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Abstract. 

Aerosol optical depth (AOD) is used to characterize aerosol loadings within Earth’s atmosphere. Sun 

photometers measure AOD from the Earth’s surface based on direct-sunlight intensity readings by spectrally narrow 

light detectors. However, when the solar disk is partially obscured by cloud cover, sun photometer measurements 

can be biased due to the interaction of sunlight with cloud constituents. We present a novel deep transfer learning 15 

model on all-sky images to support more accurate AOD retrievals. We used three independent image datasets for 

training and testing: the novel Northern Colorado All-Sky Image (NCASI), the Whole Sky Image SEGmentation 

(WSISEG), and the METCRAX-II datasets from the National Center for Atmospheric Research (NCAR). We 

visually partitioned all-sky images into three categories: 1) clear sky around the solar disk, 2) thin cirrus obstructing 

the solar disk, and 3) thick, non-cirrus clouds obstructing the solar disk. Two-thirds of the images were allocated for 20 

training and one-third were allocated for testing. We trained models based on all possible combinations of the 

training sets. The best-performing model successfully classified 95.5%, 96.9%, and 89.1% of testing images from 

NCASI, METCRAX-II and WSISEG datasets, respectively. Our results demonstrate that all-sky imaging with deep 

transfer learning can be applied toward cloud screening, which would aid ground-based AOD measurements. 

1 Introduction 25 

 The abundance of aerosols in the atmosphere can be quantified optically from surface-based instruments 

called sun photometers, which measure aerosol optical depth (AOD), a dimensionless metric of light extinction by 

particles. Accurate AOD measurement requires a clear view of the solar disk. If the solar disk is partially obscured 

by clouds, measured AOD will be biased high. Thus, reliable AOD measurements from sun photometers require 

robust cloud screening. 30 

 Prior work has implemented quality control algorithms to reduce errors from cloud cover. The Aerosol 

Robotics Network (AERONET) provides automatic, multi-wavelength AOD measurements at hundreds of locations 

(Holben et al., 1998). Smirnov et al. (2000) leveraged the functionality of AERONET sun photometers to develop an 

automated cloud screening protocol for AOD measurements. Each AOD measurement is the average of a triplet of 

measurements, with 30 seconds between each measurement (Smirnov et al., 2000). The triplet is classified as cloud-35 
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contaminated if the maximum difference within the triplet exceeds an empirically derived threshold, based on the 

assumption that AOD variability within short time periods is more likely due to clouds than rapid changes in aerosol 

(Smirnov et al., 2000). Additional screening steps incorporated all AOD measurements across a day (Smirnov et al., 

2000). 

 Alexandrov et al. (2004) proposed an algorithm based on the change in AOD as a function of the 40 

Azithumal position of the sun for Multi-Filter Rotating Shadowband Radiometers (MFRSRs). The algorithm had a 

3.4% false negative rate, wherein the data point was identified as clear when actually cloud-contaminated, and a 

4.0% false positive rate (Alexandrov, 2004). This approach is less conservative than the Smirnov et al., (2000) 

algorithm, (i.e. it will classify fewer points as cloud-contaminated) (Alexandrov, 2004). A subsequent study (Giles 

et al., 2019), used LIDAR to detect cirrus clouds and derive empirical thresholds, improving the removal of cirrus 45 

contamination by the AERONET algorithm. 

A limitation of sensor-based cloud screening algorithms is their instrument-specific nature (Smirnov et al., 

2000). Algorithms and empirical thresholds for AERONET instruments are likely not applicable to different 

instruments, which have different hardware (Wendt et al., 2021). When porting algorithms, unique empirical 

thresholds must be determined to remain effective, assuming the necessary sensors are present at all (Wendt et al., 50 

2021). Previous studies using handheld sun photometers relied on operator observations of the sky to assess clouds 

(Boersma and de Vroom, 2006; Wendt et al., 2019; Smirnov et al., 2009; Ford et al., 2019). In Smirnov et al., (2009) 

operators were instructed to take a series of five to six consecutive measurements using a manually-operated device, 

adding an additional layer of quality control. However, the decision to initiate a measurement was still up to 

operator judgment based on visual assessment (Smirnov et al., 2009).  55 

To date, image-based analysis of clouds has not been used in support of ground-based AOD measurement 

quality control. However, prior work in the area of cloud classification of sky images can be leveraged toward this 

aim. Long et al. (2006) used whole-sky images (collected using fish-eye lenses to achieve at least 160 degrees field 

of view) to evaluate cloud brokenness, uniformity, and solar obstruction (Long et al., 2006). Their algorithm, which  

separated images into their red, green, and blue (RBG) components, and classified pixels based on their the ratio of 60 

red to blue pixel values (R/B), performed well under uniform sky conditions (>95% accuracy for solar disk 

obstruction), but was less accurate for images with more irregular cloud coverage (<85% accuracy for solar disk 

obstruction) (Long et al., 2006).  

Calbo & Sabburg (2008) mathematically defined sky conditions based on whole sky images, determined 

using six image features: mean, standard deviation, smoothness, third moment, uniformity, and entropy determined 65 

using the R/B values and an intensity parameter. The Calbo & Sabburg (2008) algorithm was least effective at 

discriminating between cases with thin clouds present and covering or not covering the sun (Calbó and Sabburg, 

2008). For cloud classification, this distinction may not be significant; however, for AOD cloud screening 

applications, the presence of thin cirrus clouds can substantially bias a measurement (Smirnov et al., 2000; 

Alexandrov, 2004; Giles et al., 2019); thus, determining if thin clouds are present (and covering the sun) is critical. 70 

 Other cloud classification schemes aim to better distinguish cirrus from clear sky. Heinle et al. (2010) use R 

– B rather than R/B along with additional image features (difference, energy, contrast, and homogeneity); and a non-
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parametric k-Nearest-Neighbors classifier. Li et al. (2011) found better results for cirrus clouds when they first 

classified sky cases as unimodal (only clouds or only sky) or bimodal (mixture of cloud and sky) before applying 

their algorithm. Liu et al. (2013) proposed the use of multiple images taken over the course of several minutes to 75 

form a Tensor Ensemble of images (Shuang Liu et al., 2013), an approach which leverages the dynamic nature of 

cloud movement to help distinguish it from forward scattering around the solar disk. 

  Recent research has applied machine learning techniques to evaluate sky condition and cloud coverage 

from images (Gu et al., 2018). Taravat et al. (2015) applied both a multilayer perceptron neural network and a 

support vector machine classification to whole-sky image classification, which both showed improved classification 80 

accuracy relative to previous thresholding approaches. Xia et al. (2015) proposed the use of a hybrid method using 

an extreme learning machine and k-nearest neighbors (kNN). Prior to classification, textural, color, and shape 

features were extracted. The classification accuracy increased with increasing numbers of features (Xia et al., 2015). 

Deep convolutional neural network (CNN) models are particularly effective for feature extraction and classification 

on image data (Gu et al., 2018). Shi et al. (2017) presented a CNN model for cloud identification based on common 85 

image classification architectures and demonstrated that their model outperformed prior feature-based models on the 

same dataset. Liu et al. (2018) incorporated temperature, humidity, pressure, wind speed, and maximum wind speed 

parameters from a local weather station with visual image data to further refine cloud type classification on whole 

sky images. Zhang et al. (2018) presented CloudNet, a deep CNN model tailored to extract cloud features and 

classify images based on cloud type, achieving better accuracy on both all-sky and partial-sky images compared 90 

with prior approaches. The success of prior work in image-based cloud identification supports the use of similar 

algorithms for solar obstruction screening for AOD quality control.  

 In previous machine learning cloud classification models, training and testing data were drawn from the 

same domain, namely sky images (Shi et al., 2017; Liu et al., 2018; Zhang et al., 2018). Recent research into deep 

learning has explored transfer learning, in which data from outside the application domain are incorporated into 95 

model development (Pan and Yang, 2010; Zhuang et al., 2021 and references therein). Transfer learning for image 

classification leverages the most effective pre-trained CNN models to compute features useful for building 

classifiers for a wide variety of image classes and then applies the models to specific domains (Zhuang et al., 2021). 

Effective deep CNN models can have over 10 million trainable parameters (Simonyan & Zisserman, 2015); 

however, in transfer learning, these parameters are trained in advance, outside of the application domain (Pan & 100 

Yang, 2010; Zhuang et al., 2021), thus reducing the time and resource requirements. In practice, pre-trained 

parameters may be frozen or left trainable. If frozen, application-specific training is reduced to the classification 

layer parameters, which are a small fraction of the total parameters. If left trainable, application-specific training is 

accelerated as parameters will likely be initialized closer to their optimal values. 

The Visual Geometry Group (VGG) at Oxford University developed the VGG-16 model, a deep CNN 105 

model designed for image classification (Simonyan and Zisserman, 2015). VGG-16 was trained on ImageNet, an 

image database consisting of over 14 million images from 20,000+ unique image classes (Deng et al., 2009; 

Simonyan and Zisserman, 2015). VGG-16 has been used effectively for transfer learning in image classification 

applications (e.g. Tammina, 2019; Guan et al., 2019; Kaur and Gandhi, 2019).  
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Here, we develop a transfer learning model based on VGG-16 for cloud screening on all sky images. We 110 

first present a new all-sky-image data set collected using a low-cost prototype imaging module. We then describe 

the image pre-processing algorithm used to prepare images for input into our classification model and the design and 

training of our classification model. Finally, we evaluate the performance of our algorithm on three independent all-

sky-image sets.  

2 Materials and Methods 115 

2.1 All-Sky Images  

 Image-based cloud screening for AOD measurements requires the co-location or hardware integration of an 

all-sky camera with a sun photometer. All-sky cameras suitable for AOD cloud screening must image the solar disk 

and the sky surrounding the solar disk while preserving the edge detail of the solar disk and nearby clouds. Images 

cannot be used for AOD screening if the image area surrounding the solar disk is saturated with sunlight. For this 120 

reason, all-sky cameras used in previous cloud identification studies were designed to block or attenuate incident 

sunlight (e.g Calbó & Sabburg, 2008; Fa et al., 2019; Xie et al., 2020).  

Accordingly, we located two pre-existing sets of all-sky image data with which to train and test our model, 

in addition to a third data set that was collected specifically for this project (see the top row of Fig. 1 for example 

images). The Whole Sky Image SEGmentation (WSISEG) data set includes 400 all-sky images captured on the 25 125 

rooftop of Anhui Air Traffic Management Bureau, Civil Aviation Administration of China in July 2018 (Xie et al., 

2020). The resolution of images in WSISEG is 2,000 pixels ✕ 1,944 pixels. The National Center for Atmospheric 

Research (NCAR) published METCRAX-II ISS All Sky Camera Imagery (UCAR/NCAR - Earth Observing 

Laboratory, 2016). The images in METCRAX-II were collected on the island of Diego Garcia between September 

2011 and February 2012. The resolution of these images is 640 pixels ✕ 480 pixels.  Due to the large data storage 130 

requirements (6,128 MB), we did not save the entire data set. We manually selected all day-time images that were 

later evaluated for inclusion into training and testing data.  

Finally, we created a collection of all sky images called the Northern Colorado All-Sky Image (NCASI) 

set, using a custom-designed imaging module (see Text S1, Fig. S1, and Table S1 in the supporting information for 

details). We collected a total of 3,544 images between 1-21 September 2021. Images from the 1st, 20th, and 21st of 135 

September 2021 were collected near a private residence in Boulder, Colorado, USA. Images from all other days 

were collected at the Powerhouse Energy Campus at Colorado State University (430 N. College Avenue, Fort 

Collins, Colorado, USA). The image resolution is 1,920 pixels ✕ 1,200 pixels. The module was configured such that 

when started, it captured an all-sky image every 30 seconds.  

   140 
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Figure 1: Top: example images from the a) NCASI, b) METCRAX-II ISS, and c) WSISEG datasets. Bottom: 

Transformations performed in image preparation algorithm. d) Raw image files are scaled and cropped to a 

uniform size 840 pixels ✕ 840 pixels). e) A multi-stage thresholding algorithm isolates sunlit pixels. f) From 

the sunlit contour, we calculate the center of the sunlit pixels in the image. g) Using the center, we crop the 145 

image (224 pixels ✕ 224 pixels).  

 

We built our algorithm to classify three types of sky conditions: 1) sun not obscured by clouds; 2) sun 

obscured by thin cirrus clouds; and 3) sun obscured by thick, non-cirrus clouds. We manually labeled images 

according to these designations. We discriminated between cirrus and thick, non-cirrus clouds based on how the 150 

cloud cover impacted the shape of the solar disk. Images where the solar disk presented as circular, despite the 

presence of thin cloud cover, were designated as cirrus. Images where the shape of the solar disk deviated from 

circular due to the presence of cloud cover were designated as non-cirrus. We built and selected our model training 

and testing datasets to include samples from all three enumerated sky conditions. We provide example images from 

each data set under each sky condition in Fig. S2. 155 

2.2 Image Preparation 

 Initially, input images of potentially varying sizes are scaled to a common a size of 840 pixels ✕ 840 pixels 

using an area pixel model as illustrated in Fig. 1d (Chun-Ho Kim et al., 2003). This operation normalizes important 

features such as the size of the solar disk in square pixels. From the scaled image, we isolate the blue color channel 
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and perform a binary threshold operation, where 8-bit pixel values greater than or equal to 252 are set to the 160 

maximum value of 255 (white) and all other pixels are set to zero (black). We then apply smoothing to the 

thresholded image using 15 ✕ 15 Gaussian kernel with the standard deviations in the horizontal and vertical axes set 

to zero (Burt, 1981). We found that for images with sunlit clouds near, but not obstructing, the solar disk, a Gaussian 

filter alone was insufficient to smooth the edges of sunlit contours. Therefore, we applied an additional bilateral 

filter with a pixel-neighborhood diameter of 15 pixels with color and space standard deviation values set to 25 165 

(Tomasi and Manduchi, 1998). The smoothing steps blend black pixels with white pixels, leaving pixels near the 

contour edge with values between 0 and 255. To restore the image to a binary image, we apply an additional binary 

thresholding operation with the threshold set to a pixel value of 50. The result of these thresholding operations is 

illustrated in Fig. 1e. We then apply a contour detection algorithm to the binary image to derive contour arrays for 

each area of contiguous white pixels (Suzuki and be, 1985). For images with a high number of optically saturated 170 

clouds (common in the METCRAX-II data set), there can be multiple sunlit contours that are not the solar disk. To 

isolate the solar disk contours from surrounding sunlit clouds, we apply pixel area and circularity criteria. Across all 

three datasets, the solar disk for scaled images was greater than 2750 square pixels. Contours greater than that 

threshold are evaluated based on their circularity, defined as follows: 

𝐶 =  
4⋅𝜋⋅𝐴

𝐿2  (1) 175 

where C is the circularity, A is the area, and L is the arc length of the contour. Among contours within the 

acceptable area range, the contour with the highest circularity is considered the contour of the solar disk. We then 

calculate the centroid of the solar disk contour and crop the image to a region sized 224 pixels ✕ 224 pixels centered 

at the centroid of the solar disk, as depicted in Fig. 1f and Fig. 1g. For images where the solar disk is fully obscured 

and no pixels pass the binary thresholding tests (most often due to heavy cloud cover obscuring the solar disk), the 180 

center of the cropped image is placed at the center of the original scaled image and the resulting image is given the 

“cloud” label. In other cases, as in Fig. 1, the solar disk is obscured by clouds such that its true center cannot be 

determined. For these images, the approximate center is used and the image is given the cloud label. For images 

where the calculated solar disk center is within 112 pixels of an edge, the image cannot be cropped to 224 pixels ✕ 

224 pixels. In these cases, the edge of the scaled image (Fig. 1d) is used as the edge of the cropped image, and the 185 

cropped image will be smaller than 224 pixels ✕ 224 pixels. We automated these pre-processing steps using 

functions from the OpenCV library. 

2.3 Model Design 

 For our feature extraction layers, we used the VGG-16 deep CNN model with parameters pre-trained on 

ImageNet (Deng et al., 2009; Simonyan and Zisserman, 2015). We used the Tensorflow implementation of VGG-16 190 

(Abadi et al., 2015). VGG-16 expects input tensors sized 224 ✕ 224 ✕ 3, with the third dimension representing 

RGB color channels present in colored images (Simonyan and Zisserman, 2015). After image preparation, most 

images were suitable for input into the VGG-16 model without further resizing. Images that were cropped to smaller 

proportions (ie., center of the solar disk was close to the image edge) were scaled to the proper input size and then 
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passed to a data generator implemented in Tensorflow’s VGG-16 model (Abadi et al., 2015).  The output of the pre-195 

trained VGG-16 model is a 7 ✕ 7 ✕ 512 tensor representing the features learned from the ImageNet database (Deng 

et al., 2009; Simonyan and Zisserman, 2015). To interface with VGG-16, the output tensor from the feature 

extraction layers is flattened to a one-dimensional vector, which is interfaced with a three-node dense classification 

layer with a softmax activation function (Bridle, 1989). For a particular input sample, the output layer gives a 

probability estimate for each of the three possible sky condition classes. The class associated with the highest 200 

probability value is the classification of the model. 

2.4 Model Training and Evaluation 

We created training and testing subdatasets for NCASI, METCRAX-II, and WSISEG using a random split 

of approximately two-thirds training and one-third testing data. Training-testing data partitions for each set and class 

designation are provided in Table 1. The images in the training and testing sets were pre-processed using our image 205 

preparation algorithm. We built seven datasets, each with training and testing subsets: one for each data set, one for 

each of the possible combinations, and a single combination of all three. 

 
Table 1: Training and testing data partitions by data set and class designation. 

Image data set Class designation Number of training samples Number of testing samples 

NCASI Clear 59 27 

NCASI Cirrus 70 24 

NCASI Cloud 52 38 

METCRAX-II Clear 204 118 

METCRAX-II Cirrus 124 73 

METCRAX-II Cloud 239 133 

WSISEG Clear 35 18 

WSISEG Cirrus 26 22 

WSISEG Cloud 198 98 

 210 

We trained all models using the same training parameters. We used the categorical cross-entropy loss 

function and the Adam optimizer with a learning rate of 0.00012 (Kingma and Ba, 2017). We trained for 100 epochs 

with a batch size of 32. We did not modify pre-trained weights of VGG-16. The weight and bias parameters of the 

output layer were the only trainable parameters, which comprised 0.51% of the total model parameters.To limit 

overfitting, we also applied data augmentation, which supplements training data by producing batches of randomly 215 

modified images created via transformation operations. We implemented data augmentation in Tensorflow using the 

ImageDataGenerator module (Abadi et al., 2015) allowing rotation of 20 degrees, width/height shifting of 10%, a 
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zooming range of 20%, and random horizontal and vertical flips. We trained our model using a GPU (NVIDIA, 

Tesla K80, Santa Clara, California, USA) on the Google Colaboratory platform (Google, Mountain View, 

California, USA).  220 

3 Results and Discussion 

3.1 Model Evaluation 

 Holding model and training parameters constant, we trained seven different models using the seven 

possible combinations of the three training datasets. We evaluated each of the seven models according to 

classification accuracy on the three testing datasets. Separating cirrus and non-cirrus cloud classifications is useful 225 

for interpreting classification results, though it is not strictly necessary for sun photometer quality control. We 

assessed the model’s performance on the binary classification problem typically addressed by sun photometer 

quality control algorithms by combining cirrus and non-cirrus cloud designations. The results of our analysis are 

presented in Table 2. 

 230 

Table 2. Three-class (two-class) classification accuracy of models trained on seven different training datasets. Three-class 

results are from cirrus, clear, and cloud categories.  Two-class results are from clear and cloud categories. Accuracy 

metrics for each model were calculated using the testing data from NCASI, METCRAX-II, and WSISEG individually. 

The best performing model on each test data set is given in bold text. 

Training data 

set(s) 

Model 

Number 

Accuracy on  

NCASI (%) 

Accuracy on 

METCRAX-II (%) 

Accuracy on  

WSISEG (%) 

NCASI 1 97.8 (100.0) 76.2 (81.2) 75.4 (87.0) 

METCRAX-II 2 84.3 (84.2) 95.7 (95.7) 79.0 (79.0) 

WSISEG 3 64.0 (78.7) 62.0 (68.5) 89.1 (94.2) 

NCASI and 

METCRAX-II 

4 95.4 (100.0) 95.5 (97.5) 82.6 (87.0) 

NCASI and 

WSISEG 

5 92.1 (100.0) 70.0 (72.5) 90.0 (95.7) 

METCRAX-II 

and WSISEG 

6 84.3 (96.6) 95.7 (97.8) 89.1 (94.9) 

All 7 95.5 (100.0) 96.9 (98.4) 89.1 (94.2) 

 235 

The model trained on all training data (model 7) generalized the best to the testing data. Model 7 correctly 

classified 95.5%, 96.9% and 89.1% of testing samples from NCASI, METCRAX-II, and WSISEG images, 

respectively (Table 2). The three-class confusion matrix for model 7 is given in the top row of Fig. 2 (three-class 

confusion matrices for the remaining six models are provided in the top rows of Figures S4-S9). The accuracies of 
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model 7 for the binary classification were 100.0%, 98.4%, and 94.2% for NCASI, METCRAX-II and WSISEG, 240 

respectively (Table 2). We present the binary confusion matrix for model 7 in the bottom row of Fig. 2 (see bottom 

rows of Figures S4-S9 for the remaining six models). 

 

Figure 2. Top row: three-class (cirrus, clear, and cloud) confusion matrices for transfer learning model trained on 

NCASI,  METCRAX-II, and WSISEG training datasets (model 7). Bottom row: Two-class (clear and cloud) confusion 245 

matrices for transfer learning model trained on NCASI,  METCRAX-II, and WSISEG training datasets (model 7). a) 

Results on NCASI testing data set. b) Results on METCRAX-II testing data set. c) Results on WSISEG testing data set. 

“Predicted” refers to the model output and “True” refers to the observed class designation. 

 

 For both the three-class and binary classification problems, model 7 performed best on the NCASI images, 250 

followed by METCRAX-II, and WSISEG, respectively (Fig. 2). Three of the four models at least partially trained on 

the NCASI training set achieved over 95.0% accuracy on the NCASI testing set (Table 2). On both the NCASI and 

METCRAX-II testing images, model 7 exhibited the highest error rate on images manually labeled as cirrus. On the 

NCASI data, 8.0% of cirrus images were classified as cloud (not cirrus) images and 0.0% were classified as clear 

images. For METCRAX-II, 3.0% of the cirrus images were classified as cloud (not cirrus) images, and 3.0% were 255 

classified as clear images. However, in the two-class problem, both cirrus and non-cirrus clouds are classified 

identically, rendering errors between cirrus and cloud categories immaterial for the inherently binary problem of 

AOD cloud screening. When the two cloud types are combined, model 7 correctly classifies 100.0% of samples 

from the NCASI set. For METCRAX-II data, model 7 incorrectly classifies 1.0% of clear images as cloud, and 

incorrectly classifies 2.0% of clear images as cloud. For WSISEG data, high rates of confusion between clear and 260 

cirrus images led to relatively poor results in the two-class problem, with 33.0% of clear images being classified as 

cloud images, but only 2.0% of cloud images being classified as clear. 
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Model 7 performed well relative to prior AOD screening algorithms, but these results partially depended on 

the testing dataset. The algorithm proposed in Alexandrov et al. (2004) had a false negative (i.e. cloud classified as 

clear) rate of 3.4% and a false negative (i.e. clear classified as cloud) rate of 4.0% for the binary cloud screening 265 

problem. Our model performed better than the prior algorithm on NCASI and METCRAX-II images, and worse on 

WSISEG images (Fig. 2). The false negative rates on NCASI, METCRAX-II, and WSISEG testing data were 0.0%, 

2.0%, and 2.0%, respectively (Fig. 2). The false positive rates on NCASI, METCRAX-II, and WSISEG testing data 

were 0.0%, 1.0%, and 33.0%, respectively (Fig. 2). In Alexandrov et al. (2004), the authors do not specify the 

relative proportions of cirrus and non-cirrus cloud samples present in the 575 cloud-contaminated samples they 270 

analyzed, precluding a direct comparison of performance on cirrus cases. The generalizability of our models to 

images similar to those in NCASI is supported by the performance of model 6 (trained only on METCRAX-II and 

WSISEG) on NCASI. Despite not seeing any NCASI images during training, model 6 correctly classified 96.6% of 

NCASI testing images in the two-class problem (Table S3). 

Model 7 performed well on NCASI images because, in part, thin and thick clouds not directly in front of 275 

the sun were less likely to be saturated (i.e. maximum RGB values) with light (e.g. Fig. 1a). In the METCRAX-II 

and WSISEG datasets, clouds outside of direct sunlight, yet still in the 224 pixel ✕ 224 pixel frame, were 

more likely to be fully saturated with light (e.g. Figs. 1b and 1c). In the WSISEG data set, there were apparent 

camera glare spots around the solar disk (Figs. S10-S12 shows all images misclassified by model 7). We suspect 

these glare spots were a result of sunlight reflection off of plastic or glass protective coverings over the imaging 280 

systems. The METCRAX-II data set has less severe glare spots, and the NCASI data set lacks glare spots entirely.  

3.2 Limitations 

A limitation of this work was the subjectivity of the class label designations, particularly for the 

METCRAX-II and WSISEG datasets (Figs. S10-S12). For the NCASI data that was collected specifically for this 

project, we had the advantage of visually observing the actual condition of the sky as the images were collected. 285 

However, with the METCRAX-II and WSISEG datasets, we could only assign class designations using images. This 

complicated class designations, particularly between cirrus and clear images in the WSISEG data set, where it was 

difficult to distinguish between glare and cirrus clouds (e.g. Fig. S12). Glare in WSISEG images may have 

contributed to relatively poor results distinguishing between clear and cirrus designations for all models (Fig. 2 and 

Figs. S4-S9). However, issues with the WSISEG data did not impact the performance of models 5-7, which partially 290 

used WSISEG data. Models 5-7 generalized well to NCASI and METCRAX-II despite potential mislabeling of 

WSISEG samples. Clarity issues in WSISEG images emphasize the importance of high image fidelity around the 

solar disk for AOD screening application. In future work, we will test the generalization ability of model 7 on 

additional independent data without additional training.  

Our model generally performed well on a variety of different cloud types from three independent datasets. 295 

However, we did not test our model on images with high aerosol loading. Wildfire smoke, volcanic ash, heavy 

industrial emissions and other sources of high atmospheric aerosol concentrations could be erroneously classified as 
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clouds. Additional images with the sun obscured by high levels of aerosol are needed to test the model's sensitivity 

to aerosol concentrations.  

Our datasets were also limited to images from three unique camera configurations. Different imaging 300 

systems produce images with different hues, resolutions, and saturation levels, among other visual differences. As 

demonstrated on the NCASI and METCRAX-II datasets (Tables S2 and S3), our model performs best on images 

with limited lens glare spots. To improve performance on images from different imaging systems, we recommend 

further training of our output layer parameters using additional labeled images. Models 1-7 models and their 

respective weights are publicly available (see data availability section).  305 

4 Conclusions 

 In this work, we presented a novel approach for cloud screening that could be applied to AOD 

measurements and that builds on the literature surrounding cloud classification from whole sky images. We 

designed an imaging module to capture all-sky images with high-fidelity, particularly around the solar disk. Using 

this imaging module, we produced the NCASI data set, a novel collection of all-sky images from Northern Colorado 310 

that includes images of a variety of cloud and sky conditions. Combining our NCASI data set with two other 

independent all-sky image datasets and the pre-trained VGG-16 model, we applied transfer learning to develop an 

effective cloud screening model. Our model performed well classifying the solar disk as unobstructed (clear), 

obstructed by thin cirrus clouds, or obstructed by optically thick, non-cirrus clouds.  

Image-based cloud screening is agnostic of sun photometer hardware, making it especially applicable for 315 

lower-cost sun photometers (Wendt et al., 2019, 2021), which may lack the hardware and personnel required to fully 

implement state-of-the-art sensor-based cloud screening. Leveraging modern imaging technology, all-sky imagers 

can be incorporated with AOD measurement systems at relatively low cost (Table S1). When paired with AOD 

measurements, all-sky images may be used for relatively simple quality control and descriptive purposes. Our work 

suggests that cameras configured to produce images like the NCASI datasets will perform well in quality control 320 

applications. The performance of our model on cirrus cloud cover represents a promising advancement in AOD 

quality control for cloud cover most difficult to distinguish from elevated aerosol. 

Data availability. 

 Original WSISEG images are available for download in the following GitHub repository: 

https://github.com/CV-Application/WSISEG-Database. Original METCRAX-II images are available for download 325 

on the UCAR Earth Observing Laboratory (EOL) website (https://data.eol.ucar.edu/dataset/386.016). The complete 

set of raw NCASI images, selected and partitioned images from all three datasets, trained deep learning models, and 

example code related to this work are available in the following GitHub repository: 

https://github.com/eawendt/aodqc. 
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