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 23 

Abstract 24 

The European Space Agency Aeolus mission launched a first-of-its-kind spaceborne Doppler wind 25 

lidar in August 2018. To optimize assimilation of the Aeolus Level-2B (B10) Horizontal Line-of-26 

Sight (HLOS) winds, significant systematic differences between the observations and numerical 27 

weather prediction (NWP) background winds should be removed. Total least squares (TLS) 28 

regression is used to estimate speed-dependent systematic differences between the Aeolus HLOS 29 

winds and the National Oceanic and Atmospheric Administration (NOAA) Finite-Volume Cubed-30 

Sphere Global Forecast System (FV3GFS) 6-h forecast winds. Unlike ordinary least squares 31 

regression, TLS regression optimally accounts for random errors in both predictors and 32 

predictands. Large well-defined, speed-dependent systematic differences are found in the lower 33 

stratosphere and troposphere in the tropics and Southern Hemisphere. Correction of these 34 

systematic differences improves the forecast impact of Aeolus data assimilated into the NOAA 35 

global NWP system. 36 

 37 
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1 Introduction 40 

The spaceborne Doppler wind lidar onboard the European Space Agency (ESA) Aeolus 41 

mission measures both Mie (i.e., clouds and aerosols) and Rayleigh (i.e., molecular) backscatter 42 

to derive wind profiles along the sensor’s Horizontal Line of Sight (HLOS) throughout the 43 

troposphere and lower stratosphere [Straume-Lindner, 2018; Straume et al., 2020]. The Aeolus 44 

HLOS Level-2B (L2B) winds have demonstrated positive impacts on global weather forecasts 45 

[Rennie et al., 2021; Cress, 2020; Garrett et al., 2020, 2022].  46 

To optimize the positive impact of Aeolus HLOS winds on weather forecasts, large 47 

systematic differences between Aeolus winds and numerical weather prediction (NWP) model 48 

background winds should be corrected [Daley, 1991]. Therefore, it is important to identify 49 

potential systematic differences between Aeolus winds and their NWP model background 50 

counterparts [Liu et al., 2020, 2021, and 2022]. The systematic differences may come from both 51 

the NWP model background and the Aeolus winds. First, current operational global NWP 52 

background winds still have larger errors or uncertainty in regions where conventional wind 53 

observations are sparse or absent. For example, the 6-h forecast zonal winds from the ECMWF 54 

model (https://www.ecmwf.int/en/forecasts) and the NOAA Finite-Volume Cubed-Sphere Global 55 

Forecast System (FV3GFS) model (Kleist et al., 2021) show large systematic differences in the 56 

upper troposphere and lower stratosphere of the tropics, the Southern Hemisphere (SH), and 57 

poleward of 70° N, with maxima on the order of 2.0, -0.5, and 0.5 m/s, respectively (Fig. 1). Such 58 

systematic differences in regions where conventional data are sparse may be due in part to 59 

differences in the assimilation of satellite radiances at the NWP centers. Second, although 60 

corrections to several substantial sources of systematic differences in the Aeolus HLOS winds 61 
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(baseline B10) have been implemented, including corrections to the dark current signal anomalies 62 

of single pixels (so-called hot pixels) on the Accumulation-Charge-Coupled Devices (ACCDs), to 63 

the linear drift in the illumination of the Mie and Rayleigh spectrometers, and to the telescope M1 64 

mirror temperature variations [Reitebuch et al., 2020; Weiler et al., 2021], uncorrected systematic 65 

differences due to potential calibration issues might remain in Aeolus HLOS winds and may 66 

contribute to potential systematic differences between Aeolus and the NWP background HLOS 67 

winds. The residual systematic differences may lead to sub-optimal assimilation of Aeolus HLOS 68 

winds in NWP systems.  69 

For clarity in the remainder of this article certain words and phrases are assigned specific 70 

definitions. Thus, throughout this article, the phrase “Aeolus winds” specifically means the 71 

observations of Aeolus Level-2B (B10) HLOS winds. Similarly, the phrase “FV3GFS winds” 72 

specifically means the numerical weather prediction (NWP) background HLOS winds evaluated 73 

from the FV3GFS 6-h forecasts at the observation location and time. (In discussions of winds that 74 

are not HLOS winds, terms like u-wind, v-wind, or wind vector are used.) Further, the phrase “Mie 75 

winds” specifically means Aeolus winds derived from Mie backscatter observations and the phrase 76 

“Rayleigh winds” specifically means Aeolus winds derived from Rayleigh backscatter 77 

observations. Also, throughout this article, the word “innovations” without further qualification 78 

specifically refers to the differences between these Aeolus and FV3GFS winds, and the word 79 

“bias” (as well as the phrases “Mie bias” and “Rayleigh bias”) without further qualification 80 

specifically refers to the mean of these innovations, where the sample mean is over some specified 81 

space-time volume for either the Mie or Rayleigh winds. 82 
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Speed-dependent biases identified and estimated using ordinary least squares (OLS) are 83 

subject to contamination from random errors in Aeolus and/or FV3GFS  winds [Frost and 84 

Thompson, 2000], since OLS assumes no errors in the predictor or independent variable, which in 85 

this case would be either the Aeolus or FV3GFS  winds, or a combination of the two.  In contrast, 86 

total least squares (TLS) regression accounts for errors in both dependent and independent 87 

variables and generates a statistically optimal analysis of the biases [Deming, 1943; Ripley and 88 

Thompson, 1987; Markovsky and Van Huffel, 2007]. For the case of Aeolus and FV3GFS  winds, 89 

the use of linear TLS regression [Ripley and Thompson, 1987] finds an optimal estimate of the 90 

true (assumed linear) relationship between Aeolus and FV3GFS  winds.  91 

In this study, the TLS regression approach is used to estimate biases that depend linearly 92 

on wind speed. The suboptimality of OLS bias estimates is demonstrated by comparison to the 93 

TLS bias estimates, which are treated as “truth” in this study.  A bias correction based on the TLS 94 

bias analysis is proposed to optimize Aeolus wind assimilation by the FV3GFS model and thus 95 

improve the impact of Aeolus winds on FV3GFS forecasts. Section 2 describes the Aeolus and 96 

FV3GFS winds, the TLS bias analysis method, and the estimation of the ratio of error variances 97 

of Aeolus to FV3GFS winds, which ratio is used in the TLS regression. Section 3 describes the 98 

variations of the TLS bias estimates with height, latitude, and wind speed. Section 4 demonstrates 99 

the substantial differences between the TLS and OLS bias estimates. Section 5 proposes a TLS 100 

bias correction for Aeolus data assimilation. The forecast impact of the TLS bias correction is 101 

presented in Section 6. Section 7 presents a summary of findings and conclusions.  102 
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2 Data and Methodology 103 

2.1 Aeolus L2B and FV3GFS background wind data 104 

The Aeolus L2B cloudy-sky Mie winds and clear-sky Rayleigh winds are examined for the 105 

period 1-7 September 2019. This one-week period provides a sufficient sample to estimate the 106 

biases. The Aeolus winds were obtained from the Aeolus dataset (baseline B10) re-processed by 107 

ESA [Rennie et al., 2021, Weiler et al., 2021]. The reprocessing includes the M1 bias correction, 108 

which removes most of the globally and vertically averaged biases of both Mie and Rayleigh winds 109 

[Weiler et al., 2021]. The Aeolus winds are reported at a standard set of vertical layers [de Kloe, 110 

2019, 2020]. This study examines Mie and Rayleigh winds within height ranges of 0-22 km that 111 

include nearly all Aeolus winds. The height is defined relative to the EGM96 geoid for the L2B 112 

winds [Tan et al. 2008].  113 

The Aeolus and FV3GFS winds are obtained from a data assimilation experiment 114 

(hereafter the BASE experiment) where the Aeolus winds are monitored and the Aeolus wind 115 

observation operator ሺ𝐻ሻ is applied to the FV3GFS background ሺ𝐱ሻ to obtain the value of 116 

FV3GFS wind ሺ𝑦
 ൌ 𝐻ሺ𝐱ሻሻ corresponding to each Aeolus wind ሺ𝑦

ሻ. This experiment employs 117 

the FV3GFS data assimilation system, called Global Statistical Interpolation [GSI, Kleist et al. 118 

2009], configured for the 4DEnVar algorithm with 64 vertical levels, and horizontal resolutions of 119 

C384 (~25 km) for the deterministic analysis and forecast and C192 (~50 km) for the 80 ensemble 120 

members [Wang and Lei, 2014]. 121 

Similar Aeolus data quality control procedures as recommended by ESA and ECMWF 122 

[Rennie et al., 2021] were implemented to reject the following observations: HLOS L2B 123 
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confidence flag “invalid”; Rayleigh winds at layers below 850 hPa, L2B uncertainties greater than 124 

12 m/s, accumulation lengths less than 60 km, and atmospheric pressure within 20 hPa of 125 

topographic surface pressure; Mie winds with L2B uncertainties greater than 5 m/s and 126 

accumulation lengths less than 5 km. Further, a standard outlier check rejects any Aeolus wind for 127 

which |𝑦
 െ 𝑦

| is greater than 4 times the estimated errors for Aeolus winds prescribed by the 128 

data assimilation system. 129 

When examining Aeolus wind statistics, we stratify the Aeolus data by orbital phase, either 130 

ascending when the spacecraft is moving northward or descending when the spacecraft is moving 131 

southward. The vertical and daily variations Mie and Rayleigh biases for global horizontal samples 132 

are consistent throughout the period (Fig. 2). For ascending orbits, the Mie biases are positive 133 

above 6 km and negative below 6 km, and are as large as +1.8 m/s and -0.5 m/s, respectively. The 134 

Mie biases are smaller and positive at most levels in descending orbits. In descending orbits, the 135 

Rayleigh biases are as positive as +1.2 m/s above 10 km, and as negative as -1.2 m/s below 8 km. 136 

The positive biases in ascending orbits are smaller. The results indicate that the biases vary 137 

substantially with height and orbit phase for both Mie and Rayleigh winds. The Mie and Rayleigh 138 

biases also vary considerably with latitude (Fig. 3). Mie biases are as positive as +1.5 m/s in the 139 

upper troposphere and Rayleigh biases are as positive as +2.0 m/s in the tropical upper troposphere. 140 

Both Mie and Rayleigh biases are as negative as -1.0 m/s in the lowest layers.  141 

The statistical relationship between Aeolus and FV3GFS winds is illustrated by the density 142 

plots in Fig. 4. There is a strong correlation of 0.93 between Mie and FV3GFS winds, and of 0.96 143 

between Rayleigh and FV3GFS winds.  The average and OLS regression of the innovations as a 144 

function of Aeolus wind suggest considerable speed-dependent biases with both linear and non-145 
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linear components (Fig. 5). In this study, we focus on the estimation and correction of the linear 146 

part of the biases using the TLS linear regression. 147 

2.2 TLS Linear Regression 148 

In this section, we review the TLS linear regression method [Ripley and Thompson, 1987] 149 

in the context of estimating potential speed-dependent biases. The TLS estimate for each 150 

collocated pair of Aeolus and FV3GFS winds (𝑦
, 𝑦

) is defined by 151 

                     𝑦
=  𝑦ො

+ 𝜀


          and        𝑦
= 𝑦ො

+ 𝜀
         (i =1, N)                        (1) 152 

where  𝑦ො
 and 𝑦ො

 are the TLS estimates of the true Aeolus and FV3GFS winds, 𝜀
 and 𝜀

 are 153 

random errors, and N is the number of Aeolus/FV3GFS wind collocations in the sample. The 154 

sample might be defined by a vertical layer or a latitude band. In OLS regression, since it is 155 

assumed that there are no errors in the predictor, the predictor can be used directly to estimate the 156 

predictand. The situation is a little more complicated in TLS regression where (𝑦ො
, 𝑦ො

), the most 157 

probable true state, is the point on the regression line that is closest in a statistical sense to the point 158 

(𝑦
, 𝑦

). 159 

   Here it is assumed that 𝜀
 and 𝜀

 are independent and that the random error variance 160 

ratio 𝛿 ൌ (𝜎 𝜎⁄ )2 = E[𝜀
𝜀

] / E[𝜀
𝜀

] is known. The error variance ratio 𝛿 is a crucial 161 

parameter in determining the TLS bias analysis and is estimated as described in the next section. 162 

Further, the true relationship between the Aeolus and FV3GFS winds is assumed to be described 163 

by a linear function (as seen in Fig. 5):  164 

                                        𝑦ො
 =  𝑐 + 𝑐ଵ𝑦ො

                  (i =1, N)                                   (2)       165 
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where 𝑐 is an offset or constant coefficient and 𝑐ଵ is a speed-dependent coefficient.  166 

   The TLS regression finds an optimal estimate of the 𝑦ො
, 𝑐 and 𝑐ଵ by minimizing the cost 167 

function J: 168 

             J ൌ  ∑ ቀሺ𝜀
 𝜎⁄ ሻଶ  ൫𝜀

 𝜎⁄ ൯
ଶ
ቁே

ୀଵ  169 

                   ൌ  ଵ

ሺఙሻమ
∑ ቀ൫𝑦

 െ 𝑐 – 𝑐ଵ𝑦ො
൯

ଶ
 𝛿൫𝑦

 െ 𝑦ො
൯

ଶ
ቁே

ୀଵ                       (3) 170 

To determine the 𝑦ො
, the derivative of J with respect to 𝑦ො

 is set to zero:  171 

                         𝑦ො
 = (𝑐ଵሺ𝑦

 െ 𝑐ሻ   𝛿𝑦
) / ሺ𝑐ଵ

ଶ  𝛿ሻ                    (i =1, N)           (4) 172 

Eq. (4) thereby reduces the problem to a minimization in terms of 𝑐 and 𝑐ଵ. A similar equation 173 

holds even if the error variances vary with i, but then there is no closed form solution for 𝑐 and 174 

𝑐ଵ, as there is in the current case, which is known as the Deming problem [Ripley and Thompson, 175 

1987]. When the coefficients 𝑐 and 𝑐ଵ are obtained, the TLS estimate for the new or within-sample 176 

observation is given by Eq. (4).  Finally, the estimate of the bias for the kth observation, either for 177 

a new or within-sample observation, is given by 178 

                          𝑑መ ൌ 𝑦ො
 െ 𝑦ො

  =  𝑐 + (𝑐ଵെ1ሻ𝑦ො
                                                   (5) 179 

Given the form of Eq. (5), we will refer to 𝑐 and (𝑐ଵ െ 1ሻ as the offset and speed-dependent bias 180 

coefficients, respectively, hereafter.  181 

2.3 Estimation of the random error variance ratio   182 

        In this study, errors of Aeolus winds are estimated by the Hollingsworth-Lonnberg 183 

method (Hollingsworth and Lonnberg, 1986; Garrett et al., 2022), which include Aeolus 184 
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instrument errors and forward modeling error and representativeness errors of the FV3GFS 185 

background, at the specific 25 km horizontal resolution.  The random error variance ratio 𝛿 ൌ 186 

(𝜎 𝜎⁄ )2 in the TLS bias analysis is estimated from the innovations from the BASE experiment 187 

for 1-7 September 2019. It is assumed that there are no correlations between the random errors of 188 

the Aeolus and FV3GFS winds, and no horizontal correlations between the random errors of 189 

Aeolus winds separated by more than 90 km. These assumptions are justified a-posteriori by the 190 

reasonable error estimate of FV3GFS background winds (Garrett et al., 2022). 191 

Global error estimates are calculated for all Mie and Rayleigh winds in each layer as 192 

follows. First, the spatial covariance of the innovations is calculated. Since these are innovations 193 

from the BASE experiment where Aeolus data are not assimilated, it is reasonable to assume that 194 

the Aeolus and FV3GFS wind errors are uncorrelated. Then the spatial covariance of the 195 

innovations, ሺ𝜎୭ିୠሻଶ, at zero separation distance, is equal to  196 

                                        ሺ𝜎୭ିୠሻଶ ൌ  ሺ𝜎୭ሻଶ   ሺ𝜎ୠሻଶ                                                (6) 197 

where 𝜎୭ and 𝜎ୠ are the random error standard deviations of Aeolus and FV3GFS winds, 198 

respectively.  199 

By assumption, at separation distances greater than 90 km, the innovation covariances are 200 

estimates of the FV3GFS wind error covariance alone and can be extrapolated back to zero 201 

separation to get an estimate of the error variance of the FV3GFS winds, ሺ𝜎ୠሻଶ, and then, using 202 

Eq. (6), the error variance of the Aeolus winds, ሺ𝜎୭ሻଶ, may be determined. Note that this can only 203 

be done using innovation covariances at separation distances large enough to have negligible 204 

covariances between the Aeolus winds. Since the calculated innovation covariances are globally 205 

averaged over all HLOS winds, it is not surprising that the corresponding biases are small. The 206 
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small residual biases in the innovations may introduce small (< 0.1) spurious spatial correlations. 207 

This spurious correlation, taken as the value calculated for the last bin (at 990 km), is removed 208 

from the correlation curves at all separation distances. The estimated random error variance ratio 209 

δ is assigned to the layer center height, defined as the global average heights of the Mie and 210 

Rayleigh wind in each vertical range bin. Fig. 6 shows that the vertical profiles of the square root 211 

of δ vary in the range of 1.2-1.6 for Mie winds versus FV3GFS winds and 2-3 for Rayleigh winds 212 

versus FV3GFS winds, respectively.   213 

3 The TLS Bias Estimates  214 

In this section, variations of the TLS bias estimates with orbital phase and height are 215 

examined to motivate the use of a TLS bias correction scheme proposed in Section 5.  216 

3.1 Variation of TLS Bias Estimates with Height 217 

The variation of the TLS solution with height and orbital phase is described here. The TLS 218 

samples include winds at all latitudes in each layer. The vertical distribution of the TLS constant 219 

and speed-dependent bias analysis coefficients in Eq. (5) is shown in Fig. 7. The speed-dependent 220 

bias coefficient (𝑐ଵ െ 1ሻ varies substantially with height and orbital phase. For Mie winds, this 221 

coefficient is quite large at most heights, ranging from 3% to 6%, with maxima at 3 km and 12-16 222 

km. For Rayleigh winds, this coefficient is smaller and ranges from 1% to 3% in ascending orbits 223 

and 1-5% in descending orbits, with maxima around the 3.5 km and 16 km.  224 

The offset bias coefficient 𝑐 for both Mie and Rayleigh winds also shows large 225 

variations with height and orbit with its value as large as +/- 1.0 m/s. In general, the offset bias 226 
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coefficient is positive in upper layers and negative in layers close to the Earth’s surface, consistent 227 

with the patterns seen in the global horizontal average of the innovations in Fig. 2. The vertical 228 

distribution of the average TLS bias estimate as a function of Aeolus wind is shown in Fig. 8. The 229 

biases vary substantially with height. Since the TLS biases are in part dependent on speed, at most 230 

heights the biases increase substantially as the magnitude of Aeolus wind speed increases. The 231 

biases at the extreme Aeolus wind speeds are as large as +2.5 m/s and -1.0 m/s for Mie winds, and 232 

+1.5 m/s and -1.0 m/s for Rayleigh winds. There are clear speed-dependent biases in the vertical 233 

average of these biases as well (Fig. 9). The results suggest that the innovations have both vertically 234 

varying and vertically averaged speed-dependent biases. 235 

3.2 Variation of Biases with Latitude 236 

The variation of the TLS solution with latitude and orbital phase is described here. For 237 

this purpose, the samples include all heights in each 10-degree latitude band and the vertical 238 

average of the error ratio δ is used. In general, the bias coefficients obtained are large and vary 239 

considerably with latitude and orbital phase, with maxima found in the tropics (Fig. 10). For 240 

example, the speed-dependent bias coefficient (𝑐ଵ െ 1ሻ for Mie winds in the tropics can be quite 241 

large, ranging up to a maximum of 11%. This coefficient is smaller for Rayleigh winds, ranging 242 

from -1% to 5%, with maxima found in the tropics. The offset bias coefficient 𝑐 for Mie winds 243 

also varies considerably with latitude and orbit, ranging from -1.0 m/s to +1.6 m/s. The offset 244 

bias coefficient 𝑐 is smaller for Rayleigh winds. 245 

The latitudinal distribution of the average TLS bias as a function of Aeolus wind speed is 246 

shown in Fig. 11. For both Mie and Rayleigh winds, the average TLS biases increase considerably 247 
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at most latitudes as the magnitude of Aeolus wind speed increases, particularly in the tropics and 248 

SH, with extreme values of about +/-1.5 m/s. 249 

3.3 Discussion 250 

The results indicate that the speed-dependent bias coefficient (𝑐ଵ െ 1ሻ is quite large, 251 

reaching ~10% and 5% for Mie and Rayleigh winds, respectively, particularly in the lower 252 

stratosphere and lower troposphere of the tropics. This suggests that there exist large speed-253 

dependent biases in the FV3GFS and/or Aeolus winds. Given that there exist large uncertainties 254 

in the FV3GFS (and ECMWF) background winds in the tropics (see Fig. 1), it is likely that the 255 

FV3GFS background may be a significant source of the biases, and this will require further 256 

investigation. In any case, these large speed-dependent biases should be corrected to optimize 257 

Aeolus wind assimilation and the impact of Aeolus winds on NWP forecasts. The large variations 258 

of the TLS bias estimates with latitude and height guide the design of the proposed TLS bias 259 

correction in Section 5. 260 

4 Comparison to OLS Regressions 261 

Parallel OLS regressions using three different predictors of the biases are compared with 262 

the TLS bias estimate results presented in Section 3. The OLS predictors are the FV3GFS winds, 263 

the Aeolus winds, and their average. The first two of these OLS regressions are equivalent to OLS 264 

regressing Aeolus winds on FV3GFS winds and OLS regressing FV3GFS winds on Aeolus winds. 265 

The regression lines of these two cases are added to Fig. 4. The TLS speed-dependent coefficient 266 

(𝑐ଵ െ 1ሻ  (in Eq. 5) is 6% and 4% for Mie and Rayleigh winds, respectively. However, the OLS 267 

regression of Aeolus winds on FV3GFS winds produces considerably smaller bias estimates, with 268 
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ሺ𝑐ଵ െ 1ሻ  estimated as 1% and 2% for Mie and Rayleigh winds, respectively. On the other hand, 269 

the OLS regression of the FV3GFS winds on Aeolus winds exhibits much larger bias estimates 270 

relative to the TLS bias analysis, with ሺ𝑐ଵ െ 1ሻ  estimated as 18% and 15% for Mie and Rayleigh 271 

winds, respectively.  272 

The vertical distributions of the average biases as a function of Aeolus winds are shown in 273 

Fig. 12 for the descending orbits for three methods: (1) OLS regression using FV3GFS winds as a 274 

predictor (top row), (2) TLS regression (middle row, which repeats the bottom two panels of Fig. 275 

8), and (3) OLS regression using the average of FV3GFS and Aeolus as a predictor (bottom row). 276 

The average bias estimates in the top panels are about 0.5 m/s smaller in magnitude in most layers 277 

compared to the middle panels. The average biases in the bottom panels are about 0.5-1.0 m/s in 278 

magnitude larger than the middle panels in most layers, particularly for Rayleigh winds. The bias 279 

estimates of OLS regression using Aeolus winds only as a predictor (not shown) are even larger 280 

than what is shown in the bottom panels.  The large differences in the bias estimates using the TLS 281 

and OLS regression are due to the fact that both Aeolus and FV3GFS winds have large errors. The 282 

fact that the errors of Aeolus winds are larger than FV3GFS background winds leads to the 283 

different weightings of Aeolus winds and FV3GFS winds in the TLS analysis (Eq. 3). 284 

5 A TLS Bias Correction 285 

In this section, a TLS bias correction is proposed to optimize Aeolus wind data 286 

assimilation. Because the findings in Section 3 show substantial variation of the bias coefficients 287 

with latitude, vertical layer, and orbital phase, the TLS bias coefficients are calculated from the 288 

winds in 19 discrete bins of latitude (centered every 10º between 90° S to 90° N) for each vertical 289 
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range/layer and for ascending and descending orbits separately. The error ratio δ shown in Fig. 6 290 

is used in all latitude bands for each layer. For each assimilation cycle, the bias coefficients are 291 

computed by TLS regression for the innovations in the week before the cycle (i.e., for the previous 292 

28 cycles). One week provides a large enough sample for the regression. As shown by Ripley and 293 

Thompson [1987], the TLS solution only involves solving a quadratic equation with coefficients 294 

given by sample sums. Therefore, an efficient approach is to calculate and save these sums for 295 

every cycle and accumulate them over the 28 cycles. For each of the innovations in the assimilation 296 

cycle, values of the TLS regression coefficients 𝑐 and 𝑐ଵ are linearly interpolated to the latitude 297 

of the Aeolus observation. Subsequently, the TLS estimated bias, calculated using Eq. (5), is 298 

subtracted from the innovation. Note that the bias correction is determined by the TLS analysis 299 

solution for 𝑦ො
 that in turn is determined from the observation and background wind, 𝑦

 and 𝑦
, 300 

following Eq. (4).  301 

The proposed scheme is applied to the Aeolus and FV3GFS winds of the BASE 302 

experiment. As expected, the corresponding TLS bias estimates show considerable speed-303 

dependent biases. For example, in the bins centered at the Equator and 80°S, where the speed-304 

dependent biases are expected to be largest based on Fig. 9, the TLS bias estimates vary 305 

considerably with speed and in some cases are larger in magnitude than 1.5 m/s at higher Aeolus 306 

wind magnitudes (Fig. 13).  307 

The vertical distribution of the global average of the remaining biases (i.e., after TLS bias 308 

correction) as a function of Aeolus wind is shown in Fig. 14, which is in the same format and for 309 

the same sample of observations as Fig. 8. A comparison of these two figures reveals that most of 310 

the biases are removed by the proposed TLS bias correction. The latitudinal variations of the biases 311 
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are also corrected (Fig. 15). In addition, the biases in the vertical average are also mostly removed, 312 

as shown in Fig. 9. 313 

6 Impact of the TLS bias correction on forecast skill 314 

Several Observing System Experiments (OSEs) using the NOAA global data assimilation 315 

system are performed using the Aeolus winds with and without the TLS bias correction. For the 316 

period of 2 August – 16 September 2019, Garrett et al., (2022) demonstrate positive impact of 317 

Aeolus winds on NOAA global forecast. The largest impact is seen in the tropical upper 318 

troposphere and lower stratosphere where the Day 1-3 wind vector forecast RMSE is reduced by 319 

up to 4%. Specifically, the assimilation of Aeolus impacts the steering currents ambient to tropical 320 

cyclones, resulting in up to a 20% reduction in track forecast error in the Eastern Pacific and 321 

Atlantic basins. The application of TLS bias correction increases the positive impact of Aeolus 322 

data assimilation on the forecasts. 323 

OSE results for a 2019 record-breaking winter storm case over the US are reported here. 324 

On 26 November 2019, one major storm approached the West Coast of the US from the Eastern 325 

Pacific and produced a record-breaking low pressure of 973 hPa and wind gust of 171 km/h near 326 

the Oregon/California border. Over the next few days, the low merged with the subtropical jet as 327 

it tracked eastward across the US. The combination of cold air, moisture and high winds produced 328 

snow blizzard conditions across the US.   329 

As in Garrett et al. (2022), the OSEs include the baseline experiment (BASE) without the 330 

assimilation of Aeolus winds, the experiment AEOM that is identical to BASE except that Aeolus 331 

winds are assimilated, and the experiment AEOT that is identical to AEOM except that it also 332 
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includes the TLS bias correction. A difference Summary Assessment Metric (SAM, Hoffman et 333 

al., 2018) is computed for Day 1-7 forecasts in the North America (NA) region of the experiments 334 

validated at 0000 UTC 22-28 November 2019. The SAM illustrates the overall forecast skill by 335 

normalizing the AC and RMSE values for each parameter (temperature, geopotential height, wind, 336 

and relative humidity) and each lead time. Fig. 16 shows that the TLS bias correction improves 337 

the impact of Aeolus winds on the forecasts of wind, temperature, and geopotential height for Day 338 

3-7 and especially for Day 5-7 lead times. The overall improvement of Aeolus winds for AEOM 339 

and AEOT is about 4% and 10%, respectively (above the 95% significance level, Fig. 16c), 340 

illustrating the usefulness of the TLS bias correction. 341 

The vertically integrated water vapor transport (IVT) is a useful metric in forecasting 342 

precipitation associated with winter storms (e.g., Lavers et al. 2017).  The IVTs of the Day 7 343 

forecast for the experiments validated and averaged for 0000 UTC November 26-28 are shown in 344 

Fig. 17.  Aeolus winds have a strong impact on the locations and intensities of the IVT maxima 345 

near the US West Coast and in the Midwest. As a result, Aeolus winds show strong impact on the 346 

locations and corresponding amounts of precipitation as seen in Fig. 18, and quantified by the  347 

Equitable Threat and BIAS skill scores (https://www.wpc.ncep.noaa.gov/rgnscr/verify.html, 348 

Wang et al., 2014), respectively (Fig. 19).  Specifically, the precipitation amounts near the West 349 

Coast and the Midwest are much less in AEOT than in BASE and AEOM. The precipitation in the 350 

Midwest also shifts eastward in AEOT, compared to BASE and AEOM (Fig. 18). The precipitation 351 

forecast skills (verified against NCEP precipitation raingauge data analyses) over the contiguous 352 

United States (CONUS) region, that is, the Equitable Threat (location) and BIAS (amount) score 353 

are shown in Fig. 19. The precipitation amount is over-predicted (BIAS score > 1.0) in both BASE 354 

and AEOM, but is closer to the analysis (BIAS score closer to 1.0) in AEOT. The Equitable Threat 355 
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is larger (with marginal significance level) in AEOT than in BASE and AEOM, indicating the 356 

location of precipitation in the forecast is improved in AEOT.  These results suggest potential 357 

benefit of the TLS bias correction to precipitation forecasts. 358 

7. Summary and Conclusions 359 

In this study a TLS linear regression is used to optimally estimate speed-dependent linear 360 

biases in the Aeolus innovations. The Aeolus and FT3GFS winds for 1-7 September 2019 are 361 

analyzed. Clear speed-dependent linear biases for both Mie and Rayleigh winds are found, 362 

particularly in the lower troposphere and stratosphere of the tropics and Southern Hemisphere. The 363 

largest biases are about 10% and 5% of FV3GFS wind speed and are as large as +/- 2.5 m/s and 364 

+/- 1.5 m/s at high Aeolus wind magnitudes for Mie and Rayleigh winds, respectively.  365 

It is found that the TLS linear bias estimates are considerably larger than the OLS 366 

regression of Aeolus innovations on FV3GFS winds. However, they are much smaller than the 367 

OLS regression both on Aeolus winds only and on the average of Aeolus and FV3GFS winds. This 368 

is more evident for the Rayleigh winds. 369 

The proposed TLS bias correction remove much of the biases in the innovations before 370 

Aeolus wind assimilation. In a companion paper, Garrett et al. [2022] demonstrate that the 371 

application of this TLS bias correction considerably enhances the positive impact of Aeolus winds 372 

on NOAA FV3GFS global and tropical cyclone forecasts for the period of 2 August to 15 373 

September 2019. In this study, it is also demonstrated that the application of the TLS bias 374 

correction improves the impact of Aeolus winds on the forecast of a record-breaking 2019 winter 375 

storm including the associated precipitation over the US. It is expected that the application of the 376 
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TLS bias correction can improve and enhance Aeolus data impacts on the analysis and forecast 377 

skill of other NWP systems. It should be noted that the proposed TLS approach presented here 378 

might be applied to other types of observations that have errors typically characterized as a 379 

percentage of the observed value, including quantities related to the concentrations or mass 380 

fractions of chemical species or hydrometeors, or quantities like radio occultation refractivity and 381 

bending angle. 382 
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8 Figures 485 

 486 

Figure 1. Zonal and time mean difference of ECMWF minus FV3GFS backgrounds (defined as 6-487 

h forecasts) for analysis times 00, 06, 12, and 18 UTC) for zonal wind (m/s). Note that in Figs. 1-488 

15 the sample is 1-7 September 2019.  489 

 490 

Figure 2. Vertical and daily variations of global horizontal biases (m/s) for Mie winds (a, b) and 491 

Rayleigh winds (c, d) in ascending (a, c) and descending (b, d) orbits. 492 



 

26 

 

 493 

Figure 3. Latitudinal and height distributions of Mie biases (a, c) and Rayleigh biases (b, d) (color 494 

scale, m/s) in ascending (a, b) and descending (c, d) orbits. 495 

 496 
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 497 

 498 

Figure 4. Density plots of global collocated (a) Mie and FV3GFS winds in the layer at ~3.5 km 499 

altitude, and (b) Rayleigh and FV3GFS winds in the layer at ~15 km altitude in descending orbits. 500 

The TLS analysis lines (green), the OLS regression lines of FV3GFS winds on Aeolus winds (red), 501 

and the OLS regression lines of Aeolus winds on FV3GFS winds (transformed and plotted as a 502 

function of Aeolus winds in brown) are shown, with corresponding regression coefficients 503 

displayed above each panel. 504 

  505 
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 506 

 507 

Figure 5. Density plots of global (a) Mie - FV3GFS winds in the layer at ~3.5 km altitude, and (b) 508 

Rayleigh - FV3GFS winds in the layer at ~15 km altitude in descending orbits. The average 509 

innovation (red dots), the OLS regression lines of the innovations on Aeolus winds (red), and TLS 510 

analysis lines (green) are shown. 511 
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 512 

Figure 6. Vertical variation of the square root of the ratio of random error variance in Mie (solid 513 

black) and Rayleigh (dashed blue) winds versus FV3GFS winds. Results are based on global 514 

innovations from the BASE experiment using Hollingsworth-Lonnberg method. The symbols are 515 

plotted at the average height of the observations in each layer. 516 
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 517 

Figure 7. Vertical variations of TLS bias coefficients for Mie (a, b, c), and Rayleigh (d, e, f) winds. 518 

Each point plotted represents a separate TLS analysis for all observations in each layer for all 519 

latitudes and for either ascending (black solid) or descending (blue dashed) orbits. The symbols 520 

are plotted at the average height of the observations in each layer. 521 
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 522 

Figure 8. Vertical distributions of average TLS estimated biases (color scale, m/s) for Mie (a, c) 523 

and Rayleigh (b, d) winds as a function of observed Aeolus winds (m/s) in ascending (a, b) and 524 

descending (c, d) orbits for all latitudes. The TLS estimated biases are obtained from the TLS fits 525 

displayed in Fig. 7.  526 
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 527 

Figure 9. TLS estimated biases (m/s) before (red lines) and after (green lines) TLS bias correction 528 

for Mie (a) and Rayleigh (b) winds as a function of the observed Aeolus winds (m/s), vertically 529 

averaged for all latitudes of Aeolus winds. The black lines report the number of Aeolus winds in 530 

each 2 m/s bin. 531 
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 532 

Figure 10. Latitudinal variation of TLS bias coefficients for Mie (a, b, c) and Rayleigh (d, e, f) 533 

winds. Each point plotted represents a separate TLS analysis for all observations in all vertical 534 

layers in a 10º latitude band for either ascending (black solid) or descending (blue dashed) orbits. 535 

The latitude bands are centered every 10º from 90°S to 90°N. The symbols are plotted at the center 536 

in each latitude band. The vertical layers are 0-16 km for Mie winds and 3-22 km for Rayleigh 537 

winds 538 

  539 
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. 540 

 541 

Figure 11. Latitudinal distributions of average TLS estimated biases (color scale, m/s) for Mie (a, 542 

c) and Rayleigh (b, d) winds as a function of Aeolus wind in ascending (a, b) and descending (c, 543 

d) orbits, obtained from the TLS fits displayed in Fig. 10. 544 
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 545 

Figure 12. Vertical distributions of average bias estimates (color scale, m/s) for Mie (a, c, e) and 546 

Rayleigh (b, d, f) winds as a function of Aeolus winds using one of three methods for descending 547 

orbits for all latitudes. The methods are OLS using FV3GFS winds as a predictor (a, b), TLS (c, 548 

d, same as the bottom panels of Fig. 8), and OLS using the average of Aeolus and FV3GFS as a 549 

predictor (e, f).  550 
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 551 

Figure 13. Vertical distributions of average TLS estimated biases (color scale, m/s) for Mie (a, c) 552 

and Rayleigh (b, d) winds as a function of Aeolus winds (m/s) in the latitudinal bands centered at 553 

Equator (a, b) and at 80S (c, d) for the descending orbits.  554 
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 555 

Figure 14. As in Fig. 8 but for the mean innovation after the TLS bias correction is applied. For 556 

each 6-h cycle during 1-7 September 2019, the TLS bias correction is calculated from the 28 557 

preceding 6-h cycles. 558 
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 559 

Figure 15. As in Fig. 3 but after the TLS bias correction is applied. 560 

  561 



 

39 

 

  562 

 563 

Figure 16. The Summary Assessment Metric (SAM) overall forecast scores for AEOM, and 564 

AEOT versus BASE experiments in the North America (NA) region. The scores are shown for 565 

(a) forecast parameters of temperature (Temp), geopotential height (HGT), vector-wind (Wind) 566 

and relative humidity (RH), (b) lead times, and (c) overall performance of AEOM and AEOT. 567 

The forecasts are verified to their self-analyses. Values above 0.0 demonstrate an increase in the 568 

mean of the normalized distribution and improvement of the forecast versus the BASE, while the 569 

shaded region represents the 95% significance level.  The grey areas indicate the 95% confidence 570 

level under the null hypothesis that there is no difference between experiments for this metric. In 571 

addition, the estimated uncertainty at the 95% level is indicated by small error bars at the ends of 572 

the color bars. Two normalizations are used, the ECDF (colors) and rescaled-minmax 573 

normalization (black outline). Details in Hoffman et al. (2018). A value of 0.02, for example, 574 

indicates the average normalized statistic over all statistics is better (greater) by 0.02 than BASE. 575 

Under the null hypothesis that there are no differences, all SAMs would be 1/2, so a 0.02 576 

improvement can be considered a 4% improvement (0.02/0.5) in normalized scores.  577 
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 578 

Figure 17.  The 200-1000 hPa vertically integrated water vapor transport (IVT, kg/m/s, contour) 579 

and wind vectors (m/s, arrows) in the day-7 forecasts, validated at 0000 UTC 26-28 November 580 

2019 and averaged for (a) BASE, (b) AEOM, (c) AEOT. 581 
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 582 

Figure 18,  The 24-h accumulated precipitation (mm) for 156 h to 180 h, averaged for the 583 

forecasts validated from 1200 UTC 26 to 28 November 2019 for (a) BASE, (b) AEOM, (c) 584 

AEOT. 585 
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 586 

Figure 19.  The forecast skill scores for 24-h accumulated precipitation for Day 7 forecasts 587 

validated from 1200 UTC 26 to 28 November 2019.  The Equitable Threat and BIAS score are 588 

measures of the forecast skill for location and amount of precipitation, respectively. Equitable 589 

Threat and BIAS scores closer to 1.0  indicate improved precipitation forecast skill. 590 


