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Abstract. The Orbiting Carbon Observatory-2 makes space-based radiance measurements in the Oxygen A-band and the Weak 10 

and Strong carbon dioxide (CO2) bands. Using a physics-based retrieval algorithm these measurements are inverted to column-

averaged atmospheric CO2 dry-air mole fractions (XCO2). However, the retrieved XCO2 are biased due to calibration issues and 

mismatches between the physics-based retrieval radiances and observed radiances. Using multiple linear regression, the biases 

are empirically mitigated. However, a recent analysis revealed remaining biases in the proximity of clouds caused by 3D cloud 

radiative effects (Massie et al., 2021) in the processing version B10. Using an interpretable non-linear machine learning 15 

approach, we develop a bias correction model to address these 3D cloud biases. The model is able to reduce unphysical 

variability over land and sea by 10% and 30%, respectively. Additionally, the 3D cloud bias corrected XCO2 show agreement 

with independent ground-based observations from the Total Carbon Column Observation Network (TCCON). Overall, we find 

that the published OCO-2 data record underestimates XCO2 over land by -0.3 ppm in the tropics and -0.2 ppm northward of 45° 

N. The approach can be expanded to a more general bias correction and is generalizable to other greenhouse gas experiments, 20 

such as GeoCarb, GOSAT-3 and CO2M. 
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1 Introduction 

The Orbiting Carbon Observatory OCO-2 (Eldering et al., 2017; Crisp et al., 2004) makes space-based top-of-atmosphere 25 

radiance measurements in three spectral bands: Oxygen A band at 0.76 µm, the Weak CO2-band at 1.61 µm, and the Strong 

CO2 band at 2.06 µm. Using an optimal estimation retrieval (Rodgers, 2000) called ACOS (O'dell et al., 2018), these 

measurements are converted to column-averaged atmospheric CO2 dry-air mole fractions (XCO2). ACOS employs a physics-

based forward model that takes into consideration viewing and solar geometry and various atmospheric and surface parameters. 

Since OCO-2 generates on the order of 100,000 soundings per day, ACOS makes multiple approximations to speed up the 30 

retrieval algorithm. Most importantly, the retrieval makes the independent pixel approximation, where the radiance in a given 

sounding only depends on the properties (e.g. surface pressure, surface reflectance, aerosols, trace gas concentration) within 
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the field of view of this sounding. This approximation exploits that for most clear sky observations there is no significant 

horizontal exchange of photons.  

Nearby clouds, however, can scatter a significant number of photons into the field of view of OCO-2 which enhances the 35 

observed radiance. This horizontal exchange of photons due to clouds, or 3D cloud effect, is not accounted for in the ACOS 

retrieval. Nevertheless, the forward model attempts to match the enhanced radiances which leads to errors in the converged 

state vector and most importantly, negative biases in retrieved XCO2  (Massie et al., 2021; Massie et al., 2017; Merrelli et al., 

2015; Emde et al., 2022; Kylling et al., 2022; Yu et al., 2021). Merrelli et al. (2015) applied the Spherical Harmonics Discrete 

Ordinate Method (SHDOM) 3D radiative transfer code (Evans, 1998) to perturb OCO-2 type spectra, and calculated OCO-2 40 

retrievals without and with the 3D radiance perturbations. Retrieved XCO2 values were lower than clear sky retrievals by 0.3, 

3, and 5-6 ppm for surfaces characterized by bare soil, vegetation, and snow-covered footprints, respectively. From an 

empirical perspective, Fig. 6 of Massie et al. (2021) demonstrates that retrieved XCO2 over sea generally decreases when the 

distance between observations and clouds becomes less than 5 km. 

Nearby clouds can also cause radiance dimming due to cloud shadows. But only 25 % of observed radiances pass into the 45 

operational retrieval, since two cloud pre-processors (Taylor et al., 2016) exclude many observed radiances. Cloud brightening 

occurs on both sides of clouds since 40% of OCO-2 observations are within 4 km of clouds (Massie et al., 2021), and cloud 

brightening extends over a 5 to 10 km horizontal scale. A cloud shadow occurs only on one side of a cloud, with the shadow 

covering a limited angular portion of the side. Since the majority of OCO-2 observations are next to low-level clouds (think 

of an observation embedded in low-level Amazon cloud streets), the cloud shadows project only about one km or so from the 50 

low-level clouds. Using a year’s data volume, Massie et al. (in prep.) discuss detailed calculations, based on an analysis of 

OCO-2 O2 A-band continuum radiances, that yield an estimate of cloud shadowing frequency to be on the order of 4%, 

compared to 96% for the observations influenced by cloud brightening. 

To mitigate biases in retrieved “raw” XCO2, a linear bias correction and threshold-based filtering is applied to the data, 

yielding “biased corrected” XCO2. Bias correction and filtering are based on co-retrieved elements from the state vector that 55 

are used to bring retrieved XCO2 into agreement with multiple truth sources (Kiel et al., 2019). These truth sources include a 

“small areas analysis” which assumes that XCO2 is constant over small distances (<100 km) within the same orbit, comparisons 

to ground-based observations from the Total Carbon Column Observation Network (TCCON) (Wunch et al., 2010), and 

comparisons to a multi model-mean of six models that assimilate in-situ data. Nevertheless, there are remaining underestimates 

in retrieved XCO2, that have been linked to 3D cloud effects, in the proximity of clouds with an average of -0.4 and -2.2 ppm 60 

for high quality and low quality data (Massie et al., 2021). To address these biases Massie et al. (2021) developed a linear bias 

correction and filtering approach using a set of features indicative of 3D cloud effects calculated from Moderate Resolution 

Imaging Spectroradiometer (MODIS) and OCO-2 files. However, biases in XCO2 caused by nearby clouds are highly non-

linear. Consequently, the present study has two goals. The first goal is to explore if a non-linear bias correction can reduce 3D 

cloud biases further than a linear approach. While the developed cloud features (H3D, HC, CSNoiseRatio, Cloud Distance, 65 

discussed below) more directly capture 3D cloud effects, co-retrieved variables from the state vector might be more indicative 
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of the resulting XCO2 biases. Thus, the second goal is to investigate if additional variables, co-retrieved with XCO2, can be used 

to further reduce 3D cloud biases.  

2 Data 

We make use of OCO-2 (B10) (https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/, last access: 05/2022) data from 70 

September 2014 to July 2019. These files contain bias corrected XCO2 for soundings over sea in glint mode (in which sunlight 

is directly reflected by the Earth’s surface towards OCO-2) and soundings over land with a nadir viewing geometry. We correct 

for remaining 3D cloud biases by utilizing a variety of parameters describing the retrieved atmospheric state vector, viewing 

and solar geometry, results from OCO-2 cloud screening pre-processors, location and time, and a quality flag (QF) for each 

sounding. The QF is determined by a series of hand tuned thresholds for various variables derived from state vector elements 75 

that are indicative of retrieval biases in XCO2. High-quality data has a QF=0 and low-quality data has QF=1. Similarly, the 

operational bias correction is performed with hand tuned linear fits to various state vector elements (Kiel et al., 2019).  

    In addition, we utilize ground-based observations by TCCON from all 27 stations that are in close proximity in time (24 h) 

and space (2.5° in latitude, 5° in longitude) to OCO-2 observations (https://tccondata.org, last access: 05/2022). The ground-

based observations are used for validation only. However, they can only provide comparisons for a limited number of locations, 80 

with relatively few ground-based sites in the Tropics and island locations.  

    Finally, we make use of four variables indicative of 3D cloud effects (Massie et al., 2021): H3D, HC, CSNoiseRatio, and 

Cloud Distance. H3D (Liang et al., 2009; Massie et al., 2017) describes the normalized standard deviation of the MODIS 

radiance field, and is calculated based on off-line MODIS radiance data files (Cronk, 2018). The radiance standard deviation 

is calculated in a circle with a radius of 10 km surrounding each OCO-2 data point. HC is calculated from differences in O2 85 

A-band continuum radiances of an observation point and adjacent points in three rows (frames) of footprints. A frame has 

eight adjacent OCO-2 footprints, with each footprint on the order of 2 km in size. CSNoiseRatio is the ratio of the O2 A-band 

continuum radiance spatial standard deviation and noise level, calculated within a footprint (which has 20 “ColorSlice” sub-

pixel elements). These three variables are indicative of 3D cloud effects since radiance gradients are present when clouds are 

next to observation footprints (radiance enhancements become larger as cloud distance decreases). Cloud Distance (Massie et 90 

al., 2021) is the distance of the nearest cloud to each observation point, as determined from off-line radiance data files (Cronk, 

2018), which contain 500 m MODIS radiances, geolocation and cloud mask data. Calculated 3D cloud features can be found 

for OCO-2 from September 2014 to July 2019 at https://doi.org/10.5281/zenodo.4008764.   
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3 Methods 95 

3.1 Small Areas and TCCON as Truth metric 

As a pre-processing step we match the 3D cloud variables, OCO-2 soundings, and TCCON by time and location. Afterwards, 

we remove soundings where no 3D cloud variables are available. To develop the bias correction model, we use the small areas 

analysis, which is based on the assumption that CO2 is a well-mixed gas and assumed to be constant over spatial scales of less 

than ~100 km (though, there can be exceptions for strong CO2 emitters such as mega cities). To exploit this constraint on XCO2 100 

we split OCO-2 soundings from the same orbit into small areas with a maximum size of 100 km. Each small area is generated 

by collecting soundings (ordered by observation time) until the distance between the first and last sounding exceeds the 100 

km threshold. Afterwards, the collection process of the next small area is started. For each small area we define the median 

retrieved XCO2 of this small area as the true XCO2 and any differences to this median are treated as biases. Note that this assumes 

that each small area contains a subset of soundings that are not affected by 3D cloud biases, which might not be accurate for 105 

some small areas dominated by clouds (e.g. in the tropics). Additionally, this processing will interpret real XCO2 enhancements, 

for example from power plants, as positive biases. However, we postulate that these cases are rare and that a model that is 

robust to outliers can still learn a useful bias correction from these data. Next, we remove outliers with large XCO2 errors by 

applying a series of thresholds to the variables from the state vector. The variables and their thresholds are given in Table 1. 

Note that these filters remove only a small fraction of soundings (4%) and are not comparable to the operational quality flag 110 

processing. Finally, we remove small areas with fewer than 20 soundings. This results in approximately 106 soundings over 

land and 11•106 soundings over the ocean, with a small subset of the soundings having coincident TCCON measurements. 

TCCON can only provide comparison for a limited set of regions with most stations in the Northern Hemisphere and over 

land. This challenges the development of a bias correction approach based on XCO2 - TCCON differences that would be 

representative of areas far away from existing stations, such as Africa, South America and most of the ocean. Therefore, we 115 

use TCCON only as an independent truth metric for validation and not to develop the model itself.  
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Table 1: Variables and their thresholds used to remove outliers 

Variable Description  Land Sea 

co2_ratio Ratio of retrieved XCO2 in WCO2 and SCO2 bands x < 1 or x > 1.04 x < 1 or x > 1.03 

co2_grad_del Change between the retrieved CO2 profile and the a 

priori profile  

x < -100 or x > 100 x < -50 or x > 100 

deltaT Retrieved offset to a priori temperature profile  x < 0 

dpfrac Retrieved XCO2 multiplied by difference in retrieved 

and a priori surface pressure (Kiel et al., 2019)  

x > 7  

rms_rel_sco2 Root Mean Squared error of the L2 fit residuals for 

the SCO2 band, relative to the continuum signal 

 x > 0.5 

snr_sco2 Signal-to-noise ratio in SCO2 band  x < 200 

 

    The distribution of nearest cloud distance, biases from the small area analysis and comparison to TCCON for land nadir and 

sea glint observations with QF=0 and QF=1 are shown in Figure 1. The plots show that the majority of OCO-2 soundings are 130 

taken within close proximity of clouds and that many of those soundings are filtered out in the current OCO-2 product (QF=1). 

This is especially problematic for areas such as the tropics that are dominated by clouds and, as a result, have few valid 

soundings. The small area and TCCON biases for QF=0 data are roughly normally distributed with a mean and standard 

deviation of 0.1 ± 0.5 ppm for small area biases and 0.2 ± 0.8 ppm compared to TCCON for soundings over sea. For soundings 

over land the small area bias and bias compared to TCCON are similar with a mean and standard deviation of 0.1 ± ~1 ppm. 135 

For QF=1 the distribution of biases have a larger standard deviation for small area biases (land: 2.9 ppm, sea: 1.9 ppm) and 

compared to TCCON (land: 3.9 ppm, sea: 2.1 ppm), are skewed, and contain negative biases that far exceed positive biases, 

as analysed with the small areas (land: -0.5 ppm, sea: -0.9 ppm) and compared to TCCON (land: -1.4 ppm, sea: -1.2 ppm). 

This long tail distribution of negative biases is indicative of 3D cloud effects (Massie et al., 2021) and should be mitigated 

with a successful 3D cloud bias correction. 140 
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Figure 1: Histogram of data used in this study for nearest cloud distance (left), small area (SA) biases (middle), and biases compared 
to TCCON (right) for soundings over land (top) and sea (bottom). Higher quality data (QF=0) is shown in blue, lower quality data 
(QF=1) in orange.  

 145 

3.2 Train-, Validation-, Test-split 

To fit, or train, the bias correction model we used soundings from September 2014 to the end of July 2017, totalling roughly 

8•106 and 7•105 soundings over sea and land, respectively. To find the best model parameters and evaluate what features 

minimize biases the furthest we use a separate validation set containing soundings from the beginning of August 2017 to the 

end of July 2018. Finally, to test how the trained model performs on new data we use a separate testing set of soundings from 150 

the beginning of August 2018 to the end of July 2019. The validation and testing set have 2•106 and 1.6•106 soundings over 

the sea with QF=0 and QF=1, respectively, and 17•104 and 14•104 soundings over land with QF=0 and QF=1, respectively.   

 

3.3 Bias Correction Model 

We train two types of models for the bias correction, non-linear models (Random Forest) and linear models (Ridge Regression) 155 

to provide a baseline comparison. A Random Forest is an ensemble of classifying decision trees and outputs the mean of those 

trees (Breiman, 2001). Random Forests are easy to interpret and robust to outliers. Each tree is trained in a supervised manner 

with a random subset (50%) of the available training data, also referred to as bootstrapping. Using the training data, each tree 

iteratively splits the data using the feature that can minimize the mean squared error of the predictions the furthest, until it 

reaches a maximum user-provided number of splits, or depth. For our land model we used a depth of 8 and for our ocean model 160 

a depth of 15. The larger model size for the ocean is mostly due to there being more training data available over the ocean than 
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over land which allows to fit a larger model that still generalizes to new data. Each random forest was composed of 100 

individual trees. These parameters were chosen to maximize model performance on the validation set. The model inputs are a 

set of selected features from the OCO-2 retrieved state vector (e.g. co2_grad_del) and the model output is the remaining XCO2 

bias derived from the small areas analysis. 165 

    Since the operational OCO-2 bias correction uses a linear approach, we also perform a baseline comparison to a linear 

model. We choose multi-variate linear regression with a small Tikhonov regularization term (the regularization helps if some 

of the inputs are correlated, which is the case for most real-world applications), also referred to as ridge regression (Hoerl and 

Kennard, 1970a, b). Thus, using the training set we seek to find the weights, w, that minimize the following equation: 

 170 

‖𝒚 − 𝑿𝒘‖!! + 𝛼‖𝒘‖!!           (1) 

 

where y is the standardized (mean removed and divided by standard deviation) XCO2 bias, X are the standardized features, ‖∙‖! 

is the Euclidean norm, and 𝛼 controls the strength of the Tikhonov regularization. For our application we found 𝛼 = 10"# to 

maximize performance on the validation set.   175 

 

3.4 Feature Selection 

First, we identified retrieved state variables that show a strong dependence (change in mean or variability) to nearest cloud 

distance, indicating that they might be good candidates to correct for 3D cloud effects. Two examples are shown in Figure 2. 

In addition to the list of identified features we added solar and viewing geometries and surface albedo. Those variables have a 180 

direct physical impact on 3D cloud effects; 3D cloud effects are amplified at large solar zenith angles and for brighter surfaces 

(Okata et al., 2017). Finally, we removed highly correlated variables. This results in a set of 23 features for soundings over 

land, and 24 features for soundings over sea, that may be used to correct for 3D cloud biases in retrieved XCO2 (more 

information about each variable can be found on pages 29 to 40 in (Jet Propulsion Laboratory, 2018)). Next, we used recursive 

feature elimination to identify what subset of features can reduce biases the furthest. Reducing the number of features makes 185 

the model more robust to new data, avoids overfitting, and aids interpretability.  

    For the recursive feature elimination, we removed one feature at a time, trained a small random forest model with 32 trees 

each on a random selection of 5•105 soundings with QF=0 and QF=1 from the training set. Afterwards we calculated the model 

performance on the full validation set. As the performance metrics we used the correlation coefficient (R2) between modelled 

bias and existing bias as indicated by the small-areas calculations. The feature, that has been removed from the highest 190 

performing model, is then permanently removed and the process is repeated until only one feature is left. The iterative process 

was performed separately for land and sea soundings. The order of the feature elimination and resulting R2 is shown in Figure 
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3. The least important variables are shown at the top and were removed first. A low importance can either result from a variable 

varying independently of biases in XCO2 or the variable could be correlated with another variable (e.g. dp and dp_abp) or set 

of variables that provide similar information, making one of them obsolete. The most important variables are shown on the 195 

bottom.  

    For our bias-correction model we decided to use the four most important variables for land and sea soundings, as identified 

by the feature elimination. These variables explain most of the variance and partially overlap for land and sea. For land the 

four most important variables are dp_abp (retrieved surface pressure minus surface pressure from the GEOS-5 FP-IT model), 

h2o_ratio (ratio of retrieved H2O column from the WCO2 band to that from the SCO2 band), co2_grad_del (a measure of the 200 

difference in the retrieved and prior CO2 vertical gradient), and aod_water (retrieved extinction optical depth of cloud water 

at 755 nm). For sea the four most important variables are dp_abp, co2_grad_del, albedo_sco2 (retrieved Lambertian albedo 

in the SCO2 band), and albedo_wco2 (retrieved Lambertian albedo in the WCO2 band). Note that the final set of features does 

not include any of the 3D cloud metrics used in the bias correction discussed in Massie et al. (2021). Additionally, solar and 

viewing geometry were removed in the iterative process. However, the process includes the surface albedo in the strong and 205 

weak CO2 band and dp_abp which have a direct physical connection to 3D cloud effects. As discussed below in relation to 

Fig. 2b, dp_abp and nearest cloud distance are empirically correlated. Additionally, increased values in aod_water and 

deviations from unity for h2o_ratio are indicative of cloud contamination (Jet Propulsion Laboratory, 2018). This indicates 

that elements of the operational retrieval state vector (co2_grad_del, dp_abp, h2o_ratio, albedo_wco2, albedo_sco2) are more 

directly correlated with remaining biases in XCO2 (due to 3D cloud and other effects) than features that directly measure 3D 210 

cloud effects which perturb the radiation field (H3D, HC, CSNoiseRatio).  

    From an operational standpoint, using elements from the current retrieval state vector to correct 3D cloud biases simplifies 

the bias correction in future operational products. It also is more generally applicable to other missions that might not have 

available coincident cloud field measurements, that can be applied to derive nearest cloud distances, such as OCO-3 (Eldering 

et al., 2019). On the other hand, it reduces the interpretability of the developed model and does not allow to directly link 3D 215 

cloud biases to 3D cloud metrics. The OCO-2 and 3D cloud variables and their meaning are summarized in Table 2. 

     Note that it is not possible to clearly separate biases due to 3D cloud effects and other mismatches between the forward 

model of the retrieval algorithm and the observed radiances. For example, differences in modelled and real aerosol optical 

properties (Chen et al., 2022) or uncertainties in absorption profiles of various trace gases (Payne et al., 2020) likely are 

important. Additionally, uncertainties in the instrument calibration can cause systematic biases as well. Thus, some of the 220 

features might also correct for non-3D cloud effects. However, we tried to mitigate the effect of non-3D cloud biases by only 

adding features to the feature selection process that show some dependence to nearest cloud distance (see Figure 2) or have a 

direct physical relationship to 3D cloud biases. Additionally, our bias correction is applied to data that has already been 

corrected with the operational OCO-2 bias correction (our processing utilizes bias corrected XCO2). Thus, biases independent 

to 3D cloud effects should be minimized.  225 
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Figure 2: Change of variability and mean in percent of potential features with respect to nearest cloud distance. Change in mean is 
shown in red; change of the 5th and 95th percentile is shown in yellow; no change (baseline) is shown with a brown straight line. 
Change is calculated with respect to feature mean for observations with a nearest cloud distance of 14 km to 15 km. a) co2_grad_del, 230 
and b) dp_abp. Please refer to the text for a description of the two features. 

 

 
 
Figure 3: Feature ordering by importance as determined by recursive feature elimination. Features were removed from top to 235 
bottom with the most important features on the bottom. The model performance for removing a given feature is indicated with R2 
calculated on the validation set. Please refer to the pages 29 to 40 in (Jet Propulsion Laboratory, 2018) for a description of the 
individual features.  
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Table 2: Summary of OCO-2 state vector variables and 3D cloud variables 240 

Variables Description  

dp_abp Retrieved surface pressure minus surface pressure from forecast model 

h2o_ratio Ratio of retrieved H2O column from WCO2 band to SCO2 band 

co2_grad_del Change between retrieved CO2 profile and a priori profile  

aod_water Retrieved extinction optical depth of cloud water 

albedo_sco2 Retrieved surface albedo in SCO2 band 

albedo_wco2 Retrieved surface albedo in WCO2 band 

  

H3D Normalized standard deviation of the radiance field 

HC Differences in continuum radiances of an observation to adjacent observations  

CSNoiseRatio Ratio of continuum radiance spatial standard deviation and noise level  

Cloud Distance Distance to the nearest cloud  

 

4 Results 

4.1 Reduction in XCO2 biases 

After the random forest was trained using the training set (09/2014 – 07/2017) we evaluated the model performance on the 

testing set (08/2018 – 07/2019). Figure 4 compares remaining XCO2 biases in OCO-2 (as determined by the small areas analysis) 245 

with biases after our correction is applied (OCO-2 corr.) for QF=0 and QF=1 soundings. For land soundings XCO2 biases are 

reduced from a Root Mean Square Error (RMSE) of 1.7 ppm to 1.6 ppm (see Figure 4c). For sea soundings the bias correction 

has a significantly bigger impact and reduces biases from 1.2 ppm to 0.8 ppm (see Figure 4d). Over the sea the bias correction 

mostly corrects negative biases less than -0.8 ppm (see Figure 4b). 

 250 



11 
 

 
Figure 4: Reduction in non-physical variability in XCO2 for OCO-2 and the proposed bias correction approach (OCO-2 corr.) for 
land (left) and sea (right) for QF=0 and QF=1 data from 2018 to 2019. (Top) distribution of biases from individual soundings; 
(bottom) distribution of standard deviation for individual small areas.  

 255 

Table 3 shows the RMSE by quality flag. For QF=0 and QF=1 the biases in XCO2 corrected with our model are less than the 

testing set operational OCO-2 biases. However, for QF=0 improvements by our correction (OCO-2 corr.) compared to OCO-

2 are small (<10%). The QF=0 data have significantly fewer soundings with clouds in close proximity (see Figure 1) which 

explains in part the smaller difference. Additionally, the quality flags are determined so that the operational linear bias 

correction of OCO-2 works well i.e., XCO2 biases have a mostly linear relationship to elements of the state vector where QF=0. 260 

For QF=1 the difference is more significant, reducing the RMSE from 2.27 ppm to 2.02 ppm over land and from 1.86 ppm to 

1.22 ppm over sea.   

 

 

 265 
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Table 3: RMSE of XCO2 as determined by small areas analysis for the testing set (08/2018 – 07/2019). The RMSE is shown for the 270 
operational OCO-2 product (OCO-2), the proposed bias correction approach (OCO-2 corr.), a linear bias correction using the same 
features than the proposed approach (OCO-2 lin. corr.), and a random forest using dedicated cloud metrics (OCO-2 cloud corr.). 
The data is separated by high quality data (QF=0), low quality data (QF=1), and all data (QF=0 + 1). 

 Land   XCO2 [ppm]  Sea  XCO2 [ppm]  

 OCO-2 OCO-2 

corr.  

OCO-2 

lin. corr. 

OCO-2 

cloud corr. 

OCO-2 OCO-2 

corr. 

OCO-2 

lin. corr. 

OCO-2 

cloud corr. 

QF=0 0.83 0.81  0.82 0.82 0.51 0.46 0.49 0.46 

QF=1 2.27 2.02 2.15 2.19 1.86  1.22 1.45 1.34 

QF=0 + 1 1.73 1.55 1.64 1.69 1.19  0.83 0.97 0.88 

 

 275 

To more directly link the bias correction to 3D cloud effects we show biases with respect to nearest cloud distance in Figure 

5. XCO2 from OCO-2 shows a clear negative mean bias and increased variance for a nearest cloud distance of less than 3 km 

and 4 km over land and sea, respectively. After applying our bias correction the mean bias in the proximity of clouds is close 

to zero. Thus, the bias correction effectively mitigates biases due to 3D cloud effects. 

 280 
Figure 5: XCO2 bias vs cloud distance for OCO-2 soundings over land (a), soundings over land corrected by our proposed method 
(b), OCO-2 soundings over sea (c), and soundings over sea that are corrected (d) for QF=0 and QF=1 data from 2018 to 2019. The 
5th and 95th percentiles are indicated with the yellow shaded area; the mean is shown with a red line and individual comparisons 
with grey dots. 
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 285 

4.2 Linear vs Non-linear bias correction 

Building on the work by Massie et al. (2021) one of the guiding research questions was whether a non-linear approach based 

on interpretable machine learning techniques would improve upon a linear 3D cloud bias correction. To probe this question, 

we compare the performance of the non-linear random forest model to linear ridge regression (see Equation 1). To train the 

linear model we used the same features, training and testing sets used for the random forest model development. The RMSE 290 

for the linear model (OCO-2 lin. corr.) and non-linear model (OCO-2 corr.) are shown in Table 3. For QF=0 land and sea 

observations the linear and non-linear model have similar performance with the non-linear model allowing for a slightly lower 

RMSE. For QF=1 the non-linear random forest reduces remaining biases further than the linear ridge regression from 2.15 

ppm to 2.02 ppm over land and from 0.97 ppm to 0.83 ppm over the sea. 

4.3 Comparison to Using Dedicated Cloud Variables 295 

A second question that we wanted to answer was whether additional variables from the OCO-2 retrieved state vector could 

improve the 3D cloud bias correction. As shown in Figure 3, the four cloud variables (H3D, HC, CSNoiseRatio, Nearest Cloud 

Distance) were removed during the recursive feature elimination step, indicating that other variables form the state vector are 

more directly correlated with XCO2 biases. To better understand how much of the model performance stems from the new set 

of features we performed a set of experiments. For the first experiment we trained a random forest using only the four cloud 300 

variables in addition to surface albedo, solar zenith angle, sensor zenith angle, and the difference between solar and sensor 

azimuth. The results are shown in Table 3 (OCO-2 cloud corr.). As expected, using the cloud variables with the non-linear 

random forest model performs worse than using the random forest with the features identified using the recursive feature 

elimination. One caveat of this experiment is that our bias correction approach, aimed at 3D cloud biases, might also make 

corrections for biases stemming from other effects (e.g. aerosols) that are independent to clouds and, thus, cannot be explained 305 

with cloud variables. Unfortunately, clearly separating various sources of bias is not possible. 

    For the other experiment we combine the 3D cloud variables with the variables determined by the recursive feature 

elimination (dp_abp, co2_grad_del, h2o_ratio, and aod_water for land and dp_abp, co2_grad_del, albedo_wco2, and 

albedo_sco2 for sea) and compare the results to using only the features from the recursive feature elimination. If adding the 

3D cloud variables would significantly reduce biases in XCO2 further it would indicate that the set of identified features is 310 

mostly correcting for biases unrelated to 3D cloud effects. In total we compare the model performance of four sets of features: 

the features determined by the recursive feature elimination in addition to a) nearest cloud distance, b) CSNoiseRatio, c) nearest 

cloud distance, CSNoiseRatio, HC, H3D, and d) deltaT (see Table 1 and 2). The last set of features serves as a control 

experiment where we quantify the effect of adding a random variable that is unrelated to 3D cloud effects to the set of chosen 

features. The results are shown in Table 4. For QF=0 there are practically no differences for the four test cases compared to 315 

our chosen set of features. For sea QF=1 data the best set of features is c) which reduces the RMSE from 1.22 ppm to 1.17 
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ppm. Overall, the addition of 3D cloud variables (a, b, c) allows the models to lower the RMSE further compared to our 

proposed model, however, the improvements are only marginal. This indicates that the set of chosen features in our bias 

correction model accounts for the majority of 3D cloud biases in XCO2. Further evidence for this is shown in Figure 5 and is 

presented in the next section with an independent comparison to TCCON.  320 

 
Table 4: RMSE of XCO2 as determined by small areas analysis for the testing set (08/2018 – 07/2019). The RMSE is shown for the 
proposed bias correction approach (OCO-2 corr.) and using the same approach but with additional features. In addition to the 
variables determined by the recursive feature elimination a) contains nearest cloud distance, b) CSNoiseRatio, c) nearest cloud 
distance, CSNoiseRatio, HC, H3D, and d) deltaT. 325 

 Land   XCO2 [ppm]  Sea  XCO2 [ppm]  

 OCO-2 corr.  a) b) c) d) OCO-2 corr. a)  b) c) d) 

QF=0 0.81 0.81 0.81 0.80 0.81 0.46 0.45 0.45 0.44  0.45 

QF=1 2.02 2.01 2.01 2.01 2.02 1.22 1.20 1.20 1.17 1.20 

QF=0 + 1 1.55 1.54 1.54 1.54 1.55 0.83 0.81 0.80 0.78 0.81 

 

 

4.4 Comparison to TCCON 

We further compare bias corrected XCO2 to TCCON. TCCON observations have low uncertainties and are used to validate 

OCO-2 retrieved XCO2. However, they can only provide point measurements and are non-uniformly distributed, with most 330 

TCCON sites over land and in the Northern Hemisphere. For our comparison we consider coinciding observations of OCO-2 

and TCCON for the period of the testing set (08/2018 - 07/2019). This results in 1768 (QF=0: 1397, QF=1: 371) matches over 

land and 1305 (QF=0: 942, QF=1: 363) matches over sea. Note that our bias correction model was trained without taking 

TCCON observations into consideration while OCO-2 takes OCO-2 – TCCON biases explicitly into consideration for its linear 

bias correction, filtering, and to calculate global offsets. Thus, comparisons between OCO-2 and TCCON are not independent.  335 

    Table 5 shows the mean and standard deviation of differences between OCO-2 and TCCON and after we apply our bias 

correction (OCO-2 corr. - TCCON) for QF=0 and QF=1. Over land and sea the bias correction reduces the standard deviation 

between OCO-2 and TCCON for QF=0 and QF=1. For observations over sea the bias corrected XCO2 exhibits a systematic 

positive offset compared to TCCON of about 0.8 ppm. The systematic offset could be addressed by recalculating the scaling 

factor used for retrievals over sea in OCO-2. However, there are only few TCCON stations that can provide comparisons for 340 

those data and these stations are not equally distributed over the ocean.  
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Table 5: Mean and standard deviation of bias in XCO2 compared to TCCON observations for the testing set (08/2018 – 07/2019). The 
comparison for the operational OCO-2 product is indicated by (OCO-2 - TCCON) and the proposed random forest approach by 345 
(OCO-2 corr. - TCCON).  

 Land XCO2 [ppm] Sea XCO2 [ppm] 

 OCO-2 - TCCON OCO-2 corr. - TCCON OCO-2 - TCCON OCO-2 corr. - TCCON 

QF=0 -0.19 ± 1.11 -0.26 ± 1.01 0.87 ± 0.75 0.78 ± 0.67 

QF=1 -0.2 ± 1.92 0.03 ± 1.86 0.01 ± 1.81 0.87 ± 1.44 

QF=0 + 1 -0.31 ± 1.59 -0.25 ± 1.42 0.65 ± 1.19 0.81 ± 0.93 

 

To better understand how the bias correction addresses 3D cloud biases as compared to TCCON, Figure 6 shows XCO2 biases 

vs nearest cloud distance. For land and sea there exist negative biases in OCO-2 in the proximity of clouds (Figure 6a and 6c). 

Interestingly, there is a positive bias for OCO-2 sea data when no clouds are close to OCO-2 soundings (> 1 km) that likely 350 

stems from OCO-2 incorporating a multi model mean in its bias correction in addition to TCCON. After applying our bias 

correction, XCO2 biases over land show no dependence on nearest cloud distance anymore (Figure 6b). For ocean glint, the bias 

correction pushed XCO2 up by roughly 0.5 ppm in the proximity of clouds, resulting in a uniform positive bias of roughly 0.8 

ppm independent of cloud distance (Figure 6d). Thus, the bias correction removed the dependency of XCO2 biases on nearest 

cloud distance but did not address the overall offset present in OCO-2.  355 

 
Figure 6: XCO2 bias vs cloud distance of OCO-2 over land (a), OCO-2 corrected (b), OCO-2 over sea (c), and OCO-2 corrected (d), 
for QF=0 and QF=1 data from 2018 to 2019. The 5th and 95th percentiles are indicated with the yellow shaded area, the mean is 
shown with a red line, and individual comparisons with grey dots. 
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5 Discussion 360 

5.1 Model Interpretation 

To better understand how the model utilizes the input features to calculate the bias correction we show the modelled biases 

with respect to the individual features in Figure 7. Overall, the bias-feature relationship is non-linear for most features over the 

complete state space but linear over part of the state space. This explains the lower model performance of the linear model we 

compared to in Section 4.2. over the complete state space (QF=0+1) and the only marginal improvement compared to QF=0 365 

data. Differences between retrieved surface pressure and surface pressure from a forecast model (dp_abp) show a positive 

correlation with XCO2 biases. When the operationally retrieved surface pressure is underestimated, XCO2 is underestimated as 

well. The ratio of the retrieved H2O column from the WCO2 band to that from the SCO2 band (h2o_ratio), for soundings over 

land (Figure 7b), is independent to XCO2 biases for ratios of less than one and has a strong negative correlation for ratios above 

one. A ratio of 1.05 corresponds on average to an XCO2 bias of -1 ppm. The difference between the retrieved CO2 profile and 370 

the a priori profile (co2_grad_del) shows mostly a positive correlation for negative values (surface CO2 is underestimated 

compared to CO2 higher up in the atmosphere) and a negative correlation for positive values. This indicates that 3D cloud 

effects challenge the accurate retrieval of the XCO2 profile. The sensitivity of XCO2 biases to changes in co2_grad_del is 

approximately twice as strong over sea than land (see Figure 7c and 7f). This feature cannot be exclusively linked to 3D cloud 

effects since it is one of the most important features for the operational bias correction of OCO-2. The retrieved extinction 375 

optical depth of cloud water (aod_water) shows a mostly negative linear correlation with a XCO2 bias of -1 ppm for an 

extinction optical depth of 0.1. Finally, the surface albedo in the weak and strong CO2 band (albedo_wco2, albedo_sco2) have 

mostly no dependence to XCO2 biases for most of their range but show some positive and negative correlations with biases for 

brighter and darker surfaces, respectively. Note that our bias correction is applied in addition to the bias correction that has 

already been performed in the operational OCO-2 retrieval. While the operational OCO-2 bias correction does not explicitly 380 

account for 3D cloud biases it might implicitly mitigate such biases with its linear bias correction (since the operational bias 

correction variable dP is correlated to nearest cloud distance, see the red line in Fig. 2b).  

    To understand why some variables of the OCO-2 retrieved state vector are correlated with 3D cloud biases it is important 

to remember that the operational retrieval, based on optimal estimation, tries to match the observed radiances with a forward 

radiative transfer model. However, while the observed radiances can be perturbed by 3D cloud effects, the forward model tries 385 

to match those radiances with an independent pixel approximation that does not physically include 3D cloud effects. In 

particular the 3D cloud effect enhances, or brightens, the radiances as compared to no clouds being present. To compensate 

for this brightening the forward model decreases the retrieved surface pressure (reduction in dp_abp), increases the optical 

depth of cloud water (aod_water) and increases the surface albedo in the WCO2 band. These relationships are shown 

empirically in Figure 7. As shown in Fig. 2 of Massie et al. (2021), the spectral signature of the 3D cloud effect (the optical 390 

depth structure of the radiative perturbation of the 3D effect) differs from the spectral signatures of perturbations in surface 

pressure, surface reflectivity, aerosol, and XCO2. Fig. 2 illustrates that a decrease in surface pressure and XCO2, and an increase 
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in surface reflectance will increase the observed radiance. In order to provide for extra radiance enhancement in the cloud 

brightened observed radiance, a variety of state variable adjustments (and their unique spectral contributions) are utilized by 

the retrieval to bring forward model radiances in agreement with the observed radiances. The relationship of 3D cloud biases 395 

to surface pressure differences and surface albedo are likely due to a combination of physically-based 3D cloud radiative 

effects and operational retrieval algorithmic considerations. 

 

 
Figure 7: Bias identified by correction by the proposed model (OCO-2 Bias) with respect to its features: dp_abp (a), h2o_ratio (b), 400 
co2_grad_del (c), aod_water (d) over land (top) and dp_abp (e), co2_grad_del (f), albedo_sco2 (g), albedo_wco2 (h) over sea (bottom) 
for QF=0 and QF=1 data from 2018 to 2019. The 5th and 95th percentile are indicated with the yellow shaded area, the mean is shown 
with a red line and individual comparisons with grey dots. The scale of the x-axis for each plot is different. Please refer to Section 
3.4 for a description of the individual features.  

 405 

 

A further look at the relative importance of the model features shows dp_abp being the most important feature for land and 

sea observations. Over land dp_abp is followed by h2o_ratio, co2_grad_del, and aod_water. Over sea dp_abp is followed by 

co2_grad_del, albedo_sco2, albedo_wco2 (see Figure 8). The feature importance was calculated as the normalized total 

reduction of mean square error brought by an individual feature. I.e., if we were to omit dp_abp from our model as a feature 410 

the bias correction would be less effective than if we were to omit co2_grad_del. 
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Figure 8: Feature importance for the bias correction model. Feature importance is shown for land (left) and sea (right) observations. 
Model was trained using the training set with QF=0 and QF=1 data. Please refer to Section 3.4 for a description of the individual 415 
features.  

 

5.2 Regional Biases 

To further understand regional impacts of our bias correction we calculate biases, as identified by our model, for soundings 

from 2014 to 2019 and averaged results over 2° by 2° cells (see Figure 9). I.e., in applying the proposed bias correction, the 420 

results shown in Figure 9 are subtracted from OCO-2 XCO2. Since using soundings only from the testing set leads to many 

areas with no data, we used all available data (2014 - 2019) for this visualization. Over land negative biases (i.e., XCO2 from 

OCO-2 is underestimated) are present north of 45° in America, Europe and Asia, averaging -0.23 ppm. Around the tropics 

within ±10° of the equator, average biases are near -0.30 ppm. Positive biases are most dominant over the deserts of northern 

Africa and Saudi Arabia. Over sea biases are more equally distributed than over land and of lower magnitude, except closer to 425 

the poles where OCO-2 retrievals have generally higher uncertainties. When comparing the regional biases to a map of nearest 

cloud distance (see Figure 10) there is overlap between negative biases and areas dominated by clouds (correlation coefficient 

between nearest cloud distance and OCO-2 bias is R=0.3).  
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 430 
Figure 9: Biases in XCO2 identified by our model. Biases are averaged over 2° by 2° for all soundings (2014 to 2019, QF=0 and QF=1). 
Negative biases are shown in blue, positive biases in red, no data in white. 

 

 

 435 
Figure 10: Nearest cloud distance derived from MODIS. Nearest cloud distances are averaged over 2° by 2° for all matched soundings 
(2014 to 2019, QF=0 and QF=1). Darker blues indicate closer clouds, no data is shown in white. 

 

5.3 Effect of bias correction on true CO2 Enhancements 

As discussed in section 3.1 we use the small areas analysis as a truth proxy to develop our model. This assumes that CO2 is 440 

well mixed and constant over short spatial scales (<100 km). However, this assumption is violated for strong CO2 emitters 
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such as power plants. Even though these strong emitters are rare in the data and likely don’t influence the bias correction 

model, there is a risk that the model would “correct”, i.e. remove real local CO2 enhancements. To confirm that real CO2 

enhancements are still present after the proposed bias correction, we compare OCO-2 retrieved and corrected XCO2 from three 

OCO-2 overpasses over large coal power plants (see Figure 11), that have been used in a previous study (Nassar et al., 2017). 445 

The CO2 enhancements of the retrieved and corrected XCO2 for the three overpasses (the singular spikes in XCO2 in the middle 

of the graphs) agree closely and demonstrates that the bias correction does not erroneously remove true CO2 enhancements 

from the OCO-2 data record.  

 

 450 
Figure 11: XCO2 anomalies for OCO-2 and bias corrected OCO-2 retrievals in the proximity of coal power plants. Power plant a) 
Westar at Lat: 39.28° Lon: -96.12° on 12/04/2015, b) Ghent at Lat: 38.75° Lon: -85.03° on 08/13/2015, c) Sasan at Lat: 23.98° Lon: -
82.63° on 10/23/2014. Anomaly is calculated by subtracting the mean.  



21 
 

 

5 Future Work and Conclusion 455 

5.1 Future Work 

The developed bias correction approach is aimed at mitigating 3D cloud biases in OCO-2, but could readily be expanded to a 

more general bias correction. Future research will need to show how far the approach used in this research (determining the 

bias correction solely from small area biases) will work for correcting previously uncorrected XCO2 (the “raw” XCO2 from the 

operational retrieval). For such a correction a two-step approach might be necessary that combines a global (comparison to 460 

TCCON) and local (small area analysis) bias correction approach. However, developing such an approach would be challenged 

by the sparse coverage of TCCON stations.  

    The operational bias correction used for OCO-2 is aimed at QF=0 data. This is highlighted by the significant reduction in 

XCO2 biases our correction was able to achieve on QF=1 data while improvements in QF=0 data where small. Filtering out low 

quality data is a simple approach to improve the overall quality of the OCO-2 XCO2 retrieval. However, it leaves certain areas 465 

with too few samples, most notably the tropics (due to clouds), higher latitudes (due to large solar zenith angles) and around 

Brazil, Bolivia, Paraguay (due to the South Atlantic Anomaly). Improving the bias correction of future OCO-2 versions that 

allow for less restrictive filtering would benefit applications that rely on those data.  

    Finally, one could expand the approach taken here, developing one model for land and one for sea data, to having multiple 

models for land and sea to better capture the diverse causes for biases in XCO2 across Earth, for example, different types of 470 

aerosols dominate different areas and might lead to specific biases in different regions or seasons. Such a location based bias 

correction could also be expanded to a location-based filtering approach that would, for example, allow less restrictive filtering 

at higher latitudes (Mendonca et al., 2021; Jacobs et al., 2020) to have more of those soundings pass the filter and be available 

for scientific inquiry. A key challenge of such an approach will be validation due to the limited number of available TCCON 

stations. 475 

5.2 Conclusion 

We identified four variables from the state vector for OCO-2 retrievals over land (dp_abp, h2o_ratio, co2_grad_del, aod_water) 

and sea (dp_abp, co2_grad_del, albedo_sco2, albedo_wco2) that are used in a machine learning model that is able to remove 

3D cloud biases in operational bias-corrected OCO-2 retrieved XCO2. We demonstrate that this machine learning model does 

not erroneously remove true CO2 power plant enhancements from the OCO-2 data record. All variables are bi-products of the 480 

operational retrieval used by OCO-2 which simplifies their inclusion for bias correction in future versions of the operational 

product. The proposed non-linear bias correction is based on a random forest approach and able to reduce the RMSE from 

1.73 ppm to 1.55 ppm over land and 1.19 ppm to 0.83 ppm over sea for QF=0 and QF=1 data on an independent testing set. 

We demonstrated a systematic approach to correct for biases in optimal estimation retrievals. Namely, (1) find a physical 
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variable that is well understood and correlated with the cause of the bias (in our case ‘nearest cloud distance’). (2) Identify 485 

elements from the retrieved state vector and other retrieval products that show a dependence to the variable from step (1) in 

addition to other variables that have a physical connection to the bias. (3) Use recursive feature elimination to identify which 

subset of the elements identified in (2) should be used for the bias correction. (4) Use a simple explainable machine learning 

model to map the features identified in (3) to the biases and correct for them.  

 490 
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