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Abstract. This paper provides the theoretical basis and simulated retrievals for the Cloud Height Retrieval from O2 Molecular

Absorption (CHROMA) algorithm. Simulations are performed for the Ocean Color Instrument (OCI), which is the primary

payload on the forthcoming NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, and the Ocean Land Colour

Instrument (OLCI) currently flying on the Sentinel 3 satellites. CHROMA is a Bayesian approach which simultaneously re-

trieves cloud optical thickness (COT), cloud top pressure/height (CTP/CTH), and (with a significant prior constraint) surface5

albedo. Simulated retrievals suggest that the sensor and algorithm should be able to meet the PACE mission goal for CTP error,

which is ±60 mb for 65 % of opaque (COT≥ 3) single-layer clouds on global average. CHROMA will provide pixel-level

uncertainty estimates, which are demonstrated to have skill at telling low-error situations from high-error ones. CTP uncer-

tainty estimates are well-calibrated in magnitude, although COT uncertainty is overestimated relative to observed errors. OLCI

performance is found to be slightly better than OCI overall, demonstrating that it is a suitable proxy for the latter in advance of10

PACE’s launch. CTP error is only weakly sensitive to correct cloud phase identification or assumed ice crystal habit/roughness.

As with other similar algorithms, for simulated retrievals of multi-layer systems consisting of optically thin cirrus clouds above

liquid clouds, retrieved height tends to be underestimated because the satellite signal is dominated by the optically-thicker

lower layer. Total (liquid plus ice) COT also becomes underestimated in these situations. However, retrieved CTP becomes

closer to that of the upper ice layer for ice COT≈3 or higher.15

1 Introduction

The NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission (https://pace.gsfc.nasa.gov) is expected to launch in

January 2024. As its name suggests, it will extend and improve upon various key satellite-based Earth system data records

in the atmospheric and ocean colour disciplines (Werdell et al., 2019). PACE will host three sensors; the primary payload

is the Ocean Color Instrument (OCI), a broad-swath passive imaging radiometer with continuous spectral coverage from the20
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ultraviolet to near-infrared (NIR), and seven discrete channels in the NIR and shortwave infrared (SWIR). It will also carry

two cubesat-sized multi-angle polarimeters, namely the Hyper-Angle Rainbow Polarimeter 2 (HARP2; Martins et al., 2018)

and Spectro-Polarimeter for planetary EXploration (SPEXone; van Amerongen et al., 2019).

Mission success requires routine production of various geophysical data sets from OCI measurements. These ‘required’ data

products represent a minimal set of those which it is envisioned the mission will be able to produce, and in most cases the at-25

launch algorithms are expected to be adaptations of existing heritage retrieval codes. Due to differences in sensor capabilities,

some algorithms require more adaptation than others. For clouds, the required products include a cloud mask, cloud optical

thickness (COT) at mid-visible wavelengths, cloud effective radius (CER), cloud top pressure (CTP), and cloud phase (i.e.

liquid droplets or ice crystals). Together COT, CER, and phase will also be used to calculate cloud water path (CWP). CTP can

be transformed to cloud top height or temperature (CTH, CTT respectively); in this paper ‘altitude’ is used to refer to these30

three coordinate systems generically. These are the same cloud properties in operational production from NASA’s MODerate

resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors (Platnick

et al., 2003), among others.

It is envisioned that the at-launch cloud algorithms will follow the same basic processing structure as the MODIS/VIIRS

heritage; that is, separate algorithms for cloud mask, COT/CER/CWP (often termed ‘cloud optical properties’), phase, and35

CTP/CTH/CTT (Platnick et al., 2003, 2021). At present, cloud optical properties code equivalent to the operational Collection

6.1 MODIS product (Platnick et al., 2017) has been implemented into the PACE data processing stream, an algorithm to

retrieve phase is in development (Coddington et al., 2017), and several cloud masking approaches are in consideration. This

paper concerns the remaining gap: the cloud top altitude. MODIS, VIIRS, and several other sensors employ multispectral

thermal infrared (TIR) measurements, making use of thermal contrast between the (warm) surface and (colder) cloud tops,40

together with ancillary temperature-pressure-height profiles (e.g. Menzel et al., 2008; Heidinger and Pavolonis, 2009; Poulsen

et al., 2012). PACE, however, will not measure at TIR wavelengths (see Section 2) so the MODIS-like approach cannot be

adopted. Other techniques exist, such as hyperspectral TIR sounding, parallax, and lidar, radar, and microwave, as well as

absorption features in the solar spectral region.

Early discussion on determining cloud top altitude from space using solar measurements suggested using channels in absorp-45

tion lines for well-mixed gases. Note that satellite measurements are often referred to as ‘channels’ or ‘bands’ synonymously;

in this paper, for clarity, ‘channels’ are used to discuss satellite measurements while ‘bands’ refers to atmospheric absorption

regions. Then, altitude can be determined by the extent to which these absorption features are filled in by a scattering cloud

compared to a nearby absorption-free window reference channel. Hanel (1961) initially suggested using CO2 absorption near

2µm for this purpose, though Yamamoto and Wark (1961) and Chapman (1962) countered with the proposal of the O2 A-band50

near 760nm due to stronger cloud reflectance and stronger atmospheric absorption. Over the next several years theoretical and

instrumental progress was made (e.g. Saiedy et al., 1965; Wark and Mercer, 1965), allowing airborne measurements (Saiedy

et al., 1965) and then the first spaceborne observations of clouds in the A-band from a hand-held instrument by astronauts on

the Gemini 5 mission in 1965 (Saiedy et al., 1967).
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The following years saw significant milestones in theoretical understanding of the A-band and retrieval possibilities (e.g.55

McClatchey et al., 1973; Wu, 1985; Fischer and Grassl, 1991; O’Brien and Mitchell, 1992; Kuze and Chance, 1994) together

with instrument development (e.g. Curran et al., 1981; Fischer et al., 1991; Asano et al., 1995). The first autonomous (i.e. non-

astronaut operated) measurements of the A-band used for cloud altitude retrieval appear to be from the Kosmos 320 satellite

in 1970 (Gorodetsky et al., 1971; Malkevich, 1973). The 1967 Kosmos 149 mission also had this measurement capability

(Malkevich, 1973; Marchuk et al., 1988), though those data appear not to have been used for cloud altitude retrieval, possibly60

due to on-orbit platform orientation issues with that satellite (Harvey and Zakutnaya, 2011). Both missions lasted several weeks.

Either way, the launch of the Global Ozone Monitoring Experiment (GOME) in 1995 provided the first large-scale satellite

measurements in the A-band used for generating cloud retrieval data sets (Koelemeijer et al., 2001; Loyola, 2004). GOME was

itself a descoped version of the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY;

Burrows et al., 1995), which was launched in 2002.65

The applicability of the A-band for cloud and aerosol altitude remote sensing is now well-established, as well as the weaker

B-band near 687nm (Desmons et al., 2019) and O2-O2 collision complex absorption near 477nm (for high spectral resolution

instruments; Acarreta et al., 2004). Both theory (Heidinger and Stephens, 2000; Stephens and Heidinger, 2000; Rozanov and

Kokhanovsky, 2004; Yang et al., 2013b; Davis et al., 2022) and practical application (Vanbauce et al., 1998; Lindstrot et al.,

2006; Wang et al., 2008; Lelli et al., 2012; Compernolle et al., 2021) demonstrate that information content from these absorption70

features is a function of spectral characteristics (sampling and resolution), with key factors contributing to retrieval uncertainty

being knowledge of the cloud vertical extinction profile (and particularly multi-layered cloud systems) and, for optically-thin

clouds, surface reflectance characteristics. Specifically, in some cases clouds are modeled as either Lambertian reflectors or

vertically homogeneous layers to retrieve an optical centroid cloud pressure (Sneep et al., 2008; Joiner et al., 2012). This

‘effective’ cloud central pressure can be useful for applications such as calculating trace gas retrieval air mass factors (Bucsela75

et al., 2006). The cloud ‘top’ height is a more relevant parameter for cloud physics and climate studies, and obtaining this

property is a PACE mission requirement. To obtain a top pressure the retrieval should model particle and gaseous scattering and

absorption within the cloud with realistic profiles of particle size and water content; inhomogeneous cloud vertical structures

also have implications for other retrieved cloud properties (Platnick, 2000). With sufficient sampling of differential absorption

strengths within the band, additional properties can be obtained (e.g. cloud geometric thickness; Rozanov and Kokhanovsky,80

2004; Lelli and Vountas, 2018; Richardson et al., 2019). Many further references could be provided - the above are generally

illustrative of the history and principles for different sensors sampling these features.

With some exceptions, instruments tend to fall into one of two categories. The first (e.g. GOME, SCIAMACHY) are spec-

trally fine (<1 nm) and spatially fairly coarse (several to hundreds of km pixel length), which provides more information on

cloud vertical structure at the expense of errors in spatially-heterogeneous scenes. Those in the second category (including85

PACE’s OCI) have coarser spectral sampling and resolution but spatially finer resolution, with the converse strengths and lim-

itations. Additional discussion of the history of scientific understanding of O2 absorption features and use for remote sensing

is provided by Davis et al. (2022).
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(a) OCI RSRs near O2 A-band
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(b) OLCI RSRs near O2 A-band
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Figure 1. Relative spectral response functions (RSRs) for (a) OCI, based on current expectations and (b) Sentinel 3a OLCI, based on pre-

launch measurements, in the region of the O2 A-band. RSRs are shown in red, with different tones indicating different channels. Absorption

by various species (see text) is shown in dark grey shading for O2, brown lines for O3 (which has very weak absorption), and blue lines for

H2O.

This paper presents an algorithm, Cloud Height Retrieval from O2 Molecular Absorption (CHROMA), for determination of

cloud altitude from future PACE OCI measurements. Radiative transfer (RT) simulations are used to understand sensitivities90

and expected performance. Simulated retrievals are also performed for the Ocean and Land Colour Instrument (OLCI), the first

of which launched in 2016, and the potential utility of OLCI as an OCI proxy for CTP retrieval is demonstrated. The application

to real OLCI measurements will be shown in a follow-up study. Section 2 introduces the OCI and OLCI instruments, Section

3 describes the proposed retrieval algorithm, and Section 4 shows simulated retrievals for both instruments. Finally, Section 5

provides a summary of expectations for eventual PACE OCI data.95

2 Sensor characteristics

OCI and OLCI share several similarities that suggest the latter would be a good proxy for pre-launch testing of a CTP retrieval

algorithm for the former. OCI (Werdell et al., 2019) will have continuous spectral coverage from approximately 350 to 890 nm,

with channels spaced every 2.5nm. They will be somewhat overlapped as the full width at half maximum (FWHM) will be

5 nm. In addition to this, OCI will have discrete channels (of various widths) centred near 940, 1040, 1250, 1378, 1620, 2130,100

and 2250 nm. These NIR and SWIR channels generally mirror those on heritage missions. OLCI (Donlon et al., 2012) is an

enhanced successor to the MEdium Resolution Imaging Spectroradiometer (MERIS, Rast et al., 1999) and has 21 channels

across the visible and near-infrared, including 5 in the vicinity of the O2 A-band (denoted channels OA12-OA16). MERIS

lacked OLCI’s channels centred near 764 and 767.5nm. Two OLCI instruments are in orbit at present, on the Sentinel 3A and

3B satellites. In this study, where relative spectral response (RSR) functions are illustrated or used in calculations, pre-launch105

RSRs from Sentinel 3A OLCI are used (sensor mean RSR from all detectors).

RSRs for OCI and OLCI in this region are shown in Figure 1 in red. The other colours serve to highlight absorption features

of relevance. These figures were generated by running the libRadtran RT code version 2.0.4 (Emde et al., 2016) with its
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built-in REPTRAN trace gas absorption package (Gasteiger et al., 2014), with individual absorbers (here O2, O3, and H2O)

switched sequentially on and off. The figure illustrates gas absorption strengths by plotting the ratio of top of atmosphere110

(TOA) reflectance with a particular absorber switched on to that with it switched off. More specifically, this simulation was run

using libRadtran’s implementation of the Discrete Ordinates Radiative Transfer (DISORT) solver (Buras et al., 2011) with 32

hemispherical streams using a US standard atmosphere for a solar zenith angle of 45◦, viewing zenith angle of 30◦, and relative

azimuth angle of 0◦, over a Lambertian surface with spectrally-flat albedo of 0.2. The calculation was done at REPTRAN’s

fine-resolution setting of 1 cm−1 (∼0.05 nm in this spectral region). Both sensors sample window (i.e. negligible absorption)115

regions around the A-band and have several channels probing differing absorption strengths within the band. While OLCI

has fewer channels than OCI, those within the A-band are narrower, and well-placed to capture spectral regions of high and

moderate absorption. O3 absorption is fairly spectrally flat and weak (two-way transmittance is approximately 0.99); H2O

absorption becomes important from 785nm onwards.

Besides the above spectral considerations, the sensors share similar spatial characteristics. OCI will be a single sensor with120

a horizontal pixel size of approximately 1 km at the sub-satellite point and a swath width of 2,663 km. OLCI has 5 separate

cameras with a combined swath width of 1,270 km; native horizontal pixel size is approximately 300m, although, as with

MERIS, a ‘reduced resolution’ aggregated data product at 1.2 km is also produced. This also means processing OLCI data

should yield sufficient statistics to assess the retrievals against other satellite products and ground truth prior to PACE launch.

Both sensors also tilt to decrease the proportion of the swath affected by strong Sun glint over water: OLCI is tilted 12.6◦125

westwards, OCI will tilt 20◦ north in the northern hemisphere and 20◦ south in the southern hemisphere, reversing near the

Equator.

3 Retrieval algorithm

3.1 Theoretical basis

As described in the Introduction, the factors influencing information content and error for cloud retrievals in the O2 A-band are130

well established. This section serves to provide some illustrative examples for OCI channels. Figure 2 shows TOA reflectance

integrated for the OCI channels in Figure 1a, for a variety of liquid cloud and surface conditions (same geometry and RT setup

as in Figure 1a, except as indicated in the caption). As COT increases (Figure 2a), TOA reflectance increases across the whole

spectral region. Outside of the A-band the spectrum remains fairly flat; channels sampling the A-band brighten but retain a dip

relative to the surrounding windows. By comparing Figures 1a and Figure 2, it can be seen that OCI’s 5nm FWHM smooths135

the two wings of the A-band into a single feature. Figure 2c shows that the spectral signature of an increasing surface albedo

is similar to that of increasing COT, meaning a constraint on surface albedo is necessary for a successful retrieval.

Figure 2b shows that as CTH increases (CTP decreases) the TOA signal in the window regions does not change. Channels

within the A-band become brighter for higher clouds, as more of the O2 absorption is shielded. The invariance of the signal

in the window has led to some formulating CTH retrievals in terms of the ratio between in-band and window reflectance, as140

opposed to absolute reflectances themselves (e.g. Davis et al., 2022). A smaller brightening is seen for channels at wavelengths
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(a) Reflectance vs. COT
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(b) Reflectance vs. CTH
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(c) Reflectance vs. albedo
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(d) Reflectance vs. fractional depth
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Figure 2. TOA reflectance for selected OCI channels (diamonds) as a function of cloud and surface properties. The base simulation is for

a liquid water cloud with CER 10 µm and midvisible COT of 8. The CTH is 6 km and the fractional depth (i.e. fraction of the altitude

between the CTH and ground level) of the vertically-homogeneous cloud is 0.5 (i.e. cloud base of 3 km, cloud geometric thickness of 3 km).

Simulations also include Rayleigh scattering and a spectrally-flat Lambertian surface with albedo 0.3. All simulations otherwise as described

for the setup used for Figure 1. Panels show the variation in TOA reflectance when (a) COT, (b), CTH, (c), surface albedo, or (d) fractional

depth are varied and all other parameters held constant. Coloured parameter values at the bottom of each panel correspond to the coloured

lines.

longer than 785 nm due to a similar shielding effect from H2O absorption. Finally, Figure 2d shows that the spectral signature of

changes in cloud vertical extent (here, the fraction of the column from cloud top to surface occupied by the cloud) is very similar

to that of CTH, with shallower clouds being brighter (as a higher effective scattering altitude has a stronger effect of shielding

the absorption from lower altitudes). This points to the need for an assumption or joint retrieval of parameters relating to cloud145

vertical structure - in principle not just the cloud vertical extent, but also accounting for variations in water content or CER (not

shown here). Recently, Fischer and Preusker (2021) found that OLCI’s A-band measurement capabilities provide roughly two

degrees of freedom for clouds in most cases - COT and CTP - slightly fewer over deserts, and slightly more (partial information

on vertical extent) in parts of the tropics. The information on vertical extent comes from the enhancement of absorption

by within-cloud multiple scattering; this enhancement varies across the A-band as the cloud signal is spectrally flat but O2150

absorption is not (Kokhanovsky and Rozanov, 2004). Despite OCI’s greater number of spectral channels, their comparative

broadness and overlap means that parameters related to cloud vertical structure are also not likely robustly retrievable from

OCI’s A-band measurements and instead must be assumed.
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The proposed CHROMA algorithm strategy, then, is to simultaneously retrieve COT, CTP/CTH, and surface albedo (with

a strong prior constraint on the latter) from OCI or OLCI measurements within the A-band. Other atmospheric and surface155

properties will be assumed or obtained from meteorological reanalyses. The choice of whether to retrieve or fix surface albedo

is an important one. If allowed to vary totally freely the retrieval is more likely to converge to the incorrect solution as the

spectral signatures of clouds and the surface are similar so there can be ambiguity. On the other hand, fixing albedo can lead

to biases in altitude if the fixed value is wrong - particularly for optically thinner clouds. Section 5.6 of Preusker and Fischer

(2021) illustrates this for clouds, and Section 2 of Sanders et al. (2015) analyses this issue from the point of view of aerosol160

layer height retrieval, which is analagous to the case of low-COT clouds. The goal is therefore to obtain a strong prior constraint

but allow for some flexibility to account for the fact the prior is not perfect.

For OCI, the eight consecutive channels centred from 755 to 772.5 nm will be used. For OLCI, the four channels OA12-

OA15 (nominal centres 753.75, 761.25, 764.375, and 767.5 nm) will be used. The rationale for excluding other window chan-

nels (several options for OCI, and OA16 for OLCI) is that these will be essentially redundant, given almost identical response165

to changes in geophysical parameters, and (shown later) very strong spectral correlations in forward model uncertainty. At

cloud radiance levels, sensor noise is negligible and sensor absolute calibration uncertainty is likely to be spectrally flat (and so

highly correlated, e.g. Neneman et al., 2020). There is, however, a benefit in retaining an overall shorter spectral range in the

retrieval as it decreases uncertainties related to spectral variation in surface and aerosol properties across the channels used.

The reasons for simultaneous retrieval of COT, CTH, and albedo as opposed to taking COT from the separate MODIS-like170

optical properties retrieval and retrieving only CTH and albedo are two-fold. The first reason is that the optical properties

retrieval requires CTH as input in order to calculate trace gas absorption corrections for the channels it uses (Platnick et al.,

2021), so the CTH retrieval needs to come first. The second is that using input from a different COT retrieval with different

assumptions makes uncertainty quantification and propagation difficult. An alternative approach would be to perform a simul-

taneous retrieval of all cloud parameters - such retrievals exist (e.g. Poulsen et al., 2012), but an advantage of the approach in175

this study is that it allows greater continuity with the MODIS/VIIRS processing chain, is computationally simpler, and reduces

risk of not having an algorithm in place by PACE launch.

As discussed earlier, the O2 B-band has also been used for retrieval of cloud and aerosol altitude and in principle a retrieval

could benefit from including additional absorption features. Figure 3 shows OCI RSRs in this region; relative to Figure 1, the

B-band is weaker and narrower, and OCI channels in this region will be more strongly influenced by O3 and H2O absorption.180

O2-O2 absorption (not shown) near 477nm is weaker still, while O3 and aerosol signals are stronger, and NO2 absorption can

also be significant. Thus, use of only the A-band spectral region entails fewer necessary assumptions or constraints on surface

and aerosol properties (and H2O profiles). While H2O absorption could in principle be used for CTP retrieval in a similar way

to O2, the fact that H2O column amount and profile shape vary strongly while O2 is well-mixed is a disadvantage.

For these reasons only the A-band channels are considered in the present approach. OLCI also lacks observations in these185

other spectral regions, limiting the ability to test an algorithm combining A- and B- bands before PACE’s launch. While the

Earth Polychromatic Imaging Camera (EPIC) sensor has measurements in both spectral regions (see Yang et al., 2013b; Davis

et al., 2022, for cloud retrievals using both bands), its significantly coarser pixel size (approximately 8 km across at nadir)
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OCI RSRs near O2 B-band
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Figure 3. As Figure 1, except for OCI channels in the region of the O2 B-band.

means that scene heterogeneity is a bigger issue than for OCI. Additionally, EPIC’s orbit (at the L1 Lagrange point) vs. OCI

and OLCI’s Sun-synchronous polar orbits mean that solar and viewing geometry characteristics are very different. As a result190

OLCI seems the better proxy for OCI. Combining O2 A- and B-band channels would however, be useful in a retrieval of

aerosol properties as spectral surface reflectance would need to be characterised anyway, and land surface reflectance is often

darker around the B-band than A-band. Xu et al. (2019) demonstrated this type of retrieval for EPIC.

3.2 Radiative transfer

3.2.1 Spectral setup195

All RT calculations in this study are performed with the DISORT solver of libRadtran version 2.0.4 (Emde et al., 2016), with

32 streams per hemisphere and a pseudospherical atmosphere (direct solar beam is treated in spherical geometry, scattered light

is plane-parallel). The fundamental quantity calculated by this is the monochromatic TOA reflectance ρ(λ) at wavelength λ,

ρ(λ) =
πD2

⊙L(λ)

µ0F0(λ)
, (1)

where D⊙ is the ratio of the Earth-Sun distance to 1 astronomical unit (AU), L the TOA radiance, F0 the downwelling solar200

spectral irradiance at TOA, perpendicular to the Sun and at 1 AU, and µ0 the cosine of the solar zenith angle. In this study,

ρ(λ) is calculated with a sampling of 0.01 nm over the wavelength range 748-782 nm, encompassing all relevant portions of

the OCI and OLCI RSRs. Then, the TOA reflectance of OCI or OLCI channel i, ρi is obtained:

ρi =

∫ 782

748
ρ(λ)F0(λ)Φi(λ)dλ∫ 782

748
F0(λ)Φi(λ)dλ

(2)
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Here, Φi(λ) indicates the RSR of sensor channel i. The factor F0(λ) appears in both Equations 1 and 2 because the RSR205

is defined for spectrally uniform (white) light while the sensor measures total radiance across the channel, so weighting is

necessary. The F0 spectrum used is from Coddington et al. (2021); this is at 0.025nm spacing with 0.1 nm bandwidth, and

is linearly interpolated to the 0.01nm grid used for RT calculations in this study. It has 0.3 % uncertainty in this spectral

range. Numerically, trapezoid integration is used for Equation 2; the spectrally-integrated ρi are used as input to the retrieval

algorithm.210

3.2.2 Atmospheric profile and gas absorption

The atmospheric temperature/pressure/height (T /p/z) profile used is a 20-level (19-layer) 1976 US Standard Atmosphere (Du-

bin et al., 1976), with layer bounds 0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 17, 20, 25, 30, 40, 50, 70, and 100 km. libRadtran takes

input in height (z) space; conversions between z and p are done in log10(p) space (as this varies close to logarithmically with

height). Pressures at the lowest and highest bounds are 1013 and 0.00032mb, respectively. Where calculations are performed215

for a different surface pressure, the whole p profile is simply scaled accordingly; this creates a minor error source, as Rayleigh

scattering and gas absorption are slightly dependent on T as well as p, and in reality for a lower surface pressure (e.g. elevated

terrain) one might expect T to also be cooler.

Note that the key quantity relevant for the radiative transfer here is pressure: essentially, there is a single (global) p-T

relationship assumed at the radiative transfer stage. While this relationship varies in the real world, often as a function of220

latitude, it is not computationally practical to use multiple basic profiles in retrieval processing, and in any case T is a secondary

error source. Since the instrument and retrieval sensitivity is to p rather than z, in retrieval processing the solution will be

obtained in p space and then transformed to T and z (for output CTT and CTH) with the aid of ancillary reanalysis or forecast

profiles. In this work the US standard atmosphere is also used for this conversion in the simulated retrievals.

Trace gas absorption calculations use the recently-released HITRAN 2020 data base (Gordon et al., 2022). O2 absorption is225

calculated assuming a volume mixing ratio of 0.21, performing line by line calculations with a Voigt line shape and cutting off

25 cm−1 from line centres (as customary, e.g. Clough et al., 1989). While REPTRAN (Gasteiger et al., 2014) was used in earlier

figures for illustrative purposes, for CHROMA the newer data from HITRAN 2020 (and running RT calculations at 0.01nm

spacing) are preferred, for increased accuracy at the cost of (considerably) more calculation time. O3 is added using the 295K

spectrum of Bogumil et al. (2003) assuming 300DU in the uppermost atmospheric layer. While this treatment is fairly simple,230

O3 absorption is weak in this spectral region (nadir optical thickness ∼0.0033) that the error introduced by variations in O3

amount and profile structure are negligible. Other absorbers are neglected as they are negligible in this spectral region. Finally,

O2 self- and foreign continua from version 3.4 of the MT_CKD model (Mlawer et al., 2012) are added. Note this version

of MT_CKD was developed using an older version of the HITRAN line data base (as continuum models are semi-empirical,

based on fitting residual absorption after removing known gas lines), creating a minor inconsistency. Prior to application to real235

OCI data, updates will be made to absorption calculations as necessary.

Rayleigh optical depth is calculated using Bodhaine et al. (1999), and is ∼0.027 in the A-band for a surface pressure of

1013mb.
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Figure 4. Median (points) and central one standard deviation (lines) of cloud FGD binned as a function of CTH for ARSCL data from three

ARM sites. Panels show results for (a) all clouds and (b) single-layer clouds. Only bins with at least 1000 observations are populated. Colours

indicate the ENA (blue), NSA (grey), and SGP (green) sites. The bin size is 1.5 km; sites are slightly offset from bin centres for clarity.

3.2.3 General cloud setup

libRadtran includes precalculated liquid and ice cloud phase matrices and scattering/extinction properties, used here, tabulated240

based on lognormal distributions with various effective radii. Clouds are assumed to be single-layered and single-phase (i.e.

consisting solely of either liquid water droplets or ice crystals).

The cloud layer is divided into 5 contiguous sublayers of equal vertical extent, running from the CTH to the cloud base

height (CBH). Cloud fractional geometric depth (FGD) is then defined as 1-(CBH/CTH). The use of sublayers allows for

vertical variation of cloud structure. If a cloud boundary does not align exactly with an atmospheric layer, libRadtran preserves245

the T /p/z profile and calculated atmospheric scattering/absorption and inserts new layers to allow clouds (or aerosols) to be

precisely at user-specified altitudes. Thus, in most cases, the final calculation is done with more than the 19 layers discussed in

Section 3.2.2.

As mentioned earlier, parameters relating to cloud vertical structure will not be directly retrieved so some assumptions are

necessary. To guide these assumptions (discussed in Sections 3.2.4 and 3.2.5), cloud FGD as a function of CTH is shown250

for three Atmospheric Radiation Measurement (ARM) sites in quite different environments in Figure 4. These sites are East

North Atlantic (ENA; 39.1◦ N, 28.0◦ W), North Slope of Alaska (NSA; 71.3◦ N, 156.6◦ W), and Southern Great Plains

(SGP; 36.6◦ N, 97.5◦ W). These plots are constructed from four years (2017-2020) of the Active Remote Sensing of Cloud

Locations (ARSCL) product (Kollias et al., 2016), and shown separately for all clouds and single-layer clouds. Unfortunately,

FGD shows high variability between locations and within CTH bins at a single location, but cloud vertical extent is difficult255

to retrieve from A-band observations at these spectral resolutions (Fischer and Preusker, 2021). Note that most cloud property

retrieval algorithms from passive sensors assume vertically-homogeneous clouds, sometimes with small or zero geometric

thickness.
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3.2.4 Liquid phase cloud properties

CHROMA assumes a cloud top CER of 11 µm for liquid clouds, which is close to the global median and modal values from260

MODIS retrievals (King et al., 2013). The CBH is assumed to be half the CTH (i.e. FGD=0.5) based on Figure 4. Within the

cloud, vertical structure of CER and liquid water content (LWC) follow the adiabatic model (e.g. Brenguier et al., 2000). That

is, LWC in each sublayer decreases linearly as one descends from CTH to CBH. The CER of each sublayer also decreases

descending from the cloud top, proportional to (h/h0)
1/3 where h/h0 represents the geometric fraction of the cloud remaining

below the sublayer height (i.e. h/h0 is 1 at cloud top and 0.2 for the lowest of the 5 sublayers). This gives a cloud top CER265

of 11 µm and a cloud base CER of 11× 0.21/3 ≈ 6.4 µm. Real clouds are often subadiabatic; however, in these cases, vertical

variation of LWC often remains close to linear (albeit at a different rate) and variation of CER is similar to that for an adiabatic

cloud (Brenguier et al., 2000; Boers et al., 2006). Note that libRadtran is provided only with the shape of the LWC profile, and

the per-layer mass is scaled as required to obtain the total COT of the cloud. As such this vertical structure of LWC and CER

is likely reasonable for subadiabatic clouds as well.270

3.2.5 Ice phase cloud properties

For ice phase clouds, the severely roughened solid column aggregates model from Yang et al. (2013a) is used. This habit is

also used in the latest MODIS cloud optical properties retrieval (Platnick et al., 2017). The severely roughened model is used

(smooth and moderately-roughened are also available) as, except for the warmest ice clouds, high levels of shape distortions

are nearly ubiquitous (Yang et al., 2013a; van Diedenhoven et al., 2020, and references therein). The FGD is assumed to be275

0.25 (Figure 4).

The cloud-top CER is assumed to be a function of CTP, using a data set collected by van Diedenhoven et al. (2020). For

ice crystals the effective radius is defined as 3V
4A where V is the bulk volume (total mass divided by bulk ice density) and A

is the mean projected area assuming random orientation of crystals. van Diedenhoven et al. (2020) collated a year of MODIS

retrievals for ice clouds with COT>1, and binned them as a function of CTT as theory and observations of convective ice280

clouds link this (among other factors) to crystal growth rate and thus size. The average CTP within each CTT bin was also

calculated. These data were transformed to give the CTP-CER relationship in Figure 5. The standard deviation within each

bin varies from about 3.5 µm for the coldest ice clouds to 12 µm for the warmest, and decreases somewhat if only clouds

with COT>3 are considered (not shown), potentially due to increased retrieval uncertainty for optically-thinner clouds. A large

proportion of the variability is due to latitudinal variation (van Diedenhoven et al., 2020) - as noted earlier, it is unfortunately285

only computationally feasible at present to incorporate a single relationship for retrieval processing.

Within the cloud, vertical structure of CER is based on the results for convective ice clouds by van Diedenhoven et al. (2016).

This is determined by each sublayer’s altitude with respect to the homogeneous freezing level (HFL, where the temperature

first reaches 239K), which is around 7.5 km (and 380mb) for the US standard atmospheric profile. For sublayers beginning

from cloud top down to the HFL, the CER increases as height decreases by 3 µmkm−1. For those below the HFL, CER290

increases as height decreases by 6 µmkm−1. Vertical profiles of ice water content (IWC) are assumed to be linearly increasing
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Figure 5. Ice cloud top effective radius (CER) vs. cloud top pressure (CTP) relationship used in this study. The red line denotes the mean

profile, and grey shading 1 standard deviation around the data collected by van Diedenhoven et al. (2020).

as height descends from CTH to CBH (a lower triangular profile); note this is essentially the opposite of the adiabatic LWC

profile. While real IWC profiles can vary enormously (e.g. Carbajal Henken et al., 2013), it is a simplification of a profile shape

that is not uncommon in both airborne (Krämer et al., 2020) and satellite observations (Feofilov et al., 2015), especially for

optically-thicker clouds.295

3.2.6 Aerosol properties

Aerosols are included in the simulation with the Shettle (1989) ‘rural’ type up to 2 km, the ‘background’ type above that, and

an aerosol optical thickness (AOT) of 0.14 at 550 nm (approximately 0.1 in the A-band). This is within the range of typical

background values retrieved by many satellite data sets (e.g. Sogacheva et al., 2020) Note that aerosol loading is varied in the

sensitivity tests later, but in general (except for cirrus clouds) cloud scattering is an order of magnitude or more stronger than300

aerosol so (with some regional exceptions) sensitivity to aerosol assumptions is low.

3.2.7 Surface properties

For computational simplicity the surface (retrieved with a strong prior constraint) is assumed to be Lambertian, i.e. described

by an isotropic albedo rather than a bidirectional reflectance distribution function (BRDF). This is justified as, particularly for

optically-thicker clouds, much of the light will be multiply scattered and so the light field will have lost some directionality.305

In addition, the surface is taken to be spectrally flat across this wavelength range. This assumption is evaluated in Figure 6,

using data from the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) spectral library

(Baldridge et al., 2009; Meerdink et al., 2019). This contains reflectance spectra of several thousand substances (natural and
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(b) Sands and minerals, n=29
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(c) Soils, n=29
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(d) Man-made substances, n=25
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(e) Snow/snow mixtures, n=12
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(f) Water/water mixtures, n=7
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Figure 6. Spectral slope of surface albedo across the A-band, for (red) OCI and (blue) OLCI, expressed as differences relative to the albedo

at the sensor channel of maximum absorption. Points and lines show the mean and standard deviation of spectral differences in each category

in each category. Panels show (a) vegetation, (b) sands and minerals, (c) soils, (d) man-made substances, (e) snow and snow mixtures, and

(f) water and water mixtures. The number of spectra in each category is given in each panel’s title.

man-made), made by several instruments which together cover the visible and TIR spectral ranges. Importantly, to minimise

change of appearance, vegetation samples (cuttings) are measured rapidly after acquisition. Some measurements in the data310

base are bidrectional reflectance (at a single angle) while others are hemispherical directional reflectance. This is expected to

have negligible influence for the present purpose (i.e. spectral shape over a narrow region).

A total of 204 spectra containing data in the A-band region were manually classified and convolved with OCI and OLCI

spectral response functions for the channels used in CHROMA. These are taken as representative of the surface albedo that

would be seen by these sensors - although at satellite pixel scales, the real surface would likely consist of mixtures of multiple315

types. Then, difference spectra were calculated by subtracting the albedo at the most-absorbing satellite channel (centred near

762.5 nm for OCI and 761.7nm for OLCI). The mean and standard deviation of these difference spectra within each category

are shown in Figure 6. Half of the spectra correspond to vegetation of various types; these were additionally divided into

several categories (grasses, trees, shrubs, and mixed samples) but are combined in the figure, as it was found that the slopes for

different categories of vegetation are similar.320

From Figure 6, the typical vegetation albedo increases by about 0.02 across the A-band; for sands and soils the increase

is around 0.01. It is therefore likely that most vegetation-covered satellite pixels would show a similar increase. Man-made

substances (which included various types of asphalt, concrete, brick, wood, metal, and plastic) are very spectrally flat. The

‘snow’ category included snow samples of various ages and snow-vegetation mixtures; these difference spectra are also, on

average, flat. The ‘water’ category (which includes coastal, sea, wetland, and other samples) can show a small positive increase325

across the band. Note that the open ocean (about 2/3 of the Earth’s surface) is both dark and quite spectrally flat due to strong
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Table 1. Radiative transfer LUT node points, for each satellite channel, in the CHROMA algorithm.

Dimension Node points

Solar zenith angle (◦) 0, 5, 10, . . . , 80

Viewing zenith angle (◦) 0, 4, 8, . . . , 72

Relative azimuth angle (◦) 0, 9, 18, . . . , 180

log10(COT) -0.5, -0.167, 0.167, . . . , 2.167

CTH (km), liquid phase 0.3, 1, 2, 3, 4, 5, 6, 7

CTH (km), ice phase 3, 5, 7, 9, 11, 13, 15, 17

Surface albedo 0, 0.1, 0.2, . . . , 1

Surface pressure (mb) 1050, 900, 750, 600

absorption by water in this spectral region (e.g. Hale and Querry, 1973), decreasing TOA sensitivity to assumptions. As a result

of the above, the assumption of a spectrally flat albedo for computational simplicity seems justified (although the effects of the

assumption are tested later).

3.3 Optimal Estimation solution330

3.3.1 Retrieval formalism

Optimal Estimation (OE) is a widely-used Bayesian technique that aims to find the maximum a posteriori (MAP) solution to

the retrieval given measurements, a priori information on the state variables, and any additional constraints available (Rodgers,

2000). One advantage of the technique is that it, with some assumptions and caveats (e.g. Povey and Grainger, 2015), returns

an estimate of the uncertainty on the retrieved state for each individual retrieval.335

OE algorithms like CHROMA require three input vectors, a forward model to relate them, and two main matrices. The

measurement vector y = (ρ0,ρ1, . . . ,ρn) consists of observed TOA reflectances in n channels; eight for OCI or four for OLCI.

The state vector x consists of the retrieved quantities (here COT, CTP, and surface albedo) and is matched by a vector of a

priori values for those state parameters, denoted xa. For satellite data processing, surface albedo priors could be taken from the

MERIS database described by Popp et al. (2011). Section 4 discusses prior albedo values for the simulated retrievals presented340

later in this study. No prior constraint is applied to COT or CTH in the algorithm. The forward model is an approximation

of the true forward function (the real propagation of radiation in the cloudy Earth-atmosphere system). For computational

tractability this is a lookup table (LUT) of RT code results. The forward model F operates on the state vector to return simulated

measurements (yLUT ) from the LUT, i.e. yLUT = F(x), using multiple linear interpolation. There is one LUT file for each

cloud phase (ice or water) with dimensions for each satellite channel given in Table 1. Note the log10(COT) bounds translates345

to an absolute COT range of 0.5 to about 150.
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The two necessary matrices describe uncertainty covariances, under the assumption that uncertainties are unbiased and

Gaussian. The matrix Sy describes the measurement and forward model uncertainties; the latter is sometimes split into a

separate matrix denoted Sb, although the result is numerically and mathematically equivalent if (as here) both contributions are

contained within Sy . Estimation of Sy is, in general, complicated and is the topic of Section 3.3.2. The matrix Sa describes the350

uncertainty of the a priori values xa. This is assumed to be diagonal, and COT and CTH are unconstrained within the bounds

of LUT values (i.e. diagonal elements of the covariance matrix are an arbitrarily large number). Surface albedo is more tightly

constrained, with a one standard deviation uncertainty of ±0.01 over water and ±0.05 over land or snow. These constraints can

be re-evaluated following the application to real data.

The MAP solution is obtained by minimising a cost function,355

J(x) = (y−yLUT (x))
T
S−1
y (y−yLUT(x))+ (x−xa)

T
S−1
a (x−xa) , (3)

where the first term represents squared deviations between the observations and forward model, and the second between the

state vector and a priori values, in both cases weighted by their covariances. The first guess at the solution the LUT node point

(for the appropriate geometry and surface pressure; Table 1) with the lowest cost J . Levenberg-Marquardt iteration (Levenberg,

1944; Marquardt, 1963) is used to find the minimum of Equation 3 to determine the retrieved state x̂; the retrieved is deemed360

to have converged when the decrease in J between successive iterations is smaller than 0.01 (typically 5 or fewer iterations).

Over a large ensemble of retrievals, distributions of J should approach a χ2 distribution, although for cases where off-diagonal

elements of Sy and/or Sa are significant and may change from one retrieval to another (such as here) the degrees of freedom

of the distribution may be smaller than expected based on the number of measurements and state variables. Unusually high

values of J indicate retrievals with a poor level of fit between the measurements and forward model at the retrieval solution.365

Extremely high J can be used as a measure of quality control as it indicates that it is likely that some aspect of the forward

model or uncertainty has been misspecified for the retrieval in question.

Assuming that the forward model is appropriate and unbiased, that covariance matrices Sy and Sa are of appropriate mag-

nitudes, that the retrieval converges to the global minimum of the cost function, and that the forward model is close to linear

near the solution (Povey and Grainger, 2015), then the covariance matrix Ŝx describing the uncertainty on the retrieved state370

can be calculated (e.g. Section 4.1 of Rodgers, 2000):

Ŝx =
(
KTS−1

y K+S−1
a

)−1
(4)

In the above K is the gradient of the forward model with respect to the state vector, i.e. ∂F/∂x, also known as the Jacobian

matrix or weighting function. Here, it is calculated numerically using the finite difference method from nearby LUT node

points. The square root of the diagonal elements of Ŝx provide the one standard deviation Gaussian uncertainties on the375

retrieved state, and the off-diagonal elements describe the covariance between the retrieved quantities. Since what is actually

retrieved in the code corresponds to LUT indices, retrieved values and uncertainties on retrieved cloud altitude are easily

calculable in each coordinate system (i.e. CTH, CTP, CTT).

Note that as radiative transfer is nonlinear in most parameters, the assumption of linearity near the solution can break

down; in these cases, the magnitude of Ŝx can be incorrect. Vukicevic et al. (2010), Witek et al. (2018) and Western et al.380
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(2020) present methods which avoid this assumption, essentially by testing to see to what extent each node in a retrieval LUT

represents a plausible solution. This relies on a denser (more nodes) LUT than is practical for this specific retrieval problem.

Nonetheless, the uncertainty estimates provided by OE and other techniques can (and should) be evaluated to determine when

they can be trusted; Sayer et al. (2020) and other references discussed therein present a method to do this, applied later to the

simulated retrievals in Section 4.385

If the cloud phase is unknown, then the retrieval is performed sequentially for both liquid and ice cloud models and the phase

resulting in the lowest value of J is chosen. For OCI, it is expected that a separate cloud phase algorithm will be available at

launch (Coddington et al., 2017) and used to determine the phase used. Propagation of discrete model choices through the OE

formalism is less straightforward, and phase selection approaches (and related uncertainties) will be examined further following

PACE’s launch.390

A final useful matrix is the averaging kernel A, which describes the sensitivity of the retrieved state x̂ to changes in the true

state x (e.g. Section 4.1 of Rodgers, 2000):

A=
∂x̂

∂x
= ŜxK

TS−1
y K (5)

This essentially quantifies how strongly each of the measurement/forward model and prior uncertainties contribute to the

covariance Ŝx of the retrieved state. For the diagonal elements of A, a value of 1 means that the retrieved state is constrained395

entirely by the measurements y, and a value of 0 that the measurements have provided no constraint and that state vector

element was determined entirely by the a priori value. For CHROMA, COT and CTH are unconstrained by priors so the

relevant elements of A are always 1. For surface albedo, as COT increases the element of A corresponding to surface albedo

approaches 0 because for an optically-thick cloud the contribution of the surface to the TOA signal is negligible. The trace of

A gives the degrees of freedom for signal of the retrieval. Note that A is not a measure of the error in the retrieval, only the400

extent to which state vector elements are constrained by the measurements vs. prior.

3.3.2 Estimating the covariance matrix Sy

Sy contains contributions from measurement uncertainty (noise and systematic) as well as forward model uncertainty. Its

elements i, j can be decomposed as

Sy,ij = σN ,iσN ,j rN ,ij +σS ,iσS ,j rS ,ij +σF ,iσF ,j rF ,ij (6)405

where σ indicates a Gaussian standard deviation uncertainty term, r a channel-to-channel correlation, and subscripts N , S,

and F terms relating to radiometric noise, systematic calibration uncertainty, and forward model uncertainty respectively. The

former two terms are comparatively simple. Sensor noise is assumed to be 0.5 % of the TOA reflectance in each channel. This is

higher than will be the case for real OCI data, but results are not sensitive to the precise number assumed as it is far outweighed

by the other contributions. The noise term is also assumed spectrally uncorrelated, so rN is the Kronecker delta (δij = 1 if410

i= j, 0 ∀ i ̸= j). The systematic calibration uncertainty is taken as 2 % of TOA reflectance, in line with OCI expectations

(Werdell et al., 2019), and is assumed to be fully correlated across the spectral region (rS=1), as is thought to be approximately

16



the case for OLCI (Neneman et al., 2020). This is a reasonable assumption because the spectral range used in the algorithm

is small. Potentially, post-launch vicarious calibration (using e.g. the technique of van Diedenhoven et al., 2010) and on-board

monitoring could decrease this uncertainty (and spectral correlation).415

The forward model uncertainty component is both larger and more difficult to estimate accurately. It involves representing

the uncertainty on the LUT of TOA reflectance used in the retrieval due to factors including physical approximations (i.e.

atmospheric and surface properties), LUT interpolation, and RT assumptions. Here, the approach is as follows:

1. Create an ensemble of simulated measurements yδ = (ρδ,0,ρδ,1, . . . ,ρδ,n) across the range of interest of state vector

elements, but perturbing forward model assumed parameters (e.g. cloud vertical structure, surface spectral slope) within420

reasonable ranges.

2. Compare these to the LUT values for the equivalent state vector (i.e. interpolate the LUT for the values of COT, CTH,

and albedo for the given surface pressure, phase, and geometry; Table 1) to calculate the forward model error yLUT −yδ

for each simulation.

3. Develop a simple parametric form to represent this uncertainty’s magnitude σF and its spectral correlation rF within425

Equation 6.

Here, an ensemble of 90,000 perturbation simulations is used, with a 50 % probability of liquid or ice phase clouds for each.

Sampling of geophysical parameters is shown in Tables 2 and 3 for the liquid and ice-phase simulations, respectively. U(a,b)

indicates random draws from a uniform distribution with minimum a and maximum b, and N(a,b) draws from a Normal

(Gaussian) distribution with mean a and standard deviation b. The choice of sampling distribution parameters is motivated430

by plausible variations of the quantities in question for single-layer cloud systems in various atmospheres and surface types.

These are all simplifications which can be revisited in the future, such as to consider covariations between parameters; for some

parameters (notably FGD) the choice of appropriate distribution was unclear.

Variation of COT, CTH, and cloud-top CER was informed by distributions of MODIS retrievals in King et al. (2013).

Ice cloud habits were informed by Yang et al. (2013a) and Baum et al. (2014), and profiles and roughness by values and435

variation within van Diedenhoven et al. (2016, 2020) together with Krämer et al. (2020) and Figure 5. The ice crystal habits

require one modification to step 2 above when interpolating the LUT to estimate forward model uncertainty (i.e. yLUT −yδ).

As the crystals are significantly larger than the wavelength of light, and their absorption is negligible in the visible, their

scattering phase function (and so TOA reflectance) is weakly dependent on particle size but more strongly dependent on

shape (crystal morphology and aspect ratio) and roughness (van Diedenhoven et al., 2014). In particular, as the asymmetry440

parameter g describes the forward vs. backward hemispheric distribution of scattered light, clouds with a similar scaled optical

thickness τs = τ(1− g) have a similar scattering signal, where τs, τ are the scaled and standard COT, respectively. The LUT

interpolation is therefore performed by matching the scaled COT for each simulation’s habit and roughness with the equivalent

for the severely-roughened 8-element column aggregates model (Yang et al., 2013a) used as default. This is calculated as

τ(1− g)/(1− gc8e) where gc8e is the asymmetry parameter for that default model. Relevant values of g are shown in Figure445
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Table 2. Sampling of geophysical parameters for liquid cloud perturbation simulations. Fractions indicate the chance of an outcome for

draws from discrete distributions.

Quantity Sampling distribution

Geometry

Solar zenith angle (◦) U(0,80)

Viewing zenith angle (◦) U(0,72)

Relative azimuth angle (◦) U(0,180)

Atmosphere

log10(AOT) at 550nm N(−0.85,0.2)

Surface pressure (mb) 3/15 for 1013, 2/15 for each of 1000, 975, 950,

1/15 for each of 1025, 925, 900, 950, 750, 600

Surface

Surface reflection 1/3 ocean-like Lambertian U(0.0,0.08),

1/3 land-like Lambertian U(0.15,0.65),

1/3 snow-like Lambertian U(0.75,0.95)

Surface spectral variation Linear from 748 to 782nm with difference N(0,0.015)

Cloud

log10(COT) N(0.8,0.5) truncated at -0.5 and 2

log10(CER) at cloud top (µm) N(1.04,0.15) truncated at CER of 5 and 25

CER/LWC basic profile 2/3 as in Section 3.2.4, 1/3 vertically homogeneous

CER gradient perturbation (µm) N(0,3) additional linear change from top to base

Water content gradient perturbation N(0,15% of peak) additional linear change from top to base

CTH (km) U(0.5,6)

FGD U(0.1,0.9)

7. Key points here are that the column aggregates model has lower g than the others, meaning a higher scaled COT. This

habit model is fairly independent of CER compared to the others, which is a consequence of CER-dependent aspect ratios

in other ice crystal models found in Yang et al. (2013a). Increasing crystal roughness in general decreases g. Note that this

concept of scaled COT is useful to convert between equivalent cloud optical properties retrieved using different techniques and

assumptions (e.g., van Diedenhoven et al., 2020).450

While the bulk of simulations are performed as perturbations to the cloud vertical structures described in Sections 3.2.5

and 3.2.4, the vertically-homogeneous profile (with added perturbations) is used to provide an alternative for some ensemble

members. Near-homogeneous profiles have been observed for liquid (e.g. Wood, 2005; Korolev et al., 2007; Li et al., 2015) and

ice (e.g. Feofilov et al., 2015; Krämer et al., 2020) clouds in some circumstances. FGD perturbations are based on Figure 4 as
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Table 3. Sampling of geophysical parameters for ice cloud perturbation simulations. Quantities not given here are as in Table 2.

Quantity Sampling distribution

Ice crystal habit 6/10 8-element column aggregates, 1/10 for each of hollow bullet rosettes,

solid bullet rosettes, droxtals, and 5-element horizontal plate aggregates

Ice crystal roughness 2/3 severe, 1/3 moderate

CER at cloud top (µm) Figure 5 with perturbation N(0,7)

CER/IWC basic profile 2/3 as in Section 3.2.5, 1/3 vertically homogeneous

CER gradient perturbation (µm) N(0,4) additional linear change from top to base

CTH (km) U(4,16)

HFL (km) N(7.5,1.25)

FGD U(0.025,0.5)
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Figure 7. Ice crystal asymmetry factor at 760nm as a function of CER. Different colours indicate difference ice crystal habits; dashed and

solid lines refer to moderately and severely roughened crystals, respectively.

well as the literature (Thorsen et al., 2011; Zhang and Klein, 2013; Richardson et al., 2019). Aerosol variations were likewise455

informed by statistics of satellite data (e.g. Sogacheva et al., 2020, although neglecting extreme events).

Surface albedo magnitudes and spectral slopes were based on Figure 6 and the source ECOSTRESS data going into that

(Meerdink et al., 2019); they are referred to hereafter as ‘ocean’, ‘land’, and ‘snow’ as shorthand for low, moderate, and high-

albedo regimes. The ensemble size means that each combination of cloud phase and surface category contains approximately

15,000 simulations. Surface BRDF effects are not considered for two main reasons. The first is that they are expected to be460

small, both because OCI and OLCI are single-view sensors and because cloudiness increases the proportion of diffuse light

reaching the surface, decreasing the effects of BRDF on the TOA light field. Note that additionally both OCI and OLCI are

tilted to decrease the magnitude of Sun glint BRDF features over ocean. The second reason is that libRadtran’s DISORT solver

run in pseudospherical atmosphere mode does not presently support non-Lambertian surfaces (Buras et al., 2011), meaning
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such simulations would have to be run in plane-parallel mode. This is relevant because the plane-parallel assumption introduces465

systematic biases in the TOA simulation, which become particularly significant at solar zenith angles larger than 60◦ or so,

commonly encountered at mid- and high latitudes (see discussion in e.g. Zhai and Hu, 2022). Reverting to plane-parallel

simulations to include a BRDF would then introduce an error source as a function of geometry.

Several other known sources of uncertainty are not examined in this exercise because they are either computationally in-

tractable, expected to be negligible, or could lead to significantly non-Gaussian perturbations for which the OE formalism470

breaks down. These include 1D radiative transfer as opposed to 3D; the use of a pseudospherical atmosphere as opposed to full

spherical; sensor geometric and channel-to-channel registration; the use of 0.01nm spectral spacing for the radiative transfer;

the number of angular streams used in the DISORT solver; the use of a scalar rather than vector RT code; the choice of solar

reference spectrum; and mixed-phase or multi-layer clouds.

Inspection of yLUT −yδ reveals (not shown) that forward model error is generally unbiased and its magnitude is somewhat475

correlated with the TOA reflectance (more strongly in channels with stronger O2 absorption). Here the forward model uncer-

tainty σF is estimated by, for each channel, surface type, and cloud phase, ordering and binning the simulated reflectance in

each channel from lowest to highest (1,500 simulations per bin) and calculating the 68th percentile (i.e. one standard deviation

point) of absolute forward model error (|yLUT,i−yδ,i|) within each bin. Figure 8 shows the results of linear fits to these binned

values for OLCI: in the retrieval, σF for a given observation is taken as the result of this linear fit, with a floor equal to the root480

mean square error on the relationships shown in the legend.

The steepest gradients of uncertainty vs. TOA reflectance tend to be associated with the strongest O2 absorption, which

makes intuitive sense as the TOA signal is more strongly dependent on the within-cloud profiles of scattering and absorption

in those cases. In weak absorption, and for the brightest surfaces, gradients are weaker and can sometimes be negative: in

these cases the TOA signal is most sensitive to cloud-top properties so the effects of cloud profile variations become smaller.485

Magnitudes of forward model uncertainty vary from around 2-8 % of the TOA signal in most cases, i.e. similar or greater

than systematic calibration uncertainty. This implies that improving retrievals would benefit more from the use of additional

channels providing constraints on these forward model assumptions as opposed to calibration improvements.

The spectral forward model uncertainty correlation rF is estimated for each of the six classes from the Spearman (rank)

correlation of yLUT −yδ between different wavelengths. Correlations for OLCI are shown in Figure 9. Spearman correlation490

is used instead of the more common Pearson due to a small number of extreme (and likely unrepresentative) outliers in the

ensemble. Correlations decrease for brighter surfaces as these amplify atmospheric absorption effects. However, all correlations

are positive and can be almost unity, implying strong degeneracy between the channels in terms of information content. Both

these Figures present results for OLCI rather than OCI because the smaller number of channels allows for a clearer visual

presentation. Numerical values and spectral patterns are similar for OCI: for both sensors, channels with similar O2 absorption495

strength (cf. Figure 1) have similar spectral uncertainty correlation.
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(b) Ice clouds, band OA12
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(c) Liquid clouds, band OA13
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(e) Liquid clouds, band OA14
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(f) Ice clouds, band OA14
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(g) Liquid clouds, band OA15
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(h) Ice clouds, band OA15
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Figure 8. Forward model TOA reflectance uncertainty for OLCI. Left and right columns indicate liquid and ice-phase cloud simulations,

and rows indicate the four OLCI channels used in CHROMA. Points and lines show the binned data and linear fits, with fit coefficients of

determination and root mean square error shown in legends. Blue, brown, and grey show ocean-like, land-like, and snow-like surface albedo

respectively. Nominal central wavelengths for OLCI channels OA12 to OA15 are 753.75, 761.25, 764.375, and 767.5nm respectively.

4 Retrievals on synthetic data

4.1 Single-layer clouds

4.1.1 Setup

This section presents results of the CHROMA algorithm applied to the ensemble of simulated measurements described in500

Section 3.3.2 that were used for the forward model uncertainty parameterisation. As this was a fairly simple parameterisation
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(a) Liquid cloud over ocean
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(b) Liquid cloud over land
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(c) Liquid cloud over snow
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(d) Ice cloud over ocean
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(e) Ice cloud over land
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(f) Ice cloud over snow
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Figure 9. Spectral forward model TOA reflectance uncertainty correlation for OLCI. The top row shows results for liquid phase clouds, and

the bottom for ice clouds. Columns show, from left to right, results for ocean-like, land-like, and snow-like surface albedo respectively. The

colour scale and numbers in each grid box (rounded to two significant digits) are equivalent. Nominal central wavelengths for OLCI channels

OA12 to OA15 are 753.75, 761.25, 764.375, and 767.5nm respectively.

it provides a test of how generally that formulation holds for the simulated data without the analysis being too circular. In

line with this, random and systematic errors are added to the simulated measurements prior to the retrieval. The prior surface

albedo is assumed to be unbiased but uncertain, i.e. for a given simulation a random error (Gaussian with standard deviations

0.01 for ocean-like simulations, or 0.05 for land/snow-like simulations) is added to the true (simulated) albedo to generate the505

(assumed) prior. The retrieval is run once for each of the two phase LUTs (Table 1) and retrieved phase is chosen based on the

model returning the lowest retrieval cost. This is essentially how the retrieval would be performed on real satellite observations,

in the absence of an externally-available cloud phase mask (although one is expected to be available for OCI, Coddington et al.,

2017). Differences between the results of cost-based vs. prior phase knowledge are discussed. The bulk of the analysis focuses

on COT and CTP results for the OCI sensor; OLCI results are generally qualitatively and quantitatively very similar.510

4.1.2 Retrieval results

Retrieval cost histograms are shown in Figure 10. These are similar for both cloud phases and all three surface types, indicating

that the uncertainty model is roughly equally appropriate for all regimes. In theory these distributions should follow a chi-square

distribution with degrees of freedom equal to the number of degrees of freedom in the retrieval; in practice this is difficult to
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(a) Cost histogram, OCI, liquid phase
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Figure 10. Retrieval cost histograms for the simulated single-layer cloud systems, for OCI. Solid and dashed lines show results for best-fit

phase vs. known true phase, respectively. Blue, brown, and grey indicate ocean-like, land-like, and snow-like simulations. The left panel

shows results for liquid phase simulations, and the right for ice phase simulations.

estimate given the strong correlations in forward model uncertainty and the potential for more significant contribution of the515

surface albedo prior in some cases (i.e. optically-thick clouds) than others. Almost all retrievals converge with cost under 30,

suggesting that in real-world applications a cost above this could be used to indicate a drastic problem with the retrieval as

a quality check. This will be assessed in a follow-up analysis using real OLCI data. Histograms for the case of phase known

vs. determined by best-fit are also fairly similar, indicating that either the correct phase is commonly chosen or that, when

the incorrect phase is chosen, the misfit is not too large. The one exception is for clouds over water surfaces, where a sub-520

population of cloud retrievals are better fit with the wrong model than the correct one. Examination (not shown) reveals these

to be a subset of simulations where the cloud vertical profile was strongly different from that assumed in the LUT. Results are

similar for OLCI (not shown), except due to having half the number of channels and lower overlap the distribution is broader

and shifted slightly left. For both phases A for surface albedo is close to 0 for all COTs over water, indicating retrieved albedo

is determined by the prior. For land-like and snow-like simulations elements of A are more variable but tend to decrease rapidly525

as COT increases past ∼ 3. This is expected as, for an opaque cloud, the TOA signal is weakly sensitive to the surface albedo.

Retrieval errors binned as a function of COT are shown in Figure 11. As COT increases, as expected the error on COT,

CTH, and CTP tends to decrease while that on surface albedo increases up to around the prior uncertainty. The retrievals are,

in most cases, unbiased - although for cases over snow with the highest albedo, in some cases a low-biased albedo is retrieved,

compensated by optically-thinner clouds retrieved at a higher altitude (lower pressure) than is true. The bottom row shows that530

retrieval cost has little skill (slightly better than chance) at picking the correct phase for liquid clouds, while for ice clouds it

allows phase to be determined approximately 80-90 % of the time. The phase dependence is in fact related to the cloud altitude

ranges covered by the simulations and LUT: as the clouds are essentially gray scatterers across this wavelength range, the

primary sensitivity is to brightness (related to the combination of COT and phase function) and CTP, rather than COT directly.

This points to the utility of extra OCI channels for phase determination (via differences between liquid droplets and ice crystals535

in spectral absorption in the SWIR) for an additional constraint on the retrieval (Coddington et al., 2017). Note OLCI lacks

SWIR channels.
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(a) COT error, OCI, liquid phase
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(b) COT error, OCI, ice phase
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(c) CTH error, OCI, liquid phase
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(d) CTH error, OCI, ice phase
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(e) CTP error, OCI, liquid phase
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(f) CTP error, OCI, ice phase
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(g) Albedo error, OCI, liquid phase
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(h) Albedo error, OCI, ice phase
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(i) Retrieved phase correct, OCI, liquid phase
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(j) Retrieved phase correct, OCI, ice phase
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Figure 11. Retrieval errors binned as a function of COT for the simulated single-layer cloud systems, for OCI. Points indicate the median

retrieval error and vertical lines the central 1σ of results within each bin. Blue, brown, and grey indicate ocean-like, land-like, and snow-like

simulations. The left column shows results for liquid phase simulations, and the right for ice phase simulations. From top downwards, rows

indicate COT, CTH, CTP, and surface albedo. The very bottom row shows the fraction of data where the best-fit phase (liquid or ice) is the

correct phase for the simulation. Shaded grey indicates the PACE mission goal uncertainties: 25 % for liquid-phase COT, 35 % for ice-phase

COT, and 60 mb for CTP (the latter for COT≥ 3 only). The dotted line indicates an error of zero.
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(a) COT goal met, OCI, liquid phase
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(b) COT goal met, OCI, ice phase
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(c) CTP goal met, OCI, liquid phase
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(d) CTP goal met, OCI, ice phase
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Figure 12. Fraction of points where the retrieval error meets the PACE mission goal uncertainties (25 % for liquid-phase COT, 35 % for

ice-phase COT, and 60 mb for CTP for COT≥ 3) as a function of COT, for OCI. The dotted pale grey line shows the 65 % threshold for

achieving these goal uncertainties. Solid and dashed lines show results for best-fit phase vs. known true phase, respectively. Blue, brown, and

grey indicate ocean-like, land-like, and snow-like simulations. The left panel shows results for liquid phase simulations, and the right for ice

phase simulations.

The CHROMA algorithm retrieves two quantities for which the PACE mission has performance goals: COT and CTP. These

goals are defined such that, on global average, 65 % of retrievals should have errors of a given size or lower. These goals

are 25 % for liquid-phase COT, 35 % for ice-phase COT, and 60 mb for CTP. The CTP goal is only required for clouds with540

COT≥ 3, but it is informative to examine across the range. Attainment of these goals is shown in Figure 12. This shows that,

again, retrieval quality increases with increasing COT. Knowledge of the correct phase improves compliance with the COT

goal, but had little effect on CTP-consistent with the previous point that retrieved COT is more sensitive to the cloud model

assumed while CTP is to the spectral signature of absorption and the cloud reflectance. Attainment of these goals is easier for

darker surfaces than brighter, due to the increased contrast between the surface and cloud in the window channel. This implies545

that stronger prior constraints on surface albedo, which makes this separation easier, may be helpful. Results are similar for

OLCI (not shown). Goals are more readily achieved for ice clouds than liquid-phase clouds (although recall that the two phases

have different altitude distributions in the simulations, which may be important). It is also worth noting that the bispectral

approach for joint COT/CER retrieval, which has been applied to MODIS and other sensors (Platnick et al., 2003, 2021), will

also be applied (using a MODIS-like retrieval approach) to OCI - providing a separate COT data source.550

Table 4 summarises numerically the CTP retrieval performance for both sensors. Patterns as a function of cloud phase and

surface type are similar between OCI and OLCI. Statistical metrics for OLCI tend to be up to 5-10 % better than for OCI. This
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Table 4. Statistics of CTP retrieval error on simulated single-layer cloud scenes, for OCI and OLCI, for the subset of cases where COT≥ 3.

Results for the case where cloud phase is known beforehand. MAE and RMSE are median absolute error and root mean squared error.

Surface Rank correlation Median bias, mb MAE, mb RMSE, mb Fraction within goal Fraction within uncertainty

OCI OLCI OCI OLCI OCI OLCI OCI OLCI OCI OLCI OCI OLCI

Liquid phase clouds

Ocean 0.92 0.94 1 4 31 30 57 53 0.75 0.77 0.61 0.65

Land 0.84 0.86 -5 -2 41 37 91 81 0.64 0.68 0.66 0.70

Snow 0.64 0.69 -16 12 67 60 140 130 0.45 0.50 0.73 0.73

Ice phase clouds

Ocean 0.95 0.95 -3 -2 27 26 46 43 0.83 0.85 0.62 0.69

Land 0.91 0.92 -9 -7 30 30 62 56 0.77 0.80 0.67 0.73

Snow 0.83 0.83 -12 -11 38 36 82 78 0.67 0.71 0.68 0.73

is because OCI’s broader, overlapping channels mean the O2 absorption signature is less distinct than for OLCI (Figure 1).

However, the broad similarity in statistics for the two sensors, combined with OLCI’s similar spatial resolution, confirms the

utility of this sensor as a proxy for testing the CHROMA algorithm prior to PACE launch. Table 4 summarises statistics for the555

simulations where PACE has CTP performance goals (COT≥ 3); if this is relaxed to consider COT≥ 0 (not shown) statistics

degrade slightly although the same category-to-category and sensor-to-sensor patterns hold.

The final component of this part of the analysis concerns two key assumptions in the retrieval. The first is cloud vertical

extent (via FGD); retrieval errors binned as a function of this are shown in Figure 13. Except for retrievals over snow, COT

error is insensitive to this, which is expected as information on this parameter comes primarily from the absorption-free window560

channel. For CTP, however, there is a clear trend where CTP is progressively underestimated (i.e. retrieved cloud is too high)

if clouds are shallower than assumed (FGD is lower) and overestimated in the opposite case. The change in median error

across the range of FGD can approach the ±60mb total error goal. Future work will therefore focus on ways to enable reliable

retrieval of FGD, such as by adding OCI’s B-band channels. Unfortunately for OLCI, Fischer and Preusker (2021) showed that

A-band capabilities alone at these spectral resolutions are often insufficient for this.565

The second assumption is the ice crystal shape and roughness which, as previously discussed, influence the relationship

between COT and TOA reflectance as a function of its asymmetry parameter g (Section 3.3.2, Figure 7). Retrieval errors

as a function of g, for ice cloud simulations, are shown in Figure 14. In contrast to the FGD assumption, here it is CTP

retrieval which is fairly invariant to the assumption. As g increases beyond the assumed value (for severely roughened column

aggregates) of ∼0.75, retrieved COT becomes increasingly low-biased. The asymmetry-corrected COT τ(1− g)/(1− gc8e),570

however, becomes almost unbiased and of similar error across the range of true g. This is consistent with the results of van

Diedenhoven et al. (2020) and implies that the combination of OCI with PACE’s polarimeters will be able to provide estimates

of COT corrected for CHROMA’s assumed ice model in those situations where the asymmetry parameter is higher (Figure 7).
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(a) COT error, OCI, liquid
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Figure 13. Retrieval error as a function of cloud FGD, for OCI, for the case where cloud phase is known beforehand. Points indicate the

median retrieval error and vertical lines the central 1σ of results within each bin. Blue, brown, and grey indicate ocean-like, land-like, and

snow-like simulations, slightly offset from one another horizontally for clarity. The top row shows COT and the bottom CTP. The left column

shows results for liquid phase simulations, and the right for ice phase simulations. Shaded grey indicates the PACE mission goal uncertainties:

25 % for liquid-phase COT, 35 % for ice-phase COT, and 60 mb for CTP (the latter for COT≥ 3 only). The dotted line indicates an error of

zero.
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Figure 14. Retrieval error as a function of ice crystal asymmetry parameter, for OCI, for the case where cloud phase is known beforehand.

Blue, brown, and grey indicate ocean-like, land-like, and snow-like simulations, slightly offset from one another horizontally for clarity.

From left to right, panels show COT, asymmetry-corrected COT (Section 3.3.2), and CTP. Shaded grey indicates the PACE mission goal

uncertainties: 35 % for ice-phase COT and 60 mb for CTP (the latter for COT≥ 3 only). The dotted line indicates an error of zero.

4.1.3 Uncertainty estimates

Beyond evaluating the retrievals, it is useful to evaluate the retrieval-level uncertainty estimates provided by the OE technique.575

Several methods can be used for this, though a key point (Sayer et al., 2020) is that the predicted uncertainty represents an

estimate of the precision of the retrieved quantity (as a mean and standard deviation of a Gaussian probability distribution),
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Figure 15. Histograms of normalised retrieval error for OCI, for the case where cloud phase is known beforehand. Blue, brown, and grey

indicate ocean-like, land-like, and snow-like simulations. The top row shows COT and the bottom CTP. The left column shows results for

liquid phase simulations, and the right for ice phase simulations. Shaded grey shows the theoretical Gaussian distribution which would be

observed if uncertainty estimates were calibrated perfectly. Vertical dotted lines indicate normalised errors of -1, 0, and +1.

while an error (i.e. retrieved value minus true value) is a discrete number. Essentially, the former is an estimate of dispersion

and the latter a draw from a distribution of possible errors. The goal is to assess whether the statistical distribution of observed

errors is consistent with that expected based on the OE-provided uncertainties.580

This analysis follows Sayer et al. (2020) and evaluates retrieval uncertainties in two ways. The first (Figure 15) is using

histograms of normalised error, i.e. retrieval error divided by that retrieval’s estimate of retrieval uncertainty (via Equation 4).

If the retrieval is unbiased and its uncertainty budget is well-characterised, then these histograms should approach Gaussians

with mean 0 and standard deviation of 1. Using this measure, Figure 15 shows that the COT retrieval is underconfident (i.e.

retrieval errors are smaller than predicted) as the distribution is somewhat narrower than expected (for all combinations of585

cloud phase and surface type). The reasons for this are unclear. Uncertainties for CTP, however, are much more in line with

expectations. This may imply that the spectral pattern of uncertainty is captured well by the model (as spectral shape drives the

CTP retrieval), but the absolute magnitude in the window channels (which drives the COT/albedo separation) is overestimated

on average.

Figure 16 provides an assessment of whether the retrieval is skilful at telling low-uncertainty situations from high-uncertainty590

ones. This is achieved by sorting the simulations by retrieval uncertainty, and dividing into 10 bins. The median of the predicted

uncertainty in each bin is then compared to the 68th percentile (i.e. 1σ point of a Gaussian distribution) of absolute retrieval

error. If the uncertainties are well-calibrated, the points should line up along the 1:1 line. For COT, there is some skill at telling
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Figure 16. 1σ points of absolute retrieval error binned as a function of OE-provided retrieval-level uncertainty estimate, for the case where

cloud phase is known beforehand. Blue, brown, and grey indicate ocean-like, land-like, and snow-like simulations. The top row shows

COT and the bottom CTP. The left column shows results for liquid phase simulations, and the right for ice phase simulations. The 1:1 line

(representing perfect agreement with theory) is dotted.

low- from high- uncertainty situations although (consistent with Figure 15) the actual errors are factors of 2-5 smaller than

expected. For CTP, the relationship is much closer to 1:1, with a tendency to slightly underestimate uncertainty on the low end595

and slightly overestimate uncertainty on the high end.

The patterns hold for both phases (though ice COT uncertainty is better-calibrated than liquid cloud), all three surface types,

and (not shown) both sensors and cases of known vs. retrieved cloud phase. These results provide some confidence that the

uncertainty estimates provided by the retrieval will be useful to data users who wish to filter or screen the data, or incorporate

uncertainty estimates into downstream applications (such as data assimilation or incorporation as priors into other retrievals).600

4.2 Multi-layer clouds

Historically and at present many cloud altitude retrieval algorithms for passive satellite sensors (like CHROMA) assume a

single-layered cloud system. Multi-layer cloud systems, however, are not uncommon, especially around the Equator and storm
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Table 5. Sampling of geophysical parameters for multi-later (ice above liquid) cloud simulations. Quantities not given here are as in Tables

2 and 3.

Quantity Sampling distribution

Lower liquid cloud layer

CTH (km) U(0.5,6)

Upper ice cloud cloud layer

log10(COT) N(−0.2,0.5) truncated at -1.5 and 2

CTH (km) U(8,16)

FGD U(0.025,0.25)

tracks in both hemispheres (Desmons et al., 2017; Subrahmanyam and Kumar, 2017; Marchant et al., 2020). In such cases,

these algorithms typically report a height intermediate between that of the multiple layer(s) present, unless the uppermost605

layer is optically thick (Naud et al., 2007; Sayer et al., 2011). It is therefore useful to briefly examine the expected behaviour

of CHROMA in these situations. One common case (although other structures exist), examined here, is for an optically-thin

ice cloud (cirrus) above a liquid cloud. For this purpose a further synthetic ensemble of 3000 simulations has been created,

modifying the previous single-layer simulations as indicated in Table 5. The CHROMA algorithm is then, as before, rerun in

the standard single-layer configuration (adding on sensor radiometric error and albedo prior error).610

Figure 17 summarises some main results for data divided into 8 COT bins. In these cases, the ideal ‘truth’ values that would

be retrieved correspond to the total (liquid plus ice) COT, and the CTP of the upper (ice phase) cloud. Overall, total COT is

underestimated as ice COT increases - in part because the asymmetry parameter of liquid water droplets is higher than that

for most ice crystal habits, yielding retrieval behaviour consistent with Figure 14(a). The fraction of retrievals retrieved as ice

increases roughly linearly with log10(ice COT) although, as shown in Figure 11(i,j), for single-layer cases misidentification of615

liquid-phase clouds as ice-phase clouds was more common than the converse.

Retrieved CTP for the two-layer simulations is severely overestimated, due to the optical dominance of the lower liquid

layer (which is intentionally shifted to higher COTs relative to the upper layer for these simulations; Table 5). Figure 17

expresses this in two ways. Figure 17(c) shows retrieved CTP error (i.e. retrieved minus upper ice layer CTP) as a func-

tion of ice COT, equivalent to Figure 11(f). The median error for the lowest ice COT bin corresponds to roughly the me-620

dian CTP difference between upper and lower simulated cloud layers. Figure 17(d) demonstrates this relative positioning

(CTPlower −CTPretrieved)/(CTPlower −CTPupper) more directly: here a relative location of 0 indicates a cloud retrieved at

the top of the liquid layer, and 1 that the cloud was retrieved at the top of the ice layer. For ice COT around 0.1 the ice layer is

effectively not seen by the algorithm, and the retrieved pressure is close to that of the lower (liquid phase) layer. An ice COT

of around 3 seems to be sufficient to largely ‘shield’ the TOA signal from the lower layer, and the retrieved CTP is closer to625

the upper (ice phase) layer. For intermediate ice COT, the retrieved CTP tends to lie in between that of the two cloud layers.
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(d) CTP location, OCI, multi-layer
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Figure 17. Retrieval performance binned as a function of ice COT for the simulated multi-layer cloud systems, for OCI. Blue, brown, and

grey indicate ocean-like, land-like, and snow-like simulations. The left column shows retrieval errors for (a) total (liquid plus ice) COT and

(c) CTP. In these panels points indicate the median retrieval error and vertical lines the central 1σ of results within each bin, the dotted line

an error of zero, and shaded grey indicates the PACE mission goal uncertainties: 35 % for ice-phase COT, and 60mb for CTP (the latter for

COT≥ 3 only). Panel (b) shows the fraction of data where the best-fit cloud optical model was ice. Panel (d) shows the median (points) and

central 1σ (lines) of the retrieved CTP’s location relative to the lower and upper cloud layer CTPs (dotted lines at 0 and 1, respectively).

Retrieval cost histograms increase by roughly a factor of 2-3 compared to single-layer cases (not shown), peaking around

10. As this lies within the range of cost for single-layer cases (Figure 10) this implies that cost alone may not be an effective

way to flag multi-layer cases. Normalised uncertainty estimates also lack skill (not shown) for these cases, due to the large

non-Gaussian behaviour of the errors (i.e. large biases), which is expected for situations where the underlying retrieval forward630

model is inappropriate for the situation at hand (Povey and Grainger, 2015). The results in this section hold for all surface types,

and for OLCI (not shown). While these results are specific to the simulation’s parameters only, more generally it therefore

seems likely that the retrieval will encounter similar biases to single-layer cloud retrieval algorithms applied to other sensors.

5 Conclusions

This study presents a new algorithm, CHROMA, whose primary purpose is retrieval of cloud top altitude. The algorithm uses635

multispectral measurements across the O2 A-band so is sensitive to cloud-top pressure (as O2 is a well-mixed gas), although this

can be converted to cloud top height or temperature using meteorological profiles. The motivation for algorithm development

is the OCI sensor on the forthcoming NASA PACE satellite mission (https://pace.gsfc.nasa.gov), although it is applicable to
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other spaceborne sensors with similar spectral and spatial characteristics such as OLCI. As such, a follow-up study will present

a broader-scale application of the CHROMA algorithm applied to on-orbit OLCI measurements.640

As with other passive cloud altitude remote sensing techniques, the primary assumption affecting the accuracy of the re-

trieved altitude is the assumed vertical structure of the cloud, in terms of its extent, extinction profile, and number of distinct

cloud layers. Unfortunately these parameters are not well-constrained by the available satellite measurements. Sensitivity of

retrieved CTP to assumed cloud particle makeup (various sizes of water droplets or ice crystals of different shapes/roughness)

is comparatively minor, but more strongly affects the COT also retrieved by the technique. Surface albedo is additionally645

retrieved but with a strong prior constraint (which tends to be dominant, expect for optically-thin clouds).

CHROMA is a Bayesian retrieval using the Optimal Estimation framework, which provides retrieval-level uncertainty esti-

mates for each parameter. Retrieval simulations suggest that these uncertainty estimates are skilful and quantitatively reasonable

for CTP, although underconfident (overestimate error) for COT, and that the OCI sensor and algorithm should be able to meet

the PACE mission goal for CTP error of ±60 mb for 65 % of opaque (COT≥ 3) single-layer clouds on global average. The650

aforementioned follow-up study using OLCI data will assess how well the performance of simulated retrievals translates to

real data.

The algorithm has several synergies with the two multi-angle polarimeters, HARP2 (Martins et al., 2018) and SPEXone

(van Amerongen et al., 2019), which will also fly on the PACE mission. Firstly, the retrieved CTH could be used to coregister

the different view angles from these sensors to cloud altitude as opposed to surface altitude when retrieving cloud (or aerosol655

plume) properties from the polarimeters. Several cloud properties will be retrievable from them (solo or combined with OCI)

that are unavailable from OCI alone. For example, HARP2’s hyperangular sampling will enable retrievals of liquid cloud

effective radius and variance from polarised cloud bow features (Alexandrov et al., 2012). It is also possible that HARP2’s

multiple views could be used for a parallax-based CTH retrieval (Moroney et al., 2012), which would allow for independent

comparison with OCI results, although as its spatial resolution is likely to be ∼2.5-4 km dependent on view angle this may not660

be precise enough to be useful. CHROMA could also be applied directly to the SPEXone sensor, as this has similar spectral

characteristics in the O2 A-band to OCI; its five view angles can provide additional constraints on cloud geometric thickness

(Ferlay et al., 2010). Two disadvantages of SPEXone, however, are its comparatively narrow swath (100 km) and coarser

pixel footprint (∼5 km), meaning a greater proportion of cloudy pixels will sample broken cloud scenes (although focused

on cloud-free scenes cf. sampling results in Krijger et al., 2007; Remer et al., 2012), which present their own difficulties.665

The combination of the different sensors also presents opportunities for pixel-level correction of imager cloud retrievals using

polarimeter-derived properties (e.g. ice asymmetry parameter), as has been done for POLDER and MODIS (van Diedenhoven

et al., 2020). Further, the differences between total and polarised reflectances could be indicative of ice clouds over water,

providing an external multi-layer flag for the OCI retrievals.

Performance on OCI and OLCI should be similar; CTH uncertainty is slightly lower for OLCI, due to its narrower A-670

band channel providing stronger contrast with the window bands compared to OCI’s equivalents. However, in general the two

share the same error characteristics and susceptibilities to biases dependent on e.g. cloud vertical structure assumptions. In

the future, several enhancements could make the algorithm more capable at the expense of breaking compatibility with OLCI
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(and requiring significant development time). The first would be to combine the retrieval with the MODIS/VIIRS heritage

optical properties (COT/CER) approach, rather than have the two as separate retrieval algorithms. This is expected to lead to675

a modest improvement as the additional channels would provide some extra constraint on COT, and having cloud-top CER

retrieved would decrease one uncertainty source for the CTP retrieval. However this is not the primary uncertainty source, and

the resulting large LUT dimensionality would likely mean that a neural network would have to be trained to replace the LUT

in order for data processing to be computationally tractable.

The second approach would be to include cloud vertical extent as an additional retrieved parameter, which (if constrained680

appropriately) should improve CTP retrieval as well as providing useful scientific information of its own. The simple way

to do this would be to add another LUT dimension (which significantly increases computational overhead) and assume a

prior value with some uncertainty. Cloud top height and centre of gravity are retrieved by OLCI A-band measurements by

Preusker and Fischer (2021), although as noted by Fischer and Preusker (2021) this additional parameter is not robust in most

circumstances. Possibilities for extra OCI channels to improve constraints include the O2 B-band which, while weaker, has a685

signal across several OCI channels (Figure 3), and NIR/SWIR channels affected by water vapour absorption. These, however,

bring additional (surmountable) complications: a need for surface albedo characterisation at those wavelengths and knowledge

of the vertical structure of water vapour.

These challenges should be surmountable, and a strength of Bayesian approaches is the ability to account for the information

content offered by additional channels in a robust way, provided associated measurement and forward model uncertainties can690

be quantified. Even without enhancements, however, the presented algorithm should meet the PACE mission’s needs and is

readily implementable for application to simulated and proxy (e.g. OLCI) data in advance of mission launch.

Code availability. The libRadtran radiative transfer package used for radiative transfer calculations in this work and associated files (e.g.

modules for liquid and ice phase clouds) can be obtained from http://www.libradtran.org/doku.php. The MT-CKD continuum absorption

code is available at https://github.com/AER-RC/MT_CKD.695
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