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 2 

Abstract 28 

    A WISSDOM (Wind Synthesis System using Doppler Measurements) synthesis scheme was 29 

developed to derive high-resolution 3-dimensional (3D) winds under clear-air conditions. From 30 

this variational-based scheme, detailed wind information was obtained from scanning Doppler 31 

lidars, automatic weather stations (AWSsAWS), sounding observations, and local reanalysis 32 

datasets (LDAPS, Local Data Assimilation and Prediction System), which were utilized as 33 

constraints to minimize the cost function. The objective of this study is to evaluate the 34 

performance and accuracy of derived 3D winds from this newly developedmodified scheme. A 35 

strong wind event was selected to demonstrate its performance over complex terrain in 36 

Pyeongchang, South Korea. The size of the test domain is 12 × 12 km2 extended up to 3 km 37 

height mean sea level (MSL) with remarkably high horizontal and vertical resolution of 50 m. 38 

The derived winds reveal that reasonable patterns were explored from a control run, as they have 39 

high similarity with the sounding observations. The results of intercomparisons show that the 40 

correlation coefficients between derived horizontal winds and sounding observations are 0.97 and 41 

0.87 for u- and v-component winds, respectively, and the averaged bias (root mean square 42 

deviation, RMSD) of horizontal winds is between −0.78 and 0.09 (1.72 and 1.65) m s−1. The 43 

correlation coefficients between WISSDOM-derived winds and lidar QVP (quasi-vertical profile) 44 

are 0.84 and 0.35 for u- and v-component winds, respectively, and the averaged bias (RMSD) of 45 

horizontal winds is between 2.83 and 2.26 (3.69 and 2.92) m s−1. The statistical errors also reveal 46 

a satisfying performance of the retrieved 3D winds; the median values of wind directions are 47 

−5~5 (0~2.5) degrees, the wind speed is approximately −1~3 m s−1 (−1~0.5 m s−1) and the vertical 48 

velocity is −0.2~0.6 m s−1 compared with the lidar QVP (sounding observations). A series of 49 

sensitivity tests with different weighting coefficients, radius of influence (RI) in interpolation and 50 

various combination of different datasets were also performed, and the results indicate that the 51 

present setting of the control run is the best optimal reference to WISSDOM synthesis in this 52 

event.   53 

54 
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 1. Introduction 55 

In the past few decades, many practical methods have been developed to derive wind 56 

information by using meteorological radar data (Mohr and Miller, 1983, Lee et al., 1994, Liou 57 

and Chang, 2009, Bell et al. 2012). The derived winds substantially revealed reasonable patterns 58 

compared with conventional observations (such as surface stations, soundings, wind profiles, 59 

etc.) and models (Liou et al., 2014, North et al., 2017, Chen, 2019, Oue et al., 2019). Most 60 

comprehensive applications of the derived winds were adopted to document kinematic and 61 

precipitation structures associated with various weather systems at different scales like typhoon, 62 

tropical cyclone rainband, and non-precipitation low-pressure system (LPS) (Yu and Tsai, 2013, 63 

Yu and Tsai, 2017, Tsai et al. 2018, Yu et al., 2020, Cha and Bell, 2021, Tsai et al., 2022). In 64 

addition, the accuracy of 3D winds could be improved when increasing the numbers of Doppler 65 

radar because relatively fewer assumptions and more information can be included (Yu and Tsai 66 

2010, Liou and Chang, 2009). Therefore, the retrieved schemes within multiple Doppler radars 67 

are a more popular way to obtain high-quality 3D winds and have been extensively applied to 68 

meteorological analyses.         69 

The technique of velocity track display (VTD, Lee et al., 1994) and ground-based velocity 70 

track display (GBVTD, Lee et al., 1999) can derive the winds from single Doppler radar under 71 

some assumptions, as the wind patterns are generally uniform or axisymmetric rotational (Cha 72 

and Bell, 2021). More extended techniques based on VTD and GBVTD have also been applied 73 

to increase the quality of derived wind data, and such techniques include Extended- GBVTD 74 

(EGBVTD, (Liou et al., 2006) and generalized velocity track display (GVTD, Jou et al., 2008). 75 

However, winds usually present nonuniform patterns and fast-evolving characteristics in most 76 

mesoscale weather systems and microscale phenomena, and complete and detailed winds are still 77 

difficult to resolve by these techniques. Based on the contexts of weaknesses from above schemes 78 

on the wind retrievals. Instead of a single Doppler radar, multiple Doppler can retrieve better 79 

quality 3D winds with relativity fewer assumptions because they provide sufficient radial velocity 80 
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measurements and wind information with wider coverage in the synthesis domain.  81 

Cartesian Space Editing, Synthesis, and Display of Radar Fields under Interactive Control 82 

(CEDRIC (Cartesian Space Editing, Synthesis, and Display of Radar Fields under Interactive 83 

Control, Mohr and Miller, 1983) is a traditional package used to retrieve 3D winds by dual-84 

Doppler radar observations. This scheme usually determines the horizontal winds by using two 85 

radars, and the vertical velocity can be obtained by variational adjustment with anelastic 86 

continuity equation. Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation  87 

(Instrumentation (SAMURAI) software is another way to retrieve 3D winds (Bell et al., 2012); 88 

this scheme is a kind of variational data assimilation that adopts multiple radars. These two 89 

schemes were mainly developed by NCAR (National Center Atmospheric Research) and 90 

Colorado State University, and they are both open resources available on the websites of LROSE 91 

(Lidar Radar Open Software Environment, http://lrose.net and https://github.com/NCAR/lrose-92 

cedric). Recently, Tsai et al. (2018) utilized the measurements of six Doppler radars to document 93 

precipitation and airflow structures over complex terrain on the northeastern coast of South Korea 94 

via WISSDOM (Wind Synthesis System using Doppler Measurements)., The first purpose and 95 

details of algorithms can be found in Liou and Chang, (2009). Performing immersed boundary 96 

method (IBM, Tseng and Ferziger, 2003) in WISSDOM and its scientific applications were 97 

clearly documented in, Liou et al., (2012), and, Liou et al., (2016) synthesis, respectively.. Since 98 

one of the advantages of WISSDOM is that it considers the orographic forcing on Cartesian 99 

coordinates by applying the IBM (immersed boundary method, Tseng and Ferziger, 2003), higher 100 

quality 3D winds can be derived well over terrain (Liou et al., 2013, 2014, Lee et al., 2018). 101 

Generally, radial velocity is measured by detecting the movement of precipitation particles 102 

relative to the locations of Doppler radars; thus, there are no sufficient radial velocity 103 

measurements under clear-air conditions. However, the winds in clear-air conditions usually play 104 

an important role in the initiations of various weather systems and phenomena, such as downslope 105 

winds, gap winds, and wildfires (Reed, 1931, Colle and Mass, 2000, Mass and Ovens, 2019, Lee 106 
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et al., 2020). Although surface stations, soundings, and wind profilers can measure winds under 107 

clear-air conditions, relatively poor spatial coverage is still a problem for obtaining sufficient 108 

wind information in certain local areas. Therefore, scanning Doppler lidars will be one approach 109 

to obtain wind information under clear-air conditions. Päschke et al. (2015) assessed the quality 110 

of wind derived by Doppler lidar with a wind profiler in a year trial, and the results showed good 111 

agreement in wind speed (the error ranged between 0.5 and 0.7 m s−1) and wind direction (the 112 

error ranged between 5° and 10°). Bell et al. (2020) used combined an intersecting range height 113 

indicator (RHI) of six Doppler lidars to build “virtual towers” (such as wind profilers) to 114 

investigate the airflow over complex terrain during the Perdigäo experiment. These virtual towers 115 

can fill the gap in wind measurements above  conventional physicalmeteorological towers. The 116 

uncertainty of wind fields is also reduced by adopting multiple Doppler lidars (Choukulkar et al., 117 

2017), and a high spatiotemporal resolution of derived wind is allowed to check small-scale rotors 118 

in mountainous areas (Hill et al., 2010).     119 

    The original WISSDOM was designed to retrieve 3D winds based on Doppler radar 120 

observations and background inputs combined with conventional observations and modeling. 121 

However, the original WISSDOM only provided 3D winds under precipitation conditions, and it 122 

can not work well under clear-air conditions because the Doppler radar usually cannotis not easy 123 

to detect radial velocity without precipitation particles. To obtain high-quality 3D winds under 124 

clear-air conditions for investigating the initiations of precipitation systems in advance of rain 125 

and snow formatted., Thethe radial velocity observed from the scanning Doppler lidars can be 126 

used in WISSDOM, which is the most important benefit rather than Doppler radar in related 127 

research topics.. Furthermore, the conventional observations and modeling datasets were used as 128 

isolated constraints in the modified WISSDOM synthesis scheme. One of the benefits of the 129 

isolated constraints is that it is easy to synthesize any kind of wind information obtained from 130 

available datasets and give suitable weighting coefficients with different constraints when they 131 

are processing the minimization in the cost function. Thus, more reliable 3D winds in clear-air 132 
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conditions were well derived from this newly developedmodified WISSDOM synthesis scheme.    133 

    The objective of this study is to modify the WISSDOM synthesis scheme based on the 134 

original version to be a more flexible and useful scheme by adding any number of Doppler lidars 135 

and conventional observations as well as modeling datasets. This newly developedmodified 136 

WISSDOM will allow us to obtain an exceedingly high spatial resolution of 3D winds (50 m was 137 

set in this study) under clear- air conditions. It is because the Doppler lidar had high spatial 138 

resolution in between 40 and 60 m horizontally, however, the Doppler radar had relatively low 139 

spatial resolution from approximately 100 to 1000 m. A variety of adequate datasets were 140 

collected during a strong wind event in the winter season during an intensive field experiment 141 

ICE-POP 2018 (International Collaborative Experiments for Pyeongchang 2018 Olympic and 142 

Paralympic winter games). In summary, the main goal of this study is to use Doppler lidar 143 

observations to retrieve high-resolution 3D winds over terrain under clear-air conditions via 144 

WISSDOM. In this study, detailed principles of the newly developedmodified WISSDOM and 145 

data implementation are elucidated in the following sections. In addition, the newly 146 

developedmodified WISSDOM was performed to retrieve 3D winds over complex terrain under 147 

clear-air conditions in a strong wind event. The reliability of the derived 3D winds was also 148 

evaluated with conventional observations.                      149 

2. Methodology  150 

2.1 Original version of WISSDOM (WInd Synthesis System using DOppler Measurements) 151 

WISSDOM is a mathematically variational-based scheme to minimize the cost function, and 152 

various wind-related observations can be used as one of the constraints in the cost function. The 153 

3D winds were derived by variationally adjusted solutions to satisfy the constraints in the cost 154 

function, thus. the results of retrieved winds were the analytic expression in this scheme.  The 155 
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original version of WISSDOM performed five constraints, including radar observations (i.e., 156 

reflectivity and radial velocity), background (combined with automatic weather stations, 157 

sounding, model or reanalysis data), continuity equation, vorticity equation, and Laplacian 158 

smoothing ( (Liou and Chang, 2009).,  Liou et al., (2012) applied the IBM in WISSDOM to 159 

consider the affecting upon nonflat surface, one of advantages in IBM is providing realistic 160 

topographic forcing without the need to change the Cartesian coordinate system into a terrain-161 

following coordinate system. More scientific documentations associated with the interactions 162 

between terrain, precipitation and winds in different areas can be referred to, Liou et al. (2016, 163 

Taiwan), and Tsai et al.., (2018, South Korea). The cost function can be expressed as       164 

𝐽 = ∑ 𝐽𝑀

5

𝑀=1

,                                                                            (1) 165 

where 𝐽𝑀  is the different constraints. 𝐽1  is the constraint related to the geometric relation 166 

between radar radial Doppler velocity observations (𝑉𝑟) and derived one from true winds (𝐕𝑡 =167 

𝑢𝑡𝐢 + 𝑣𝑡𝐣 + 𝑤𝑡𝐤 ) in Cartesian coordinates [eq. (2)]. Note that the 𝐕𝑡  will be first guessed 168 

random resulting from sounding, modeling, or equal zero if there is not any information about 169 

wind in beginning.  170 

𝐽1 = ∑ ∑ ∑ 𝛼1,𝑖

𝑁

𝑖=1

(𝑇1,𝑖,𝑡)
2

𝑥,𝑦,𝑧

2

𝑡=1

.                                                  (2) 171 

Since WISSDOM is a scheme that uses the 4DVAR approach, the variations between different 172 

time steps (𝑡) should be considered, and two time (t) steps of radar observations were collected 173 

in this constraint and all following constraints. The 𝑥, 𝑦, 𝑧 indicates the locations of a given grid 174 

point in the synthesis domain, and 𝑖 could be any number (𝑁) of radars (at least 1).  The 𝛼1 is 175 

the weighting coefficient of 𝐽1 (𝛼2 is the weighting coefficient of 𝐽2 and so on). 𝑇1,𝑖,𝑡 in eq. 176 

(2) is defined as eq. (3):  177 

𝑇1,𝑖,𝑡 = (𝑉𝑟)𝑖,𝑡 −
(𝑥 − 𝑃𝑥

𝑖)

𝑟𝑖
𝑢𝑡 −

(𝑦 − 𝑃𝑦
𝑖)

𝑟𝑖
𝑣𝑡 −

(𝑧 − 𝑃𝑧
𝑖)

𝑟𝑖
(𝑤𝑡 − 𝑊𝑇,𝑡),              (3) 178 
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(𝑉𝑟)𝑖,𝑡 is the radial velocity observed by the radar (𝑖) at time step (𝑡), 𝑃𝑥
𝑖 , 𝑃𝑦

𝑖 and 𝑃𝑧
𝑖 depict the 179 

coordinate of radar 𝑖. The 𝑢𝑡 , 𝑣𝑡  and 𝑤𝑡  (𝑊𝑇,𝑡) denote the 3D winds (terminal velocity of 180 

precipitation particles) at given grid points at the time step 𝑡 ; and 𝑟𝑖 =181 

√(𝑥 − 𝑃𝑥
𝑖)2 + (𝑦 − 𝑃𝑦

𝑖)2 + (𝑧 − 𝑃𝑧
𝑖)2.  182 

The second constraint is the difference between the background (𝐕𝐵,𝑡) and true (derived) 183 

wind field (𝐕𝑡 = 𝑢𝑡𝐢 + 𝑣𝑡𝐣 + 𝑤𝑡𝐤), which is defined as   184 

  𝐽2 = ∑ ∑ 𝛼2(𝐕𝑡 − 𝐕𝐵,𝑡)
2

𝑥,𝑦,𝑧

2

𝑡=1

.                                                      (4) 185 

There were several options to obtain background in the original version of WISSDOM. The most 186 

popular background resource involves using sounding observations; however, it can only provide 187 

homogeneous wind information for each level in WISSDOM with relatively coarse temporal 188 

resolution (3- to 12-hour intervals). The other option is combining sounding observations with 189 

AWS (automatic weather station) observations. Although the AWS provided wind information 190 

with better temporal resolution (1-min), the data were only observed at the surface layer with 191 

semirandom distributions. The last option is to combine sounding, AWS, modeling or reanalysis 192 

datasets. However, various datasets with different spatiotemporal resolutions are not favorable 193 

for appropriate interpolation of given grid points of WISSDOM synthesis, and the accuracy and 194 

reliability of the background may have been significantly affected by such a variety of datasets. 195 

Thus, these different observed or model data should be treated differently to minimize the 196 

uncertainties and improve the accuracy. Thus, one of the improvements in the newly 197 

developedmodified WISSDOM is that these inputs were separated into independent constraints 198 

individually. Note that the sounding observations are still a necessary dataset because the air 199 

density and temperature profile were used to identify the height of the melting level. In this study, 200 

sounding winds were adopted to represent the background for each level and a constraint at the 201 

same time; nevertheless, the AWS and reanalysis dataset are independent constraints in the newly 202 
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developedmodified WISSDOM (details are provided in the following section).  203 

    The third, fourth and fifth constraints in the cost function are the anelastic continuity 204 

equation, vertical vorticity equation and Laplacian smoothing filter, respectively. Equations (5), 205 

(6) and (7) are denoted as follows: 206 

                                           𝐽3 = ∑ ∑ 𝛼3 [
𝜕(𝜌0𝑢𝑡)

𝜕𝑥
+

𝜕(𝜌0𝑣𝑡)

𝜕𝑦
+

𝜕(𝜌0𝑤𝑡)

𝜕𝑧
]

2

𝑥,𝑦,𝑧

2

𝑡=1

,                              (5) 207 

𝐽4 = ∑ 𝛼4 {
𝜕𝜁

𝜕𝑡
+ [𝑢

𝜕𝜁

𝜕𝑥
+ 𝑣

𝜕𝜁

𝜕𝑦
+ 𝑤

𝜕𝜁

𝜕𝑧
+ (𝜁 + 𝑓) (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
) + (

𝜕𝑤

𝜕𝑥

𝜕𝑣

𝜕𝑦
−

𝜕𝑤

𝜕𝑦

𝜕𝑢

𝜕𝑧
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
]}

2

,

𝑥,𝑦,𝑧

  (6) 208 

𝐽5 = ∑ ∑ 𝛼5[∇2(𝑢𝑡 + 𝑣𝑡 + 𝑤𝑡)]2

𝑥,𝑦,𝑧

2

𝑡=1

.                                            (7) 209 

𝜌0 in eq. (5) is the air density, and 𝜁 = 𝜕𝑣 𝜕𝑥⁄ − 𝜕𝑢 𝜕𝑦⁄  in eq. (6). The main advantage is that 210 

the use of vertical vorticity can provide further improvement in winds and thermodynamic 211 

retrievals.  212 

2.2 The newly developedmodified WISSDOM  213 

    In addition to the five constraints in the original version, the newly developedmodified 214 

WISSDOM synthesis scheme includes three more constraints in the cost function. Thus, the cost 215 

function in the newly developedmodified WISSDOM was written as       216 

𝐽 = ∑ 𝐽𝑀

8

𝑀=1

.                                                                            (8) 217 

    𝐽1~𝐽5 in (8) are the same constraints corresponding to equations (2)-(7). The main purpose 218 

of this study is to retrieve 3D winds under clear-air conditions in which observational data are 219 

relatively rare. Instead of the radial velocity (𝑉𝑟)𝑖,𝑡 observed from Doppler radars in eq. (3) in 220 

original version of WISSDOM, the radial velocity observed from Doppler or wind lidars was 221 

adopted in the newly developedmodified WISSDOM synthesis. In addition, if there were no 222 

precipitation particles under clear-air conditions, the terminal velocity of precipitation particles 223 
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(𝑊𝑇,𝑡) was set to zero in eq. (3) in the modified WISSDOM. The time steps in WISSDOM of this 224 

study were set by the synthesis time and 12 mins before the synthesis time due to the temporal 225 

resolution of main input lidar data is 12 mins.        226 

    The sixth constraint is the difference between the derived wind fields and the sounding 227 

observations (𝐕𝑆,𝑡), as defined in (9):   228 

𝐽6 = ∑ ∑ 𝛼6(𝑉𝑡 − 𝑉𝑆,𝑡)
2

.                                                            (9)

𝑥,𝑦,𝑧

2

𝑡=1

 229 

The sounding data in 𝐽6 were interpolated to the given grid points near its tracks bearing on the 230 

radius influence (RI) distance (the details are provided in Section 3.2.3). The main difference 231 

between 𝐽6 and 𝐽2 is that the sounding data were used as an observation for given 3D locations, 232 

instead of the constraint of homogeneous background winds for each level in the studied domain. 233 

The seventh constraint represents the discrepancy between the true (derived) wind fields and 234 

AWS (𝐕𝐴,𝑡), as expressed in (8): 235 

𝐽7 = ∑ ∑ 𝛼7(𝑉𝑡 − 𝑉𝐴,𝑡)
2

.                                                            (8)

𝑥,𝑦,𝑧

2

𝑡=1

 236 

Finally, the eighth constraint measures the misfit between the derived winds and the local 237 

reanalysis dataset (𝐕𝐿,𝑡), as defined in (9): 238 

𝐽8 = ∑ ∑ 𝛼8(𝑉𝑡 − 𝑉𝐿,𝑡)
2

.                                                            (9)

𝑥,𝑦,𝑧

2

𝑡=1

 239 

In this study, various observations and reanalysis datasets were utilized as constraints in the cost 240 

function of WISSDOM. The most important dataset is the radial velocity observed from Doppler 241 

lidars, which can measure wind information with high spatial resolution and good coverage from 242 

near the surface up to higher layers in the test domain. Sounding and AWS can provide horizontal 243 

winds for background or to be included in the constraints. The local reanalysis datasets were 244 

obtained from the 3DVAR Local Data Assimilation and Prediction System (LDAPS (Local Data 245 

Assimilation and Prediction System) data assimilation system from the KMA (Korea 246 
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Meteorological Administration (KMA). Since these datasets have different coordinate systems 247 

and various spatiotemporal resolutions, additional procedures are required before the synthesis. 248 

Detailed descriptions of the procedures are described in the next section. 249 

    The high-quality synthesized 3D wind field from radar observations has been applied in 250 

several previous studies such as those by Liou and Chang (2009), Liou et al. (2012, 2013, 2014, 251 

2016), and Lee et al. (2017). The advantages and details of the WISSDOM can be found in Tsai 252 

et al. (2018).  Although there were quite a few studies by using Doppler radar in WISSDOM, 253 

this study is first time to apply the Doppler lidar data in WISSDOM. This newly 254 

developedmodified WISSDOM synthesis scheme has also been applied in the analysis related to 255 

the mechanisms of orographically induced strong wind on the northeastern coast of Korea (Tsai 256 

et al., 2022). In different view standing from previous studies, this study provides clear context, 257 

detail procedures, reliability, and the limitations of the modified WISSDOM.  258 

3. Data processing with a strong wind event  259 

3.1 Basic information of WISSDOM synthesis 260 

A small domain near the northeastern coast of South Korea was selected to derive detailed 261 

3D winds over complex terrain (in the black box in the inset map in Fig. 1) because relatively 262 

dense and high-quality wind observations were only collected in this region during ICE-POP 263 

2018. The size of the WISSDOM synthesis domain is 12 × 12 km2 (up to 3 km MSL height) in 264 

the horizontal (vertical) direction with 50 m grid spacing. Such high spatial resolution 3D winds 265 

were synthesized every 1 hour in this test. Note that the output time steps are adjustable to be 266 

finer (recommended limitation is 10 mins), but they are highly related to the temporal resolution 267 

of various datasets and computing resources. Two scanning Doppler lidars are located near the 268 

center of the domain: one is the equipped “WINDEX-2000” (the model’s name from the 269 
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manufacturer) at the May Hills Supersite (MHS) site, and the other is the “Stream line-XR” at 270 

the DaeGwallyeong regional Weather office (DGW) site. In addition to the operational 271 

AWSsAWS (727 stations), additional surface observations (32 stations) are also involved in ICE-272 

POP 2018 surrounding the MHS and DGW sites and the venues of the winter Olympic Games. 273 

The soundings are launched at the DGW site every 3 hours during the research period. The 274 

LDAPS also provided high spatial resolution of wind information in the test domain. The 275 

horizontal distribution of all instruments and datasets used are shown in Fig. 1.        276 

 277 
Figure 1. Horizontal distribution of instruments and datasets used in this study. A small box in the upper map 278 

indicates the WISSDOM synthesis domain. The Doppler lidars are marked by asterisks start symbols at the MHS 279 

and DGW sites. Red solid circles and squares indicate the automatic weather station (AWS) and sounding, 280 

respectively. The black cross marks the data points of LDAPS. Topographic features and elevations are shown 281 

with the color shading in a color bar in the figure. The location of the Teabeak Mountain Range (TMR) is also 282 

marked. 283 
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3.2 Data implemented in WISSDOM synthesis  284 

3.2.1 Scanning Doppler lidars  285 

 The radial velocity observed from two scanning Doppler lidars was utilized to retrieve 3D 286 

winds via WISSDOM synthesis. The original coordinate system of observed lidar data is not a 287 

Cartesian coordinate system, but spherical (or polar) coordinate system as plan position indicator 288 

(PPI) and hemispheric range height indicator (HRHI) or RHI.  In the lidar data collection, the 289 

lasers were emitted from the transmitter with rotating azimuth angles at an initial elevation angle, 290 

and the scanner increased the elevation angles when surveillance (likely between 0° and 360° 291 

clockwise from north) or PPI (plan position indicator) was finished. The data were collected by 292 

raising the elevation angles until the expected maximum coverages were reached, which is called 293 

a volume scan. Consequently, the lidar repeated the surveillance from the initial to last elevation 294 

angles to complete the next volume scans. A complete hemispheric range height indicator (HRHI) 295 

or RHI demonstrated that the lidar finished a scan from 0° to 180° or from 0° to 90° at a fixed 296 

azimuth angle. Although relatively dense and complete coverage of wind information (i.e., radial 297 

velocity of aerosols) were sufficiently recorded by lidar observations, the collected data are 298 

usually not located directly on the given grid points in the WISSDOM synthesis (i.e., Cartesian 299 

coordinate system). In this study, the lidar data were interpreted simply from the lidar coordinate 300 

system to the Cartesian coordinate system via bilinear interpolation.               301 

The scanning strategy of the lidar at the DGW site includes five elevation angles for PPI (7°, 302 

15°, 30°, 45°, and 80° before 10:00 UTC on 14 Feb. 2018 and 4°, 8°, 14°, 25°, and 80° after 10:00 303 

UTC) and two HRHIs at azimuth angles of 51° and 330°. A full volume scan included all PPIs 304 

and HRHIs every ~12 min. The maximum observed radius distance is ~13 km, and the grid 305 

spacing is 40 m for each gate along the lidar beam. The scanning strategy of the lidar at the MHS 306 

site involves seven elevation angles for PPI (5°, 7°, 10°, 15°, 30°, 45°, and 80°) and one HRHI 307 

at an azimuth angle of 0°. A full volume scan included all PPIs and RHIs every ~12 min. The 308 
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maximum observed radius distance was ~8 km, and the grid spacing was 60 m. The vertical 309 

distribution of lidar data in the test domain is shown as blue lines in Fig. 2a.   310 

3.2.2 Automatic weather station (AWS)  311 

 Most of the AWS stations are not exactly located on the given grid points of the Cartesian 312 

coordinate system. Objective analysis (Cressman, 1959) is a popular way to correct semirandom 313 

and inhomogeneous meteorological fields into regular grid points. Note that the wind directions 314 

and wind speed must first project with the values along u- and v-components then interpolate 315 

their values individually to the given grids. This study adopted objective analysis for the AWS 316 

observations with adjustable RI distances between 100 m and 2000 m. After this first step, the 317 

observational data can reasonably interpolate to the given grid points horizontally. Furthermore, 318 

an additional step is required to put these interpolated data into the given grid points at different 319 

vertical levels because the AWSsAWS are located at different elevations in the test domain. In 320 

the traditional way of original WISSDOM, the interpolated data are moved to the closest level 321 

with the shortest distance just above the AWS site. However, the interpolated data are NOT 322 

moved to the closest level if the shortest distances are large like more than half (50%) of griird 323 

spacing. Nevertheless, to include more data from the AWS observations appropriately, adjusted 324 

distances between the AWS sites and given grid points at different vertical levels were necessarily 325 

considered. These adjusted distances can be named as vertical extension (VE) here, and there are 326 

two options of 50% and 90% in the tests of this study, which correspond to 25 m and 45 m 327 

extensions between each grid (in case of the grid spacing is 50 m), respectively. An example 328 

demonstrated how to implement the interpolated data to the given grid points by adjustable VE 329 

after step one (Fig. 2b). 330 

In Fig. 2b, the interpolated data do not need to move to a given grid point (as an example, at 331 

the 800 m level here) if the elevation of the AWS is equal to the height of a given grid point as 332 

point A. When the AWS is located higher than a given grid point (as point B in Fig. 2b) and does 333 
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not reach the lower boundary of VE (50%) from the upper given grid point (i.e., at the 850 m 334 

level), this interpolated data will be removed and wasted. In contrast, when the interpolated data 335 

are located just below the given grid point with 50% VE, it will be achieved in the WISSDOM 336 

synthesis at the 800 m level (point C in Fig. 2b). The interpolated data of point D have a similar 337 

situation to point B; however, it will be achieved at the 800 m level because a higher VE (90%) 338 

was applied here. Since the locations of the AWS are semirandom with relatively sparse or 339 

concentrated distributions, the optimal RI and adjustable VE make it possible to include more 340 

AWS observations in the WISSDOM synthesis.               341 

 342 
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 343 
Figure 2. (a) Schematic diagram of the vertical distribution of adopted lidar datasets. Blue lines indicate the lidar 344 

data observed at the DGW and MHS sites with different elevation angles. The AWS stations are located on the 345 

ground and are marked by solid red circles. An example of a sounding track launched from the DGW site in one 346 

time step (06:00 UTC on 14 Feb. 2018) is plotted as a thick black line. The black cross marks indicate the vertical 347 

distribution of the LDAPS dataset. (b) Schematic diagram for data implementation with various locations of the 348 

AWS stations and different percentages of VE (vertical extension) from given grid points at the 800 m MSL 349 

level (thick black line). The gray shading on the bottom represents the topography.  350 

3.2.3 Sounding   351 
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 During ICE-POP 2018, the soundings are launched at the DGW site every 3 hours (from 352 

00Z). Vertical profiles of air pressure, temperature, humidity, wind speed and directions were 353 

recorded every second (i.e., ~3 m vertical spatial resolution) associated with the rising sensor. 354 

The sounding sensor drifted when rising, and an example of its track in one time step is shown 355 

as a thick black line in Fig. 2a. In this example, the sounding movement was mostly affected by 356 

westerly winds, and it measured the meteorological parameters in any location along the track in 357 

the test domain. The coordinate system of sounding data is quite similar to the distribution of 358 

AWS measurements, and the observations are not located right on the given grid points of the 359 

WISSDOM synthesis.  360 

Similar to the AWS data, the sounding data also underwent objective analysis with an 361 

adjustable RI distance for the wind measurements in the first step. Then, the interpolated data 362 

were switched to given grid points for each vertical level by the different VE in the WISSDOM 363 

synthesis.                364 

3.2.4 Reanalysis dataset: LDAPS  365 

 The local reanalysis dataset LDAPS was generated by the KMA. This dataset provides u- 366 

and v-component winds every 3 hours, and the horizontal spatial resolution is ~1.5 km with the 367 

grid type in Lambert Conformal (as black cross marks in Fig. 1). The data revealed denser 368 

distributions near the surface and sparse distributions at higher levels (see Fig. 2a). The initiations 369 

of wind variables in the LDAPS were assimilated with many observational platforms, including 370 

radar, AWS, satellite and sounding data. Thus, the relatively high reliability of this dataset could 371 

be expected. In addition, such datasets have also significantly improved the forecast ability in 372 

small-scale weather phenomena over complex terrain in Korea (Kim et al., 2019, Choi et al., 373 

2020, Kim et al., 2020). 374 

The LDAPS data are not located directly on the given grid points of the WISSDOM synthesis 375 

system. Unlike the distribution of AWS and sounding observations, LDAPS has dense and good 376 
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coverage in the test domain. The Cartesian coordinate is the most efficient way and the best 377 

system for partial differential equation (Armijo, 1969), then it also be used in the cost function of 378 

WISSDOM (Liou and Chang, 2009). Therefore, like lidar observations, the LDAPS data were 379 

also interpolated to the given grid points on the Cartesian coordinate system via the bilinear 380 

interpolation method.  381 

3.3 Overview of the selected strong wind event 382 

    A strong wind event was selected to evaluate the performance of this newly 383 

developedmodified WISSDOM synthesis scheme. In this strong wind event, the evolution of 384 

surface wind patterns on the Korean Peninsula was mainly dominated by a moving low-pressure 385 

system (LPS) which is one type of strong downslope winds (Park et al, 2022, Tsai et al., 2022). 386 

The LPS moved out from China and penetrated the northern part of the Korean Peninsula through 387 

the Yellow Sea beginning at approximately 12:00 UTC on 13 February 2018. Consequently, a 388 

relatively strong surface wind speed (exceeding ~17 m s−1) was observed when the LPS was 389 

located near the northeastern coast of the Korean Peninsula (~130°E, 40°N) at 00:00 UTC on 14 390 

February 2018 (Fig. 3). Then, the surface wind speed became weak when the LPS moved away 391 

from South Korea after 00:00 UTC on 15 February 2018 (not shown); the details of the synoptic 392 

conditions can be found in Tsai et al. (2022).  393 
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 394 

Figure 3. Synoptic surface chart from the Korea Meteorological Administration (KMA) at 00:00 UTC on 14 Feb. 395 

2018. The locations of the Korean peninsula and the LPS has been marked by black circle.  396 

 397 

    This event is one of two strong wind events (i.e., daily maximum wind speeds larger than 398 

10 m s−1 observed at the AWS sites along the northeastern coast of South Korea) in the past 399 

decade based on the KMA historic record. Such a strong wind event may help us to examine the 400 

potential maximum errors of the retrieved winds. Since persistent, strong westerly winds were 401 

observed by the soundings and AWS from near the surface and upper layers over the TMR during 402 

the event, the data coverages in the test domain were checked during a chosen time step (06:00 403 

UTC on 14 February 2018). The percentage of data occupations for each dataset (after 404 

interpolation) was checked, and the results are shown in Fig. 4. Note that the elevation of the 405 

TMR is approximately 700 m MSL in the test domain. The lidars provided good coverage of 406 

100% to 50% at the lower layers between 700 m and 800 m MSL. The coverage of lidars was 407 

reduced significantly above 900 m MSL and remained at ~5% due to the scan strategy during the 408 

Olympic games (more dense observations near the surface). The maximum coverage of the AWS 409 
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observations is ~40% at 800 m, and there was less coverage above this layer since relatively few 410 

AWS stations are located in the higher mountains. Because only one sounding observation was 411 

utilized in this domain, relatively few coverages were also depicted. The local reanalysis LDAPS 412 

can provide complete coverage above 900 m MSL (exceeding 100%), albeit there was less 413 

coverage in the lower layers due to terrain. The lidar, sounding, and AWS observations covered 414 

most areas at lower levels but not higher levels; thus, the LDAPS compensated for most of the 415 

wind information at the upper layers in the WISSDOM synthesis.                          416 

 417 

Figure 4. Data coverage (percentage, %) of the lidar (blue line), sounding (black line), AWS (red line) observations, 418 

and LDAPS (green line) at 06:00 UTC on 14 Feb. 2018.   419 

4. Control run and the accuracy of WISSDOM 420 

4.1 Control run  421 

    Relatively reliable 3D winds were derived by a control run of the WISSDOM synthesis 422 

because all available wind observations and local reanalysis datasets were fully appropriately 423 

acquired. These datasets provided sufficient and complete wind information with a high 424 
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percentage of coverage in the test domain (cf. Fig. 4). Therefore, the retrieved winds from the 425 

control run can be treated as the optimal results (i.e., analytic expression of variational-based 426 

scheme) in WISSDOM. The control run was performed carefully with the necessary procedures 427 

in data implementation before running the WISSDOM synthesis as follows.  The lidar and 428 

LDAPS datasets must perform bilinear interpolation to the given grid points in WISSDOM, and 429 

the sounding and AWS observations must undergo objective analysis with the appropriate RI 430 

distance and VE. The quantities of the weighting coefficients for each input dataset followed the 431 

default setting from the original version of WISSDOM. The 3D winds were derived during one 432 

time step at 06:00 UTC on 14 Feb. 2018 and compared with conventional observations. Note that 433 

the best weights have been determined by a series of observation system simulation experiment 434 

(OSSE) type tests from Liou and Chang (2009), they have putted more weights in observations 435 

and less weights in modeling inputs. Based on the experiences and the default setting of weights 436 

from previous studies, the basic setting of the control run has been first decided. The basic setting 437 

of this control run is summarized in Table 1.          438 

Table 1  Basic setting of WISSDOM (control run) 

Domain Range 
Latitude: 37.606°N~37.713°N  

Longitude: 128.642°E~128.778°E 

Domain Size 12 × 12 × 3 km (long × width × vertical) 

Spatial Resolution 0.05 × 0.05 × 0.05 km (long × width × vertical) 

Terrain Resolution 0.09 km 

Coordinate System Cartesian coordinate system 

Background Sounding (DGW) 

Data Implementation 

Doppler Lidars (MHS, DGW): bilinear interpolation 

AWS: objective analysis (RI*: 1 km, VE*: 90%) 

Sounding (DGW): objective analysis (RI: 1 km, VE: 90%) 

LDAPS: bilinear interpolation 

Weighting Coefficient 
(input datasets) 

Doppler Lidars (𝛼1): 106 

Background (𝛼2):102 

Sounding (𝛼6): 106 

AWS (𝛼7): 106 



 22 

    The results of 3D winds at 800 m MSL derived from the control run are shown in Figs. 5a, 439 

c, and e. Topographic features comprised relatively lower elevations in the center of the test 440 

domain, and there were weaker u-component winds (~7 m s−1) near the AWSsAWS and MHS 441 

lidar sites between 128.67°E and 128.71°E (Fig. 5a). In contrast, the u-component winds (~15 m 442 

s−1) were almost doubled near the DGW lidar site (between 128.71°E and 128.73°E). The vertical 443 

structures of the u-component winds across these two lidars (i.e., along the black line in Fig. 5a) 444 

are shown in Fig. 5b. The strength of the u-component winds rapidly increased from the surface 445 

to the upper layers (from ~6 to 20 m s−1), and uniform u-component winds with wavy pattern 446 

were depicted above ~1 km MSL except for the stronger winds near the surface surrounding the 447 

DGW site. There were relatively weak (strong) u-component winds surrounding the lidar at the 448 

MHS (DGW) site near the surface. Relatively weak v-component winds were found 449 

(approximately ±4 m s−1) at 800 m MSL (Fig. 5c); thus, the horizontal wind directions were 450 

mostly westerly winds during this time step. The v-component winds were obviously accelerated 451 

in several local areas encompassing the terrain (near 128.71°E). The vertical structure of the v-452 

component winds (Fig. 5d) indicates that the v-component winds became stronger in the upper 453 

layer. The wind directions were changed from westerly to southwesterly from the near surface 454 

up to ~1.4 km MSL height. Updrafts were triggered on windward slopes when westerly winds 455 

impinge the terrain or hills (Figs. 5e and 5f). Basically, the 3D winds derived from the WISSDOM 456 

synthesis reveal reasonable patterns compared to synoptic environmental conditions (cf. Fig. 3); 457 

the moving LPS accompanied stronger westerly winds.  458 

LDAPS (𝛼8): 103 

          *RI: radius influence, VE: vertical extension 
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 459 

Figure 5. The 3D winds were derived from the control run by the WISSDOM synthesis at 06:00 UTC on 14 Feb. 460 

2018. (a) The u-component winds (color, m s−1) at 800 m MSL; the gray shading represents the terrain area, and 461 

the contours indicate different terrain heights of 600 m, 800 m and 1000 m MSL corresponding to thin to thick 462 

contours. The locations of lidars are marked with asterisks. (b) Vertical structures of u-component winds (color, 463 

m s−1) along the black line in (a) The gray shading in the lower part of the figure indicates the height of the terrain. 464 

(c) and (d) are the same as (a) and (b) but for the v-component winds. (e) and (f) are the same as (a) and (b) but 465 

for the w-component winds.        466 
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4.2 Intercomparison between derived winds and observations  467 

    Detailed analyses were performed in this section to quantitatively evaluate the accuracy of 468 

the optimally derived 3D winds from the WISSDOM synthesis. Two kinds of instruments were 469 

available in the test domain to detect the relatively realistic winds: sounding and lidar quasi-470 

vertical profiles (QVP, Ryzhkov et al., 2016), a profile of QVP can be general form a lidar. The 471 

horizontal winds observed from soundings and the 3D winds of the lidar QVP were utilized to 472 

represent observations. A complete analysis of the intercomparison between the WISSDOM 473 

synthesis and observations is presented in the following subsections.   474 

4.2.1 Sounding 475 

The discrepancies in horizontal winds derived from WISSDOM and the sounding 476 

observations for the entire research period (from 12:00 UTC on 13 to 12:00 UTC on 14 February 477 

2018) were analyzed. Fig. 6 shows the scatter plots of the u- and v-component winds on the 478 

locations following the tracks of sounding launched from the DGW site. Most of the u-component 479 

winds derived from WISSDOM are in good agreement with the sounding observations, and the 480 

wind speed is increased with the height from approximately 10 to 40 m s-1. Slight underestimation 481 

of retrieved u-component winds can be found at the layers of 1.5~2 km MSL (Fig. 6a). In contrast, 482 

most of the v-component winds were weak (smaller than 15 m s−1) at all layers, because the 483 

environmental winds were more like westerlies during the research period. There were also 484 

slightly overestimated v-component winds derived from WISSDOM at the layers of 1.5~2 km 485 

MSL (Fig. 6b). The possible reason why the overestimated winds occurred above ~1.5 km MSL 486 

is that lidar data had relatively less coverages at higher layers (cf. Fig. 4). 487 
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 488 

Figure. 6. Scatter plots of (a) u-component winds between the WISSDOM synthesis (x-axis) and sounding 489 

observations (y-axis) above the DGW site during the research period. The colors indicate different layers, and 490 

the numbers of data points, correlation coefficients, average biases and root mean square deviations are also 491 

shown in the figure. (b) The same as (a) but for v-component winds.  492 

Overall, the u-component winds show a high correlation coefficient (exceeding 0.97), low 493 

average bias (−0.78 m s−1), and the root mean square deviation (RMSD) of 1.77 m s−1. The 494 

correlation coefficient of the v-component is also high (0.87), the average bias is 0.09 m s−1, and 495 

the RMSD is 1.65 m s−1.            496 
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 497 

Figure 7. Vertical wind profiles of average horizontal winds derived from the WISSDOM synthesis (red lines and 498 

vectors) and sounding observations (black lines and vectors) above the DGW site from 12:00 UTC on 13 to 499 

12:00 UTC on 14 Feb. 2018. Solid lines indicate u-component winds (m s−1), and dashed lines indicate v-500 

component winds (m s−1).  501 

    The vertical profiles of the averaged u- and v-component winds for the period of 12:00 UTC 502 

on 13 to 12:00 UTC on 14 Feb. 2018 areis shown in Fig. 7 for the WISSDOM synthesis (red) and 503 

sounding observations (black) launched from the DGW site. The average profiles agree well 504 

except for the height above 1.5 km MSL, slight discrepancies of u- and v-component winds (< 1 505 

m s−1). Their statistical errors during the entire research period were quantified by the box plot 506 

shown in Fig. 8.   507 
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    The maximum difference in wind directions between the WISSDOM synthesis and sounding 508 

observations is small at all layers. Except for relatively larger IQR existed (between ~−5 and 5 509 

degrees) and larger median values (between ~0 and 5 degrees) can be found at the lowest level, 510 

tThe interquartile range (IQR) and median values of the wind direction differences are also 511 

smaller (between ~0 and 2.5 degrees) during the entire research period  except for relatively 512 

larger IQR existed (between ~−5 and 5 degrees) and larger median values (between ~0 and 5 513 

degrees) at the lowest level during the entire research period (Fig. 8a). Basically, the IQR and 514 

median values of the wind direction differences are close to 0 degrees above 1 km MSL. Fig. 8b 515 

shows the difference in wind speed between the WISSDOM synthesis and sounding observations. 516 

The differences of wind speed derived from WISSDOM was slightly underestimated in the layers 517 

between ~0.85 and 1.3 km MSL. The median values of the wind speed differences were between 518 

−1 and 0.5 m s−1, and the IQR of wind speed differences was between −2 and 0.5 m s−1. Above 519 

1.3 km MSL, the differences in wind speed are small as their median values are close to 0 m s−1.  520 

    521 
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 522 

Figure 8. The box plot of average (a) wind direction discrepancies between the WISSDOM synthesis and sounding 523 

observations above the DGW site during the research period. (b) Same as (a) but for the wind speed.    524 

4.2.3 Lidar QVP 525 

The lidar QVP is another observational reference used to evaluate the performance of derived 526 

winds from the WISSDOM synthesis. The scatter plots of the horizontal winds derived from 527 

WISSDOM and lidar QVP at the DGW site are shown in Fig. 9. The strength of the u-component 528 

winds increases with height in the range between approximately 10 m s−1 and 40 m s−1 from the 529 

surface up to ~2.5 km MSL (Fig. 9a). Although the results show a relatively high correlation 530 

coefficient (0.84) for the u-component winds from lower to higher layers in the entire research 531 

period, the degree of scatter is larger than that in Fig. 6a. The average bias and RMSD of the u-532 

component winds are 2.83 m s−1 and 3.69 m s−1, respectively. The correlation coefficient of v-533 

component winds is lower (0.35) in association with low wind speed (<15 m s−1) from the surface 534 

to 2.5 km MSL (Fig. 9b), and it may possibly relate to less coverages from lidar QVP data at 535 
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higher layers. . The average bias and RMSD of the v-component winds are 2.26 m s−1 and 2.92 536 

m s−1, respectively. The results of these scatter plot analyses are summarized in Table 2. 537 

Basically, the u-component winds have high correlations, relatively lower bias, and lower RMSD 538 

than the v-component winds because the environmental winds are more westerly. 539 

 540 

Figure 9. The same as Fig. 6 but for (a) u-component winds between the WISSDOM synthesis (x-axis) and lidar 541 

QVP (y-axis). (b) The same as (a) but for v-component winds.    542 

 543 

Table 2  Summary of the intercomparisons between WISSDOM and observations 

  
Correlation 

coefficient 
Average bias (m s−1) RMSD (m s−1) 

WISSDOM-sounding 

 

u-component 

v-component 

 

0.97 

0.87 

 

-0.78 

0.09 

 

1.77 

1.65 

 

WISSDOM-lidar QVP 
u-component 0.84 2.83 3.69 

v-component 0.35 2.26 2.92 

    Compared to the sounding observations, additional w-component winds are available in 544 

lidar QVP, which allows us to check their discrepancies in 3D winds. However, most of the 545 

vertical velocity observations were quite weak (approximately ±0.2 m s−1) above the DGW site, 546 

and relatively low reliability of the derived vertical velocity could be expected in this event. 547 

Therefore, the average vertical profiles of 3D winds were utilized to qualitatively check the 548 

discrepancies between WISSDOM synthesis and lidar QVP during the research period (Fig. 10). 549 
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The results show that the average u-component winds have relatively smaller discrepancies 550 

(approximately <1 m s−1) between the WISSDOM synthesis (marked as WISS-U in Fig. 10) and 551 

lidar QVP (marked as QVP-U) below ~1.3 km MSL at the DGW site. In contrast, there were 552 

larger discrepancies (approximately >2 m s−1) between 1.3 km and 2 km MSL. The average v-553 

component winds derived from WISSDOM (marked as WISS-V) and lidar QVP (QVP-V) were 554 

generally weak, and the ranges of WISS-V and QVP-V were between ~2 m s−1 and 8 m s−1. 555 

Generally, the vertical profiles of WISS-V were nearly overlain with QVP-V, and their 556 

discrepancies existed in the height range 1.6~2.0 km MSL (maximum ~4 m s−1). Smaller (larger) 557 

discrepancies of w-component winds were significantly below (above) the height at ~1.3 km 558 

MSL (maximum discrepancies ~0.6 m s−1 at 1.7 km MSL). Despite the larger discrepancies, the 559 

similar patterns of W can also be shown. In summary, the discrepancies in the 3D winds between 560 

the WISSDOM synthesis and lidar QVP were small in the lower layers and large in the higher 561 

layers because the observational data from lidars and AWSsAWS provided good quality and 562 

sufficient wind information at the lower layers but not in the higher layers (lower coverages of 563 

lidar data above 1.3 km MSL, cf. Fig. 4).  564 
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 565 

Figure 10. Vertical wind profiles of average 3D winds derived from the WISSDOM synthesis (red lines and vectors) 566 

and lidar QVP (black lines and vectors) above the DGW site from 12:00 UTC on 13 to 12:00 UTC on 14 Feb. 567 

2018. Solid lines indicate u-component winds (m s−1), dashed lines indicate v-component winds (m s−1), and 568 

dash-dotted lines indicate w-component winds (1×101 m s−1). The u-, v-, and w-component winds derived from 569 

the WISSDOM synthesis (lidar QVP) were marked by WISS-U (QVP-U), WISS-V (QVP-V), and WISS-W 570 

(QVP-W), respectively.  571 

    Fig. 11 shows the quantile distribution of statistical errors of wind direction, wind speed and 572 

vertical velocity between the WISSDOM synthesis and lidar QVP during the research period. 573 

The IQR of the wind direction is smaller (−5~5 degrees) in the layers from 0.85 km to 1.5 km 574 

MSL and turns to approximately −10~0 degrees above 1.5 km MSL. The median values of wind 575 

direction are smaller −5~5 degrees) from near the surface to the upper layers (Fig. 11a). Fig. 11b 576 
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shows that the median values (IQR) of wind speed are approximately −1~1 m s−1 (−2~2 m s−1) 577 

below 1.5 km MSL, and they all become larger with heights above 1.5 km MSL (between −1 and 578 

3 m s−1 for median values and −4~4 m s−1 for the IQR). The statistical error of the vertical velocity 579 

reveals that the IQR is −0.2~0.2 m s−1 (−0.8~0.8 m s−1) below (above) 1.3 km MSL, and the 580 

median values are 0~0.2 m s−1 −0.2~0.6 m s−1) below (above) 1.3 km MSL. The results of 581 

statistical errors are summarized in Table 3.     582 

  583 

 584 

Figure 11. The box plot of average (a) wind direction discrepancies between the WISSDOM synthesis and sounding 585 

observations above the DGW site during the research period. (b) Same as (a) but for the wind speed. (c) Same 586 

as (a) but for the w-component winds.    587 

 588 

 589 

 590 

 591 

 592 

 593 
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5. Sensitivity test with various datasets, data implementation and weighting coefficients  594 

5.1 Impacts of various datasets (Experiment A) 595 

In this session, the impacts of various datasets implemented in the WISSDOM synthesis were 596 

evaluated, then the range of errors can be estimated from each independent observation. The basic 597 

setting of Experiment A took off several inputs is the same as that offrom the WISSDOM control 598 

run (cf. Table 1) except foras four designs in Experiment A. The details of these four designs are 599 

summarized in Table 4 as the control run without the lidar observations (A-1), the control run 600 

without the AWS observations (A-2), the control run without the sounding observations (A-3) 601 

and the control run without the LDAPS data (A-4). The discrepancies of 3D winds were examined 602 

between the control run and each design in Experiment A. Since the environmental wind speed 603 

is nearly comprised of uniform westerlies in this event, the results only show the difference in u-604 

component winds between control run and each design (A-1~A-4) in Fig. 12. In addition, to 605 

evaluate the performances between the modified WISSDOM and original version by using 606 

Doppler lidar data, additional test was designed as only Doppler lidar data are used without 607 

additional constraints from 𝐽6 ~ 𝐽8 (A-5).   608 

Table 3  Summary of the statistical errors between WISSDOM and observations 

  
Interquartile 

range (IQR) 

Median  

values 

WISSDOM-sounding 

 

wind direction  

wind speed  

 

0~2.5 (deg.)  

−2~0.5 (m s−1)  

 

0~2.5 (deg.) 

−1~0.5 (m s−1) 

 

WISSDOM-lidar QVP 

wind direction  −10~5 (deg.) −5~5 (deg.) 

wind speed  -4~4 (m s−1) −1~3 (m s−1)  

w-component winds −0.8~0.8 (m s−1)  −0.2~0.6 (m s−1)  

    



 34 

Fig. 12a reveals the discrepancies in horizontal u-component winds at 800 m MSL as the A-609 

1 is subtracted from the control run. This result reflects the impacts of lidar observations on the 610 

u-component winds in the WISSDOM synthesis. The most significant contributions from the 611 

lidar observations are the high wind speed existing near the DGW site in a relatively narrow 612 

valley. The mechanisms of the accelerated wind speed due to the channeling effect in this local 613 

area were verified by our previous study (Tsai et al. 2022). The lidar observations also contributed 614 

to the high wind speed in another area near the western side of the MHS site (128.68°E, 37.66°N). 615 

Based on the analysis in the vertical cross section of u-component winds in A-1 (Fig. 12b), the 616 

lidar observations significantly affected the high wind speed only in the lower levels (below ~900 617 

m MSL) but not in the higher levels. Lidar observations provided sufficient coverage only for 618 

lower levels and not higher levels (cf. Fig. 4).  619 

 620 

Table 4 Experiment setting (sensitivity testing) 

Control run  

Various datasets 
Including Doppler lidars, 

AWSsAWS, Soundings, LDAPS 

Interpolation of AWS RI: 1.0 km, VE: 90% 

Weighting Coefficient 

Doppler Lidars (𝛼1): 106 

Background (𝛼2):102 

Sounding (𝛼6): 106 

AWS (𝛼7): 106 

LDAPS (𝛼8): 103AWS (𝛼7): 106 

Doppler Lidars (𝛼1): 106 

LDAPS (𝛼8): 103 

Experiment A Various datasets 

A-1  Excluding Doppler Lidars  

A-2  Excluding AWSsAWS 

A-3  Excluding Soundings  

A-4  Excluding LDAPS 

A-5  Only Doppler lidars 

Experiment B Interpolation of AWS 

B-1  RI: 0.5 km, VE: 50% 

B-2  RI: 0.5 km, VE: 90% 

B-3  RI: 1.0 km, VE: 50% 

B-4  RI: 2.0 km, VE: 50% 

B-5  RI: 2.0 km, VE: 90% 



 35 

Experiment C 
Weighting Coefficient 

(constraints) 

C-1  AWS (𝛼7): 103 

C-2  Doppler Lidars (𝛼1): 103 

C-3  LDAPS (𝛼8): 106 

 621 

The impacts of the AWSsAWS have cause negative impacts values on the u-component 622 

winds in most areas at 800 m MSL in A-2 (Fig. 12c), especially in the western areas of the MHS 623 

site. Negative contributions of the u-component winds produced by the AWS observations were 624 

restricted near the surface, and the low wind speed area was extended to ~100 m above the surface 625 

(Fig. 12d). The contributions of the u-component winds from the sounding observations were 626 

weak near the DGW sounding site in A-3 (Figs. 12e and 12f). The impacts of u-component winds 627 

from the LDAPS datasets were rather smaller in most of analysis area. in A-4 (Figs. 12g and 628 

12h). Relatively weak winds were presented from the results of A-5 (Figs. 12i and 12j), especially 629 

at the lower layers. These results reflects that relatively stronger winds were retrieved when 630 

additional constraints are removed. Furthermore, it is also implied that the retrieved winds can 631 

be reasonably adjusted in the modified version of WISSDOM.               632 
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 633 

Figure 12. (a) The discrepancies in horizontal u-component winds between the control run and A-1 at 800 m MSL 634 

at 06:00 UTC on 14 Feb. 2018. (b) The same as (a) but for the vertical section along the black line in (a). (c) and 635 

(d) are the same as (a) and (b) but for A-2. (e) and (f) are the same as (a) and (b) but for A-3. (g) and (h) are the 636 

same as (a) and (b) but for A-4. (i) and (j) are the same as (a) and (b) but for A-5.   637 

   638 
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    Averaged discrepancies of derived 3D winds for each vertical level are shown in Fig. 13. 639 

These results summarized a series of sensitivity tests if the WISSDOM synthesis lacks certain 640 

data inputs (i.e., A-1~A-4 in Experiment A) for derived u-, v- and w-component winds in the test 641 

domain. Overall, the maximum absolute value of averaged discrepancies for Experiment A are 642 

smaller than approximately 0.5 m s−1, which are the discrepancies of the u-component winds for 643 

A-1 and A-2 located at 800 m MSL. Except for these values, the values of the derived u-, v- and 644 

w-component winds for A-1~A-2 are approximately smaller than 0.2 m s−1 from the surface up 645 

to the top in the test domain. Based on the results of A-5, relatively stronger values of derived u-646 

component (exceeded −0.4 m s−1 at lower layers) can be obtained from the setting like old version 647 

of WISSDOM. The wind speed can be better modulated in modified version of WISSDOM when 648 

the Doppler lidar observations were adopted. These results also implied that the ranges of errors 649 

are relatively small when we try to evaluate the discrepancies between the control run and each 650 

independent observation. In summary, the results of this experiment (cf. Fig. 13) concluded that 651 

the lidar and AWS data are more critical inputs in modified WISSDOM, and it will be benefits if 652 

more inputs can be included.            653 
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 654 

Figure 13. Vertical profiles of averaged discrepancies of 3D winds for each design in Experiment A at 06:00 UTC 655 

on 14 Feb. 2018. The averaged discrepancies of u-, v- and w-component winds were plotted by solid, dash, and 656 

dash-dot lines, and the black, red, blue, green and green orange lines indicate A-1, A-2, A-3, A-4 and A-54, 657 

respectively.    658 

5.2 Radius of influence (RI) and vertical extension for the AWS (Experiment B) 659 

Experiment B was performed to check the discrepancies in 3D winds between the control run 660 

and the different settings of RI and VE with the AWS observations. There were five designs (B-661 

1~B-5) in Experiment B with the ranges of RI (VE) between 0.5 km (50%) and 2 km (90%).  662 

Because the average distance between each AWS site is approximate from 0.1 to 2 km and more 663 

data can be included in vertically. The details are shown in Table 4. The horizontal u-component 664 
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winds at 800 m MSL and the vertical structure of Experiment B at one time step (06:00 UTC on 665 

14 February 2018) are shown in Fig. 14. An unusual circular area with positive discrepancies 666 

around the MHS site was depicted in B-1 (Figs, 14a and 14b), which may have been produced 667 

by the insufficient RI distance and VE (unusual circle can be vanished when VE becoming 90%). 668 

Relatively smaller RI and VE values can only include relatively less wind information if the 669 

distances between AWS stations are large between each AWS station. Enlarging the RI and VE 670 

are required to appropriately include more wind information from the AWS observations. Figs. 671 

14c and 14d show the results of B-2 as VE reached 90%. Although the unusual circle vanished, 672 

there were discontinuities with negative values near the northern and southern areas of the MHS 673 

site and positive areas surrounding the AWSsAWS (128.68°E, 37.66°N). The setting of B-3 was 674 

similar to that of the control run except that the VE was 50%. The discrepancies were relatively 675 

small, albeit dense AWS stations contributed even smaller negative values in the western areas 676 

of the MHS sites (Figs. 14g and 14h). Obviously, positive discrepancies appeared near the 677 

northern and southern areas of the MHS site in B-4 and B-5 (Figs. 14g-j). The impacts of the 678 

AWS with various settings (B-1~B-5) on the discrepancies in u-component winds were both 679 

restricted near the surface, even with a larger RI and high VE.             680 
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 681 
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Figure 14. The same as Fig.12, but (a) and (b) for B-1. (c) and (d) are the same as (a) and (b) but for B-2. (e) and (f) 682 

are the same as (a) and (b) but for B-3. (g) and (h) are the same as (a) and (b) but for B-4. (i) and (j) are the same 683 

as (a) and (b) but for B-5.    684 

    Fig. 15 shows the vertical profiles of averaged discrepancies of derived 3D winds in 685 

Experiment B. This figure summarizes the results of sensitivity testing with different settings of 686 

the RI and VE in WISSDOM (i.e., B-1~B-5 in Experiment B, shown in Table 4) for derived u-, 687 

v- and w-component winds in the test domain. The maximum discrepancies of u-component 688 

winds in B-1, B-2 and B-3 were quite small at only 0.4, 0.3 and 0.2 m s−1, respectively. 689 

Nevertheless, the maximum discrepancies of u-component winds for B-4 and B-5 were larger 690 

than 0.6 m s−1 and even exceeded ~1 m s−1. Although the discrepancies in the u-component winds 691 

in B-1 were small, the discrepancies in the v-component winds in B-1 reveal unusual patterns, 692 

with larger positive values at ~1100 m MSL and negative values at ~1800 m MSL (black dashed 693 

line in Fig. 15), the possible reason is the minimizations of cost function are not converged well 694 

because relatively few and weak v-component winds were included in B-1. Except for this value, 695 

the maximum discrepancies of v-component winds were small for B-2~B-5, and the maximum 696 

discrepancies of w-component winds were also small for all of Experiment B. Note that B-3 697 

always has the smallest discrepancies with the derived 3D winds because the setting is quite 698 

similar to the control run. The conclusions indicated that the moderate setting (i.e., RI is 1 km) 699 

will be helpful to get the smallest differences with the control run. In addition, the wind directions 700 

and speed should be more dominated by terrains at lower layers, the implements of AWS data 701 

are very important for the modified WISSDOM synthesis, especially at the height below 900 m 702 

MSL.                 703 
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 704 

Figure 15. The same as Fig. 13. but for B-1~B-5.  705 

5.3 Different weighting coefficients for the constraints (Experiment C) 706 

Experiment C was designed to check the discrepancies in the derived u-component winds 707 

between the control run and experimental runs with different weighting coefficients for each 708 

constraint related to the AWS, lidar and LDAPS (corresponding to C-1, C-2 and C-3 in Table 4). 709 

Originally, the weighting coefficients for the AWS and lidar observations were set to 106, and the 710 

value was 103 for the LDAPS dataset (i.e., control run, Table 1). The results of Experiment C 711 

show significant negative discrepancies in u-component winds near the surface in C-1, especially 712 
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in the areas next to the AWSsAWS (128.68°E, 37.66°N). The discrepancies for C-1 (Figs. 16a 713 

and 16b) and C-2 (Figs. 16c and 16d) are similar to those for A-2 (Figs. 12c and 12d) and A-1 714 

(Figs. 12a and 12b), respectively. The inputs of AWSsAWS and lidar both contributed relatively 715 

weak impacts to the WISSDOM synthesis when the weighting coefficient was set to 103. 716 

Irrational patterns were depicted when the weighting coefficient of LDAPS inputs increased to 717 

106, and larger and positive discrepancies were crowded into most areas in the valley (i.e., C-3, 718 

Figs. 16e). Larger and positive discrepancies existed only near the surface, and there were 719 

negative discrepancies between approximately 1000 m and 1400 m (Fig. 16f). Note that the 720 

influences of sounding observations also existed above the DGW site in scenario C-3.           721 

The vertical profiles of averaged discrepancies of derived 3D winds in Experiment C are 722 

shown in Fig. 17. Absolute values of the discrepancies in the u-, v- and w-component winds are 723 

smaller than 1 m s−1, except for the discrepancies in the v-component winds with low weighting 724 

of the AWS observations (i.e., C-1) and the discrepancies in the u- and v-component winds with  725 

thewith the high weighted LDAPS (i.e., C-3). The discrepancies in the v-component winds in C-726 

1 exceeded −5 m s−1 at ~1100 m MSL and were larger than −15 m s−1 above 2600 m MSL. These 727 

unreasonable characteristics are also shown as the discrepancies in the v-component winds in B-728 

1 (cf. Fig. 15). The discrepancies in the u- and v-component winds in C-3 are 15 m s−1 and 4 m 729 

s−1, respectively, in the layers between 700 and 900 m MSL. Alternative positive and negative 730 

discrepancies in the range of -3 to 3 m s−1 for the u-component winds in C-3 were found above 731 

1000 m MSL. The conclusions reveals that the weights of the AWS and LDAPS (lidar) are (not) 732 

too sensitive to the derived winds. Therefore, the weights of LDAPS and AWS are not necessary 733 

changed too much.      734 
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 735 

Figure 16. The same as Fig.12, but (a) and (b) for C-1. (c) and (d) are the same as (a) and (b) but for C-2. (e) and (f) 736 

are the same as (a) and (b) but for C-3.  737 
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 738 

Figure 17. The same as Fig. 13 but for C-1~C-3.  739 

6. Conclusion  740 

A modified WISSDOM synthesis scheme was developed to derive high-quality 3D winds 741 

under clear-air conditions. The main difference from the original version is that multiple lidar 742 

observations were used, and high-resolution 3D winds (50 m horizontally and vertically) were 743 

first derived in the newly developedmodified WISSDOM scheme. In addition, all available 744 

datasets were included as one of the constraints in the cost function in this study. The data 745 

implementation and the detailed principles of the newly developedmodified WISSDOM were 746 
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also elaborated. This newly developedmodified WISSDOM scheme was performed over the 747 

TMR to retrieve 3D winds during a strong wind event during ICE-POP 2018. The performance 748 

was evaluated via a series of sensitivity tests and compared with conventional observations.  749 

The intercomparisons of horizontal winds during the entire research period reveal a relatively 750 

high correlation coefficient between the optimal results of WISSDOM synthesis and sounding’s 751 

u- (v-) component winds exceeding 0.97 (0.87) at the DGW site. Furthermore, the average bias 752 

is −0.78 m s−1 (0.09 m s−1), and the RMSD is 1.772 m s−1 (1.65 m s−1) for the u- (v-) component 753 

winds. The intercomparisons of 3D winds between the WISSDOM synthesis and lidar QVP also 754 

showed a higher correlation coefficient (0.84) for u-component winds, but a relatively smaller 755 

correlation coefficient remained at 0.35 for v-component winds in this strong wind event. The 756 

average bias (RMSD) of u-component winds is 2.83 m s−1 (3.69 m s−1), and the average bias and 757 

RMSD of v-component winds are 2.26 m s−1 and 2.92 m s−1, respectively (cf. Table 2). Chen 758 

(2019) analyzed the correlations between 3D winds derived from radar and observations in 759 

several typhoon cases; the mean correlation coefficient ranged from 0.56 to 0.86, and the RMSD 760 

was between 1.13 and 1.74 m s−1. Compared to their results, only u-component winds have 761 

relatively higher correlation coefficients, but the RMSD values are slightly higher in this study, 762 

which may have been caused by the high variability in westerly winds associated with the moving 763 

LPS. The statistical error results of the winds between the optimal results of WISSDOM synthesis 764 

and observations show a good performance of the retrieved 3D winds in this strong wind event 765 

(Table 3). Generally, the median values of wind directions are within ~105 degrees. Compared 766 

with lidar QVP (sounding observations) the median values of the wind speed are approximately 767 

−1~3 m s−1 (−1~0.5 m s−1) and the vertical velocity is within −0.2~0.6 m s−1. Compared with 768 

lidar QVP (sounding observations) above the DGW site, the interquartile range of wind directions 769 

is −10~5 (0-2.5) degrees, the wind speed is approximately −-4~4 m s−1 (−13~31 m s−1) and the 770 

vertical velocity is −0.8~0.8 m s−1. The summaries of correlation coefficients, average bias, the 771 

RMSD, and the range of statistical errors are show in the schematic diagrams as Figs. 18a and 772 
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18b.   773 

 774 

Figure 18. Schematic diagrams for the results of intercomparisons on (a) the correlation coefficients (R, histograms), 775 

the average bias (marked as diamonds), and the RMSD (marked as asterisks). (b) The ranges of statistic error for 776 

the IQR (red boxes) and median values (blue boxes). The wind directions and wind speed are denoted as Wd and 777 

Ws, respectively.  778 

A control run (see the basic setting in Table 1) was set to explore the importance of acquired 779 

observation datasets, various distances of RI, VE from the AWS observations, and the weighting 780 

coefficient for each constraint (i.e., Experiments A-C, Table 4). The results of Experiment A 781 

show that the lidar and AWS play critical roles in the derived horizontal winds, and the lidars 782 
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(AWSsAWS) provided positive (negative) contributions in stronger (weaker) wind speeds near 783 

the surface. The sounding and the LDAPS provided relatively smaller impacts on the derived 784 

horizontal winds from the WISSDOM synthesis. In Experiment B, the smallest discrepancies in 785 

3D winds were depicted when the RI (VE) was set to 1 km (50%); it indicated that the optimal 786 

setting of the RI is 1 km. However, there were larger discrepancies in 3D winds (from −0.4 m s−1 787 

to ~1 m s−1) when the RI was set at 0.5 km and 2 km, and the VE was set between 50% and 90% 788 

(cf. Fig. 15). In Experiment C, significant discrepancies in 3D winds appeared by decreasing 789 

(raising) the weighting coefficient from the AWS observations (LDPAS datasets). In addition to 790 

the reasonable winds can be derived by applying the optimal setting in modified WISSDOM, 791 

90% (50%) of VE are also recommended over complex terrain (flat surface). The results of these 792 

sensitivity testing will be helpful to verify the impacts from various scenarios in this area. The 793 

conclusions can also be good refence to decide where the best locations for the instruments 794 

employed.                       795 

    This study demonstrated that reasonable patterns of 3D winds were derived by the newly 796 

developedmodified WISSDOM synthesis scheme in a strong wind event. Reasonable winds can 797 

be retrieved from modified WISSDOM with sufficient coverage from the data, moderate 798 

weighting function and appropriate implements from different datasets. IIn the future, many cases 799 

are required to check the performance of this newly developedmodified WISSDOM scheme with 800 

different synoptic weather systems under clear-air conditions in different seasons. In addition, 801 

knowing the detailed kinematic fields will help us to identify where the flow 802 

accelerates/decelerates over complex terrain. Thus, the possible mechanisms of extremely strong 803 

winds in South Korea will be well documented through combinations with derived dynamic fields 804 

(Tsai et al., 2018, 2022), thermodynamic fields (Liou et al., 2019), observations and simulations. 805 

Except for the detailed wind structures can be well documented in any meteorological phenomena 806 

under clear-air conditions (eq., land-sea breeze, micro-downburst, and non-precipitation low-807 

pressure systems etc.). Furthermore, the new version of WISSDOM has broad applications in site 808 



 49 

surveys of wind turbines, wind energy, monitoring wildfires, outdoor sports in mountain ranges 809 

and aviation security.    810 
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