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Key Points 23 

 There are speed-dependent systematic differences in the Aeolus M1-bias corrected 24 
Level-2B HLOS winds compared to short-term (6-h) FV3GFS forecasts. 25 

 The total least squares (TLS) regression provides a statistically optimal analysis of the 26 
differences.   27 

 A bias correction based on the TLS bias analysis proposed here is tested in a 28 
companion paper to optimize Aeolus wind assimilation and thus the impact of Aeolus 29 
winds on global NWP forecasts. 30 

 31 
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 33 

Abstract 34 

The European Space Agency Aeolus mission launched the first of its kind spaceborne Doppler 35 

wind lidar in August 2018. To optimize assimilation of the Aeolus Level-2B (L2B) Horizontal 36 

Line-of-Sight (HLOS) winds, systematic differences (referred as biases hereafter) between the 37 

observations and numerical weather prediction (NWP) background winds should be removed. 38 

Total least squares (TLS) regression is used to estimate speed-dependent biases between Aeolus 39 

HLOS winds (L2B10) and the National Oceanic and Atmospheric Administration (NOAA) 40 

Finite-Volume Cubed-Sphere Global Forecast System (FV3GFS) 6-h forecast winds. Unlike 41 

ordinary least squares regression, TLS regression optimally accounts for random errors in both 42 

predictors and predictands. Large well-defined, speed-dependent biases are found particularly in 43 

the lower stratosphere and troposphere of the tropics and Southern Hemisphere. These large 44 

biases should be corrected to increase the forecast impact of Aeolus data assimilated into global 45 

NWP systems. 46 

 47 
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1 Introduction 50 

The space-borne Doppler wind lidar on board the European Space Agency (ESA) Aeolus 51 

mission measures both Rayleigh (i.e., molecular) and Mie (i.e., clouds and aerosols) backscatter 52 

to derive wind profiles along the sensor’s Horizontal Line of Sight (HLOS) throughout the 53 

troposphere and lower stratosphere [Straume-Lindner, 2018, Straume et al., 2020]. The Aeolus 54 

HLOS Level-2B (L2B) winds have demonstrated positive impacts on global weather forecasts 55 

[Rennie et al., 2021; Cress, 2020; Garrett et al., 2020, 2021].  56 

To optimize the positive impact of Aeolus winds on weather forecasts, large systematic 57 

differences (referred to as biases hereafter) between Aeolus winds and numerical weather 58 

prediction (NWP) model background winds should be corrected [Daley, 1991]. Therefore, it is 59 

important to identify potential biases between Aeolus winds and their NWP model background 60 

counterparts [Liu et al., 2020, 2021]. The biases may come from both NWP models and Aeolus 61 

winds. First, current operational global NWP models still have larger errors or uncertainty in 62 

regions where conventional observations are sparse or absent, and these errors include bias 63 

components as the NWP models evolve towards their own climatology in the absence of 64 

observations. For example, the backgrounds from the ECMWF model 65 

(https://www.ecmwf.int/en/forecasts) and the NOAA Finite-Volume Cubed-Sphere Global 66 

Forecast System (FV3GFS) model (https://www.gfdl.noaa.gov/fv3/) show large systematic 67 

differences in the zonal winds in the troposphere and lower stratosphere of the tropics, the 68 

Southern Hemisphere (SH), and north of 70° N, with maxima on the order of 2.0, -0.5, and 0.5 69 

m/s, respectively (see Figure 1).  70 
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Secondly, although corrections to several substantial bias sources in the Aeolus L2B 71 

winds have been implemented, including corrections to the dark current signal anomalies of 72 

single pixels (so-called hot pixels) on the Accumulation-Charge-Coupled Devices (ACCDs), 73 

linear drift in the illumination of the Rayleigh/Mie spectrometers, and the telescope M1 mirror 74 

temperature variations [Reitebuch et al., 2020; Weiler et al., 2021], uncorrected biases due to 75 

potential calibration issues might remain in Aeolus L2B winds and may contribute to potential 76 

biases between Aeolus and the NWP background winds. The residual biases may lead to sub-77 

optimal assimilation of Aeolus winds in NWP systems. In addition, the Aeolus L2B winds might 78 

be biased towards the ECMWF model, as the M1 bias correction makes use of ECMWF 6-hour 79 

forecasts [Rennie et al., 2021], which might also lead to sub-optimal assimilation of Aeolus 80 

winds in other NWP systems. 81 

Using ordinary least squares (OLS) to identify and estimate the speed-dependent biases in 82 

the innovations of Aeolus minus NWP background winds (O-B) is subject to contamination from 83 

random errors in Aeolus and/or NWP background winds [Frost and Thompson, 2000], since 84 

OLS assumes no errors in the predictor or independent variable, which in this case would be 85 

either the Aeolus winds, the NWP background winds, or a combination of the two.  In contrast, 86 

total least squares (TLS) regression takes account of errors in both dependent and independent 87 

variables and generates a statistically optimal analysis of the biases [Deming, 1943; Ripley and 88 

Thompson, 1987; Markovsky and Van Huffel, 2007]. For the case of Aeolus and NWP 89 

background winds, the use of linear TLS regression [Ripley and Thompson, 1987] finds a best fit 90 

line that is an estimate of the true (assumed linear) relationship between Aeolus and NWP 91 

background winds.  92 
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In this study, the TLS regression approach is used to identify and estimate potential 93 

biases between the Aeolus HLOS winds (L2B10) and the NOAA FV3GFS background winds. 94 

The suboptimality of OLS bias estimates is demonstrated by comparison to the TLS bias 95 

estimates.  A bias correction based on the TLS bias analysis is proposed for the innovations of 96 

Aeolus minus FV3GFS winds in order to optimize Aeolus wind assimilation with the FV3GFS 97 

model and thus improve the impact of Aeolus winds on FV3GFS forecasts.  98 

Section 0 describes the Aeolus L2B and FV3GFS background winds, the TLS bias 99 

analysis method, and the estimation of the ratio of error variances of Aeolus winds to FV3GFS 100 

background winds used in the TLS regression. Section 3 describes the variations of the TLS bias 101 

estimates with height, latitude, and wind speed. Section 4 demonstrates the substantial 102 

differences between the TLS and OLS bias estimates. Section 5 proposes a TLS bias correction 103 

for the O-B innovations. Finally, Section 6 presents a summary of findings and conclusions. 104 

Throughout this article, we will refer to the Aeolus and FV3GFS HLOS winds as the Aeolus and 105 

FV3GFS winds, respectively. In discussions of winds that are not HLOS winds we will use terms 106 

like u-wind, v-wind, or wind vector. 107 

2 Data and Methodology 108 

2.1 Aeolus L2B and FV3GFS background wind data 109 

The Aeolus L2B clear-sky Rayleigh winds and cloudy-sky Mie winds are examined for 110 

the period 1-7 September 2019. This one-week period provides a sufficient sample to estimate 111 

the biases. The Aeolus winds were obtained from the Aeolus dataset (L2B10) re-processed by 112 

ESA [Rennie et al., 2021, Weiler et al., 2021]. The reprocessing includes the M1 bias correction, 113 
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which removes most of the globally and vertically averaged biases of Rayleigh and Mie winds 114 

[Weiler et al., 2021]. The Aeolus winds are reported at a standard set of vertical layers [de Kloe, 115 

2019, 2020]. This study examines Aeolus Mie and Rayleigh winds within height ranges of 0-16 116 

km and 3-22 km, respectively. These height ranges include almost all Aeolus wind observations. 117 

The height is defined relative to the EGM96 geoid for the L2B winds [Tan et al. 2008].  118 

Similar Aeolus data quality control procedures as recommended by ESA and ECMWF 119 

[Rennie et al., 2021] were implemented to reject the following observations: HLOS L2B 120 

confidence flag “invalid”; Rayleigh winds at layers below 850 hPa, L2B uncertainties greater 121 

than 12 m/s, accumulation lengths less than 60 km, and atmospheric pressure within 20 hPa of 122 

topographic surface pressure; Mie winds with L2B uncertainties greater than 5 m/s and 123 

accumulation lengths less than 5 km. 124 

The winds from Aeolus and collocated FV3GFS backgrounds are obtained from a data 125 

assimilation experiment (hereafter the BASE experiment) where the Aeolus winds are monitored 126 

and the Aeolus wind observation operator ሺ𝐻௜ሻ is applied to the FV3GFS background ሺ𝐱௕ሻ to 127 

obtain the value of FV3GFS background wind ሺ𝑦௜
௕ ൌ 𝐻௜ሺ𝐱௕ሻሻ corresponding to each Aeolus 128 

observation ሺ𝑦௜
௢ሻ. This experiment employs the FV3GFS data assimilation system, called Global 129 

Statistical Interpolation [GSI, Kleist et al. 2009], configured for the 4DEnVar algorithm with 64 130 

vertical levels, and horizontal resolutions of C384 (~25 km) for the deterministic analysis and 131 

forecast and C192 (~50 km) for the 80 ensemble members [Wang and Lei, 2014]. 132 

When examining Aeolus wind statistics, we stratify the Aeolus data by orbital phase, 133 

either ascending when the spacecraft is moving northward or descending when the spacecraft is 134 

moving southward. The vertical and daily variations of global horizontal means and standard 135 
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deviations of the innovations of Mie winds minus FV3GFS background winds are consistent 136 

throughout the period (Figs. 2 and 3). For Mie winds in ascending orbits, the biases are positive 137 

above 6 km and negative below 6 km, as large as +1.8 m/s and -0.5 m/s, respectively. The biases 138 

are smaller and positive at most levels in the descending orbits. The standard deviations are 139 

smallest (about 4 m/s) from 2 to 8 km elevation and increase to only about 5 m/s at the highest 140 

levels. For Rayleigh winds in descending orbits, the biases are as positive as +1.2 m/s above 10 141 

km, and as negative as -1.2 m/s below 8 km. The positive biases in ascending orbits are smaller. 142 

The standard deviations are smallest (again about 4 m/s) from 6 to 12 km elevation and increase 143 

to about 7 m/s at the highest levels. The results indicate that the biases vary substantially with 144 

height for both Mie and Rayleigh winds, the standard deviations vary from 4 m/s to somewhat 145 

larger values at higher elevations, and that both mean and standard deviations remain stable in 146 

time throughout the period.  147 

The mean differences of Mie and Rayleigh winds minus FV3GFS winds vary 148 

considerably with latitude (Figure 4). Mie winds have biases as large as +1.5 m/s in the upper 149 

troposphere and Rayleigh winds have biases as large as +2.0 m/s in the tropical upper 150 

troposphere. Both Mie and Rayleigh winds show negative biases as large as -1.0 m/s in the 151 

lowest layers. 152 

2.2 TLS Linear Regression 153 

In this section, we review the TLS regression method [Ripley and Thompson, 1987] in 154 

the context of estimating potential speed-dependent biases between Aeolus winds and FV3GFS 155 

background winds. The TLS estimate for each collocated pair of Aeolus and FV3GFS winds (𝑦௜
௢, 156 

𝑦௜
௕) is defined by 157 
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                     𝑦௜
௢=  𝑦ො௜

௢+ 𝜀௜
௢

          and        𝑦௜
௕= 𝑦ො௜

௕+ 𝜀௜
௕         (i =1, N)          (1) 158 

where  𝑦ො௜
௢ and 𝑦ො௜

௕ are the TLS estimates of the true Aeolus and FV3GFS winds, and 𝜀௜
௢ and 𝜀௜

௕ 159 

are random errors, and N is the number of Aeolus/FV3GFS collocations in the sample. The 160 

sample might be defined by a vertical layer or a latitude band. In OLS regression, since it is 161 

assumed that there are no errors in the predictor, the predictor can be used directly to estimate the 162 

predictand. The situation is a little more complicated in TLS regression where (𝑦ො௜
௕, 𝑦ො௜

௢), the most 163 

probable true state, is the point on the regression line that is closest in a statistical sense to the 164 

point (𝑦௜
௕, 𝑦௜

௢). 165 

   Here we assume that 𝜀௜
௢ and 𝜀௜

௕ are independent and that the random error variance ratio 166 

𝛿 ൌ (𝜎௢ 𝜎௕⁄ )2 = E[𝜀௜
௢𝜀௜

௢] / E[𝜀௜
௕𝜀௜

௕] is known. Also, we assume the true relationship between the 167 

Aeolus and FV3GFS winds is described by a linear function:  168 

                                        𝑦ො௜
௢ =  𝑐଴ + 𝑐ଵ𝑦ො௜

௕                  (i =1, N)                                   (2)       169 

where 𝑐଴ is an offset or constant bias and 𝑐ଵ is a speed-dependent bias coefficient. 170 

   The TLS regression finds an optimal estimate of the 𝑦ො௜
௕, 𝑐଴ and 𝑐ଵ by minimizing the 171 

cost function  172 

             J ൌ  ∑ ቀሺ𝜀௜
௢ 𝜎௢⁄ ሻଶ ൅ ൫𝜀௜

௕ 𝜎௕⁄ ൯
ଶ
ቁே

௜ୀଵ  173 

                   ൌ  ଵ

ሺఙ೚ሻమ
∑ ቀ൫𝑦௜

௢ െ 𝑐଴ – 𝑐ଵ𝑦ො௜
௕൯

ଶ
൅ 𝛿൫𝑦௜

௕ െ 𝑦ො௜
௕൯

ଶ
ቁே

௜ୀଵ  174 

To determine the 𝑦ො௜
௕, set the derivative of J with respect to 𝑦ො௜

௕ to zero, to obtain  175 

                         𝑦ො௜
௕ = (𝑐ଵሺ𝑦௜

௢ െ 𝑐଴ሻ ൅  𝛿𝑦௜
௕) / ሺ𝑐ଵ

ଶ ൅ 𝛿ሻ                    (i =1, N)           (3) 176 
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Eq. (3) thereby reduces the problem to a minimization in terms of 𝑐଴ and 𝑐ଵ. A similar equation 177 

holds even if the error variances vary with i, but then there is no closed form solution for 𝑐଴ and 178 

𝑐ଵ, as there is in the current case, which is known as the Deming problem [Ripley and 179 

Thompson, 1987]. When the coefficients 𝑐଴ and 𝑐ଵ are obtained, the TLS estimate for the new or 180 

within-sample observation is given by Eq. (3).  Finally, the estimate of the bias for the kth 181 

observation, either for a new or within-sample observation, is given by 182 

                          𝑑መ௞ ൌ 𝑦ො௞
௢ െ 𝑦ො௞

௕  =  𝑐଴ + (𝑐ଵെ1ሻ𝑦ො௞
௕                                                   (4) 183 

We will refer to 𝑐଴ and (𝑐ଵ െ 1ሻ as the constant and speed-dependent bias coefficients, 184 

respectively, hereafter.  185 

Note that the error variance ratio 𝛿 is a crucial parameter in the TLS bias analysis. If 186 

𝜎௢ ൌ 0 or 𝜎௕ ൌ 0, then the TLS solution is equivalent to the OLS regression of the O-B on the 187 

Aeolus winds or on the FV3GFS winds, respectively.  188 

2.3 Estimation of the random error variance ratio  189 

The random error variance ratio 𝛿 ൌ (𝜎௢ 𝜎௕⁄ )2 used in the TLS bias analysis is estimated 190 

from the O-B innovations from the BASE experiment using the Hollingsworth-Lonnberg (HL) 191 

method [Hollingsworth and Lonnberg, 1986]. It is assumed that there is no correlation between 192 

the random errors in Aeolus and FV3GFS winds and no horizontal correlation in the random 193 

errors in Aeolus winds at 90 km distance and beyond. For more details, see Hollingsworth and 194 

Lonnberg [1986] and Garrett et al. [2021].   195 

The random error variance ratio δ is estimated at the middle height of each vertical range 196 

bin using the Aeolus samples for 1-7 September 2019, separately for Mie and Rayleigh winds. 197 
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Figure 5 shows that the vertical profiles of the square root of δ varies in the range of 1.2-1.6 and 198 

2-3 for Mie winds versus FV3GFS winds and Rayleigh winds versus FV3GFS winds, 199 

respectively.  200 

3 The TLS Bias Estimates  201 

The statistical relationship between Aeolus and FV3GFS winds is illustrated by the 202 

density plots of collocated Aeolus and FV3GFS winds in a single layer shown in Figure 6. There 203 

is a strong correlation of 0.93 between Mie and FV3GFS winds, and of 0.94 between Rayleigh 204 

and FV3GFS winds. The TLS analyses of the FV3GFS winds versus Aeolus winds indicate that 205 

the innovations (Aeolus minus FV3GFS winds) are positive and increase with wind speed. In 206 

terms of Eq. (4), for Figure 6a, the innovation solution is 0.53 m/s + 0.06 times the background 207 

solution, while for Figure 6b, the innovation solution is 1.04 m/s + 0.04 times the background 208 

solution. 209 

3.1 Variation of Biases with Height 210 

The variation of the TLS solution with height and orbital phase is described here. The 211 

TLS samples are over all latitudes. The vertical distribution of the TLS constant and speed-212 

dependent bias analysis coefficients for the innovation in terms of the background in Eq. (4) is 213 

shown in Figure 7. The speed-dependent bias coefficient (𝑐ଵ െ 1ሻ varies substantially with height 214 

and orbital phase. For Mie winds, the coefficient is quite large at most heights, ranging from 3 to 215 

6%, with maxima at 3 km and 12-16 km. The coefficient for Rayleigh winds is smaller and 216 

ranges from 1 to 3% in ascending orbits and 1 to 5% in descending orbits, with maxima around 217 

the 3.5 and 16 km.  218 
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The constant bias coefficient 𝑐଴ for both Mie and Rayleigh winds also shows large 219 

variations on height and orbit with its value as large as +/- 1.0 m/s. In general, the constant bias 220 

coefficient is positive in upper layers and negative in layers close to the Earth surface, consistent 221 

with the patterns seen in the global horizontal average of innovations in Figures 2 and 3.  222 

The vertical distribution of the average TLS bias estimates as function of Aeolus wind is 223 

shown in Figure 8. The average TLS biases vary substantially with height. Since the TLS biases 224 

are in part dependent on speed, at most heights the biases increase substantially as the magnitude 225 

of Aeolus wind speed increases. The biases at high Aeolus wind speeds are considerably larger 226 

for Mie winds than for Rayleigh winds, as large as +2.5 m/s and -2.0 m/s for Mie winds, and 227 

+1.5 m/s and -2.0 m/s for Rayleigh winds. There are clear speed-dependent biases in the vertical 228 

average of these biases (Figure 9). The results suggest that both vertically varying and vertically 229 

averaged speed-dependent biases remain in the Aeolus winds (L2B10).  230 

3.2 Variation of Biases with Latitude 231 

The variation of the TLS solution with latitude and orbital phase is described here. The 232 

TLS samples are over all heights for 10-degree latitude bands. In general, the coefficients 233 

obtained are large and vary considerably with latitude and orbital phase, with maxima found in 234 

the tropics (Figure 10). For example, the speed-dependent bias coefficient (𝑐ଵ െ 1ሻ for Mie 235 

winds in the tropics can be quite large, ranging from 0% to a maximum of 11%. The coefficient 236 

(𝑐ଵ െ 1ሻ is smaller for Rayleigh winds, ranging from -1% to 5%, with maxima found in the 237 

tropics and at northern high latitudes. The constant bias coefficient 𝑐଴ for Mie winds also varies 238 

considerably with latitude and orbit, ranging from -1.0 m/s to +1.6 m/s. The coefficient 𝑐଴ is 239 

smaller for Rayleigh winds. 240 
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The latitudinal distribution of the average TLS bias as a function of Aeolus wind is 241 

shown in Figure 11. For Mie winds, the average TLS bias increases considerably at most 242 

latitudes as the magnitude of Aeolus wind speed increases, particularly in the tropics and SH, 243 

with maxima of about +/-2.5 m/s. For Rayleigh winds, the average biases are much smaller and 244 

are consistent with the fact that the M1 bias correction removes most globally and vertically 245 

averaged biases of Rayleigh winds [Weiler et al., 2021]. 246 

3.3 Discussion 247 

The results presented in this section indicate that the speed-dependent bias coefficient is 248 

quite large, with (𝑐ଵ െ 1ሻ reaching up to ~10% and 5% for Mie and Rayleigh winds, 249 

respectively, particularly in the lower stratosphere and lower troposphere of the tropics. This 250 

suggests that there exist large speed-dependent biases in FV3GFS background winds and/or in 251 

the Aeolus winds. Given that there exist large uncertainties in the FV3GFS (and ECMWF) 252 

background winds in the tropics (see Figure 1), it is likely that the FV3GFS may be a significant 253 

source of the large biases and this will require further investigation. In any case, these large 254 

speed-dependent biases should be corrected to optimize Aeolus wind assimilation and the impact 255 

of Aeolus winds on NWP forecasts. 256 

4 Comparison to OLS Regressions 257 

As a comparison to the TLS bias estimate results, we conducted parallel OLS regressions 258 

using three different predictors of the biases in O-B. These predictors are the FV3GFS winds, the 259 

Aeolus winds, and their average. The first two of these OLS regressions are equivalent to OLS 260 

regressing Aeolus on FV3GFS winds and OLS regressing FV3GFS on Aeolus winds. As 261 
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examples, the regression lines of these two cases are added to Figure 6. The TLS speed-262 

dependent coefficient (𝑐ଵ െ 1ሻ  (in Eq. 4) = 6% and 4% for Mie and Rayleigh winds, 263 

respectively. However, the OLS regression of Aeolus winds on FV3GFS winds produces 264 

considerably smaller bias estimates, with ሺ𝑐ଵ െ 1ሻ  estimated as 1% and 2% for Mie and 265 

Rayleigh winds, respectively; thus, this OLS regression considerably underestimates the biases.  266 

On the other hand, the OLS regression of the FV3GFS winds on Aeolus winds exhibits 267 

much larger bias estimates relative to the TLS bias analysis, with ሺ𝑐ଵ െ 1ሻ  estimated as 18% and 268 

15% for Mie and Rayleigh winds, respectively. This indicates that the speed-dependent biases 269 

are considerably overestimated by the OLS regression on Aeolus winds.  270 

The vertical distributions of the average biases as a function of Aeolus winds are shown 271 

in Figure 12 for the descending orbits for three methods: The top panels are for OLS regression 272 

using FV3GFS winds as a predictor, the middle panels, which repeat the bottom two panels of 273 

Figure 8 are for TLS regression, and the bottom panels are for OLS regression using the average 274 

of FV3GFS and Aeolus as a predictor (bottom). The average bias estimates in the top panels are 275 

about 0.5-1.0 m/s smaller in magnitude in most layers than the middle panels. This confirms that, 276 

on average, the biases are considerably underestimated by OLS regression using FV3GFS winds 277 

as a predictor.  278 

The average biases in the bottom panel are about 0.5-1.5 m/s in magnitude larger than the 279 

middle panel in most layers, particularly for Rayleigh winds, indicating the biases are 280 

overestimated by OLS regression using the average of Aeolus and FV3GFS winds as a predictor. 281 

The bias estimates of OLS regression using Aeolus winds only as a predictor (not shown) are 282 

even larger (than the bottom panel). 283 
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5 A TLS Bias Correction 284 

In this section, a TLS bias correction for O-B is proposed to optimize Aeolus wind data 285 

assimilation. For each assimilation cycle, the bias coefficients are computed by TLS regression 286 

for the O-B in the week before the cycle (i.e., for the previous 28 cycles). One week provides a 287 

large enough sample for the regression. As shown by Ripley and Thompson [1987], the TLS 288 

solution only involves solving a quadratic equation with coefficients given by sample sums. 289 

Therefore, an efficient approach is to calculate and save these sums for every cycle and 290 

accumulate them over the 28 cycles. Because the findings in this study show substantial variation 291 

of the bias coefficients with latitude, vertical layer, and orbital phase, the bias coefficients are 292 

calculated from the winds in 19 discrete bins of latitude (centered every 10º between 90° S to 90° 293 

N) for each vertical range/layer and for ascending and descending orbits separately. For each of 294 

the O-B innovations in the assimilation cycle, values of 𝑐଴ and 𝑐ଵ are linearly interpolated to the 295 

latitude of the Aeolus observation. Subsequently, the TLS estimated bias, calculated using Eq. 296 

(4), is subtracted from the O-B. Note that the bias correction is determined by the TLS analysis 297 

solution for 𝑦ො௞
௕ that in turn is determined from the observation and background wind, 𝑦௞

௢ and 𝑦௞
௕, 298 

following Eq. (3). 299 

The proposed scheme is applied to the O-B innovations of the BASE experiment. The 300 

vertical distribution of the average remaining biases as a function of Aeolus wind is shown in 301 

Figure 13, which is in the same format and for the same sample of observations as Figure 8. A 302 

comparison of these two figures reveals that most of the biases are removed by the proposed TLS 303 

bias correction. The latitudinal variations of the biases are also corrected (Figure 14). In addition, 304 

the biases in the vertical average are also mostly removed, as shown in Figure 9. 305 
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6 Summary and Conclusions 306 

In this study a TLS regression is used to optimally estimate speed-dependent biases 307 

between Aeolus L2B Horizontal Line-of-Sight winds and short-term (6-h) forecasts of NOAA’s 308 

FV3GFS. The winds for 1-7 September 2019 are analyzed. Clear speed-dependent biases for 309 

both Mie and Rayleigh winds are found, particularly in the lower troposphere and stratosphere of 310 

the tropics and Southern Hemisphere. The largest biases are about 10% and 5% of FV3GFS wind 311 

speed, as large as +/- 2.5 m/s and +/- 1.5 m/s at high FV3GFS wind speed, for Mie and Rayleigh 312 

winds, respectively.  313 

It is found that the biases are considerably underestimated by the OLS regression of the 314 

innovations of Aeolus winds minus FV3GFS background winds on FV3GFS winds; but are 315 

overestimated by the OLS regression, both on Aeolus winds only, and on the average of Aeolus 316 

and FV3GFS winds. 317 

The biases should be fully corrected to optimize Aeolus wind assimilation and to improve 318 

the impact of Aeolus winds on FV3GFS global forecasts. The proposed TLS bias correction can 319 

remove most of the biases before assimilation. In a companion paper, Garrett et al. [2021] 320 

demonstrate that the application of this TLS bias correction to the Aeolus minus FV3GFS 321 

background (O-B) winds considerably enhances the positive impact of Aeolus winds on NOAA 322 

FV3GFS global and tropical cyclone forecasts. It is expected that the application of this 323 

additional bias correction to the O-B innovations of Aeolus winds can improve and enhance 324 

Aeolus data impacts on the analysis and forecast skill of other NWP systems as well. 325 

Note that the proposed TLS approach presented here might be applied to other types of 326 

observations that have errors typically characterized as a percentage of the observed value, 327 
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including quantities related to the concentrations or mass fractions of chemical species or 328 

hydrometeors, or quantities like radio occultation refractivity and bending angle. 329 

 330 

Acknowledgments 331 

This work was supported by the NOAA/NESDIS Office of Projects, Planning, and 332 

Acquisition (OPPA) Technology Maturation Program (TMP), managed by Patricia Weir and Dr. 333 

Nai-Yu Wang, through the Cooperative Institute for Satellites and Earth System Studies 334 

(CISESS) at the University of Maryland (Grant NA14NES4320003 and NA19NES4320002). 335 

The authors would like to acknowledge Dr. Michael Rennie (ECMWF) and Dr. Lars Isaksen 336 

(KNMI) for their comments and suggestions on the assimilation of Aeolus observations, and Dr. 337 

William McCarty with NASA/GMAO for providing earlier versions of the GSI with Aeolus 338 

ingest and observation operator capability. The Aeolus L2B BUFR data were provided by 339 

ECMWF. The scientific results and conclusions, as well as any views or opinions expressed 340 

herein, are those of the author(s) and do not necessarily reflect those of NOAA or the U.S. 341 

Department of Commerce.  342 

7 References 343 

Cress, A.: Validation and impact assessment of Aeolus observations in the DWD modeling 344 

system. Status report’. Aeolus NWP Impacts Working Meeting, Virtual, 2020. Available 345 

at: 346 

https://www.aeolus.esa.int/confluence/display/CALVAL/Aeolus+NWP+impact+working347 

+meeting+2?preview=/12354328/12354463/5_DWD_acress_aeolus_20200617.pdf. 348 

https://doi.org/10.5194/amt-2022-20
Preprint. Discussion started: 18 January 2022
c© Author(s) 2022. CC BY 4.0 License.



18 

 

Daley R.: Atmospheric data analysis. Cambridge University Press, Cambridge, 457 pp., ISBN-13 349 

978-0521458252, 1991 350 

de Kloe, J. and Coauthors: Aeolus Data Innovation Science Cluster DISC ADM-Aeolus Level-351 

2B/2C Processor Input/Output Data Definitions Interface Control Document. Tech. rep., 352 

KNMI, Aeolus, DISC, REF: AED-SD-ECMWF-L2B-037, 2020. Available at: 353 

https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2B-2C-Input-Output-354 

DD-ICD.pdf. 355 

Deming, W. E.: Statistical adjustment of data, Wiley, NY (Dover Publications edition, 1985). 356 

ISBN 0-486-64685-8, 1943. 357 

Frost, C. and Thompson S.: Correcting for regression dilution bias: comparison of methods for a 358 

single predictor variable, Journal of the Royal Statistical Society, Series A 163: 173–190. 359 

https://doi.org/10.1111/1467-985X.00164, 2020. 360 

Garrett, K., Liu, H., Ide, K., Lukens, K., and Cucurull, L.: Updates to Aeolus Impact Assessment 361 

on NOAA global NWP. 2nd ESA Aeolus Cal/Val and Science Workshop, Nov 2-6, 2020. 362 

Available at: 363 

https://www.dropbox.com/s/cd0r1gz7t77gq0g/Kevin_Garrett_Oral_Evaluation_of_Aeolu364 

s.pptx?dl=0. 365 

Garrett K., H. Liu, K. Ide, R. N. Hoffman, and K. E. Lukens:  Optimization and Impact 366 

Assessment of Aeolus HLOS Wind Data Assimilation in NOAA’s Global Forecast 367 

System,  Q. J. R. Meteorol. Soc., submitted, manuscript QJ-21-0307, 2022. 368 

https://doi.org/10.5194/amt-2022-20
Preprint. Discussion started: 18 January 2022
c© Author(s) 2022. CC BY 4.0 License.



19 

 

Hollingsworth, A. and Lonnberg, P.: The statistical structure of short‐range forecast errors as 369 

determined from radiosonde data. Part I: The wind field. Tellus, 38A, Issue 2, p111-136. 370 

https://doi.org/10.3402/tellusa.v38i2.11707, 1986 371 

Kleist, D. T. and Coauthors: Introduction of the GSI into the NCEP Global Data Assimilation 372 

System. Wea. Forecasting, 24, 1691–1705, https://doi.org/10.1175/2009WAF2222201.1, 373 

2009. 374 

Liu, H., Garrett, K. Ide, K., Hoffman, R. N., and Lukens, K. E.: Bias correction and Error 375 

Specification of Aeolus Winds for NOAA Global Data Assimilation System. 2nd ESA 376 

Aeolus CAL/VAL and Science Workshop, Nov 2-6, 2020. Available at: 377 

https://www.dropbox.com/s/f518n7n8ouhgwhy/Hui_LIU_Flash_Evaluation_update.pdf?378 

dl=0. 379 

Liu H., K. Garrett, K. Ide, R. Hoffman, and K Lukens: Impact Assessment of Aeolus Winds on 380 

NOAA Global Forecast, European Geophysical Union general assembly, 19-30 Apr 381 

2021. Available at: https://meetingorganizer.copernicus.org/EGU21/session/40837. 382 

Markovsky I. and Van Huffel S.:  Overview of total least squares methods. Signal Processing, 383 

vol. 87, pp. 2283–2302. doi: 10.1016/j.sigpro.2007.04.004, 2007. 384 

Reitebuch, O., Bracci, F., and Lux, O.: Assessment of the Aeolus performance and bias 385 

correction - results from the Aeolus DISC. 2nd Aeolus Cal/Val Workshop, Nov. 2020. 386 

Available at: 387 

https://www.dropbox.com/s/m3kjp540otwm17l/Oliver_Reitebuch_Oral_Assessment-388 

Aeolus-DISC.pdf?dl=0. 389 

https://doi.org/10.5194/amt-2022-20
Preprint. Discussion started: 18 January 2022
c© Author(s) 2022. CC BY 4.0 License.



20 

 

Rennie, M. P., Isaksen, L., Weiler, F., de Kloe, J., Kanitz, T. and Reitebuch, O.: The impact of 390 

Aeolus wind retrievals on ECMWF global weather forecasts, Q. J. R. Meteorol. Soc., pp. 391 

1–32, doi:10.1002/qj.4142, 2021. 392 

Ripley, B. D. and Thompson M.: Regression techniques for the detection of analytical bias, 393 

Analyst, 112, 377-383. doi: 10.1039/AN987120037, 1987. 394 

Straume-Lindner, A. G.: Aeolus Sensor and Product Description’. Tech. rep., European Space 395 

Agency - European Space Research and Technology Centre, The Netherlands. REF: AE-396 

SU-ESA-GS-000. Available at: 397 

https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-Sensor-and-Product-398 

Description.pdf, 2018. 399 

Straume, A.G. and coauthors: ESA’s Space-Based Doppler Wind Lidar Mission Aeolus First 400 

Wind and Aerosol Product Assessment Results. Edited by D. Liu, Y. Wang, Y. Wu, B. 401 

Gross, and F. Moshary. EPJ Web of Conferences 237: 01007, 402 

https://doi.org/10.1051/epjconf/202023701007, 2020. 403 

Tan, D. G. H. and others: The ADM‐Aeolus wind retrieval algorithms, Tellus A, 60, 191-205. 404 

doi:10.1111/j.1600-0870.2007.00285.x, 2008. 405 

Wang, X. and Lei, T.: GSI-Based Four-Dimensional Ensemble–Variational (4DEnsVar) Data 406 

Assimilation: Formulation and Single-Resolution Experiments with Real Data for NCEP 407 

Global Forecast System. Mon. Wea. Rev., 142, 3303–3325, 408 

https://doi.org/10.1175/MWR-D-13-00303.1, 2014. 409 

https://doi.org/10.5194/amt-2022-20
Preprint. Discussion started: 18 January 2022
c© Author(s) 2022. CC BY 4.0 License.



21 

 

Weiler F. M. Rennie, T. Kanitz, L. Isaksen, E. Checa, Jos de Kloe, O. Reitebuch:  Correction of 410 

wind bias for the lidar on-board Aeolus using telescope temperatures, Atmos. Meas. Tech. 411 

doi: 10.5194/amt-2021-171, 2021.  412 

https://doi.org/10.5194/amt-2022-20
Preprint. Discussion started: 18 January 2022
c© Author(s) 2022. CC BY 4.0 License.



22 

 

8 Figures 413 

 414 

Figure 1. Latitudinal and height distributions of zonal mean difference of ECMWF minus FV3GFS 415 

background zonal wind (m/s) for 1-7 September 2019.   416 
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 417 

Figure 2. Vertical and daily variations of global horizontal means (a, b) and standard deviations (c, d) of 418 

the innovations of Mie winds minus FV3GFS background winds (m/s) in ascending (a, c) and descending 419 

(b, d) orbits. 420 

 421 

 422 

Figure 3. As in Fig. 2 but for Rayleigh winds. 423 

https://doi.org/10.5194/amt-2022-20
Preprint. Discussion started: 18 January 2022
c© Author(s) 2022. CC BY 4.0 License.



24 

 

 424 

Figure 4. Latitudinal and height distributions of mean differences (color scale, m/s) of Mie minus 425 

FV3GFS winds (a, c) and Rayleigh minus FV3GFS winds (b, d) in ascending (a, b) and 426 

descending (c, d) orbits for 1-7 September 2019. 427 

 428 
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 429 

Figure 5. Vertical variation of the square root of the ratio of random error variance in Aeolus winds 430 

versus FV3GFS background winds for Mie (solid black) and Rayleigh (dashed blue) winds. Results are 431 

based on global O-B innovations of Aeolus minus FV3GFS winds from the Aeolus BASE experiment 432 

using Hollingsworth-Lonnberg method. The symbols are plotted at averaged height in each vertical layer. 433 

  434 
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 435 

Figure 6. Density plots of global collocated Mie and FV3GFS winds at ~3.5 km altitude (a), and Rayleigh 436 

and FV3GFS winds at ~16.5 km altitude (b) in descending orbits. The TLS analysis line (green), the OLS 437 

regression line of FV3GFS winds on Aeolus winds (purple), and the OLS regression line of Aeolus winds 438 

on FV3GFS winds (transformed and plotted as a function of Aeolus winds in red) are shown, with 439 

corresponding regression coefficients displayed above each panel. 440 

441 
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 442 

  443 

Figure 7. Vertical variations of TLS bias coefficients for Mie versus FV3GFS winds (a, b, c), and 444 

Rayleigh versus FV3GFS winds (d, e, f). Each point plotted represents a separate TLS analysis for all 445 

observations in each layer for all latitudes and for either ascending (black) or descending (blue) orbits. 446 

The symbols are plotted at the average height of the observations in each layer. 447 

448 
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 449 
 450 

Figure 8. Vertical distributions of average TLS estimated biases (color scale, m/s) for Mie versus 451 

FV3GFS winds (a, c) and Rayleigh versus FV3GFS winds (b, d) as a function of observed Aeolus winds 452 

(m/s) in ascending (a, b) and descending (c, d) orbits for all latitudes, obtained from the TLS fits 453 

displayed in Figure 7.  454 

 455 

 456 

Figure 9. TLS estimated biases (m/s) before (black lines) and after (purple lines) TLS bias correction for 457 

Mie versus FV3GFS winds (a) and Rayleigh versus FV3GFS winds (b) as a function of the observed 458 
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Aeolus winds (m/s), vertically averaged for all latitudes of Aeolus winds. The green lines report the 459 

number of observations in each 2 m/s bin. 460 

 461 

 462 

Figure 10. Latitudinal variation of TLS bias coefficients for Mie versus FV3GFS winds (a, b, c) and for 463 

Rayleigh versus FV3GFS winds (d, e, f). Each point plotted represents a separate TLS analysis for all 464 

observations in all vertical layers in a 10º latitude band for either ascending (black) or descending (blue) 465 

orbits. The latitude bands are centered every 10º from 90°S to 90°N. The symbols are plotted at the center 466 

in each latitude band. The vertical layers are 0-16 km for Mie winds and 3-22 km for Rayleigh winds. 467 

  468 
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 469 

Figure 11. Latitudinal distributions of average TLS estimated biases (color scale, m/s) for Mie versus 470 

FV3GFS winds (a, c) and Rayleigh versus FV3GFS winds (b, d) as a function of Aeolus wind in 471 

ascending (a, b) and descending (c, d) orbits for all latitudes, obtained from the TLS fits displayed in 472 

Figure 10. 473 

  474 
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 475 

Figure 12. Vertical distributions of average bias estimates (color scale, m/s) in Mie versus FV3GFS winds 476 

(a, c, e) and Rayleigh versus FV3GFS winds (b, d, f) as a function of Aeolus winds using one of three 477 

methods for descending orbits for all latitudes. The methods are OLS using FV3GFS winds as a predictor 478 

(a, b), TLS (c, d, same as the bottom panels of Figure 8), and OLS using the average of Aeolus and 479 

FV3GFS as a predictor (e, f).  480 

 481 
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 482 

Figure 13. As in Figure 8 but for the mean innovation (O-B) after the TLS bias correction is applied. For 483 

each 6-h cycle during 1-7 September 2019, the TLS bias correction is calculated from the 28 preceding 484 

cycles. 485 

 486 
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 487 

Figure 14. As in Figure 4 but after the TLS bias correction is applied. Note that the remaining 488 

bias in several bins are due to small sample size, and the TLS bias correction is not applied in 489 

these bins in Aeolus wind assimilation. 490 
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