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Abstract. The Orbiting Carbon Observatory-2 makes space-based radiance measurements in the Oxygen A-band and the Weak 

and Strong carbon dioxide (CO2) bands. Using a physics-based retrieval algorithm these measurements are inverted to column-10 

averaged atmospheric CO2 dry-air mole fraction (XCO2). However, the retrieved XCO2 are biased due to calibration issues and 

mismatches between the physics-based retrieval and nature. Using multiple linear regression, the biases are empirically 

mitigated. However, a recent analysis revealed remaining biases in the proximity of clouds caused by 3D cloud radiative effects 

(Massie et al., 2021) in the current processing version B10. Using an interpretable non-linear machine learning approach, we 

developed a bias correction model to address these 3D cloud biases. The model is able to reduce unphysical variability over 15 

land and ocean by 31% and 55%, respectively. Additionally, the 3D cloud bias corrected XCO2 show better agreement with 

independent ground-based observations from the Total Carbon Column Observation Network (TCCON). Overall, we find that 

OCO-2 underestimates XCO2 over land by -0.4 ppm in the tropics and northward of 45° N. The approach can be expanded to a 

more general bias correction and is generalizable to other greenhouse gas missions, such as GeoCarb, GOSAT-3 and CO2M. 

 20 
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1 Introduction 

The Orbiting Carbon Observatory OCO-2 (Crisp et al., 2004; Eldering et al., 2017) makes space-based top-of-atmosphere 

radiance measurements in three spectral bands: Oxygen A band at 0.76 µm, the Weak CO2-band at 1.61 µm, and the Strong 

CO2 band at 2.06 µm. Using an optimal estimation retrieval (Rodgers, 2000) called ACOS (O'Dell et al., 2018), these 25 

measurements are converted to column-averaged atmospheric CO2 dry-air mole fraction (XCO2). ACOS employs a physics-

based forward model that takes into consideration viewing and solar geometry and various atmospheric and surface parameters. 

Since OCO-2 generates on the order of 100,000 soundings per day, ACOS makes multiple approximations to speed up the 

retrieval algorithm. Most importantly, the retrieval makes the independent pixel approximation, where the radiance in a given 

sounding only depends on the properties (e.g. surface reflectance, aerosols, trace gas concentration) within the field of view of 30 

this sounding. Thus, the retrieval does not account for the horizontal exchange of photons as caused by nearby clouds, also 

referred to as 3D cloud effect. This leads to negative biases in retrieved XCO2 in the vicinity of clouds (Massie et al., 2021; 

Massie, Sebastian, Eldering, & Crisp, 2017; Merrelli, Bennartz, O'Dell, & Taylor, 2015).  
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    To mitigate biases in retrieved XCO2, a linear bias correction and threshold-based filtering is applied to the data. For the 

current version (B10) bias correction and filtering are based on co-retrieved elements from the state vector that are used to 35 

bring retrieved XCO2 into agreement with multiple truth sources (Kiel et al., 2019). These truth sources include a ‘small areas 

analysis’ which assumes that XCO2 is constant over small distances (<100 km) within the same orbit, comparisons to ground-

based observations from the Total Carbon Column Observation Network (TCCON) (Wunch et al., 2010) and comparisons to 

a multi model mean of six models that assimilate in-situ data. Nevertheless, there are remaining negative 3D cloud biases 

present in the proximity of clouds with an average of -0.4 and -2.2 ppm for high quality (QF=0) and low quality (QF=1) data 40 

(Massie et al., 2021). To address these biases Massie et al., (2021) developed a linear bias correction and filtering approach 

using a set of features indicative of 3D cloud effects calculated from Moderate Resolution Imaging Spectroradiometer 

(MODIS) and OCO-2 files. However, biases in XCO2 caused by nearby clouds are highly non-linear and the 3D cloud effect 

features underrepresent the complexity of those effects and how they impact XCO2 biases. Consequently, the present study has 

two goals. The first goal is to explore if a non-linear bias correction can reduce 3D cloud biases further than a linear approach. 45 

While the developed cloud features (H3D, HC, CSNoiseRatio, Cloud Distance, discussed below) more directly capture 3D 

cloud effects, co-retrieved variables from the state vector might be more indicative of the resulting XCO2 biases. Thus, the 

second goal is to investigate if additional variables, co-retrieved with XCO2, can be used to further reduce 3D cloud biases.  

2 Data 

We make use of the OCO-2 B10 lite files (https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_10r/, last access: 05/2022) 50 

from September 2014 to July 2019. These files contain bias corrected XCO2 for ocean glint and land nadir observations that we 

wish to correct for remaining 3D cloud biases, a variety of parameters describing the retrieved atmospheric state vector, 

viewing and solar geometry, results from pre-processors, location and time, and a quality flag (QF) for each sounding. The QF 

is determined by a series of hand tuned thresholds for various variables derived from state vector elements that are indicative 

of retrieval biases in XCO2. Similarly, the bias correction is performed with hand tuned linear fits to various state vector elements 55 

(Kiel et al., 2019). As a truth metric to determine the bias correction and QF, B10 utilizes the small areas analysis, comparisons 

to TCCON and a multi model mean.  

    In addition to the B10 lite files we utilize ground-based observations by TCCON from all 27 stations that are in close 

proximity in time (24 h) and space (2.5° in latitude, 5° in longitude) to OCO-2 observations (https://tccondata.org, last access: 

05/2022). The ground-based observations are used for validation only. However, they can only provide comparisons for a 60 

limited number of locations, with relatively few ground-based sites in the Tropics and island locations.  

    Finally, we make use of four 3D cloud effect features: H3D (Liang, Di Girolamo, & Platnick, 2009; Massie et al., 2017) 

describes the normalized standard deviation of the radiance field, HC is calculated from differences in continuum radiances 

of an observation point and adjacent points in three rows (frames) of footprints, CSNoiseRatio is the ratio of the continuum 

radiance spatial standard deviation and noise level at the continuum radiance level, and Cloud Distance (Massie et al., 2021) 65 
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which is the distance of the nearest cloud as determined from MODIS imagery. The calculated 3D cloud features can be found 

for OCO-2 lite files from September 2014 to July 2019 at https://doi.org/10.5281/zenodo.4008764.  

 

3 Methods 

3.1 Small Areas and TCCON as Truth metric 70 

As a pre-processing step we match the 3D cloud variables and B10 lite files by OCO-2 sounding id and TCCON by time and 

location. Afterwards, we remove soundings where no 3D cloud variables are available. To develop the bias correction model, 

we use the ‘small areas analysis’, which is based on the assumption that CO2 is a well-mixed gas and assumed to be constant 

over spatial scales of less than ~100 km (there can be exceptions for strong CO2 emitters such as mega cities). To exploit this 

constraint on XCO2 we split OCO-2 soundings from the same orbit into small areas using the k-means algorithm (Hartigan & 75 

Wong, 1979). This groups soundings where variations in XCO2 can be interpreted as non-physical variability, or retrieval biases. 

For each group we define the median B10 bias corrected XCO2 of this group as the true XCO2 and any differences to this median 

are treated as biases. Note, that this assumes that each small area contains a subset of soundings that are not affected by 3D 

cloud biases, which might not be accurate for some small areas dominated by clouds (e.g. in the tropics). Finally, we remove 

groups where soundings cover an area bigger than 100 km or there are fewer than 20 soundings. This results in approximately 80 

106 land nadir soundings and 11•106 ocean glint soundings, with a small subset of the soundings having coincident TCCON 

measurements. TCCON can only provide comparison for a limited set of regions with most stations in the northern hemisphere 

and on land. This challenges the development of a bias correction approach based on XCO2 - TCCON differences that would 

be representative of areas far away from existing stations, such as Africa, South America and most of the ocean. Therefore, 

we use TCCON only as an independent truth metric for validation and not to develop the model itself.  85 

    The distribution of nearest cloud distance, biases from the small area analysis and comparison to TCCON for land nadir and 

ocean glint observations with QF=0 and QF=1 are shown in Figure 1. The plots show that the majority of OCO-2 soundings 

are taken within close proximity of clouds and that many of those soundings are filtered out (QF=1). This is especially 

problematic for areas such as the tropics that are dominated by clouds and, as a result, have few valid soundings. The small 

area and TCCON biases for QF=0 data are roughly normally distributed with a mean and standard deviation of 0.1 ± 0.5 ppm 90 

for B10 small area biases and 0.2 ± 0.8 ppm compared to TCCON for ocean glint. For land nadir B10 small area bias and B10 

- TCCON are similar with a mean and standard deviation of 0.1 ± ~1 ppm. For QF=1 the distribution of biases has a larger 

standard deviation for B10 small area biases (land: 2.9 ppm, ocean: 1.9 ppm) and B10 – TCCON (land: 3.9 ppm, ocean: 2.1 

ppm), is skewed, and contains negative biases that far exceed positive biases, as analysed with the small areas (land: -0.5 ppm, 

ocean: -0.9 ppm) and compared to TCCON (land: -1.4 ppm, ocean: -1.2 ppm). This long tail distribution of negative biases is 95 

indicative of 3D cloud effects and should be mitigated with a successful 3D cloud bias correction. 
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Figure 1: Histogram of data used in this study for nearest cloud distance (left), small area biases (middle), and biases compared to 
TCCON (right) for land nadir (top) and ocean glint (bottom) soundings. QF=0 data is shown in blue, QF=1 data in orange.  

 100 

3.2 Train-, Validation-, Test-split 

To fit, or train, the bias correction model we used soundings from September 2014 to the end of July 2017, totalling roughly 

8•106 and 7•105 soundings for ocean glint and land nadir, respectively. To find the best model parameters and evaluate what 

features minimize biases the furthest we use a separate validation set containing soundings from the beginning of August 2017 

to end of July 2018. Finally, to test how the trained model performs on new data we use a separate testing set of soundings 105 

from the beginning of August 2018 to the end of July 2019. The validation and testing set have 2•106 and 1.6•106 soundings 

for ocean glint QF=0 and QF=1, respectively, and 17•104 and 14•104 for land nadir QF=0 and QF=1, respectively.   

 

3.3 Bias Correction Model 

We train two types of models for the bias correction, non-linear models (Random Forest) and linear models (Ridge Regression) 110 

to provide a baseline comparison. A Random Forest is an ensemble of classifying decision trees and outputs the mean of those 

trees (Breiman, 2001). Each tree is trained in a supervised manner with a random subset (50%) of the available training data, 

also referred to as boot strapping. Using the training data, each tree iteratively splits the data using the feature that can minimize 

the mean squared error of the predictions the furthest, until it reaches a maximum user-provided number of splits, or depth. 

For our land model we used a depth of 8 and for our ocean model a depth of 15. The larger model size for the ocean is mostly 115 

due to there being more training data available over the ocean than over land which allows to fit a larger model that still 

generalizes to new data. Each random forest was composed of 100 individual trees. These parameters were chosen to maximize 
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model performance on the validation set. The model inputs are a set of selected features form the OCO-2 Lite files (e.g. 

co2_grad_del) and the model output is the remaining bias in the B10 bias corrected XCO2 derived from the small areas analysis. 

    Since the B10 bias correction uses a linear approach, we also perform a baseline comparison to a linear model. We choose 120 

multi-variate linear regression with a small Tikhonov regularization term (the regularization helps if some of the inputs are 

correlated, which is the case for most real-world applications), also referred to as ridge regression. Thus, using the training set 

we seek to find the weights, w, that minimize the following equation: 

 

‖𝒚 − 𝑿𝒘‖!! + 𝛼‖𝒘‖!!           (1) 125 

 

where y is the standardized (mean removed and divided by standard deviation) XCO2 bias, X are the standardized features, and 

𝛼 controls the strength of the Tikhonov regularization. For our application we found 𝛼 = 10"# to maximize performance on 

the validation set.   

 130 

3.4 Feature Selection 

First, we identified retrieved variables in the Lite files that show a strong dependence (change in mean or variability) to nearest 

cloud distance, indicating that they might be good candidates to correct for 3D cloud effects. Three examples are shown in 

Figure 2. In addition to the list of identified features we added solar and viewing geometries for land and ocean and surface 

albedo for land. Those variables have a direct physical impact on 3D cloud effects, for example, the sun being closer to the 135 

horizon amplifies 3D cloud effects so does a brighter surface albedo (Okata et al., 2017). Finally, we removed highly correlated 

variables. This results in a set of 23 features for land nadir, and 24 features for ocean glint soundings, that may be used to 

correct for 3D cloud biases in retrieved XCO2 (more information about each variable can be found in (Jet Propulsion Laboratory, 

2018)). Next, we used recursive feature elimination to identify what subset of features can reduce biases the furthest. Reducing 

the number of features makes the model more robust to new data, or avoids overfitting, and aids interpretability.  140 

    For the recursive feature elimination, we removed one feature at a time, trained a small random forest model with 32 trees 

each on a random selection of 5•105 soundings with QF=0 and QF=1 from the training set. Afterwards we calculated the model 

performance on the full validation set. As the performance metrics we used the correlation coefficient (R2) between modelled 

bias and existing bias as indicated by the small-areas calculations. The feature, that has been removed from the highest 

performing model is then permanently removed and the process is repeated until only one feature is left. The iterative process 145 

was performed separately for land nadir and ocean glint soundings. The order of the feature elimination and resulting R2 is 

shown in Figure 3. The least important variables are shown at the top and were removed first. A low importance can either 

result from a variable varying independently of remaining biases in XCO2 or the variable could be correlated with another 
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variable (e.g. dp and dp_abp) or set of variables that provide similar information, making one of them obsolete. The most 

important variables are shown on the bottom.  150 

    For our bias-correction model we decided to use the three most important variables for ocean glint and four most important 

variables for land nadir, as identified by the feature elimination. These variables explain most of the variance and mostly 

overlap for land and ocean, a further indication that those variables have a robust relationship to 3D cloud biases. For land 

nadir and ocean glint soundings the three most important variables are xco2_strong_idp (XCO2 retrieved from the strong CO2 

band with the IMAP-DOAS pre-processing algorithm, normalized by subtracting the mean of each small area), co2_grad_del 155 

(change between the retrieved CO2 profile and the a priori profile from the surface minus that at level 13), and dp (difference 

of retrieved surface pressure and a priori surface pressure obtained from GMAO GEOS5-FP-IT model). The fourth most 

important variable for land nadir is albedo_wco2 (surface albedo in the weak CO2 band). Note, the final set of features does 

not include any of the 3D cloud metrics used in the bias correction by Massie et al. (2021). Additionally, solar and viewing 

geometry were removed in the iterative process. However, it includes albedo_wco2 which has a direct physical connection to 160 

3D cloud effects. This indicates that elements of the state vector (co2_grad_del, dp, albedo_wco2) and results from the pre-

processing algorithms (xco2_strong_idp) are more directly correlated with remaining biases in XCO2 (due to 3D cloud and 

other effects) than features that directly measure 3D cloud effects which perturb the radiation field (H3D, HC, CSNoiseRatio). 

From an operational standpoint for OCO-2 the three features are available in the OCO-2 Lite files which simplifies their 

inclusion in future operational products. 165 

 

Figure 2: Change of variability and mean in percent of model features with respect to nearest cloud distance. Change in mean is 
shown in red; change of the 5th and 95th percentile is shown in yellow; no change (baseline) is shown with a brown straight line. 
Change is calculated with respect to feature mean for observations with a nearest cloud distance of 14 km to 15 km. a) shows change 
for xco2_strong_idp, b) co2_grad_del, and c) dp (the mean of ‘dp change’ for a cloud distance of 0 km is -1300%).  170 
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Figure 3: Feature ordering by importance as determined by recursive feature elimination. Features were removed from top to 175 
bottom with the most important features on the bottom. The model performance for removing a given feature is indicated with R2 
calculated on the validation set.  

 

4 Results 

4.1 Reduction in XCO2 biases 180 

After the random forest was trained using the training set (09/2014 – 07/2017) we evaluated the model performance on the 

testing set (08/2018 – 07/2019). Figure 4 compares remaining XCO2 biases in B10 with biases after our correction is applied 

(B10-RF) for QF=0 and QF=1 soundings. For land nadir soundings XCO2 biases are reduced from a standard deviation of 1.8 

ppm to 1.4 ppm (see Figure 4c) with the biggest correction applied to soundings that have biases less than -1.5 ppm. For ocean 

glint soundings the bias correction has a significantly bigger impact and reduces biases from 1.3 ppm to 0.7 ppm (see Figure 185 

4d). Over the ocean the bias correction mostly corrects negative biases less than -0.8 ppm (see Figure 4b). 
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Figure 4: Reduction in non-physical variability in XCO2 for B10 and the proposed bias correction approach (B10-RF) for land nadir 
(left) and ocean glint (right) for QF=0 and QF=1 data from 2018 to 2019. (Top) distribution of biases from individual soundings; 190 
(bottom) distribution of standard deviation for individual small areas.  

 

Table 1 shows the Root Mean Square Error (RMSE) by quality flag. For QF=0 and QF=1 the biases in XCO2 corrected with 

our model are less than for B10 on the testing set. However, for QF=0 improvements by our correction (B10-RF) compared to 

B10 are small (~10%). These data have significantly fewer soundings with clouds in close proximity (see Figure 1) which 195 

explains in part the smaller difference. For QF=1 the difference is more significant, reducing the RMSE from 2.76 ppm to 1.91 

ppm over land and from 1.35 ppm to 0.74 ppm over ocean.   

 
Table 1: RMSE of XCO2 as determined by small areas analysis for the testing set (08/2018 – 07/2019). The RMSE is shown for the 
operational OCO-2 product (B10), the proposed random forest approach (B10-RF), a linear bias correction using the same three 200 
features than RF (B10-Ridge), and a random forest using dedicated cloud metrics (B10-Cloud). 

 LndND   XCO2 [ppm] SeaGL  XCO2 [ppm] 

 B10 B10-RF  B10-Ridge B10-Cloud B10 B10-RF B10-Ridge B10-Cloud 

QF=0 0.83 0.75  0.77 0.82  0.52 0.44 0.47 0.49 

QF=1 2.76 1.91 2.19 2.62 2.12  1.18 1.44 1.83 

QF=0 + 1 2.08 1.43 1.67 1.99 1.35  0.74 0.89 1.19 
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To more directly link the bias correction to 3D cloud effects we show biases with respect to nearest cloud distance in Figure 

5. XCO2 from B10 shows a clear negative mean bias and increased variance for a nearest cloud distance of less than 3 km and 205 

4 km over land and ocean, respectively. After applying our bias correction the mean bias in the proximity of clouds is close to 

zero. Thus, the bias correction effectively mitigates biases due to 3D cloud effects. 

 
Figure 5: XCO2 bias vs cloud distance for land nadir B10 (a) land nadir B10 corrected (b) ocean glint B10 (c), and ocean glint B10 
corrected (d) for QF=0 and QF=1 data from 2018 to 2019. The 5th and 95th percentiles are indicated with the yellow shaded area; 210 
the mean is shown with a red line and individual comparisons with grey dots. 

 

4.2 Linear vs Non-linear bias correction 

Building on the work by Massie et al., (2021) one of the guiding research questions was whether a non-linear approach based 

on interpretable machine learning techniques would improve upon a linear 3D cloud bias correction. To probe this question, 215 

we compare the performance of the non-linear random forest model to linear ridge regression (see Equation 1). To train the 

linear model we used the same features, training and testing set than for the random forest. The RMSE for the linear model 

(B10-Ridge) and non-linear model (B10-RF) is shown in Table 1. For QF=0 land nadir and ocean glint observations the linear 

and non-linear model have similar performance with the non-linear model allowing for a slightly lower RMSE. For QF=1 the 

non-linear random forest reduces remaining biases further than the linear ridge regression from 2.19 ppm to 1.91 ppm over 220 

land and from 1.44 ppm to 1.18 ppm over the ocean. 
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4.3 Comparison to Using Dedicated Cloud Variables 

A second question that we wanted to answer was whether additional variables from the B10 lite files could improve the 3D 

cloud bias correction. As shown in Figure 3, the four cloud variables (h3d, hc, cs_noise_ratio, cld_dist) were removed during 

the recursive feature elimination step, indicating that other variables from the lite files are more directly correlated with 225 

remaining B10 XCO2 biases. To better understand how much of the model performance stems from the new set of features we 

performed a set of experiments. For the first experiment we trained a random forest using only the four cloud variables in 

addition to surface albedo, solar zenith angle, sensor zenith angle, and the difference between solar and sensor azimuth. The 

results are shown in Table 1 (B10-Cloud). As expected, using the cloud variables with the non-linear random forest model 

performs worse than using the random forest with the features identified using the recursive feature elimination. However, it 230 

also performs worse than using the linear model for QF=0 and QF=1 for land nadir and ocean glint observations. One caveat 

of this experiment is that our bias correction approach, aimed at 3D cloud biases, might also make corrections for biases 

stemming from other effects (e.g. aerosols) that are independent to clouds and, thus, cannot be explained with cloud variables. 

Unfortunately, clearly separating various sources of bias is not possible. 

    For the other experiment we combine the 3D cloud variables with the variables determined by the recursive feature 235 

elimination (xco2_strong_idp, co2_grad_del, dp for land and ocean and albedo_wco2 for land) and compare the results to 

using only the features from the recursive feature elimination. If adding the 3D cloud variables would significantly reduce 

biases in XCO2 further it would indicate that the set of identified features is mostly correcting for biases unrelated to 3D cloud 

effects. In total we compare the model performance of four sets of features: a) xco2_strong_idp, co2_grad_del, dp, 

albedo_wco2 (for land only) and nearest cloud distance, b) xco2_strong_idp, co2_grad_del, dp,  albedo_wco2 (for land only) 240 

and CSNoiseRatio, c) xco2_strong_idp, co2_grad_del, dp,  albedo_wco2 (for land only), nearest cloud distance, 

CSNoiseRatio, HC, H3D, and d) xco2_strong_idp, co2_grad_del, dp, albedo_wco2 (for land only), and deltaT (retrieved offset 

to a priori temperature profile). The last set of features serves as a control experiment where we quantify the effect of adding 

a random variable that is unrelated to 3D cloud effects to the set of chosen features. The results are shown in Table 2. For 

QF=0 there are practically no differences for the four test cases compared to our chosen set of features. For land nadir QF=1 245 

soundings the feature sets a) and b) lead to a similar RMSE than our chosen set of features. For the feature sets c) and d) the 

RMSE is slightly larger. For ocean glint QF=1 the best set of features is c) which reduces the RMSE from 1.18 ppm to 1.13 

ppm. Overall, the addition of 3D cloud variables (a, b, c) allows the models to lower the RMSE further compared to our 

proposed model, however, the improvements are only marginal. This indicates that the set of chosen features in our bias 

correction model accounts for the majority of 3D cloud biases in XCO2. Further evidence for this was shown in Figure 5 and is 250 

presented in the next section with an independent comparison to TCCON.  
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Table 2: RMSE of XCO2 as determined by small areas analysis for the testing set (08/2018 – 07/2019). The RMSE is shown for the 255 
proposed random forest approach (B10-RF) and using the same approach but with additional features. In addition to 
xco2_strong_idp, co2_grad_del, dp a) contains nearest cloud distance, b) CSNoiseRatio, c) nearest cloud distance, CSNoiseRatio, 
HC, H3D, and d) detaT. 

 LndND   XCO2 [ppm]  SeaGL  XCO2 [ppm]  

 B10-RF  a) b) c) d) B10-RF a)  b) c) d) 

QF=0 0.75 0.75  0.75  0.75  0.75 0.44 0.44 0.44 0.43  0.44 

QF=1 1.91 1.90 1.90 1.96 1.92 1.18 1.16 1.16 1.13 1.17 

QF=0 + 1 1.43 1.43 1.43 1.48 1.44 0.74 0.73 0.73 0.71 0.73 

 

 260 

4.5 Comparison to TCCON 

We further compare bias corrected XCO2 to TCCON. TCCON observations have low uncertainties and are used to validate 

OCO-2 retrieved XCO2. However, they can only provide point measurements and are non-uniformly distributed, with most 

TCCON sites over land and in the northern hemisphere. For our comparison we consider coinciding observations of OCO-2 

and TCCON for the period of the testing set (08/2018 - 07/2019). This results in 1768 (QF=0: 1397, QF=1: 371) matches for 265 

land nadir and 1305 (QF=0: 942, QF=1: 363) matches for ocean glint observations. Note, our bias correction model was trained 

without taking TCCON observations into consideration while B10 takes OCO-2 – TCCON biases explicitly into consideration 

for its linear bias correction, filtering, and to calculate global offsets. Thus, comparisons between B10 and TCCON are not 

independent.  

    Table 3 shows the mean and standard deviation of differences between B10 and TCCON and after we apply our bias 270 

correction (B10-RF - TCCON) for QF=0 and QF=1. For land nadir the bias correction reduces biases mostly for QF=1 data 

while there is practically no difference for QF=0. For ocean glint observations the bias corrected XCO2 exhibits a systematic 

positive offset compared to TCCON but a reduced variability. The systematic offset could be addressed by recalculating the 

scaling factor used for ocean glint retrievals in B10. However, there are only few TCCON stations that can provide comparisons 

for ocean glint data and these stations are not equally distributed over the ocean.  275 

 

 

 

 

 280 
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Table 3: Mean and standard deviation of bias in XCO2 compared to TCCON observations for the testing set (08/2018 – 07/2019). The 
comparison for the operational OCO-2 product is indicated by (B10 - TCCON) and the proposed random forest approach by (RF - 
TCCON).  

 LndND XCO2 [ppm] SeaGL XCO2 [ppm] 

 B10 - TCCON B10-RF - TCCON B10 - TCCON B10-RF - TCCON 

QF=0 -0.19 ± 1.11 -0.2 ± 1.00 0.87 ± 0.75 0.79 ± 0.70 

QF=1 -0.42 ± 2.27 0.19 ± 1.63 0.08 ± 2.08 1.20 ± 1.72 

QF=0 + 1 -0.34 ± 1.69 -0.18 ± 1.24 0.65 ± 1.32 0.88 ± 0.99 

 285 

To better understand how the bias correction addresses 3D cloud biases as compared to TCCON, Figure 6 shows XCO2 biases 

vs nearest cloud distance. For land nadir and ocean glint there exist negative biases in B10 in the proximity of clouds (Figure 

6a and 6c). Interestingly, there is a positive bias for B10 ocean glint data when no clouds are close to OCO-2 soundings (> 4 

km) that likely stems from B10 incorporating a multi model mean in its bias correction in addition to TCCON. After applying 

our bias correction, XCO2 biases in the proximity of clouds (< 4 km) have been mitigated for land nadir (Figure 6b). For ocean 290 

glint, the bias correction pushed XCO2 up by roughly 0.5 ppm in the proximity of clouds, resulting in a uniform positive bias 

of roughly 1 ppm independent of cloud distance (Figure 6d). Thus, the bias correction removed the dependency of XCO2 biases 

on nearest cloud distance but did not address the overall offset present in B10.  

 
Figure 6: XCO2 bias vs cloud distance for land nadir B10 (a) B10 corrected (b) ocean glint B10 (c), and B10 corrected (d) for QF=0 295 
and QF=1 data from 2018 to 2019. The 5th and 95th percentiles are indicated with the yellow shaded area, the mean is shown with a 
red line and individual comparisons with grey dots. 
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5 Discussion 

5.1 Model Interpretation 

To better understand how the model utilizes the input features to calculate the bias correction we calculated the modelled bias 300 

(RF Bias) with respect to the three input features (xco2_strong_idp, co2_grad_del, dp) (see Figure 7). Overall, the 3D cloud 

bias correction depends similarly on the individual features for land and ocean observations. Additionally, the bias-feature 

relationship is non-linear for most features. This explains the lower model performance of the linear model we compared to in 

Section 4.2. xco2_strong_idp is positively correlated with modelled biases, thus, both the operational XCO2 retrieval as well 

as the IDP preprocessor XCO2 retrieval are both biased by 3D cloud effects. For ocean glint observations this relationship is 305 

roughly linear for negative biases in xco2_strong_idp below -2 ppm. Overall, the IDP preprocessor seems to be more strongly 

biased by 3D cloud effects than the operational retrieval, for example, a bias of -10 ppm in the IDP preprocessor (calculated 

by subtracting the mean of each small area) relates to a bias of -1 ppm and -3 ppm in the operational retrieval over land and 

ocean, respectively. co2_grad_del shows mostly a positive correlation for negative co2_grad del (surface CO2 is 

underestimated compared to CO2 higher up in the atmosphere) and a negative correlation for positive co2_grad_del. This 310 

indicates that 3D cloud effects challenge the accurate retrieval of the XCO2 profile. dp shows a positive correlation with XCO2 

biases when the operationally retrieved surface pressure is underestimated. Overestimating the surface pressure shows no 

correlation with biases in XCO2. Finally, albedo_wco2 shows no clear dependence on XCO2 biases. Note, that our bias correction 

is applied in addition to the bias correction performed in B10 that implicitly removes some correlations of 3D cloud biases 

with co2_grad_del and dPfrac (highly correlated with dp).  315 

 

 
Figure 7: Bias correction by the proposed model (RF Bias) with respect to its three input features (xco2_strong_idp, co2_grad_del, 
dp) for land nadir (top) and ocean glint (bottom) observations for QF=0 and QF=1 data from 2018 to 2019. The 5th and 95th percentile 
are indicated with the yellow shaded area, the mean is shown with a red line and individual comparisons with grey dots. Note, the 320 
scale of the x-axis for each plot is different.  
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A further look at the relative importance of the model features shows roughly the same ordering for land nadir and ocean glint 

observations with xco2_strong_idp being the most important feature followed by dp, co2_grad_del and, finally, albedo_wco2 

for land nadir (see Figure 8). The feature importance was calculated as the normalized total reduction of mean square error 325 

brought by an individual feature. I.e., if we were to omit xco2_strong_idp from our model as a feature the bias correction 

would be less effective than if we were to omit co2_grad_del. 

 

 
Figure 8: Feature importance for the bias correction model. Feature importance is shown for land nadir (left) and ocean glint (right) 330 
observations. Model was trained using the training set with QF=0 and QF=1 data. 

 

5.2 Regional Biases 

To further understand regional impacts of our bias correction we calculate biases, as identified by our model (RF Bias), for 

soundings from 2014 to 2019 and average results over 2° by 2° cells (see Figure 9). I.e., to apply the proposed bias correction, 335 

one would subtract the results shown in Figure 9 from B10 XCO2. Since using soundings only from the testing set leads to many 

areas with no data, we used all available data (2014 - 2019) for this visualization. Over land negative biases (i.e., XCO2 is 

underestimated in B10) are present north of 45° in America, Europe and Asia, averaging -0.36 ppm and around the tropics 

within ±10°, averaging -0.43 ppm. Over the ocean biases are more equally distributed than over land and of lower magnitude, 

except closer to the poles where OCO-2 retrievals have generally higher uncertainties. When comparing the regional biases to 340 

a map of nearest cloud distance (see Figure 10) there is a high degree of overlap between negative biases over land and areas 

dominated by clouds. Over the ocean there is less agreement between the two. Most notable our model identified a positive 

bias in XCO2 for the tropics between 60°E and 170°E where we would expect negative biases due to 3D cloud effects. This 

indicates that over the ocean our bias correction, aimed at 3D cloud effects, is also correcting for other biases.  
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 345 
Figure 9: Biases identified by our model. Biases are averaged over 2° by 2° for all soundings (2014 to 2019, QF=0 and QF=1). Negative 
biases are shown in blue, positive biases in red, no data in white. 

 

 

 350 
Figure 10: Nearest cloud distance derived from MODIS. Nearest cloud distances are averaged over 2° by 2° for all matched soundings 
(2014 to 2019, QF=0 and QF=1). Darker blues indicate closer clouds, no data is shown in white. 
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5 Future Work and Conclusion 

5.1 Future Work 355 

The developed bias correction approach was aimed at mitigating 3D cloud biases in B10, but could readily be expanded to a 

more general bias correction. Future research will need to show in how far the approach used in this research (determining the 

bias correction solely from small area biases) will work for correcting raw XCO2. For such a correction a two-step approach 

might be necessary that combines a global (comparison to TCCON) and local (small area analysis) bias correction approach. 

However, developing such an approach would be challenged by the sparse coverage of TCCON stations.  360 

    The bias correction used for B10 is aimed at QF=0 data. This is highlighted by the significant reduction in XCO2 biases our 

correction was able to achieve on QF=1 data while improvements on QF=0 data where moderate. Filtering out low quality 

data is a simple approach to improve the overall quality of the OCO-2 XCO2 retrieval. However, it leaves certain areas with too 

few samples, most notably the tropics (due to clouds), higher latitudes (due to shallow solar zenith angles) and around Brazil, 

Bolivia, Paraguay (due to the South Atlantic Anomaly). Improving the bias correction of future OCO-2 versions that allow for 365 

less restrictive filtering would benefit applications that rely on those data.  

    Finally, one could expand the approach taken here, developing one model for land nadir and one for ocean glint data, to 

having multiple models for land and ocean to better capture the diverse causes for biases in XCO2 across Earth, for example, 

different types of aerosols dominate different areas and might lead to specific biases in different regions or seasons. Such a 

location based bias correction could also be expanded to a location-based filtering approach that would, for example, allow 370 

less restrictive filtering at higher latitudes (Jacobs et al., 2020; Mendonca et al., 2021) to have more of those soundings pass 

the filter and be available for scientific inquiry. A key challenge of such an approach will be validation due to the limited 

number of available TCCON stations. 

5.2 Conclusion 

We identified four variables (xco2_strong_idp, co2_grad_del, dp, albedo_wco2) that allow to correct for 3D cloud biases in 375 

B10 XCO2 from OCO-2. All variables are bi-products of the operational retrieval used by OCO-2 which simplifies their 

inclusion for bias correction in future versions of the operational product. Using the identified variables, we were able to reduce 

the remaining 3D cloud biases further than using dedicated cloud variables. The proposed non-linear bias correction is based 

on a random forest approach and able to reduce the RMSE from 2.08 ppm to 1.43 ppm over land and 1.35 ppm to 0.74 ppm 

over the ocean for QF=0 and QF=1 data on an independent testing set. We demonstrated a systematic approach to correct for 380 

biases in OE retrievals. Namely, (1) find a physical variable that is well understood and correlated with the cause of the bias 

(in our case cloud distance). (2) Identify elements from the retrieved state vector and other retrieval products that show a 

dependence to the variable from step (1) in addition to other variables that have a physical connection to the bias. (3) Use 

recursive feature elimination to identify which subset of the elements identified in (2) should be used for the bias correction. 

(4) Use a simple explainable machine learning model to map the features identified in (3) to the biases and correct for them.  385 
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