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 21 

Abstract 22 

Since 2018, the Aeolus satellite of the European Space Agency (ESA) acquires wind HLOS 23 

(horizontal line-of-sight) profiles throughout the troposphere and up to the lower stratosphere, filling 24 

a critical gap of the Global Observing System (GOS). Aeolus, carrying ALADIN (Atmospheric LAser 25 

Doppler INstrument), the first UV HSRL (High Spectral Resolution Lidar) Doppler lidar ever placed 26 

in space, along with wind HLOS profiles provides also vertically resolved optical properties of 27 

particulates (aerosols, clouds). The present study focuses on the assessment of Aeolus L2A particulate 28 

backscatter coefficient (baseline 2A11), retrieved by the Standard Correct Algorithm (SCA), in the 29 

Eastern Mediterranean, a region hosting a variety of aerosol species. Ground-based retrievals 30 

acquired by lidar instruments operating in Athens (capital of Greece), Thessaloniki (north Greece) 31 

and Antikythera (southwest Greece) serve as reference. All lidar stations provide routine 32 

measurements to the PANACEA (PANhellenic infrastructure for Atmospheric Composition and 33 

climatE chAnge) network. A set of ancillary data including sunphotometric observations 34 

(AERONET), reanalysis products (CAMS, MERRA-2), satellite observations (MSG-SEVIRI, 35 
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MODIS-Aqua) and backward trajectories modelling (FLEXPART) are utilized towards an optimum 36 

characterization of the probed atmospheric conditions under the absence of a classification scheme in 37 

Aeolus profiles. First, emphasis is given on the assessment of Aeolus L2A backscatter coefficient 38 

under specific aerosol scenarios over the Antikythera island. Due to the misdetection of the cross-39 

polar component of the backscattered lidar signal, Aeolus underestimates the aerosol backscatter 40 

coefficient by up to 33% when non-spherical mineral particles are recorded (10th July 2019). A good 41 

performance is revealed on 3rd July 2019, when horizontally homogeneous loads of fine spherical 42 

particles are confined below 4 km. For other two cases (8th July 2020, 5th August 2020), due to noise 43 

issues, the Aeolus performance downgrades in terms of depicting the stratification of aerosol layers 44 

composed of particles of different origin. According to the statistical assessment analysis for 43 45 

identified cases, it is revealed a poor-to-moderate performance for the unfiltered (aerosols plus 46 

clouds) Aeolus profiles which improves substantially when cloud contaminated profiles are excluded 47 

from the collocated sample. This improvement is evident at both Aeolus vertical scales (regular, 24 48 

bins and mid-bin, 23 bins) and it is justified by the drastic reduction of the bias (from 0.45 Mm-1sr-1 49 

to 0.27 Mm-1sr-1 for SCA and from 0.69 Mm-1sr-1 to 0.37 Mm-1sr-1 for SCA mid-bin) and root-mean-50 

square-error (from 2.00 Mm-1sr-1 to 1.65 Mm-1sr-1 for SCA and from 1.88 Mm-1sr-1 to 1.00 Mm-1sr-1 51 

for SCA mid-bin) scores. In vertical, the Aeolus performance downgrades at the lowermost bins due 52 

to either the contamination from surface signals or the increased noise levels for the aerosol retrievals. 53 

Among the three PANACEA stations, the best agreement is found at the remote site of Antikythera 54 

with respect to the urban sites of Athens and Thessaloniki. Finally, all key Cal/Val aspects necessary 55 

for future relevant studies, the recommendations for a possible Aeolus follow-on mission and an 56 

overview of the ongoing related activities are thoroughly discussed. 57 

 58 

1. Introduction 59 

Atmospheric aerosols constitute a critical component of the Earth system by acting as a major 60 

climatic driver (Charlson et al., 1992; Boucher et al., 2013; Li et al., 2022) whereas upon deposition 61 

they can affect terrestrial (Okin et al., 2004) and marine ecosystems (Jickells et al., 2005; Li et al., 62 

2018). It is also well documented that they affect several anthropogenic activities with concomitant 63 

economic impacts (Middleton et al., 2018; Kosmopoulos et al., 2018). In addition, aerosols 64 

accumulation at large concentrations cause an air quality degradation (Kanakidou et al., 2011) with 65 

adverse health effects (Pöschl, 2005; Lelieveld et al., 2015) increasing the mortality rates (Health 66 

Effects Institute, 2019; Pye et al., 2021). Therefore, their multifaceted role in multidisciplinary 67 

research fields highlights the growing scientific concern in understanding and describing the 68 

emission, removal, and transport mechanisms governing airborne particles’ life cycle. Due to their 69 
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pronounced heterogeneity, aerosol burden exhibits a remarkable spatiotemporal variability thus 70 

imposing deficiencies in depicting adequately its features and constraints towards a robust assessment 71 

of the induced impacts. 72 

Passive satellite sensors, providing columnar retrievals of aerosol optical depth (AOD), have 73 

been able to reproduce adequately aerosol loads across various spatiotemporal scales. This has been 74 

justified via the assessment of AOD versus corresponding sun-photometric measurements (e.g., Wei 75 

et al., 2019). Nevertheless, the main drawback arises from the sensors’ inability to provide 76 

information in vertical. Therefore, this deficiency hampers a reliable quantification of the suspended 77 

particles’ load within the planetary boundary layer (PBL), related to health impacts. Moreover, it is 78 

not feasible to depict the three-dimensional structure of transported loads in the free troposphere, 79 

linked to aerosol-cloud-radiation interactions and associated impacts on atmospheric dynamics (Pérez 80 

et al., 2006; Gkikas et al., 2018; Haywood et al., 2021). Likewise, passive aerosol observations are 81 

not suitable for monitoring stratospheric long-lived plumes that affect aerosol-chemistry interactions 82 

and perturb the radiation fields (Solomon et al., 2022). On the contrary, ground-based lidars, relying 83 

on active remote sensing techniques, obtain vertical profiles of aerosol optical properties at high 84 

vertical and temporal resolution, through multi-wavelength and polarization measurements. Such 85 

observations are performed either at networks distributed across Europe (EARLINET; Papalardo et 86 

al., 2014; PollyNET; Baars et al., 2016; Engelmann et al., 2016), United States (MPLNET; Campbell 87 

et al., 2002), Asia (AD-NET; Sugimoto et al., 2014) and South America (LALINET; Guerrero-88 

Rascado et al., 2016), or at dedicated experimental campaigns (Ansmann et al., 2011; Weinzierl et 89 

al., 2016) or even at open seas (Bohlmann et al., 2018). The reproduction of aerosols’ vertical 90 

structure at global (Liu et al., 2008) and regional (Marinou et al., 2017; Proestakis et al., 2018) scales 91 

has been realized through the utilization of measurements acquired by the Cloud-Aerosol Lidar and 92 

Infrared Pathfinder Satellite Observation (CALIOP; Winker et al., 2009) and the Cloud-Aerosol 93 

Transport System (CATS; McGill et al., 2015; Lee et al., 2019) mounted on the CALIPSO (Cloud-94 

Aerosol Lidar and Infrared Pathfinder Satellite Observation) satellite and the International Space 95 

Station (ISS), respectively. 96 

On 22nd August 2018, the European Space Agency (ESA) launched its Earth Explorer wind 97 

mission, Aeolus, which was a major step forward for Earth Observations (EO) and atmospheric 98 

sciences. The Aeolus satellite carries ALADIN (Atmospheric LAser Doppler INstrument), the first 99 

space-based high spectral resolution (HSRL) Doppler wind lidar worldwide. ALADIN emits a linear 100 

polarized beam which after going through a quarter-wave plate is transmitted with a circular 101 

polarization (at 355 nm) and receives the co-polarized backscatter from molecules and 102 

particles/hydrometeors in two separate channels (Ansmann et al., 2007; Flamant et al., 2008). The 103 
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main mission product is profiles of the horizontally projected line-of-sight winds, and spin-off 104 

products are the backscatter and extinction coefficient profiles from particles and hydrometeors. The 105 

key scientific objective of Aeolus is to improve numerical weather forecasts and our understanding 106 

of atmospheric dynamics and their impacts on climate (Stoffelen et al., 2005; Isaksen and Rennie, 107 

2019; Rennie and Isaksen, 2019). After about 1.5 years of instrument and algorithm improvements, 108 

the Aeolus L2B wind product was of such good quality (e.g., Witschas et al., 2020; Lux et al., 2020; 109 

Martin et al., 2021) that the European Centre for Medium Range Forecasts (ECMWF) could start 110 

operational assimilation (January 2020). In May 2020, three further European weather forecast 111 

institutes (DWD, Météo-France and the UK MetOffice) started the operational assimilation of Aeolus 112 

winds. All meteorological institutes reported that Aeolus winds had significant positive impact on the 113 

short and medium term forecasts. The most beneficial impact is found in remote areas (Tropics, S. 114 

Hemisphere, polar regions) less covered by other direct wind observations (e.g. ECMWF 2020; 115 

Rennie et al., 2021). 116 

A series of errors induced by the instrument, by the retrieval algorithm, or by the type of 117 

scatterers probed by ALADIN can affect the product quality. It is therefore necessary to perform 118 

extensive calibration and validation (Cal/Val) studies utilizing independent reference measurements 119 

(e.g. ground-based, aircraft). This task has been performed by the Aeolus Cal/Val community, 120 

responding to the Aeolus Announcement of Opportunity to perform product calibration and 121 

validation. Such critical tasks are prerequisites to the acceptance of the Mission as “fit for purpose” 122 

as it is underlined in the Aeolus Implementation Cal/Val Plan. In contrast to Aeolus wind retrievals, 123 

a limited number of studies are focused on the quality of the L2A optical properties. Abril-Gago et 124 

al. (2022) performed a statistical validation versus ground-based observations from three Iberian 125 

ACTRIS/EARLINET lidar stations affected mainly by dust and continental/anthropogenic aerosols. 126 

In their Cal/Val study, they processed AERONET optical properties related to particles’ size and 127 

nature along with HYSPLIT air-mass backtrajectories towards characterizing the prevailing aerosol 128 

conditions. Baars et al. (2021) reported an excellent agreement between Aeolus and PollyXT particle 129 

backscatter profiles and adequate agreement of extinction and lidar ratio profiles, between 4 and 12 130 

km, for a case of long-range transport of wildfire smoke particles from California to Leipzig 131 

(Germany). 132 

Here we focus on the comparison of Aeolus L2A particle backscatter coefficient profiles 133 

against ground-based profile observations acquired at three lidar stations (Antikythera, Athens, 134 

Thessaloniki) contributing to the Greek National Research Infrastructure (RI) PANACEA, an 135 

ACTRIS component (https://www.actris.eu). All stations are located in the Eastern Mediterranean, a 136 
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crossroad of air masses (Lelieveld et al., 2002) carrying particles of different nature. The broader 137 

Greek area encompasses a variety of aerosol species consisting of: (i) pollutants from industrialized 138 

European regions (Gerasopoulos et al., 2003; 2009), (ii) dust aerosols from the nearby deserts (Balis 139 

et al., 2004; Papayannis et al., 2005; Gkikas et al., 2016, Marinou et al., 2017), (iii) anthropogenic 140 

aerosols from urban areas and megacities (Kanakidou et al., 2011), (iv) biomass burning particles 141 

originating in the eastern Europe and the Black Sea (Amiridis et al., 2009; 2010; 2012), (v) smoke 142 

aerosols subjected to transport at planetary scale (Baars et al., 2019; Gialitaki et al., 2020), (vi) sea-143 

salt particles produced by bursting bubbles during whitecap formation attributed to wind-wave 144 

interactions (e.g. Varlas et al., 2021), (vii) biogenic particles such as airborne fungi and pollen grains 145 

(Richardson et al., 2019) and (viii) volcanic ash mixed with sulfate aerosols ejected at high altitudes 146 

from explosive Etna eruptions (Zerefos et al., 2006, Kampouri et al., 2021).  147 

The manuscript is structured as follows. In Section 2, a brief overview of the Aeolus satellite 148 

and the ALADIN instrument is given. The key elements of the Standard Correct Algorithm (SCA) 149 

are summarized in Section 3. The technical information of the ground-based lidars as well as the 150 

description of aerosols’ regime, in the surrounding area of the PANACEA stations, are presented in 151 

Section 4. The collocation criteria between ground-based and spaceborne profiles are described in 152 

Section 5. The assessment of Aeolus L2A product under various aerosol scenarios and for the whole 153 

collocated sample are discussed in Section 6. The Cal/Val aspects, the recommendations for future 154 

relevant studies and the necessary upgrades on ALADIN observational capabilities and Aeolus L2A 155 

data content are highlighted in Section 7. Finally, the main findings and the conclusions are drawn in 156 

Section 8. 157 

 158 

2. AEOLUS - ALADIN 159 

 160 

A brief description of Aeolus’ orbital features, ALADIN’s observational geometry and its 161 

measurement configuration is given in the current section. This short introduction serves as the 162 

starting point for the reader to be familiar with Aeolus’ nomenclature. Further details and a more 163 

comprehensive overview of the Aeolus satellite mission can be found at ESA technical reports (ESA, 164 

1999; 2008; 2016) and at recently published studies (e.g., Lux et al., 2020; Witschas et al., 2022; Lux 165 

et al., 2022).  166 

ESA’s Aeolus satellite, named by the ‘keeper of winds’ according to the Greek mythology 167 

(Ingmann and Straume, 2016), flies in a polar sun-synchronous orbit circling the Earth at an altitude 168 
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of 320 km with a repeat cycle of 7 days (Kanitz et al., 2019a; Straume et al., 2019). The orbital plane 169 

forms an angle of 97° with the equatorial plane, the ground track velocity is about 7.2 km/sec and a 170 

complete circle around the Earth takes about 90 minutes for each orbit (Lux et al., 2020; Witschas et 171 

al., 2020; Straume et al., 2020). Aeolus is flying over the terminator between day and night 172 

(dawn/dusk orbits), with its solar panels facing towards the sun direction for minimizing the solar 173 

background illumination (Kanitz et al., 2019). 174 

ALADIN, the single payload on the Aeolus satellite platform, is an HSRL lidar (Shipley et 175 

al., 1983) equipped with a Nd-YAG laser that emits short laser pulses (~40 to 70 mJ, Witchas et al., 176 

2020) of a circular polarized light at ~355 nm with a 50.5 Hz repetition frequency. The photons that 177 

are backscattered from molecules and particulates (aerosols, cloud droplets and ice crystals) at 178 

atmospheric altitudes lower than 30 km are collected by a Cassegrain telescope of 1.5 m diameter. 179 

The collected photons are directed to the Mie optical channel (Fizeau interferometer) for the analysis 180 

of the Doppler shift induced by particulates while the molecular return signals (Rayleigh) are analyzed 181 

in two sequentially coupled Fabry–Pérot interferometers (Witchas et al., 2020). 182 

ALADIN provides wind and particulate vertically resolved retrievals along the Line-Of-Sight 183 

(LOS) by pointing the Earth at a slant angle of 35° off-nadir (see Figure 1 in Flament et al., (2021)) 184 

which corresponds to an angle of about 37.6° with the Earth surface, due to its curvature. In contrast 185 

to CALIOP and CATS, ALADIN can retrieve particulate optical products without requiring an a 186 

priori assumption of the lidar ratio (S), which is characterized by a remarkable variability among 187 

aerosol types due to its dependency on particles’ shape, composition and size distribution (Müller et 188 

al., 2007). However, ALADIN only measures the co-polar part of the atmospheric backscatter and at 189 

a single wavelength. Therefore, it is very challenging the discrimination between aerosols and clouds 190 

and to distinguish further among their subtypes.  191 

The instrument detector design allows the sampling of the atmospheric backscatter in 24 192 

vertical bins, with a varying resolution from 0.25 (near surface) to 2 km (upper atmosphere). The 193 

laser pulses are integrated on-board the satellite along the satellite flight direction, to yield 194 

measurements of ~3 km resolution (integration of ~20 laser pulses). During the on-ground data 195 

processing, the measurements are accumulated further to yield an “observation” (also called a Basic 196 

Repeat Cycle (BRC)), which corresponds to a distance of ~90 km. The L2A optical properties product 197 

which will be described in the next section, derived by the so-called Standard Correct Algorithm 198 

(SCA) (Flament et al., 2021), are provided at the observation scale (on a horizontal resolution of ~90 199 

km) and are available through the Aeolus Online Dissemination System (https://aeolus-ds.eo.esa.int).   200 

 201 

 202 
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3. Standard Correct Algorithm (SCA) 203 

In the current Cal/Val study, we are assessing the performance of the Aeolus L2A particulate 204 

products derived by the Standard Correct Algorithm (SCA). Here, we are providing a short overview 205 

of the SCA whereas its complete description is available in the Algorithm Theoretical Baseline 206 

Document (ATBD; Flamant et al., 2021). The SCA product is derived from the measured signals in 207 

the Mie and Rayleigh channels, which are dependent on the instrument calibration constants (Kray, 208 

Kmie), the channel cross-talk coefficients C1, C2, C3 and C4, the laser pulse energy (E0) and the 209 

contributions from the pure molecular (X) and particulate (Y) signals (see Equations 1 and 2 in 210 

Flament et al. (2021)). The latter ones, at each bin, result from the vertical integration of the 211 

backscatter (either molecular or particulate) where the squared one-way transmission through the 212 

atmosphere is taken into account (see Equations 3 and 4 in Flament et al. (2021)).  213 

The separation of the molecular and particle signals on each channel is imperfect, due to the 214 

HSRL instrument design, which makes necessary a cross-talk correction. The channel cross-talk 215 

corresponding to the transmission of the Rayleigh-Brillouin spectrum (depending on the temperature, 216 

pressure and the Doppler shift) through the Rayleigh and Mie channels is expressed by the calibration 217 

coefficients C1 and C4, respectively (Flament et al., 2021). The other two coefficients, C2 and C3, 218 

refer to the transmission of a Mie spectrum (depending on the Doppler shift) through the Mie and 219 

Rayleigh channels, respectively. Along with the cross-talk coefficients, the instrument calibration 220 

constants (Kray, Kmie) (see in Flament et al., 2021) are included in the AUX_CAL files. 221 

Finally, the cross-talk corrected signals, normalized with the range bin thickness and corrected 222 

by the range between the satellite and the observed target, are utilized for the retrieval of the vertically 223 

resolved backscatter (β) and extinction (α) coefficients. The former, at each bin, is derived by the Υ/Χ 224 

ratio multiplied with the molecular backscatter coefficient (see Equations 9 and 10 in Flament et al., 225 

2021) computed from the pressure and temperature ECMWF simulated fields according to Collis and 226 

Russel (1976). For the L2A extinction retrievals, derived via an iterative process from top to bottom, 227 

the normalized integrated two-way transmission (NITWT) is applied, using measured and simulated 228 

pure molecular signals, under the assumption that the particles’ extinction at the top-most bin is zero 229 

(see equations 11-14 in Flament et al., 2021). This consideration makes the downwards solution of 230 

the integral equations quite sensitive to the noise within the topmost bin (at altitudes ~20-25 km), 231 

which is used as reference for the normalization, particularly under low SNR conditions due to the 232 

low molecular density. This is a challenge frequently faced for the Aeolus observations due to the 233 

weaker measured signals than those of the pre-launch expectations (Reitebuch et al., 2020) as well as 234 

to the possible presence of stratospheric aerosols within the top-most range bin or above. In principle, 235 

the extinction is retrieved recursively taking into account the attenuation from the overlying bins and 236 
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by contrasting observed and simulated molecular signals. By differentiating two consecutive bins, 237 

unrealistically high positive or negative extinctions can be retrieved (see Fig. 10 in Flament et al., 238 

(2021)) resulting from fluctuations between strong and weak attenuation. 239 

In the case of negative extinction values, the SCA algorithm regularizes the solution by 240 

resetting to zero (Flament et al., 2021), which can lead to an underestimation of the partial column 241 

transmission. In order to compensate the impacts of the aforementioned issues, it has been shown by 242 

error propagation calculations (see equations 18 and 19 in Flament et al. (2021)), that averaging two 243 

consecutive bins the retrieved extinction becomes more reliable at the expense of the vertical 244 

resolution (23 bins; “mid-bin” vertical scale). In contrast to SCA, in the SCA mid-bin negative 245 

extinction values can be found since the zero-flooring constraint is not implemented. For consistency 246 

reasons, the averaging between two neighboring bins is applied also in the backscatter coefficient 247 

thus allowing the derivation of the lidar ratio.  248 

The inherent weaknesses of the SCA algorithm have been mitigated in the Maximum 249 

Likelihood Estimation (MLE) algorithm (Ehlers et al., 2022). Its main principle relies on the 250 

exploitation of all available information and the definition of constraints on the positivity of the 251 

retrieved optical properties and on the expected range of the lidar ratio. Under these restrictions, the 252 

particle extinction is derived when the particle backscatter is available and vice versa. According to 253 

the evaluation versus ground-based observations and SCA end-to-end simulated optical products, it 254 

is revealed a remarkable improvement (up to one order) on the precision of the extinction and the 255 

lidar ratio due to effective noise dampening. Moreover, there is also a beneficial impact on the co-256 

polar backscatter coefficient. Another new algorithm that outperforms SCA is the AEL algorithm 257 

(adjusted from the EarthCARE-ATLID algorithms) providing a feature mask (AEL-FM) at the 258 

highest available resolution and aerosol/clouds extinction and lidar ratios via a multi-scale optimal 259 

estimation method (AEL-PRO). Both MLE and AEL retrievals have been released at a more recent 260 

baseline (2A14) than those used in the current study (2A11) and for this reason are omitted from our 261 

Cal/Val analysis.   262 

            263 

4. Ground-based lidars (PANACEA) 264 

The ground-based observational datasets used herein, are taken from stations contributing to 265 

the PANhellenic infrastructure for Atmospheric Composition and climatE chAnge (PANACEA) 266 

initiative. Within PANACEA, different measurement techniques and sensors are utilized in a 267 

synergistic way for monitoring the atmospheric composition and climate change related parameters 268 

in Greece. 269 
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The locations of the stations providing routine measurements to the PANACEA network are 270 

shown in Figure 1-i. For the assessment analysis of Aeolus L2A products, we utilize available 271 

measurements from PANACEA stations, namely Antikythera (ΑΝΤ), Athens (ATH) and 272 

Thessaloniki (THE), equipped with multiwavelength polarization lidar systems. All stations comply 273 

with the quality-assurance criteria established within EARLINET (e.g. see Freudenthaler et al., 2016) 274 

so as to assure the provision of high-quality aerosol related products. Consequently, the derived 275 

datasets can be considered for any validation purpose. To ensure the homogeneity and the consistency 276 

of the optical property profiles derived from the adverse lidar systems operating at each station, the 277 

Single Calculus Chain algorithm (SCC; D’ Amico et al., 2016; Mattis et al., 2016) was used; an 278 

automatic processing chain for lidar data, developed within EARLINET. All systems employ multiple 279 

detectors, operating either in the photon-counting or analog mode. Herein elastically and inelastically 280 

backscattered signals at 355 and 387 nm, were used to evaluate Aeolus products. The optical property 281 

profiles were derived using the Raman and Klett-Fernald-Sassano inversion methods (Ansmann et al. 282 

1992; Fernald, 1984; Klett, 1981; Sasano and Nakame, 1984) during night-time and daytime 283 

measurements respectively.  284 

 285 

4.1 Antikythera 286 

Regular lidar measurements have been performed at the PANGEA observatory (PANhellenic 287 

GEophysical observatory of Antikythera; lat=35.86° N, lon=23.31° E, alt=193 m asl.) contributing to 288 

this study. The lidar system deployed at PANGEA is operated by the National Observatory of Athens 289 

(NOA). It is a PollyXT (Engelmann et al., 2016) multi-wavelength Polarization-Raman-Water vapor 290 

lidar, designed for unattended, continuous operation. Polly XT deploys an Nd:YAG laser which emits 291 

linearly polarized light at 355, 532 and 1064 nm. The radiation elastically and inelastically 292 

backscattered from aerosol, cloud particles, nitrogen (at 387 and 607 nm) and water vapor (at 407 293 

nm) molecules, is collected using a near-range (spherical mirror of 50 mm diameter, focal length 294 

f=250 mm and 2.2 mrad field of view (FOV)) and a far-range receiver (Newtonian telescope with a 295 

300 mm diameter primary mirror, f=900 m and 1 mrad FOV) at a raw vertical resolution of 7.5m. 296 

The combined use of the near-range and far-range receivers allows for the retrieval of the aerosol 297 

optical properties from 500 m up to ~12-14 km above the ground. A detailed description of the 298 

technical characteristics of PollyXT can be found in Engelmann et al. (2016).  299 

 300 

4.2 Athens 301 

The Laser Remote Sensing Unit of the National and Technical University of Athens, Greece 302 

(LRSU; NTUA; lat=37.96° N, lon=23.78° E, alt=200 m asl.), is part of the EARLINET since May 303 
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2000. Currently, the Athens lidar station performs simultaneous measurements with two different 304 

lidar systems, EOLE and DEPOLE. The EOLE lidar is an advanced 6-wavelength elastic 305 

backscatter/Raman lidar system able to provide the aerosol backscatter coefficient at 355, 532 and 306 

1064 nm, the aerosol extinction coefficient at 355 and 532 nm and water vapor mixing ratio profiles 307 

in the troposphere. EOLE is based on a pulsed Nd:YAG laser system and a 300 mm diameter 308 

receiving Cassegrain telescope (f=600 mm, FOV =1.5 mrad) which collects all elastically 309 

backscattered lidar signals (355-532-1064 nm), as well as generated by the vibrational Raman effect 310 

(by atmospheric N2 at 387-607 nm and by H2O at 407 nm). The full overlap (i.e. the altitude from 311 

which upwards the whole lidar beam is within the telescope FOV) of EOLE is reached at, 312 

approximately, 812 m a.s.l.. EOLE has been validated within EARLINET at hardware level by two 313 

intercomparison campaigns (Matthias et al., 2004), in order to fulfill the standardized criteria. 314 

The DEPOLE lidar is a depolarization lidar, able to provide profiles of the aerosol backscatter 315 

coefficient and the linear particle/volume depolarization ratio at 355 nm. DEPOLE is based on a 316 

pulsed Nd:YAG laser system which emits linearly polarized light at 355 nm. The elastically 317 

backscattered lidar signals at 355 nm are collected by a 200 m diameter Dall-Kirkham/Cassegrain 318 

telescope (f=600 mm, FOV=3.13 mrad) and the full overlap is reached at, approximately, 500 m a.s.l.. 319 

 320 

4.3 Thessaloniki 321 

Thessaloniki’s multiwavelength Polarization Raman lidar system (THELISYS) belongs to the 322 

Laboratory of Atmospheric Physics that is located at the Physics Department of the Aristotle 323 

University of Thessaloniki (lat = 40.63° N, lon = 22.96° E, a.s.l. = 50m). Thessaloniki is a member 324 

station of the EARLINET since 2000, providing almost continuous measurements, according to the 325 

network schedule (every Monday morning, ideally close to 12:00 UTC, and every Monday and 326 

Thursday evening) and during extreme events (e.g., Saharan dust outbreaks, smoke transport from 327 

biomass burning, volcanic eruptions) and satellite overpasses. THELISYS has been validated within 328 

EARLINET at hardware level by two intercomparison campaigns (Matthias et al., 2004), in order to 329 

fulfill the standardized criteria.  The system is based on the first (1064 nm), second (532 nm), and 330 

third harmonic (355 nm) frequency of a compact, pulsed Nd:YAG laser emitted with a 10 Hz 331 

repetition rate. THELISYS setup includes three elastic backscatter channels at 355, 532 and 1064nm, 332 

two nitrogen Raman channels at 387 nm and 607nm, and two polarization sensitive channels at 532 333 

nm. The acquisition system is based on a LICEL Transient Digitizer working in both the analogue 334 

and photon counting (250 MHz) mode. The vertical resolution of the elastic raw signal at 355 nm is 335 

equal to 3.75 m and is recorded in both analog and photon counting mode. The full overlap height is 336 
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almost 800m a.s.l. A detailed description of THELISYS can be found in Siomos et al. (2018) and 337 

Voudouri et al. (2020).   338 

 339 

4.4. Aerosols’ load variability in the vicinity of the PANACEA sites 340 

The variability of the atmospheric aerosol load in the vicinity of three PANACEA stations 341 

(Fig. 1-i) is discussed in this section. The aim of this introductory analysis is to investigate the 342 

horizontal homogeneity of the aerosol optical depth (AOD) in the respective broader areas, playing a 343 

key role in the comparison of ground-based and spaceborne profiles, which are not spatially 344 

coincident as it will be shown in Section 5. For the purposes of this analysis, we have processed the 345 

mid-visible (550 nm) columnar AOD retrievals, over the period 2008-2017, acquired by the MODIS 346 

sensor, mounted on the Aqua polar orbiting satellite. More specifically, we have analyzed the Level 347 

2 (L2; swaths; 5-min segments) MODIS-Aqua AODs, obtained by the latest version (Collection 6.1) 348 

of the operational retrieval algorithms (Remer et al., 2008; Levy et al., 2013; Sayer et al., 2013). The 349 

aforementioned data are accessible via the Level 1 and Atmosphere Archive and Distribution System 350 

(LAADS) Distributed Active Archive Center (DAAC) (https://ladsweb.modaps.eosdis.nasa.gov/, last 351 

access: 17 June 2022).  352 

For each station, we have calculated the arithmetic mean of AODs, representative over the 353 

period 2008-2017, within progressively larger circular areas, with radii spanning from 10 to 100 km 354 

with an incremental step of 10 km (Fig. 1-ii). Figure 1-iii illustrates the resulting AODs for each 355 

station (x labels) and at each radius (colored bars). In order to ensure the reliability of the obtained 356 

results, only the best (QA=3) MODIS-Aqua AOD L2 retrievals are considered whereas the spatial 357 

averages (computed individually for each circle) are calculated only when the satellite observations 358 

are simultaneously available at all circles. In the urban areas of Athens (ATH) and Thessaloniki 359 

(THE), the contribution of anthropogenic aerosols on the columnar load fades for increasing radii. 360 

On the contrary, at Antikythera (ANT), the spatial AOD means remain almost constant revealing a 361 

horizontal homogeneity of the aerosol load in the broader area. An alternative way to compare the 362 

differences in the AOD spatial representativeness between the urban (ATH, THE) and the remote 363 

(ANT) sites has been performed. Fig. 1-iv illustrates the normalized values for each radius with 364 

respect to the AOD levels of the inner circle (i.e., up to 10 km distance from the station). In both 365 

urban sites the values are lower than one (dashed line), decreasing steadily in THE and smoothly in 366 

ATH after an abrupt reduction from 10 to 20 km. In ANT, the blue curve resides almost on top of the 367 

dashed line throughout the circles radii (i.e., range of distances) indicating the absence of significant 368 

horizontal variation of the aerosol load suspended in the surrounding area of the station. 369 

https://ladsweb.modaps.eosdis.nasa.gov/
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A key aspect which has not been adequately addressed in Fig. 1-iii, is the temporal variability 370 

of aerosol loads since the spatiotemporally averaged AODs “hide” such information. A useful 371 

measure for this purpose is the coefficient of variation (CV), defined as the ratio of the standard 372 

deviation and the arithmetic mean of AOD (Anderson et al., 2003; Shinozuka and Redemann, 2011). 373 

Figure 1-v displays the CV values (expressed in percentage), computed for the period 2008-2017, for 374 

each circle at each station. The highest levels (up to 90%) are recorded in Antikythera whereas lower 375 

values (up to 70%) are recorded in THE and the lowest ones are found in ATH (up to 60%). This 376 

discrepancy is mainly attributed to the higher frequency of dust outbreaks affecting the southern parts 377 

of Greece in contrast to the central and northern sectors of the country (Gkikas et al., 2013; 2016). It 378 

is noted that all the PANACEA sites are also under the impact of advected loads composed by 379 

anthropogenic/biomass particles originating at distant areas. Nevertheless, their frequency of 380 

occurrence and their concentration is rarer and weaker, respectively, than those of the advected 381 

Saharan dust. Between the remote (ANT) and urban (ATH, THE) sites there is clear difference of the 382 

CV dependence with respect to the circle radius. In ANT, the CVs increase steadily from the inner to 383 

the outer circle while an opposite tendency is found in THE and ATH. The increasing trend in ANT 384 

is mainly regulated by the range of the Saharan plumes transported towards southwest Greece. On 385 

the contrary, the declining trend revealed in the two main Greek cities indicates that the temporal 386 

variability of the local sources (i.e., two first cycles) is more pronounced. For completeness, we have 387 

also computed the spatial autocorrelation (Anderson et al., 2003; Shinozuka and Redemann, 2011) 388 

among the averaged AODs of each circle area. The correlation matrices for each station are presented 389 

in Fig. S1. Among the three PANACEA sites, the R values in Athens (Fig. S1-i) drop rapidly, with 390 

respect to the first circle (10 km radius), highlighting the strong spatial contrast of AODs between the 391 

city and the surrounding areas. For the outer domains, this transition becomes significantly smoother 392 

and the R values are higher than 0.90 in most of the combinations indicating a spatial coherence. In 393 

Thessaloniki (Fig. S1-iii), the pattern of the R values onto the correlation matrix is similar with those 394 

of Athens but the high R values (> 0.89) indicate a better spatial AOD homogeneity according to 395 

Anderson et al. (2003). Finally, under the absence of local sources in Antikythera and strong 396 

horizontal AOD variability in the vicinity, the computed R value between the inner (10 km radius) 397 

and the outer (100 km radius) circle is higher than 0.94 and increases at shorter distances.                             398 

 399 

5. Collocation between Aeolus and ground-based lidars 400 

The assessment of Aeolus L2A backscatter profiles has been performed against the 401 

corresponding measurements acquired at the three EARLINET/PANACEA lidar stations. In Figure 402 

2, three examples of the collocation between ground-based and spaceborne retrievals are illustrated 403 

in order to describe our approach as well as to clarify points needed in the discussion of the evaluation 404 
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results (Section 6). At each station, we identify the observations (BRCs), considering their 405 

coordinates at the beginning of the ALADIN scan, falling within a circle of 120 km radius (black 406 

dashed circle) centered at the station coordinates (black dot). Based on the defined spatial criterion, 407 

applied for each case, the number of BRCs residing within the 120 km circle should be at least one 408 

and cannot be more than three. We denote each one of them, along the ALADIN measurement track 409 

(white stripe), with different colors (red, blue and magenta) in Fig. 2. The green arrow shows the 410 

flight direction of the satellite for the dusk (ascending) or dawn (descending) orbits. For the ground-411 

based observations, the aerosol backscatter profiles are derived considering a time window of ± 1 412 

hour around the satellite overpass. Nevertheless, this temporal collocation criterion has been relaxed 413 

or shifted in few cases to improve the quality of the ground-based retrievals (i.e., by increasing the 414 

signal-to-noise ratio) as well as to increase the matched pairs with Aeolus L2A profiles. Both 415 

compromises are applied since the weather conditions favoring the development of persistent clouds 416 

may eliminate the number of simultaneous cases. It is noted, however, when the temporal window is 417 

shifted or relaxed we are taking into account the homogeneity of the atmospheric scene (probed by 418 

the ground lidar). For the Antikythera station we did not deviate from the pre-defined temporal 419 

criterion apart from one case study. In Thessaloniki and Athens, the time departure between Aeolus 420 

and ground-based profiles can vary from 1.5 to 2.5 hours. Overall, 43 cases are analyzed out of which 421 

15 have been identified over Antikythera, 12 in Athens and the remaining 16 in Thessaloniki. 422 

The ground-based profiles are derived under cloud free conditions in contrast to Aeolus L2A 423 

backscatter profiles providing aerosol and/or cloud backscatter. Therefore, a cloud screening of the 424 

Aeolus data using auxiliary cloud information was applied. In the framework of the present study, the 425 

exclusion of cloud contaminated Aeolus profiles relies on the joint processing of the cloud mask 426 

product (CLM; https://www.eumetsat.int/media/38993; CLOUD MASK PRODUCT 427 

GENERATION) derived from radiances acquired by the SEVIRI (Spinning Enhanced Visible and 428 

Infrared Imager) instrument mounted on the Meteosat Second Generation (MSG4) geostationary 429 

satellite (Schmetz et al., 2002). It should be noted, however, that the CLM product serves as an 430 

indication of clouds presence, without providing information about their macrophysical properties 431 

(i.e., cloud coverage), their phase (i.e., ice, water, mixed) or their categories (i.e., low, middle, high). 432 

According to the product user guide (https://www-cdn.eumetsat.int/files/2020-04/pdf_clm_pg.pdf; 433 

Section 3.4), artificial straight lines can be found because the ECMWF temperature/humidity fields 434 

are not interpolated in time and space. Moreover, due to the limited number of levels of ECMWF 435 

temperature profiles, required for the atmospheric correction, the cloud detection in the lower 436 

troposphere is impacted. Finally, broken clouds with limited spatial extension as well as thin cirrus 437 

are likely misdetected by MSG. In the illustration examples of Figure 2, the grey shaded areas 438 

https://www.eumetsat.int/media/38993
https://www-cdn.eumetsat.int/files/2020-04/pdf_clm_pg.pdf
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represent the CLM spatial coverage at each PANACEA site. Based on the filtering procedures, the 439 

Aeolus L2A backscatter retrievals, throughout the probed atmosphere by ALADIN, are removed from 440 

the analysis when the grey shaded areas overlap with a BRC.  441 

 442 

6. Results 443 

6.1 Assessment of Aeolus L2A backscatter under different aerosol scenarios  444 

In the first part of the analysis we assess the quality of the Aeolus L2A backscatter under 445 

various aerosol regimes aiming to: (i) investigate the capabilities of the ALADIN spaceborne lidar to 446 

detect aerosol layers, (ii) investigate how the horizontal homogeneity and vertical structure of the 447 

aerosol layers can affect the level of agreement between spaceborne and ground-based retrievals and 448 

(iii) demonstrate the synergistic use of various datasets for a better characterization of the prevailing 449 

aerosol conditions. All of these aspects are necessary towards a comprehensive Cal/Val study to 450 

facilitate the interpretation of our findings and to identify possible upgrades on Aeolus retrievals. 451 

Overall, four cases over the Antikythera island (southwest Greece) are analyzed for the Aeolus L2A 452 

aerosol backscatter retrievals (Baseline 2A11). The obtained results are depicted in Figure 3. The 453 

identified cases have been selected because they are representing some of the most typical aerosol 454 

conditions in the E. Mediterranean. Note that for each case we are selecting the nearest Aeolus BRC 455 

to station coordinates that falls entire within the circle area.      456 

As it has been already mentioned, Aeolus retrievals are provided at coarse spatial (BRC level; 457 

~90 km) and vertical (minimum 250 m) resolution, while currently there is no scene classification 458 

scheme. In order to overcome this inherent limitation, as much as possible, several ancillary data and 459 

products are utilized in parallel with those of the MSG-SEVIRI CLM product. Based on the 460 

FLEXPART v10.4 Lagrangian transport model (Stohl et al., 2005; Ignacio Pisso et al., 2019) we have 461 

reproduced the 5-day air masses backtrajectories prior to their arrival at 7 altitudes above the ground 462 

station. FLEXPART was driven with 3-hourly meteorological data from the National Centers for 463 

Environmental Prediction (NCEP) Global Forecast System (GFS) analyses provided at 0.5° × 0.5° 464 

resolution and for 41 model sigma pressure levels 465 

(https://nomads.ncep.noaa.gov/txt_descriptions/GFS_half_degree_doc.shtml). Το depict the spatial 466 

patterns of the mid-visible (550 nm) total and speciated AOD, we are relying on the MERRA-2 467 

(Modern-Era Retrospective analysis for Research and Applications version 2; Buchard et al., 2017; 468 

Randles et al., 2017; Gelaro et al., 2017) and CAMS (Copernicus Atmosphere Monitoring Service; 469 

Inness et al., 2019) reanalysis datasets, both providing AODs of high quality (Gueymard and Yang, 470 

2020; Errera et al., 2021). Finally, AERONET sun-direct measurements (Level 2.0, Version 3; Giles 471 

et al., 2019; Sinyuk et al., 2020) of spectral AODs and Ångström exponent as well as the Fine Mode 472 

https://nomads.ncep.noaa.gov/txt_descriptions/GFS_half_degree_doc.shtml
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Fraction (FMF at 500nm) derived from the spectral deconvolution algorithm (O’Neill et al., 2003) 473 

are also used for the characterization of the aerosol load and size over the station.   474 

 475 

6.1.1 Dust advection on 10th of July 2019            476 

The first case refers to the advection of dust aerosols from northwest Africa towards 477 

Antikythera with dust-laden air masses crossing southern Italy prior to their arrival from northwest 478 

directions (Figure S2). This route of air masses, driven by the prevailing atmospheric circulation 479 

(Gkikas et al., 2015), is typical during summer when Saharan aerosols are advected towards the 480 

eastern Mediterranean (Balis et al., 2006). MERRA-2 (Fig. S3-i) and CAMS (Fig. S3-ii) show a 481 

reduction of AODs (at 550nm) from west to east whereas the large contribution (>80%) of dust 482 

aerosols to the total aerosol load is evident in both reanalysis products (results not shown here). The 483 

moderate-to-high AOD values are confirmed by the ground-based sunphotometric measurements 484 

(Fig. S4) which are associated with low Ångström exponent (calculated between 440 nm and 870 485 

nm) values (0.2 – 0.4) and FMF (Fig. S5) lower than 0.35 thus indicating the prevalence of coarse 486 

mineral particles (Dubovik et al., 2002). This is further supported from PollyXT measurements (Fig. 487 

S6) revealing persistent dust layers associated with volume linear depolarization ratio (VLDR) values 488 

of 5-10% at 355 nm, stretched from altitudes close to the ground and up to almost 6 km. 489 

This case is suitable for evaluating L2A backscatter retrievals since non-spherical mineral 490 

particles are probed by ALADIN, which does not detect the cross-polar component of the 491 

backscattered lidar signal. Therefore, a degradation of ALADIN’s performance is expected (i.e., 492 

underestimation of the backscatter coefficient and overestimation of the lidar ratio) when aspherical 493 

particles (e.g., dust, volcanic ash, cirrus ice crystals) are probed. In Figure 3, the backscatter 494 

coefficient step-like vertical profiles from Aeolus at the regular (brown) and mid-bin (black) vertical 495 

scales are compared against those acquired by the PollyXT (pink) at 355 nm. The colored dashed lines 496 

(Aeolus) and the pink shaded area (PollyXT) correspond to the statistical uncertainty margins of the 497 

spaceborne (see Section 2.3.1 in Flament et al., (2021)) and the ground-based (D’Amico et al., 2016) 498 

retrievals, respectively. Both refer to the photocounting noise following a Poisson distribution. At a 499 

first glance, it is revealed that the geometrical structure of the dust layer, extending from 1 to 6 km, 500 

is generally well captured by ALADIN (except at altitude ranges from 1 to 2.5 km), but the 501 

backscatter magnitude is constantly underestimated. A fairer comparison requires the conversion of 502 

the backscatter retrievals assuming that PollyXT emits circularly polarized radiation (instead of 503 

linearly polarized) thus resembling ALADIN. Under the assumption of randomly oriented particles 504 

and negligible multiple scattering effects, this transformation is made based on theoretical formulas 505 

(Mishchenko and Hovenier, 1995; Roy and Roy, 2008), as it has been shown in Paschou et al. (2021). 506 
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Following this approach, the Aeolus-like backscatter (i.e., circular co-polar component; blue curve in 507 

Fig. 3) is reproduced for the ground-based profiles at altitudes where UV depolarization 508 

measurements are available. Thanks to this conversion, the Aeolus-PollyXT negative biases diminish 509 

and the Aeolus-like curve resides closer to those of SCA (brown) and SCA mid-bin (black) 510 

backscatter levels. The difference between pink and blue backscatter profiles, ranging from 13 to 33% 511 

in this specific case, reflects the underdetermination of the particle backscatter coefficient in case of 512 

depolarizing aerosols being probed, due to the missing cross-polar backscatter component. 513 

 514 

6.1.2 Long-range transport of fine aerosols on 3rd July 2019 515 

Under the prevalence of the Etesian winds (Tyrlis and Lelieveld, 2013), anthropogenic 516 

aerosols from megacities (Kanakidou et al., 2011) and biomass burning particles originating in the 517 

eastern Europe (van der Werf et al., 2017) are transported southwards. Based on the FLEXPART 518 

simulations (Fig. S7), the air masses carrying fine particles, gradually descend till their arrival over 519 

Antikythera from north-northeastern directions. During early morning hours, when ALADIN probes 520 

the atmosphere at a distance of ~90 km westwards of the ground station (dawn orbit; descending), 521 

moderate AODs (up to 0.15 at 340 nm), very high Ångström exponent values (>1.2) and FMFs 522 

varying from 0.6 to 0.7 are measured with the Cimel sunphotometer (Fig. S8 and Fig. S9). The aerosol 523 

load is confined below 2.5 km consisting of spherical particles as it is revealed from the PollyXT 524 

volume linear depolarization ratio (VLDR) values, which do not exceed 5% at 355 nm (Fig. S10). In 525 

the vicinity of the PANGEA observatory, MERRA-2 (Fig. S11-i) and CAMS (Fig. S11-ii) AODs, 526 

mainly attributed to organic carbon, sulphate and sea-salt aerosols, do not exceed 0.2 and they are 527 

coherent in spatial terms (i.e., horizontal homogeneity). In this case, PollyXT particle backscatter 528 

coefficient profiles coincide with the corresponding Aeolus-like profiles (pink and blue curves are 529 

almost overlaid in Fig. 3-ii) since depolarization values are negligible. Under these conditions, 530 

ALADIN is capable of reproducing satisfactorily the layer’s structure whereas slightly overestimates 531 

its intensity with respect to the ground-truth retrievals.   532 

 533 

6.1.3 Long range transport of fine aerosols on 8th July 2020 534 

On 8th July 2020, the broader area of the Antikythera island was under the impact of moderate-535 

to-high aerosol loads, mainly consisting of organic and sulphate particles, in the western and southern 536 

sector of the station, based on CAMS simulated AODs (up to 0.5) (Fig. S12-ii). AERONET 537 

measurements yield UV AODs up to 0.5 and Ångström exponent higher than 1.5 during early 538 

afternoon (Fig. S13) whereas the FMF is higher than 0.75 throughout the day (Fig. S14). MERRA-2 539 

AOD patterns (Fig. S12-i) and speciation (strong contribution from marine and sulphate aerosols to 540 
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the total aerosol load) are different from those of CAMS, without being very consistent with respect 541 

to the ground-based sunphotometer observations (Fig. S13, Fig. S14). Air masses originating in 542 

northern Balkans and the Black Sea, after crossing metropolitan areas (i.e., Istanbul, Athens), are 543 

advected over ANT at altitudes up to 4 km above surface. A second cluster aloft (>5 km) indicates 544 

the convergence of air masses from northwest (Fig. S15). In vertical terms, aerosol layers with local 545 

backscatter maxima gradually reducing from 3.5 to 1.5 Mm-1 sr-1 are observed up to 4 km based on 546 

PollyXT backscatter coefficient profiles (pink curve, Fig. 3-iii) whereas almost identical values are 547 

recorded for the Aeolus-like retrievals (blue curve, Fig. 3-iii) under low VLDR levels (Fig. S16). For 548 

this specific case, Aeolus’ performance reveals an altitude dependency according to the comparison 549 

versus PollyXT. From top to bottom, the weak layer extending from 6 to 8 km, observed in the ground-550 

based lidar profiles is partially evident in the Aeolus retrievals. Aeolus erroneously indicates the 551 

presence of an aerosol layer between 3 and 4.5 km due to the overlying noise (i.e., negative 552 

backscatter coefficients). This deficiency interprets also the underestimation of the backscatter 553 

coefficient at altitudes spanning from 2 to 3 km. Below 2 km, the agreement between ALADIN and 554 

PollyXT becomes better, particularly for SCA mid-bin, even though the narrow peak recorded at ~1.2 555 

km by PollyXT cannot be reproduced by ALADIN. This might be attributed either to the adjusted RBS 556 

at the lowermost bin (1 km thickness) or to the lower accuracy of Aeolus retrievals near the ground 557 

due to the attenuation from the overlying layers (Flament et al., 2021).            558 

 559 

6.1.4 Stratification of spherical and non-spherical particles on 5th August 2020       560 

 In the last case, that took place on 5th August 2020, we are investigating the ability of Aeolus 561 

to reproduce adequately the vertical structure of an aerosol layer detected up to 4 km based on PollyXT 562 

(Fig. 3-iv; pink curve). The “peculiarity” of this study case, as it is revealed by the PollyXT time-563 

height plots of VLDR (Fig. S17), is that spherical fine particles dominate below 2.5 km whereas the 564 

presence of non-spherical coarse aerosols above this layer is evident. This stratification results from 565 

the convergence of air masses either originating in central Europe or suspending most of their travel 566 

above northwest Africa (Fig. S18). According to MERRA-2 (Fig. S19-i) and CAMS (Fig. S19-ii) 567 

reanalysis datasets, AODs fade from west to east while both numerical products indicate the 568 

coexistence of carbonaceous, sulphate and mineral particles over the area where ALADIN samples 569 

the atmosphere (~100 km westwards of Antikythera). During the Aeolus overpass (~04:40 UTC), 570 

sunphotometer columnar observations are not available (Fig. S20, Fig. S21). However, one hour later, 571 

UV AODs up to 0.4 are recorded and remain relatively constant during sunlight hours. At the same 572 

time, intermediate Ångström (0.7 – 1) and FMF (~0.5) values, exhibiting weak temporal variation, 573 

indicate a mixing state of fine and coarse aerosols.  574 
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Aeolus backscatter retrievals at the regular (i.e., SCA; brown curve; Fig. 3-iv) and the mid-575 

bin (i.e., SCA mid-bin; black curve; Fig. 3-iv) vertical scales suffer from noise and retrieval gaps. As 576 

a result, Aeolus detects incorrectly an aerosol layer between 5.5 and 8 km under the assumption that 577 

clear-sky conditions are appropriately represented in the MSG-SEVIRI imagery and remain constant 578 

within the time interval (~6 minutes) of MSG and Aeolus observations. At lower altitudes (2.5 – 4 579 

km), due to the suspension of depolarizing mineral particles, a departure is marked between the pink 580 

(linear-derived) and blue (Aeolus-like) PollyXT profiles. Both SCA and SCA mid-bin fail to reproduce 581 

the backscatter levels of this aerosol layer captured from the ground. In the lowest troposphere (< 582 

2km), Aeolus overestimates significantly the backscatter coefficient but reproduces satisfactorily the 583 

aerosol layer structure at the mid-bin vertical scale (i.e., SCA mid-bin; black curve; Fig. 3-iv), in 584 

contrast to the regular scale (i.e., SCA; brown curve; Fig. 3-iv).  585 

A general remark that should be made, is that for the cases analyzed, between the ground-586 

based and spaceborne profiles there is an inconsistency in the vertical representativeness within the 587 

lowermost Aeolus bin. Under the absence of the near-field receivers (not considered in our study) 588 

PollyXT profiles are reported above ~800 m where the overlap between the laser beam and the receiver 589 

telescope field of view is expected to be full. However, the base altitude of the near-surface Aeolus 590 

bin is at ~200 m. This can interpret, at some degree, the large positive ALADIN-PollyXT departures 591 

at altitudes below 1 km, which are possibly further strengthened by an inappropriate RBS (i.e., low 592 

SNR) in the Aeolus retrievals.  593 

 594 

6.2 Overall assessment and dependencies 595 

In the second part of the analysis, an overall assessment of the Aeolus L2A retrievals is 596 

performed by processing all the identified cases (43 in total; see Section 5). Due to the very limited 597 

availability of ground-based extinction profiles, only the Aeolus L2A backscatter observations are 598 

evaluated. It must be clarified that the evaluation of the Aeolus satellite (SAT) backscatter coefficient 599 

is conducted without any conversion (i.e., from total linear to circular co-polar) of the ground-based 600 

lidar (GRD) profiles. This has been decided since many of the SAT-GRD collocated samples are 601 

derived from the Thessaloniki station. Due to technical issues (related to the polarization purity of the 602 

emitted laser beam and the performance of the telescope lenses) no calibrated depolarizing 603 

measurements, necessary to derive the Aeolus-like products (Paschou et al., 2021), are available for 604 

the study period. Nevertheless, we are not expecting that this consideration, acknowledging that it is 605 

imperfect, will affect substantially the robustness of our findings since in most of the study cases the 606 

contribution of depolarizing particles is quite low based on the ancillary datasets/products. It is also 607 

clarified that the Aeolus QA flags are not taken into account in the current study, since their validity 608 
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is not yet reliable (Reitebuch et al., 2020) as it has been demonstrated in Abril-Gago et al. (2022). 609 

The discussion in the current section is divided in two parts. First, the vertically resolved evaluation 610 

metrics are presented separately for the two Aeolus vertical scales, both for the unfiltered and the 611 

filtered (cloud-free) profiles (Section 6.2.1). The same analysis format (i.e., SCA vs SCA mid-bin, 612 

unfiltered vs filtered) is kept in the second sub-section (Section 6.2.2) where the evaluation results 613 

are presented as a function of various dependencies.      614 

  615 

6.2.1 Vertically resolved evaluation metrics 616 

In Figure 4, the vertically resolved bias (SAT-GRD; upper panel) and root mean square error 617 

(RMSE; bottom panel) metrics are depicted for the unfiltered (cloud and aerosol backscatter) Aeolus 618 

L2A backscatter retrievals, reported at the regular (left column) and the mid-bin (right column) 619 

vertical scales. Bias and RMSE metrics (Wilks, 2019) are used in a complementary way in order to 620 

avoid any misleading interpretation of the former score attributed to counterbalancing negative and 621 

positive SAT-GRD deviations. For the calculation of the evaluation scores, the GRD profiles have 622 

been rescaled to match Aeolus vertical product resolution. To realize, we are calculating the averaged 623 

values of the ground-based retrievals residing within the altitude margins of each Aeolus BRC. Note 624 

that in the SAT-GRD pairs, all BRCs from all cases are included (right y-axis in Figure 4), satisfying 625 

the defined collocation criteria (see Section 5), and they are treated individually. It is reminded that 626 

Aeolus L2A data are provided vertically at a constant number of range bins (i.e., 24 for SCA and 23 627 

for SCA mid-bin) but their base altitude and their thickness vary along the orbit and from orbit-to-628 

orbit and they are defined dynamically (depending on the optimum SNR). Therefore, since the GRD 629 

and SAT profiles are not interpolated in a common predefined grid, we are using as reference the 630 

reverse index (with respect to those considered in the SCA retrieval algorithm in which 1 corresponds 631 

to the top-most bin) of Aeolus SCA (from 1 to 24; left y-axis in Figs 4 i-a and ii-a) and SCA mid-bin 632 

(from 1 to 23; left y-axis in Figs 4 i-b and ii-b) vertical scales.  633 

According to our results for the unfiltered Aeolus backscatter profiles (Fig. 4), positive biases 634 

(up to 3.5 Mm-1 sr-1; red bars) are evident, at both vertical scales, at the first three bins (below 2 km). 635 

For altitude ranges spanning from 2 to 8 km (bins 4 – 12), mainly positive SAT-GRD biases (up to 636 

~1.5 Mm-1 sr-1) are recorded for SCA mid-bin whereas for SCA reach up to ~1 Mm-1 sr-1 in absolute 637 

terms. Similar tendencies are evident at the highest altitudes (> 8 km) but the magnitude of the SAT-638 

GRD offsets becomes lower (< 0.5 Mm-1 sr-1). Between the two Aeolus vertical scales, SCA mid-bin 639 

performs better than SCA up to ~8 km (bin 12) and similar aloft, as it is shown by the RMSE profiles 640 

(bottom panel in Fig. 4). Nevertheless, the most important finding is that Aeolus is not capable to 641 

reproduce satisfactorily the backscatter profiles as it is revealed by the RMSE levels, which are 642 
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maximized near the ground (~ 8 Mm-1 sr-1), are considerably high (up to 6 Mm-1 sr-1) in the free 643 

troposphere and are minimized (< 1 Mm-1 sr-1) at the uppermost bins. Our findings are highly 644 

consistent with those presented in Abril-Gago et al. (2022), who performed a validation of Aeolus 645 

L2A particle backscatter coefficient against reference measurements obtained at three 646 

ACTRIS/EARLINET sites in the Iberian Peninsula. Several factors contribute to the obtained height-647 

dependent SAT-GRD discrepancies. Near the ground, the observed maximum overestimations are 648 

mainly attributed to the: (i) contamination of the ALADIN lidar signal by surface reflectance, (ii) 649 

increased noise in the lowermost bins (caused by the non-linear approach retrieving the backscatter 650 

coefficient) as it has been pointed out also in the atmospheric simulations cases I and II in Ehlers et 651 

al. (2022) and (iii) limited vertical representativeness of the GRD profiles below 1 km. On the 652 

contrary, in the free troposphere, the cloud contamination on spaceborne retrievals plays a dominant 653 

role on the occurrence of ALADIN backscatter overestimations with respect to the cloud-free ground-654 

based retrievals. From a statistical point of view, it must also be mentioned that the robustness of the 655 

bias and RMSE metrics decreases for the increasing altitudes due to the reduction of the number of 656 

the SAT-GRD matchups (right y-axis in Fig. 4) participating in the calculations.  657 

The assessment analysis has been repeated after removing Aeolus profiles when clouds are 658 

detected by MSG-SEVIRI (grey shaded areas in Fig. 1) within a BRC (colored rectangles in Fig. 1). 659 

By contrasting Figures 4 and 5 (evaluation metrics for the filtered profiles), an expected improvement 660 

of the level of agreement between SAT and GRD is visible. This translates into a drastic reduction of 661 

bias and RMSE levels at altitude ranges up to 5-6 km (~bin 10). Between bins 2 and 5 slight 662 

underestimations (blue bars) and overestimations (red bars) are found for SCA (Fig. 5 i-a). On the 663 

contrary, for the SCA mid-bin (Fig. 5 i-b) low positive SAT-GRD offsets are recorded due to the 664 

omitted negative backscatter values, as it will be shown in the next section. Above bin 5, SAT-GRD 665 

deviations are low in absolute terms, oscillating around zero, for SCA, whereas only positive SAT-666 

GRD biases are recorded for SCA mid-bin, which are maximized (~ 0.7 Mm-1 sr-1) at the highest bins 667 

and are associated with limited SAT-GRD matchups (right x-axis in Fig. 5 i-b). The obtained 668 

improvements on bias scores become more confident since they are associated with similar strong 669 

reductive tendencies on RMSE levels. More specifically, the RMSE spikes of extremely high values 670 

recorded in the unfiltered profiles either disappear or weaken in the case of the Aeolus filtered SCA 671 

(Fig. 5 ii-a) and SCA mid-bin (Fig. 5 ii-b) backscatter profiles. However, even though the RMSE 672 

values at the lowermost bins (close to the ground) are decreased when cloud contaminated Aeolus 673 

profiles are eliminated, still the corresponding levels for the filtered profiles are considerably high 674 

attributed to the lower SNR and the possible impact of surface returns.       675 

 676 
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6.2.2 Scatterplots 677 

 678 

 An alternative approach to assess the performance of Aeolus L2A backscatter is attempted 679 

here by reproducing two dimensional histograms for the entire SAT-GRD collocated sample as well 680 

as scatterplots resolved based on various dependencies, aiming to investigate the factors determining 681 

the level of agreement between spaceborne and ground-based retrievals. More specifically, the 682 

dependencies under investigation are those of the: (i) station locations, (ii) BRCs and (iii) orbits (dawn 683 

vs dusk). The evaluation metrics have been calculated for all possible combinations of vertical scales 684 

(SCA vs SCA mid-bin) and Aeolus profiles (unfiltered vs filtered).  685 

 Figure 6 depicts the two-dimensional histograms between GRD (x-axis) and SAT (y-axis) 686 

backscatter coefficient for the raw (upper panel) and filtered (bottom panel) Aeolus profiles reported 687 

at the SCA (left column) and SCA mid-bin (right column) vertical scales. Note that we have removed 688 

SAT-GRD pairs in which Aeolus backscatter exceeds 20 Mm-1 sr-1 in order to avoid the 689 

“contamination” of extreme outliers in the calculated metrics, possibly attributed to the presence of 690 

clouds (Proestakis et al., 2019).  691 

 Between the SCA and SCA mid-bin unfiltered retrievals, it is found that the correlation 692 

coefficients (0.36 and 0.39, respectively) and RMSEs (2.00 and 1.88, respectively) are similar 693 

whereas there is an evident difference on the biases (0.45 Mm-1 sr-1 and 0.69 Mm-1 sr-1, respectively). 694 

Nevertheless, it is noted that less SAT-GRD pairs are recorded for SCA mid-bin due to the inherent 695 

flagging of negative values. After removing cloud-contaminated Aeolus profiles, the amount of the 696 

SAT-GRD matchups is reduced by about 55% and 59% for SCA (from 537 to 239) and SCA mid-697 

bin (from 356 to 147), respectively. Nevertheless, thanks to this filtering procedure, the initially 698 

observed overestimations for SCA and SCA mid-bin are reduced by ~25% and ~43%, respectively, 699 

whereas the RMSE values drop down to 1.65 (SCA) and 1.00 (SCA mid-bin). The better agreement 700 

between SAT and GRD, for the filtered Aeolus profiles, is further justified by the increase of the R 701 

values (from 0.39 to 0.48) for the SCA mid-bin whereas for SCA there is no positive or negative 702 

tendency (R=0.36). The spread of the points in the two dimensional space reveals many similarities 703 

with the corresponding scatterplots presented in Abril-Gago et al. (2022) for the Iberian 704 

ACTRIS/EARLINET stations.  705 

A common feature in all scatterplots, shown in Figure 6, is that most of the positive outliers 706 

are found at the lowermost bins (see Figs. 4 and 5). SAT beta can reach up to 20 Mm-1 sr-1 in contrast 707 

to the corresponding GRD levels, which are mainly lower than 2 Mm-1 sr-1. For SCA (Figs. 6 i-a, 6 708 

ii-a), the majority of the negative SAT-GRD pairs are recorded at the highest bins in which, however, 709 

both spaceborne and ground-based backscatter coefficients are noisy. Another cluster of SAT-GRD 710 

pairs is those where slight negative Aeolus backscatter values are grouped together with low positive 711 
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backscatter values retrieved from ground. At the mid-bin vertical scale, for the unfiltered Aeolus 712 

profiles (Fig. 6 i-b), the negative SAT backscatter values are masked out resulting in better evaluation 713 

metrics (except the increase of bias due to the removal of the negative Aeolus backscatter) with 714 

respect to the regular vertical scale. Among the four scatterplots, the best agreement between Aeolus 715 

and ground-based retrievals is revealed for the SCA mid-bin filtered profiles (Fig. 6 ii-b) attributed 716 

to the coincident elimination of the negative and the extreme positive Aeolus backscatter coefficient.     717 

Figure 7 depicts the overall scatterplot between ground-based and spaceborne retrievals as a 718 

function of the three PANACEA sites (colored categories). The associated evaluation scores are 719 

summarized in Table 1 and 2 for the unfiltered and filtered Aeolus profiles, respectively. The majority 720 

of the extreme positive outliers of unfiltered SCA retrievals (Fig. 7 i-a) are recorded in Thessaloniki 721 

and Athens. According to our results, significant biases (0.73 Mm-1 sr-1 for ATH and 0.83 Mm-1 sr-1 722 

for THE) and high RMSE values (2.26 Mm-1 sr-1 for ATH and 2.60 Mm-1 sr-1 for THE) are found. At 723 

Antikythera island (ANT), the biases are quite low and equal to 0.06 Mm-1 sr-1 and 13.6% in absolute 724 

and relative terms, respectively (Table 1). In all stations, for the unfiltered SCA mid-bin retrievals, 725 

the absolute SAT-GRD departures become larger whereas the RMSE decreases in ANT/THE and 726 

increases in ATH. Regarding the temporal covariation between SAT and GRD retrievals, a noticeable 727 

improvement is evident in ANT (i.e., R increases from 0.49 to 0.57). For the quality-assured Aeolus 728 

profiles (Table 2), all evaluation metrics converge towards the ideal scores for SCA mid-bin whereas 729 

mainly positive tendencies (i.e., better agreement) are evident for SCA. Overall, among the three 730 

stations the best performance of Aeolus is recorded at the Antikythera island.  731 

Between dawn (descending) and dusk (ascending) orbits, better bias and RMSE scores are 732 

computed when Aeolus is flying during early morning hours while better R values are found during 733 

early afternoon satellite overpasses. However, our orbit-wise results are not robust since the number 734 

of Aeolus overpasses is not evenly distributed (about 85% of the SAT-GRD matchups are acquired 735 

during dawn orbits). Among the three BRCs (red, blue or magenta), which can satisfy the defined 736 

SAT-GRD spatial criterion (see Section 5) the best metrics are found for the red BRC residing most 737 

of the cases closer to the station site.  738 

 739 

7. Discussion on Cal/Val aspects and recommendations  740 

 741 

Throughout this assessment analysis, several critical points have been identified and 742 

highlighted that should be addressed adequately towards a comprehensive Cal/Val study of the 743 

Aeolus L2A products. These aspects can: (i) serve as guidelines for future relevant studies, (ii) 744 

improve our understanding about the advantages/limitations of Aeolus data in terms of their 745 



 

 

23 
 

usefulness and applicability in aerosol-related studies and (iii) suggest possible upgrades regarding 746 

ALADIN’s observational capabilities, the considerations of the applied retrieval algorithms and the 747 

content of information in Aeolus L2A data. 748 

 A fair comparison of Aeolus L2A backscatter versus linear-derived retrievals acquired from 749 

ground-based lidars, when depolarizing particles are recorded, requires the conversion of the latter 750 

ones to circular co-polar (Aeolus-like) following Paschou et al. (2021). Nevertheless, it should be 751 

acknowledged that the theoretical assumptions can be invalid either due to the orientation of the 752 

suspended particles (e.g., mineral dust; Ulanowski et al., 2007; Daskalopoulou et al., 2021; Mallios 753 

et al., 2021) or due to multiple scattering effects within optically thick aerosol layers (Wandinger et 754 

al., 2010). The lack of aerosols/clouds discrimination in Aeolus L2A data forces the synergistic 755 

implementation of ancillary data in order to remove cloud contaminated Aeolus profiles from the 756 

collocated sample with the cloud-free ground-based profiles. Nevertheless, it should be noted that the 757 

cloud removal itself is not perfect. In our case, we are relying on MSG-SEVIRI cloud observations, 758 

which are available at high temporal frequency (every 15 min) thus allowing a very good temporal 759 

collocation with Aeolus. The indirect cloud-mask filtering applied to our analysis, leads to a 760 

substantial improvement of the level of agreement between spaceborne and ground-based retrievals. 761 

Despite its success, our proposed approach provides a sufficient and acceptable solution, but 762 

undoubtedly cannot be superior to the utility of a descriptive classification scheme on Aeolus retrieval 763 

algorithms similarly done in CALIOP-CALIPSO (Liu et al., 2019; Zeng et al., 2019). 764 

 Aeolus retrievals are available at coarse along-track resolution (~90 km). This imposes 765 

limitations on their evaluation against point measurements, which are further exacerbated at sites 766 

where the heterogeneity of aerosol loads in the surrounding area of the station is pronounced, taking 767 

into account that the spatial collocation between spaceborne and ground-based retrievals is not exact. 768 

Numerical outputs from reanalysis datasets (e.g., MERRA-2, CAMS) can be utilized as an indicator 769 

of aerosols’ burden horizontal variation, taking advantage of their complete spatial coverage, their 770 

availability at high temporal frequency and their reliability in terms of total AOD (Innes et al., 2019; 771 

Gueymard and Yang, 2020). Nevertheless, such data are better to be utilized in a qualitative rather 772 

than a quantitative way, particularly in terms of aerosol species, since they cannot be superior of 773 

actual aerosol observations. Over areas with a complex terrain, vertical inconsistencies between 774 

ground-based and satellite profiles (reported above ground where its height is defined with respect to 775 

the WGS 84 ellipsoid), not physically explained, can be recorded. For the derivation of the evaluation 776 

scores, it is required a rescaling of the ground-based profiles, acquired at finer vertical resolution, in 777 

order to match the dynamically defined Aeolus’ range bin settings. Nevertheless, due to this 778 

transformation, the shape of the raw ground-based profile can be distorted and the magnitude of the 779 
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retrieved optical properties can be modified substantially thus affecting the evaluation metrics. This 780 

artifact is evident in cases where the vertical structure of the aerosol layers is highly variable thus 781 

hindering Aeolus capability to reproduce accurately their geometrical features. Finally, the 782 

consideration of backward trajectories can assist the characterization of the probed atmospheric scene 783 

by Aeolus. Potentially, they can be also used as an additional criterion for the optimum selection of 784 

Aeolus BRC for the collocation with the ground-based measurements. However, possible limitations 785 

may arise due to temporal deviations among FLEXPART run, the Aeolus overpass and ground-based 786 

retrievals, which might be critical taking into account the strong spatiotemporal variability of aerosol 787 

loads across various scales. 788 

 789 

8. Conclusions 790 

 The limited availability of vertically resolved aerosol products from space constitutes a major 791 

deficiency of the Global Observing System (GOS). The launch of the Aeolus ESA satellite was a 792 

major step towards this direction whereas the forthcoming EarthCARE satellite mission (Illingworth 793 

et al., 2015) will accelerate further these efforts. ALADIN, the single payload of the Aeolus satellite, 794 

constitutes the first UV HSRL Doppler lidar ever placed in space and it is optimized to acquire HLOS 795 

wind profiles towards advancing numerical weather prediction (Rennie et al., 2021). ALADIN also 796 

retrieves independently the extinction and backscatter coefficients of aerosols and clouds (grouped as 797 

particulates according to Aeolus’ nomenclature) via the implementation of the SCA algorithm.  798 

The current work focuses on the assessment of the SCA backscatter coefficients versus 799 

ground-based retrievals acquired routinely by lidar systems operating in Athens, Thessaloniki, and 800 

Antikythera. The aforementioned stations contribute to the PANACEA Greek National Research 801 

Infrastructure (Greek ACTRIS component) and to the European Aerosol Research Lidar Network 802 

(EARLINET; Pappalardo et al., 2014). Overall, 43 cases are analyzed out of which 12 have been 803 

identified in the urban site of Athens, 16 in Thessaloniki and 15 in the remote site of the Antikythera 804 

island.  805 

In the first part of the analysis, focus was given on the assessment of Aeolus L2A particle 806 

backscatter coefficient, under specific aerosol scenarios, versus the corresponding measurements 807 

obtained at the Antikythera island (southwest Greece). As expected, the misdetection of the cross 808 

polarized lidar return signals, induces an underestimation (ranging from 13% to 33%) of Aeolus L2A 809 

backscatter when depolarizing mineral particles are probed (case of 10th July 2019). For the case of 810 

3rd July 2019, when aerosol loads of moderate intensity, consisting mainly of spherical particles, are 811 

confined below 4 km and they are homogeneous in the surrounding area of the station, Aeolus’ SCA 812 

backscatter product is capable in reproducing quite well the ground-based profile in terms of shape 813 
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and magnitude. For the cases of 8th July 2020 and 5th August 2020, Aeolus performance in terms of 814 

depicting complex stratified aerosol layers (composed of particles of different origin), as these are 815 

observed from ground, downgrades due to noise in the cross-talk corrected molecular and particulate 816 

signals.  817 

From our statistical assessment analysis, it has been revealed that the removal of cloud 818 

contaminated spaceborne profiles, achieved via the synergy with MSG-SEVIRI cloud observations, 819 

results in a significant improvement of the product performance. Unfortunately, the poor evaluation 820 

metrics at the lowermost bins (attributed to either the surface reflectance or the increased noise levels 821 

for the Aeolus retrievals and to the overlap issues for the ground-based profiles) are still evident after 822 

the cloud filtering procedure. Between the two Aeolus vertical scales, the computed evaluation 823 

metrics do not provide strong evidence of which of them performs better. Among the three stations 824 

(ATH, ANT, THE) considered here, the best agreement was found in the remote site of Antikythera 825 

island in contrast to the urban sites of Athens and Thessaloniki. All key Cal/Val aspects, serving as 826 

guidelines and potential recommendations for future studies, have been discussed thoroughly.  827 

In the current work, we emphasized only on the particle backscatter coefficient due to the 828 

limited number of ground-based extinction profiles. A wider assessment analysis is ongoing in the 829 

framework of the Aeolus L2A Cal/Val study performed within EARLINET. Finally, the best 830 

assessment of Aeolus L2A products is expected versus the purpose-built eVe lidar (Paschou et al., 831 

2021). Thanks to its configuration, eVe can mimic Aeolus’ observational geometry and test the 832 

validity of the theoretical formulas applied for the derivation of the Aeolus-like backscatter from the 833 

linearly polarized emission ground-based systems. The first correlative Aeolus-eVe measurements 834 

have been performed in the framework of the Joint Aeolus Tropical Atlantic Campaign (JATAC), 835 

that took place in Cape Verde in September 2021. Correlative measurements are also acquired during 836 

the ESA-ASKOS experimental campaign (Mindelo, Cabo Verde). The geographical location of Cabo 837 

Verde, situated on the “corridor” of the Saharan transatlantic transport (Gkikas et al., 2022), is ideal 838 

for assessing Aeolus performance when non-spherical mineral particles from the nearby deserts are 839 

advected westwards.   840 
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Table 1: Statistical metrics for the unfiltered (clouds plus aerosols) Aeolus L2A SCA and SCA mid-bin backscatter (in 1522 

Mm-1sr-1) profiles at each PANACEA site. 1523 

 SCA SCA_mid_bin 

Station Counts Bias Rel. Bias (%) R RMSE Counts Bias Rel. Bias (%) R RMSE 

ANT 255 0.06 13.63 0.49 1.14 173 0.25 45.59 0.57 1.01 

ATH 60 0.73 199.65 0.49 2.26 43 1.16 272.84 0.52 3.10 

THE 222 0.83 185.16 0.34 2.60 140 1.10 224.65 0.32 2.19 

 1524 

Table 2: As in Table 1 but for the filtered (only aerosols) Aeolus backscatter retrievals (in Mm-1sr-1). 1525 

 SCA SCA_mid_bin 

Station Counts Bias Rel. Bias (%) R RMSE Counts Bias Rel. Bias (%) R RMSE 

ANT 94 -0.10 -26.57 0.55 0.78 57 0.06 13.35 0.86 0.43 

ATH 12 1.08 483.36 0.75 3.33 9 0.73 312.67 0.82 1.41 

THE 133 0.46 130.49 0.39 1.86 81 0.55 145.08 0.43 1.20 

 1526 

 1527 

 1528 

 1529 

 1530 

 1531 

 1532 

 1533 
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(i) 

 

(ii) 

(iii) 
(iv) 

(v) 

 

Figure 1: (i) Locations of the three Greek PANACEA sites, namely Athens (ATH), Antikythera (ANT) and Thessaloniki 1534 

(THE), (ii) Concentric circles, around the Antikythera island, of radii from 10 to 100 km with an incremental step of 10 1535 

km, (iii) Climatological MODIS-Aqua AOD levels, representative for the period 2008 – 2017, for each circle area centered 1536 

at each PANACEA site, (iv) Normalized climatological AODs for each circle area with respect to the corresponding 1537 

levels of the inner circle. 1538 
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(i) (ii) (iii) 

Figure 2: The white stripe indicates the ALADIN’s measurements track and the colored rectangles correspond to the 1539 

Aeolus observations (~90 km along-track averaged measurements) falling within a radius of 120 km (dashed black line) 1540 

of the PANACEA stations (black dot).  The orange arrow shows the Aeolus flight directions (ascending or descending 1541 

orbit). Dark grey shaded areas: MSG-SEVIRI cloud mask product (CLM) at the nearest time to Aeolus overpass. The 1542 

start and end time (in UTC) of the ALADIN observations are given in the title of each plot.  1543 
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(i) (ii) 

(iii) (iv) 

Figure 3: Vertical profiles of backscatter coefficient at 355 nm acquired by ALADIN for the Level 2A SCA (regular 1565 

vertical observation grid, brown solid curve) and SCA mid-bin (reduced vertical observation grid, black solid curve) 1566 

products. The dashed lines correspond to the estimated SCA backscatter coefficient errors (brown) and SCA mid-bin 1567 

backscatter coefficient errors (black). Vertical profile of PollyXT backscatter coefficient (pink solid curve) at UV 1568 

wavelength (355 nm) and associated errors (pink shaded area). PollyXT Aeolus-like backscatter coefficient (light-blue 1569 
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solid curve) after converting the linear-derived products to circular co-polar according to Paschou et al. (2021). The 1570 

ground-based profiles have been acquired at the Antikythera station (southwest Greece) on: (i) 10th July 2019, (ii) 3rd July 1571 

2019, (iii) 8th July 2020 and (iv) 5th August 2020. The red color font denotes which Aeolus BRC (along with the overpass 1572 

time) has been selected based on the defined collocation criteria.  1573 

 1574 

 
(i-a) 

 
(i-b) 

 
(ii-a) 

 
(ii-b) 

Figure 4: Bias (i) and root mean square error (ii) metrics for the unfiltered Aeolus L2A backscatter retrievals reported at 1575 

the regular (a) and mid-bin (b) vertical scales. The biases are defined as SAT-GRD and the positive/negative departures 1576 

are depicted with red/blue bars. The statistical metrics are vertically resolved based on Aeolus bins indices (left y-axis). 1577 

The number of BRCs participating in the metrics calculations at each bin are given on the right y-axis.    1578 
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(i-a) 
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Figure 5: As in Figure 4 but for the filtered Aeolus L2A backscatter retrievals. 1588 
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(i-a) (i-b) 

(ii-a) (ii-b) 

Figure 6: 2D histograms between Aeolus (y-axis) and ground-based (x-axis) backscatter coefficient retrievals. In the 1605 

upper (i) and bottom (ii) panels are depicted the results for the cloud+aerosol backscatter (unfiltered) and cloud-cleared 1606 

backscatter (filtered) Aeolus profiles, respectively. On the left and right columns are illustrated the results corresponding 1607 

to Aeolus regular (24 bins) and mid-bin (23 bins) vertical scales, respectively. Aeolus backscatter values larger than 20 1608 

Mm-1 sr-1 are masked out from the collocated sample.    1609 
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(i-a) (i-b) 

(ii-a) (ii-b) 

Figure 7: Scatterplots between Aeolus (y-axis) and ground-based (x-axis) backscatter coefficient retrievals resolved 1614 

based on the indices of Aeolus vertical bins (colored circles). In the upper (i) and bottom (ii) panels are depicted the 1615 

results for the unfiltered and filtered Aeolus profiles, respectively. On the left and right columns are illustrated the results 1616 

corresponding to Aeolus regular (24 bins) and mid-bin (23 bins) vertical scales, respectively. Aeolus backscatter values 1617 

larger than 20 Mm-1 sr-1 are masked out from the collocated sample. 1618 
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