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Abstract. Ice water path (IWP) is an important cloud parameter in atmospheric radiation, and there are still great difficulties
in retrieval. Artificial neural network is a popular method in atmospheric remote sensing in recent years. This study presents
a global IWP retrieval based on deep neural networks using the measurements from Microwave Humidity Sounder (MWHS)
onboard the FengYun-3B (FY-3B) satellite. Since FY-3B/MWHS has quasi-polarization channels at 150 GHz, the effect of

polarimetric radiance difference (PD) is also studied. A retrieval database is established using collocations between MWHS

and CloudSat 2C-ICE. Then two types of networks are trained for cloud scene filtering and IWP retrieval, respectively. For

the cloud filtering network, the microwave channels show a lack of capacity with a false alarm ratio (FAR) of 0.26 and a

probability of detection (POD) of 0.63. For the IWP retrieval network, different combination inputs of auxiliaries and

channels are compared. The results show that the five MWHS channels combined with scan angle, latitude, and ocean/land

mask perform best. Applying the cloud filtering network and IWP retrieval network, the final root mean squared error

(RMSE) is 916.76 g m?, the mean absolute percentage error (MAPE) is 92%. and the correlation coefficient is 0.65. Then a

tropical cyclone case measured simultaneously by MWHS and CloudSat is chosen to test the performance of the networks,

and the result shows a good correlation with 2C-ICE. Finally, the global annual mean IWP of MWHS is similar to that of
MODIS, 2C-ICE and ERAS in overall shape and very close to that of 2C-ICE in magnitude.Fer—the—eloudfiltering
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1 Introduction

Ice clouds play an important role in the global climate (Liou, 1986), and their distribution strongly affects precipitation and
the water cycle (Eliasson et al., 2011; Field and Heymsfield, 2015). Long time series and global observations of ice clouds
are essential for understanding the Earth's climate system. Depending on the wavelength of observation, satellite remote
sensing can measure different cloud microphysics. Microwave measurement can penetrate deeper into cloud layers to
measure thick and dense ice clouds, while infrared and visible instruments are mainly used for thin clouds measurement

around the cloud-top (Liu and Curry, 1998; Weng and Grody, 2000; Stubenrauch et al., 2013). Sincethe-measurements

sensttive—to—parthy—information—of-elouds—Although the ice water path (IWP) obtained from different instruments show

several folds of differences (Stephens and Kummerow, 2007; Wu et al., 2009), it is of great importance to use remote
sensing to get microphysical of clouds. Active observations such as lidar and radar as well as passive measurements such as
visible/infrared imaging spectrometers and microwave radiometers have been used to produce cloud products (King et al.,
1998.; Austin et al., 2009; Delanoé€ and Hogan, 2010; Deng et al., 2010; Boukabara et al., 2011). Millimeter frequency
radiometers are sensitive to larger precipitating hydrometeors while sub-millimeter frequencies are sensitive to smaller ice
particles (Buehler et al., 2007). Cloud radar has the advantage of higher vertical resolution and sensitivity than passive
radiometer and can determine the vertical structure of ice clouds. However, this usually comes at the cost of low spectral
range and low spatial coverage of the observations (Pfreundschuh et al., 2020).

The brightness temperature (TB) depression caused by the scattering of ice particles is usually proportional to the IWP
which simplifies the retrieval method from radiometric measurements (Liu and Curry, 2000). Researches on ice cloud
retrieval using radiometers such as AMSU, SSMIS, MHS and MWHS, as well as limb sounders such as MLS, SMR,
SMILES have been published for years (Zhao and Weng, 2002; Eriksson et al., 2007; Wu et al., 2008; Sun and Weng, 2012;

Millan et al., 2013; Wang et al., 2014). However, these spaceborne radiometers lack the ability of polarization measurement

while dual-polarization measurements above 100 GHz show obvious polarized scattering signals of ice clouds. The recent
theoretical model research indicates that the non-spherical and oriented ice particles are the main reason for the polarization
signal (Brath et al., 2020).

With the increasing frequency, polarimetric measurement will lead to a new understanding of clouds and their
microphysical (Buehler et al., 2012; Eriksson et al., 2018; Coy et al., 2020; Fox, 2020). Most passive microwave sensors that
have dual-polarization channels are limited to frequencies below 100 GHz. However, these sensors are strongly affected by
surface contamination. Currently, only GMI and MADRAS have observed polarimetric signals from ice clouds above 100
GHz (Defer et al., 2014; Gong and Wu, 2017). By analyzing the polarization differences between the 89 GHz and 166 GHz
channels of GMI, Gong and Wu (2017) found that large polarization occurs mainly near the convective outflow regions
(anvil or stratified precipitation), while in the inner deep convective core and the distant cirrus regions, the polarization

signal is smaller. It is roughly estimated that neglecting the polarimetric signal in the IWP retrieval will lead to errors of up
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to 30% (Gong et al., 2018). Their further study showed that the main source of the 166 GHz high polarimetric radiance
difference (PD) is horizontally oriented snow aggregates or large snow particles, while the low polarization signal could be
small cloud ice, randomly oriented snow aggregates, foggy snow, or supercooled water (Gong et al., 2020). The Ice Cloud

Imager (ICI) will provide a more comprehensive observation of ice clouds. By covering 176 GHz to 668 GHzGHzte-866

GHz, ICI has good sensitivity to both large and small ice particles, and its dual-polarization channels also allow observation
of horizontal particles (Eriksson et al., 2020).

The Microwave Humidity Sounder (MWHS) onboard the Fengyun-3B (FY-3B) satellite has been proven to give
information about IWP_(He and Zhang, 2016). The MWHS has quasi-polarization channels at 150 GHz that can provide
polarization information of cloud ice;and-it-washardly-analyzed-inpast-stadies. The neural network is an easy way to find

the nonlinear relationships between TBs and IWP while the only problem is the lack of true IWP values. CloudSat is

recognized as a relatively accurate instrument for cloud measurement, and its official Level-2C product is used in this paper.
Numerous studies have been conducted to compare CloudSat products with in-situ measurements, the results show that the

Level-2C product is quite reliable when using a combination of Cloud ProfilING RadarClend-Prefile Radar (CPR) and Lidar.

Its ice cloud water content (IWC) is fairly close to the in-situ observation (Deng et al., 2013; Heymsfield et al., 2017).
Although CloudSat products still have considerable uncertainties (Duncan and Eriksson, 2018), they can give us a relatively
accurate reference of IWP and IWC. Holl et al. (2010, 2014) present an IWP product (SPARE-ICE) that uses collocations
between MHS, AVHRR, and CloudSat to train a pair of artificial neural networks. The 89 GHz and 150 GHz channels were
excluded since they are surface sensitive. However, the 150 GHz channel shows good sensitivity to precipitation-sized ice
particles (Bennartz and Bauer, 2003). Brath et al. (2018) retrieve IWP from airborne radiometers of ISMAR and MARSS
using neural networks.

In this paper, we present an analysis of IWP retrieval from the FY-3B/MWHS observations based on the deep neural
network. Both 150 GHz (QV and QH) channels and their PD are investigated. First, we collocate the MWHS measurements
with the CloudSat/2C-ICE IWP according to the observation time and geolocation. Second, we train deep neural networks

(DNNG5) that are used to filter cloud scenes and retrieve the IWP. The effects of different channels (including PD) and

auxiliary information on DNN retrieval are also discussed. Finally, the performance of eaeh-the final configuration network
is evaluated-and-the-eorrespondingerrorisestimated. The trained neural networks are used for the FWPRretrieval-eftweo-a
tropical cyclone_cases and the menthly—averagedglobal annual mean IWP map_of MWHS. Zonal mean IWP of MWHS is
also compared with Aqua/MODIS L3 product, 2C-ICE and ERAS reanalysis data. The main aim of this study is to analyze

the ability of the MWHS in IWP retrieval, especially the role played by the dual-polarization channels in IWP retrieval.
This paper is organized to describe the data analysis in Sect. 2, followed by the retrieval method in Sect. 3. The IWP

retrieval results and analysis are discussed in the subsequent section, with conclusions in the end.
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2 Satellite Observations
2.1 Instruments
2.2.1 FY-3B/MWHS

The FY-3B satellite was launched on November 5, 2010, and the MWHS was equipped as one of the main payloads. The
MWHS performs the cross-track scanning along the orbit at an angle of +£53.35° from nadir to make 98 nominal
measurements per scan line, which is corresponding to a scan swath of 2645 km in 2.667 s with a resolution of 15 km at
nadir. It measures at frequencies from 150 GHz to 190 GHz (two window channels at 150 GHz and three channels near the
water vapor absorption line at 183 GHz-water-vaperabserptiontine), these channels are labeled as CH.1 to CH.5 hereafter.
The details of each channel are shown in Table 1 (Wang et al., 2013). Compared to its successors (i.c. MWHS-II) onboard

the FY-3C/D/E satellite, the 150 GHz channels of MWHS have quasi-horizontal and quasi-vertical polarization that can
include unique cloud information. These channels can provide information near the Earth's surface and lower atmosphere,
and can also be used to measure atmospheric cloud parameters. For the 150 GHz channels, Zou et al. (2014) investigated the
polarization information and concluded that the polarization signal is related to the scan angle and also to information such
as surface wind speed, wind direction and salinity, especially in the clear-sky condition. Under all weather conditions except
heavy precipitation, all five channels of MWHS can observe water vapor and ice in the atmosphere. In this study, the Level-
1B brightness temperature data set of MWHS is used.
Table 1. Channel characteristics of MWHS

Central frequency Bandwidth

Channel (GHz) Polarization (MHz) NEDT (K)
1 150 H 1000 0.8
2 150 \Y 1000 0.8
3 183.31+1 H 500 0.9
4 183.31+3 H 1000 0.5
5 183.3147 H 2000 0.5

2.1.2 CloudSat/CALIPSO

CloudSat is a cloud observation satellite launched into the NASA A-Train in April 2006, with a 94 GHz cloud profiling
radar providing continuous cloud profile information (Stephens et al., 2008). The footprint size of CPR observation is about
1.3 km x 1.7 km, with a vertical resolution of 240 m. The scan time for each profile is about 0.16 s, and its sensitivity is -30
dBZ. It has an orbital inclination of 98.26°, which is similar to the FY-3B satellite. The Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) was launched with the CloudSat satellite and designed to fly close to each other

in the A-Train satellite constellation to make synergistic observations. The Cloud-Aerosol Lidar with Orthogonal

4
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Polarization (CALIOP) carried on the CALIPSO is a dual-wavelength polarized lidar, providing 532 nm and 1064 nm
backscatter profiles with a footprint of 75 m cross-track and 1 km along-track (Winker et al., 2009).

The CloudSat and CALIPSO Ice Cloud Characterization product (2C-ICE) contains retrieved estimates of IWC, effective
radius and extinction coefficient for identified ice clouds measured by CPR and CALIOP with orthogonal polarization. The
2C-ICE cloud product uses a combined input of the radar reflectivity factor measured by the CPR and the attenuated
backscatter coefficient measured by the Lidar at 532 nm to constrain the ice cloud retrieval more tightly than using only the
radar product and to produce more accurate results (Mace and Deng, 2019). The combination of CPR and CALIOP provides
a more complete measurement of the ice clouds than any other current spaceborne sensor measurements. Further study
showed that this combined retrieval method is less sensitive to the changes in the assumed microphysical properties than
CPR or CALIOP single retrieval (Delanoé and Hogan, 2010).

The 2C-ICE retrieval relies on forward model assumptions. Lidar is sensitive to small particles near the top of the cloud,
but cannot measure that deep in the cloud which can lead to an unquantifiable error (Mace et al., 2009). A sensitivity study
shows that multiple scattering, assumptions regarding particle habits and size distribution shapes are critical to the accuracy
of the retrieval (Deng et al., 2010). The research also finds that the ratio between IWC product and in-situ measurements is
similar to the ratio between two independent in-situ measurements (around a factor of 2) and conclude that the retrieval
agrees well with in-situ data. Since 2C-ICE is used to train the retrieval network in this work, the trained network directly

inherits all the systematic errors and limitations of the product.

2.2 Collocation

Collocated measurement is the occurrence where two or more sensors observe the same regions at the same time. One factor
for the collocation window requirements is the specific observation target. Ice clouds is a fast-changing (minutes to hours)
atmospheric parameter that needs a window of short time and small space. Another considered factor in defining the
collocation window is the number of meaningful statistics for training.

The ascending node time of CloudSat is between 13:30 and 13:45 at the local solar time (LST) which is close to that of
FY-3B (13:30 LST). Because of the close orbits and the ascending time between FY-3B and CloudSat, the number of
collocated measurements is large. In this study, a collocation data set of MWHS and 2C-ICE was created by setting the
collocation window to 15 min in time and 15 km in space. Since the footprint of MWHS is an order of magnitude larger than
that of CPR, multiple 2C-ICE pixels can be found within one MWHS measurement. Thus, the IWP values of 2C-ICE within
a circular window (with a radius of 7.5 km) were averaged to represent the mean IWP for the MWHS measurement pixel.
According to this collocation strategy, 1207731 collocations have been found between the FY-3B/MWHS and the
CloudSat/2C-ICE for the year 2014. Since the different observation methods of MWHS and CPR/CALIOP, only 14 pixels of
2C-ICE are contained in the best case of collocations (See Fig. 1a). Thus, the CloudSat footprints cover at most 13.75% of
the area of an MWHS footprint, an error from imprecise collocation is unavoidable and the representation of the data set

must be considered.
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Figure 1 illustrates the statistics of 2C-ICE IWP within the MWHS footprints in the collocations. In most cases, more than

10 pixels of 2C-ICE were averaged in the corresponding MWHS pixel. However, there are still many MWHS pixels that
only cover a small quantity of 2C-ICE pixels which means the collocations are poorly represented. The coefficient of
variation of each collocation pixel is manifested in Fig. 1b. The coefficient of variation is used to represent the IWP
dispersion of 2C-ICE pixels in each MWHS pixel. When the coefficient of variation is small, it means the IWP of 2C-ICE
pixels averaged in this MWHS pixel are homogeneous and represent the scene that MWHS observed relatively well. Since

the collocation error cannot be estimated, the criteria discussed in Holl et al. (2010) is applied to reduce the sampling effect

of collocations. In this study, an MWHS pixel with more than 10 pixels of 2C-ICE and less than 0.6 coefficients of variation

were selected for subsequent processing. However, in the case of highly inhomogeneous clouds existing outside the

CloudSat field of view, larger uncertainty for the IWP within MWHS pixels cannot be eliminated. After the reduction of

inhomogeneous collocations, 665519 collocations were retained. Overall—the-collocation-datasetis-avatable for subsequent
proeessing:
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Figure 1. Statistical information of MWHS and 2C-ICE collocations in 2014. (a) Histogram of the number of 2C-ICE pixels
within an MWHS pixel. (b) Histogram of the coefficient of variation of the collocations.

Figure 2 and 3 give statistical information on the scan angle, latitude and time of the MWHS measurements in this data set.
Since the data set is used for global retrieval, it must have sufficient samples and their distribution must represent the real
world. According to the statistical results of the collocated MWHS pixels shown in Fig. 2, most of the collocations occurred
on one side of the flight direction (from the 40th to 90th scan pixel). In terms of observation latitude, the collocations near
the nadir scan (the 49th pixel) cover the latitude from 80°S to 80°N, while at the edge of the observation (the 90th pixel) they
only cover the tropical regions. In terms of observation time and latitude, Figure 3 illustrates that there is an obvious lack of
data above 60°S from April to September, and there are also few data between 0° and 30°S in December. The data

distribution suggests that the training in polar regions may be inadequate. Due to the high number of collocations near the

poles, 121500 observations at high latitude were randomly excluded to obtain a balanced data set. For IWP retrieval,

collocations should be classified into two bins (clear-sky scene and cloudy scene) according to a specific IWP threshold. A
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threshold of IWP >100 ¢ m™ is preliminarily selected to classify cloudy scenes. Thus, 81490 collocations are recognized to

be cloudy scenes and 462529 collocations are clear sky scenes in this data set.
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185 Figure 2. Statistical information of scan angle and latitude of MWHS observations in the collocation data set.
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The density plots shew-thestatisties-of ef the PBPD and TB at 150 GHz -and-TB(elear-skyand-elondy)-at+50-GHz(clear-

sky and cloudy scene) and the corresponding IWP from 2C-ICE over the ocean and land ever-the-ocean-and-theland—in

2044are depicted in Fig. 4 and 5. Scan angles from +40.15° to £53.35° are selected to compare the results with observations

from conical scanners. Fheseatterpoints-are—color-coded-by WP from 2CICEThere—is-In the cloudy case, the TBs are
distributed between 150 K and 290 K, with the largest PD occurring at 230 K (corresponding to IWP >1000 g m2). This is

similar to the result of Gong et al (2017, 2020). However, due to the cross-track scanning mode, the PD of MWHS is much

lower than conical scanners. The lowest TB generally appears in the center of deep convection clouds, and the PD is small

due to the randomly oriented ice particles; the largest PD due to the horizontally oriented particles generally appears in the

warmer ice clouds. From Fig. 4, it can be seen that the lower the TB, the larger IWP, but the TB is also influenced by the

local atmospheric temperature. Comparing Fig. 4 and Fig. 5, the TB of the clear sky is generally above 240 K. The PD from

the ocean surface is relatively large, while the PD from land is small. a-elear-difference—in—theshape—ef-theseatterplot

10
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Figure 5. Same as Fig. 4 but for clear-sky scenes.

3 Retrieval method

The collocations are used as a retrieval database to train the networks, the processing flow is shown in Fig. 6. The DNN is a
feed-forward neural network which contains an input layer, several hidden layers, and an output layer. The DNN is a fully
connected network, neurons in each layer connect with all neurons in the next layer. The hidden layers are used to perform
the nonlinear calculation to achieve a nonlinear mapping of the relationship between input and output data. DNN is based on

backpropagation learning algorithms to search for a minimum loss function (such as the mean squared error between

13
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prediction data and reference data) and then adjust the thresholds and weights iteratively to close the reference data. The
outstanding nonlinear mapping capability makes DNN popular for geophysical retrieval.

In this study, DNN with 6 layers is selected. The first layer is the input layer, and each input quantity uses a neuron to
connect with the next layer. The second to fifth layers are the hidden layers, in which 360-256 neurons are used for each

layer, and the tanh and the Rectified Linear Unit (ReLU) is selected as the activation function for the cloud filtering network

and the IWP retrieval network, respectively. Since networks are prone to overfitting in the training, the early stopping and

dropout method is used to improve the training. To remove the effect of the order of data, random assignation and
normalization are performed in the front of the hidden layers. The final layer is the output layer which uses the IWP of 2C-
ICE (transfer to log space) as reference. The activation function of the last layer is selected according to the target of the

network. For the determination of cloudy and clear-sky scenes, the sigmoid function is used for binary classification. For the

IWP retrieval, the results are output directly. Due to the imbalanced data set of the clear-sky and cloudy scenes, the “focal

loss” function which can solve the problem of serious imbalance of positive and negative sample ratio in one-stage object

detection is used instead of the cross-entropy loss function (Lin et al., 2017). In the iterative training of the networks, the

models with the best results in the validation data will be retained. The hyperparameters were chosen by comparing the
performance of DNNs with different hidden layers, number of hidden neurons and regularization parameters. Each network
mentioned in the next section uses the same hyperparameters of the model to ensure that the performance of the network is

only affected by the input parameters.

MWHS CloudSat
L1B radiance 2C-ICE
4
Collocated
dataset
Cloud scene
filter
Channel
combination
DNN Train
Auxiliary
information
Cloud filtering IWP retrieval
network network
v
Model test

Figure 6. The schematic of the MWHS retrieval based on the DNN model.
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The sensitivity of ice clouds is discussed by Holl et al. (2010) and Eliasson et al. (2013), their studies show no significant

radiance signals at IWP <100 g m2g/ns® for MHS measurements. Thus, twe-it is used as the threshold for the cloud filtering
network. thresh i i i

hin the MWIHS.& it For the IWP threshold-of 10 2401520 collocats lofi_For the TWP_threshold-of 106
g/m? 168898 collocations-are left:

From those collocations, we randomly assign 75% to be used for training and 25% to be used for validation. The training

data are used as a sample of data for model fitting. The validation data can be used to tune the hyperparameters of the
network and for preliminary evaluation of the model. Collocations during January 2015 are used for testing. These data are
not used to train the networks and adjust the hyperparameters but serve as independent data to test the performance of the
final obtained networks.

The performance metrics employed for the retrieval are defined in the following.

The commonly used binary classification metrics are chosen for the cloud filtering network. A confusion matrix M is
defined as

M= (e 1) m

TP and TN are the number of true positives (both MWHS and CloudSat find ice clouds) and negatives (both MWHS and

CloudSat find no ice clouds), respectively. FP and FN are the number of false positives (MWHS finds ice clouds but

CloudSat not) and negatives (CloudSat finds ice clouds but MWHS not), respectively

From the confusion matrix above, the accuracy (AC), False Alarm Ratio (FAR), Probability of Detection (POD), F1 score

and Critical Success Index (CSI) can be derived as
TP +TN

AC = 2
TP+ TN+ FP + FN (2
FAR = Fp 3)

" TP+FP
POD = e 4

" TP+ FN
- 2-TP )

" 2.TP+FP+FN

TP
CSl=———— 6
TP + FN + FP L
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The performance evaluation for the IWP retrieval network is based on the root mean square error (RMSE), mean absolute

percentage error (MAPE), BIAS and Pearson correlation coefficient (CC), defined as

N
1 2
RMSE = Nz(Ypred,i — Vvatid,i) =
i=1
1| |
MAPE = _Z Ypred,i — Yvalid,i x 100% @
N L Yvatid,i
i=1
N
1
BIAS = NZ(Ypred,i — Vvatid,i) )
i=1

1 - .
_ Nzliv=1(:)/pred,i - Ypred)(:)/valid,i - yvalld)

O-predo-valid

cc a10)

4 Results

To retrieve the IWP from the MWHS measurements, two networks were trained for different capabilities. The first one

allows classifying a scene according to whether it is clear or cloudy. The second is to retrieve the IWP. The two networks are

used separately, and the IWP of the scene considered clear is set to 0. Due to the randomness of the neural network in the

assigned training and validation data, 20 models were trained for each combination to ensure the stability of the model

results.

4.1 Cloud Filtering Network

The network structure, training data set and cloud IWP threshold are discussed above. The sigmoid activation function can

vary the output of the network from 0 to 1, which represents the probability of cloud occurrence. Thus, a threshold value of

16
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cloud probability must be assigned to determine the cloudy scene. After testing, a threshold value of 0.4 is the most

appropriate for this cloud filtering. The results show that all channels have cloud information, and CH. 4 (183-3 GHz) is the

best for cloud detection. This channel is also used by the traditional method to distinguish cloudy from clear sky. However,

the detection of ice clouds using MWHS channels is still limited. The FAR and POD of the best network are 0.26 and 0.63,

respectively.

Table 2. Errors of cloud filtering using different channels

AC FAR POD Fl CSI
1. CH.1-5 0.92 0.26 0.63 0.67 0.51
2.CH.2-5 0.92 0.27 0.61 0.66 0.49
3. CH.3-5 0.91 0.30 0.62 0.65 0.49
4. CH.4-5 0.91 0.29 0.59 0.64 0.48
5.CH.5 0.83 0.32 0.38 0.49 0.33

4.2 IWP Retrieval Network

For the global IWP retrieval, clear-sky scenes were excluded from the training data. Different combinations of the network

input are compared to find the best retrieval strategy. The auxiliary information cases and their retrieval errors are listed in

Table 3. In these cases, five channels are all used. Additional information including latitude, scan angle and ocean/land mask

and their combinations were added to train the networks. Fhese-eases-are-dividedinto-threeparts—their detatlsand-mean

Concerning the errors shown in Table 3, a significant improvement in retrieval performance is achieved by adding latitude

or ocean/land mask information while the contribution of just adding the scan angle to the retrieval is not significant. In

MWHS measurements, the signal from ice clouds is a reduction in TB by scattering effects. In the absence of latitude

information, it is difficult to distinguish whether the decrease in TB is due to the ice particles or the low radiance from the

surface or atmosphere. So is the ocean/land mask information. According to cases 1, 2, 4 in Table 3, the CC is improved

from 0.50 to about 0.62, RMSE and MAPE are also improved significantly. However, MAPE and BIAS are in conflict,

reducing MAPE will increase BIAS. Thus, the correlation is an important metric for evaluating the model. The combination

of auxiliaries can further improve the retrieval results, although the effect of using the scan angle alone is not obvious. Case

5 and 6 in Table 3 indicates that the scan angle combined with latitude and ocean/land mask can also further improve the

retrieval capability.
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between WP of 100 o/m’and 200-g/m’while the-errorsreduce 10-45-70% at WP =200 o/m’ 1t should-be-noted-that there
are-only13-samples-in-the Jast bin-G-e- TWPR>10000-g/m>). The retrieval MAPE of each IWP bin is shown in Fig. 7 (a). The

MAPE in different IWP bins gives a more detailed comparison. Compared to no auxiliary model, adding auxiliaries can

significantly reduce the retrieval errors, especially at IWP <200 ¢ m?and IWP >1000 ¢ m™>.

325 Table 3. Errors of IWP retrieval using different auxiliaries Table 2-Mean-errors-of PW P retrieval

RMSE (g m?) MAPE (%) BIAS (em?) CC

1. No 1085.75 109.94 -91.09 0.50

2. Lat 943.68 84.53 -125.98 0.61

3. Ang 1020.52 106.43 -93.64 0.53

4. Mask 943.80 81.84 -126.03 0.62

5. LattAng 908.59 79.88 -145.70 0.64

6. Lat+Mask 908.48 75.80 -141.02 0.64

7. Ang+Mask 895.98 78.60 -143.64 0.65

8. Lat+tAng+Mask 875.20 75.30 -117.05 0.67
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The performance of the different channel combinations (all the auxiliary information is added) is presented in Table 4.

Since the 183 GHz channels (CH. 3-5) of MHS have proved to have good sensitivity to CloudSat IWP, the influence of the

150 GHz channel and its PD is mainly focused here. The results of case 2 and 3 in Table 4 show that adding the 150 GHz

window channel (CH. 2) give an improvement to all the metrics. Considering the contribution of PD in the retrieval, the

results show that the addition of PD alone (case 4) contributes to the retrieval of IWP, while the combination including both

H and V polarization channels has the best performance (case 1). Figure 7 (b) illustrate the MAPE of different channels.

Comparing case 3 with case 4 in Table 4, the addition of PD gives an obvious improvement in the retrieval results at

IWP >2000 ¢ m™>. This conclusion is close to the analysis in Figure 4. In general, all channels of MWHS contribute to ice

cloud retrieval. The
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345 Table 4. Errors of IWP retrieval using different channels
RMSE (gm?) MAPE (%) BIAS (gm?) CC

1.CH. 1-5 875.20 75.30 -117.05 0.67
2.CH. 2-5 901.84 76.75 -139.49 0.64
3.CH. 3-5 932.29 79.34 -158.89 0.61
4.CH. 3-5+PD  894.08 79.82 -134.88 0.65
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Figure 7. Comparison between the performance of the ITWP retr1eva1 networks usmg different aux111ary and channel
combmatlons of input.Figy " o -

The final retrieval models (case 1 in Table 2 and case 8 in Table 3) were selected according to the metrics. Combining the

cloud filtering network and the IWP retrieval network with the test data, the final results are shown in Table 5. The

performance over the ocean and land is also listed. After adding the cloud filtering network, the accuracy of IWP retrieval

decreased, significantly for MAPE and BIAS, and slightly for CC and RMSE. The results are better over the ocean than over
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375 land, especially the correlation. Figure 8 shows the scatter plot between MWHS IWP and 2C-ICE IWP in January 2015. The

result shows relative agreement, but MWHS IWP has significant dispersion at low IWP, which may be due to the lack of

sensitivity of MWHS to thin ice clouds. The final model underestimates the true value overall but overestimates it when the

IWP <300 g m™.

380 Table 5. Errors of the final selected models
RMSE (gm?) MAPE (%)  BIAS(gm?) CC
Final model 916.76 92.90 -213.12 0.65
Land 942.81 92.56 -260.47 0.55
Ocean 908.20 92.76 -196.79 0.69
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4.3 Network application
4.3.1 Tropical Cyclone IWP retrieval

A tropical cyclone Bansi observed by MWHS and CloudSat simultaneously (the time difference is about 3 minutes) on 12

January 2015 is selected for the validation of the final networks. MWHS observed TBs of the cyclone are manifested in Fig.
9. Quite low TB (as low as 150 K) can be found at 150 GHz and 183-7 GHz channels in the regions of the eyewall (the eye

1s not seen) and spiral rain bands which are mainly caused by the scattering of ice particles in the clouds. The 183-1 GHz and

183-3 GHz channels are strongly influenced by water vapor, the shape of the cyclone is not observable, but clear low TBs

can still be seen in the eyewall and rainband. MW

tThe PDs at 150 GHz (TB,, — TBy). their distribution characteristics are the same as the low TBs. The PD reaches its

maximum in the anvil precipitation regions (around 5 K, consistent with the result in Fig. 4) and decrease in the remote

clear-sky or cirrus regions. he
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FY-3B/MWHS (12 January 2015, 10:08:50)
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Applying the two neural networks trained above to the tropical cyclone, the retrieval IWPs are shown in Fig. 10 in

comparison with 2C-ICE, and the retrieval errors are listed in Table 6. Due to the narrow field of view of CloudSat, a total of

21 pixels of MWHS are collocated in the tropical cyclone region. The results show that MWHS IWP has a high correlation
with 2C-ICE, the MAPE and BIAS are better than that in Table 5, although the RMSE is larger, it is reasonable in tropical

cyclones. Ei
T o o iR | e
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Table 6. Errors of the tropical cyclone retrieval

RMSE (gm? MAPE (%) BIAS (gm?) CC
Bansi 1191.3 77.69 82.07 0.73
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ol ) )

450 4.3.2 Global mean IWP comparison

Figure 11 shows the global mean IWP for 2015Fiey

Gy 2044 —and—winter—January 2045) from Aqua/MODIS L3 product (MYDO08 M3, C61, Platnick et al., 20452017),
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CloudSat 2C-ICE, FY-3B/MWHS retrieval and ERAS reanalysis data set. ERAS IWP data shown here is combined of its
total column snow water (CSW) and cloud ice water (CIW) data since it differentiates between precipitating and non-

precipitating ice. The overall distribution of the annual mean IWP for the four data sets is similar. The MODIS product has a

significantly higher IWP than the other three products, while the ERAS5 has a lower IWP overall. IWP from 2C-ICE is the

same as MODIS near the equator and between ERAS5 and MODIS elsewhere. Since 2C-ICE is used to train the networks,
MWHS IWP is certainly approaching the 2C-ICE. The zonal means of IWP for 2015 are given in Fig. 12. The overall shape

of the IWP zonal averages is fairly consistent across data sets. However, there are large differences in the overall magnitude

of the IWP. These differences are particularly pronounced at mid-latitudes, especially between the MODIS product and the
other three products. Compared to the IWP maps in Duncan and Eriksson (2018), this version of MODIS IWP is more

similar to 2C-ICE near the equator (10°S - 10°N), but with increasing latitude, the IWP is much larger than the other
products. The MWHS IWP is very close to that of 2C-ICE but lower than 2C-ICE in the mid-latitudes of the southern

hemisphere. This may be due to the lack of training data in the middle and high latitudes of the southern hemisphere.

30



40°N
0° 4
40°S - i
ke o — e = U . e 1 F— P e = = F—
0° 60°E  120°E  180°  120°W  60°W 0° 60°E  120°E  180°  120°W  60°W
IWP g/m? IWP g/m?
0 500 1000 1500 0 500 1000 1500
- -3B/MWHS IWP (2014-07) ‘ ~ ERAS IWP (2014-07) ‘ :
80°N _ 5 80°N - e — il
40°N HBNE 40°N
00 . 00 e 'y
40°S ] 40°S - ~ [
80°S - f ! T 80°S 4 - — -
e e T 2 T = T i e T 2 F = e 1
60°E  120°E  180°  120°W  60°W 0° 60°E  120°E  180°  120°W  60°W 0°
IWP g/m? IWP g/m’
0 500 1000 1500 0 500 1000 1500

31



MODIS(Aqua)

. 2C- [CE(CIoudSat)

40°8 ]

80°S J

r * T B T B — - f—‘ 1 r i—' B e T 1
180°  120°W  60°W 0° 60°E  120°E  180° 180°  120°W  60°W 0° 60°E  120°E  180°
IWP (g m™) IWP (g m™)

L5 e — A':;I - 1 T

180°  120°W  60°W 0° 60°E  120°E  180°  180°  120°W  60°W 0° 60°E  120°E  180°
IWP (g m™) IWP (g m™)

10° 10! 10° 10° 10! 10°

475 Figure 11. Global mean IWP maps for 2015 from MODIS, 2C-ICE, MWHS and ERAS 2C-ICE is grldded on a 5° grld,
Wh1le the other products are grldded on a 1° grid. Fi

32



60°E  120°E  180°  120°W  60°W
IWP g/m?

120°E 180°
IWP g/m?

0 500 1000 1500 0 500 1000 1500

~ ERAS IWP (2015-01)

FY-3B/MWHS IWP (2015-01)

— =
- 1

C120°E 180°  1200W  60°W  0°

6°E  120°E 180°  120°W  60°W 0 *  60°E
IWP g/m’ IWP g/m’
0 500 0 500 1000 1500
50+ .
Z
e
O === |
ERN
=
—
——MODIS
-507 ——2C-ICE |
—=-MWHS
| E + ERAS
0 100 200 300 400
IWP (g m™)

480 Figure 12. Zonal means of IWP for 2015 Figure +6-—Same-asFEig—5-butforJanvary 2045-

33



485

490

495

500

505

510

4.4 Discussion

Ice cloud misidentification is an important and unavoidable problem in this study. One reason is that the microwave channels

detect ice clouds through the large decrease in TB. However, the low temperature in high altitude regions or other

temperature anomaly phenomena can also lead to low TB. In the final results above, although the geographic information is

added to the training data, there are still many misclassification cases, such as on the Tibetan Plateau in winter. Therefore,

knowing the surface temperature or the near-surface air temperature will help the ice cloud detection. The other reason is due

to the mismatch between the CloudSat and the MWHS footprints spatially and temporarily. Since the CloudSat pixels only

cover less than 15% of the MWHS pixel, the 2C-ICE scenes cannot fully represent the MWHS observations, especially in

the case of thin clouds.

For the IWP retrieval, the 150 GHz window channel has a significant ice cloud response which in combination with 183

GHz channels provides a better retrieval of IWP. The PD at 150 GHz, although contaminated by polarization from the ocean

surface, also contributes positively to the retrieval especially when the IWP is larger than 1000 ¢ m™>. In addition, the PD of

quasi-polarization channels from MWHS is related to the scan angle and does not fully represent the polarization

information of the ice particles, especially near the 45° scan angle. From the perspective of polarization measurements only,

a cross-track scanner does not provide as much polarization information as a conical scanner but is more convenient for data

assimilation.

However, there are some limitations to using neural networks for IWP retrieval. Collocation is the first limitation since

there are some uncertainties in the field of view of MWHS and CloudSat due to the large resolution difference. These

uncertainties are represented in the training data and can be predicted using for example quantile regression neural networks.

The most important issue is the real sample (2C-ICE) used in training, which has uncertainties that are difficult to quantify.

Therefore, it is also impossible to make accurate error estimates of the model results. In the absence of access to a large

number of real samples, the use of neural networks can only converge to a certain product with the highest accuracy (such as

2C-ICE). An alternative approach is to use simulation results (typical profiles) of radiative transfer models, where the

generalization ability of the network will strongly depend on the model itself and the input field. In addition, the microwave

band below 200 GHz is sensitive only to large ice particles and thick clouds and is relatively less effective for cloud

detection.
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5 Conclusions

In this paper, an analysis of global IWP retrieval from FY-3B/MWHS radiance measurements based on neural networks is
presented. MWHS onboard FY-3B satellite has two quasi-polarization channels at 150 GHz which can provide more
information about ice clouds. was—everlooked—in—previeus—stadie—For IWP retrieval, CloudSat/2C-ICE is chosen as the

reference data set for neural networks because it is publicly available and it meets the requirements in terms of data numbers

and measurement accuracy.

retrieve-the TWPRfrom- MWHSmeasurements: Two types of networks (cloud filtering and IWP retrieval) are trained using

the collocation data set of MWHS and 2C-ICE. A cloud filtering network is trained to classify the cloudy and clear-sky
scenes. For the IWP threshold of 100 g m~2e/?, all channels of MWHS show sensitivity to ice clouds, and CH. 4 is the most
powerful for cloud detection. The FAR and POD of the final network are 0.26 and 0.63, respectively. eloudfiltering is-86:48%
and-9422% respeetively—IWP retrieval networks with different combinations of channels and auxiliary information as input

are compared to find the best retrieval strategy. The retrieval results show that adding the 150 GHz channel gives an obvious

improvement in IWP retrieval and the PD also make a positive impact. Comparing the MWHS IWP with 2C-ICE, the CC =
0.65. RMSE = 916.76 g m2, MAPE = 92.90%, and BIAS = -213.12 ¢ m™>. Applying the networks to the cyclone Bansi, the
results show a relatively high correlation (0.73) between MWHS IWP and 2C-ICE. The 2015 annual mean IWP from
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MWHS shows a similar overall shape to that of MODIS, 2C-ICE and ERAS, and is very close to 2C-ICE in magnitude

making the retrieval IWP more credible.

Neural networks are widely used to statistically characterize the mapping between radiometric measurements and related

geophysical variables. The advantages of neural networks are their simplicity and ease of use, their ability to effectively
learn the complex nonlinear mapping relationships in samples, and their better robustness to noisy data. By using the
collocated measurements, there is no need to establish a complicated radiative transfer model with many possible sources of
error. Although the retrieval accuracy can never be as good as 2C-ICE, the spatial and temporal coverage will be much larger

which is important for long time series of climate research.

Code and data availability. FY-3B MWHS data can be downloaded from http://satellite.nsmc.org.cn/portalsite/. CloudSat 2C-ICE
product can be downloaded from https://www.cloudsat.cira.colostate.edu/data-products. Aqua/MODIS L3 product can be
downloaded from https://ladsweb.modaps.cosdis.nasa.gov/search/order. ERAS reanalysis data can be downloaded from
https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset.
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