society, 91, 739
- 740 69-86, https://doi.org/10.1175/2009bams2764.1, 2010.

- 741 Rabier, F., Cohn, S., Cocquerez, P., Hertzog, A., Avallone, L., Deshler, T., Haase, J., Hock, T.,
- Doerenbecher, A., Wang, J., Guidard, V., Thépaut, J.-N., Langland, R., Tangborn, A., Balsamo, 742
- 743 G., Brun, E., Parsons, D., Bordereau, J., Cardinali, C., Danis, F., Escarnot, J.-P., Fourrié, N.,
- Gelaro, R., Genthon, C., Ide, K., Kalnajs, L., Martin, C., Meunier, L.-F., Nicot, J.-M., Perttula, 744
- 745 T., Potts, N., Ragazzo, P., Richardson, D., Sosa-Sesma, S., and Vargas, A.: The Concordiasi
- Field Experiment over Antarctica: First Results from Innovative Atmospheric Measurements, 746 Bulletin of the American Meteorological Society, 94, ES17-ES20, https://doi.org/10.1175/bams-747
- 748 d-12-00005.1, 2013.
- Ruston, B. and Healy, S.: Forecast Impact of FORMOSAT-7/COSMIC-2 GNSS Radio 749
- 750 Occultation Measurements, Atmospheric Science Letters, 22, https://doi.org/10.1002/asl.1019, 751 2020.
- Schreiner, W. S., Weiss, J. P., Anthes, R. A., Braun, J., Chu, V., Fong, J., Hunt, D., Kuo, Y.-H., 752
- 753 Meehan, T., Serafino, W., Sjoberg, J., Sokolovskiy, S., Talaat, E., Wee, T. K., and Zeng, Z.:
- COSMIC-2 Radio Occultation Constellation: First Results, Geophysical Research Letters, 47, 754
- https://doi.org/10.1029/2019gl086841, 2020. 755
- 756 Shi, J. Q. and Choi, T.: Gaussian Process Regression Analysis for Functional Data, CRC Press, Boca Raton, FL, USA, 2011. 757
- Vorob'ev, V. V. and Krasil'nikova, T. G.: Estimation of the Accuracy of the Atmospheric 758
- 759 Refractive Index Recovery from Doppler Shift Measurements at Frequencies Used in the NAVSTAR System, Physics of the Atmosphere and Ocean, 29, 1994. 760
- 761 Wang, K.-N., Muradyan, P., Garrison, J. L., Haase, J. S., Murphy, B., Acikoz, U., and Lulich, T.:
- Open-loop tracking of rising and setting GNSS radio-occultation signals from an Airborne 762
- Platform: Signal model and statistical analysis, IGARSS Proceedings, 3367-3370, 763
- https://doi.org/10.1109/IGARSS.2013.6723550, 2013. 764
- 765 Wang, K.-N., Garrison, J. L., Acikoz, U., Haase, J. S., Murphy, B. J., Muradyan, P., and Lulich,
- T.: Open-Loop Tracking of Rising and Setting GPS Radio-Occultation Signals From an Airborne 766 767 Platform: Signal Model and Error Analysis, IEEE Transactions on Geoscience and Remote Sensing, 54, 3967-3984, https://doi.org/10.1109/tgrs.2016.2532346, 2016. 768
- Ware, R. H., Exner, M., Feng, D., Gorbunov, M., Hardy, K. R., Herman, B., Kuo, Y. H., 769
- 770 Meehan, T. K., Melbourne, W., Rocken, C., Schreiner, W. S., Sokolovskiy, S., Solheim, F., Zou,
- X., Anthes, R., Businger, S., and Trenberth, K. E.: GPS Sounding of the Atmosphere from Low 771
- 772 Earth Orbit: Preliminary Results, Bulletin of the American Meteorological Society, 77, 19-40, 773 1996.
- 774 Xie, F., Haase, J. S., and Syndergaard, S.: Profiling the Atmosphere Using the Airborne GPS
- Radio Occultation Technique: A Sensitivity Study, IEEE Transactions on Geoscience and 775
- 776 Remote Sensing, 46, 3424-3435, https://doi.org/10.1109/tgrs.2008.2004713, 2008.
- 777 Xie, F., Adhikari, L., Haase, J. S., Murphy, B., Wang, K.-N., and Garrison, J. L.: Sensitivity of
- 778 airborne radio occultation to tropospheric properties over ocean and land, Atmospheric
- 779 Measurement Techniques, 11, 763-780, https://doi.org/10.5194/amt-11-763-2018, 2018.

- Zuffada, C., Hajj, G. A., and Kursinski, E. R.: A novel approach to atmospheric profiling with a mountain-based or airborne GPS receiver, Journal of Geophysical Research: Atmospheres, 104,
- 24435-24447, https://doi.org/10.1029/1999jd900766, 1999.