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Abstract

A WISSDOM (Wind Synthesis System using Doppler Measurements) synthesis scheme was
developed to derive high-resolution 3-dimensional (3D) winds under clear-air conditions. From
this variational-based scheme, detailed wind information was obtained from scanning Doppler
lidars, automatic weather stations (AWS), sounding observations, and local reanalysis datasets
(LDAPS, Local Data Assimilation and Prediction System), which were utilized as constraints to
minimize the cost function. The objective of this study is to evaluate the performance and
accuracy of derived 3D winds from this modified scheme. A strong wind event was selected to
demonstrate its performance over complex terrain in Pyeongchang, South Korea. The size of the
test domain is 12 x 12 km? extended up to 3 km height mean sea level (MSL) with remarkably
high horizontal and vertical resolution of 50 m. The derived winds reveal that reasonable patterns
were explored from a control run, as they have high similarity with the sounding observations.
The results of intercomparisons show that the correlation coefficients between derived horizontal
winds and sounding observations are 0.97 and 0.87 for u- and v-component winds, respectively,
and the averaged bias (root mean square deviation, RMSD) of horizontal winds is between —0.78
and 0.09 (1.77 and 1.65) m s™!. The correlation coefficients between WISSDOM-derived winds
and lidar QVP (quasi-vertical profile) are 0.84 and 0.35 for u- and v-component winds,
respectively, and the averaged bias (RMSD) of horizontal winds is between 2.83 and 2.26 (3.69
and 2.92) m s~!. The statistical errors also reveal a satisfying performance of the retrieved 3D
winds; the median values of wind directions are —5~5 (0~2.5) degrees, the wind speed is
approximately —1~3 m s ! (—=1~0.5 m s™!) and the vertical velocity is -0.2~0.6 m s~! compared
with the lidar QVP (sounding observations). A series of sensitivity tests with different weighting
coefficients, radius of influence (RI) in interpolation and various combination of different
datasets were also performed. The results indicate that the present setting of the control run is the
optimal reference to WISSDOM synthesis in this event and will help verify the impacts against
various scenarios and observational references in this area.
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1. Introduction

In the past few decades, many practical methods have been developed to derive wind
information by using meteorological radar data (Mohr and Miller, 1983, Lee et al., 1994, Liou
and Chang, 2009, Bell et al. 2012). The derived winds substantially revealed reasonable patterns
compared with conventional observations (such as surface stations, soundings, wind profiles,
etc.) and models (Liou et al., 2014, North et al., 2017, Chen, 2019, Oue et al., 2019). Most
comprehensive applications of the derived winds were adopted to document kinematic and
precipitation structures associated with various weather systems or phenomena at different scales
from thousands, hundreds, and a couple of kilometers, such as cold fronts, typhoons, tropical
cyclone rainbands, convective lines, and nonprecipitation low-pressure systems (LPS) (Yu and
Bond, 2002, Yu and Jou, 2005, Yu and Tsai, 2013, Yu and Tsai, 2017, Tsai et al. 2018, Yu et al.,
2020, Cha and Bell, 2021, Tsai et al., 2022). In addition, the accuracy of 3D winds could be
improved when increasing the numbers of Doppler radar because relatively fewer assumptions
and more information can be included (Yu and Tsai 2010, Liou and Chang, 2009). Therefore, the
retrieved schemes within multiple Doppler radars are a more popular way to obtain high-quality
3D winds and have been extensively applied to meteorological analyses.

The technique of velocity track display (VTD, Lee et al., 1994) and ground-based velocity
track display (GBVTD, Lee et al., 1999) can derive the winds from single Doppler radar under
some assumptions, as the wind patterns are generally uniform or axisymmetric rotational (Cha
and Bell, 2021). More extended techniques based on VTD and GBVTD have also been applied
to increase the quality of derived wind data, and such techniques include Extended-GBVTD
(EGBVTD, Liou et al., 2006) and generalized velocity track display (GVTD, Jou et al., 2008).
However, winds usually present nonuniform patterns and fast-evolving characteristics in most
mesoscale weather systems and microscale phenomena, and complete and detailed winds are still
difficult to resolve by these techniques. Most developed techniques are based on the contexts of
weaknesses from the above schemes on wind retrievals. Instead of a single Doppler radar,
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multiple Doppler can retrieve better quality 3D winds with relativity fewer assumptions because
they provide sufficient radial velocity measurements and wind information with wider coverage
in the synthesis domain.

Cartesian Space Editing, Synthesis, and Display of Radar Fields under Interactive Control
(CEDRIC, Mohr and Miller, 1983) is a traditional package used to retrieve 3D winds by dual-
Doppler radar observations. This scheme usually determines the horizontal winds by using two
radars, and the vertical velocity can be obtained by variational adjustment with anelastic
continuity equation. Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation
(SAMURALI) software is another way to retrieve 3D winds (Bell et al., 2012); this scheme is a
kind of variational data assimilation that adopts multiple radars. Recently, Tsai et al. (2018)
utilized the measurements of six Doppler radars to document precipitation and airflow structures
over complex terrain on the northeastern coast of South Korea via WISSDOM (Wind Synthesis
System using Doppler Measurements). Liou and Chang (2009) is the first purposes of this
algorithm. Furthermore, they performed immersed boundary method (IBM, Tseng and Ferziger,
2003) in WISSDOM, and its scientific applications were documented in Liou et al. (2012) and
Liou et al. (2016), respectively. Since one of the advantages of WISSDOM is that it considers
the orographic forcing on Cartesian coordinates by applying the IBM, higher quality 3D winds
can be derived well over terrain (Liou et al., 2013, 2014, Lee et al., 2018).

Generally, radial velocity is measured by detecting the movement of precipitation particles
relative to the locations of Doppler radars; thus, there are no sufficient radial velocity
measurements under clear-air conditions. However, the winds in clear-air conditions usually play
an important role in the initiations of various weather systems and phenomena, such as downslope
winds, gap winds, and wildfires (Reed, 1931, Colle and Mass, 2000, Mass and Ovens, 2019, Lee
et al., 2020). Although surface stations, soundings, and wind profilers can measure winds under
clear-air conditions, relatively poor spatial coverage is still a problem for obtaining sufficient
wind information in certain local areas. Therefore, scanning Doppler lidars will be one approach
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to obtain wind information under clear-air conditions. Péschke et al. (2015) assessed the quality
of wind derived by Doppler lidar with a wind profiler in a year trial, and the results showed good
agreement in wind speed (the error ranged between 0.5 and 0.7 m s™!) and wind direction (the
error ranged between 5° and 10°). Bell et al. (2020) combined an intersecting range height
indicator (RHI) of six Doppler lidars to build “virtual towers” (such as wind profilers) to
investigate the airflow over complex terrain during the Perdigéo experiment. These virtual towers
can fill the gap in wind measurements above meteorological towers. The uncertainty of wind
fields is also reduced by adopting multiple Doppler lidars (Choukulkar et al., 2017), and a high
spatiotemporal resolution of derived wind is allowed to check small-scale rotors in mountainous
areas (Hill et al., 2010).

The original WISSDOM was designed to retrieve 3D winds based on Doppler radar
observations and background inputs combined with conventional observations and modeling.
However, the original WISSDOM only provided 3D winds under precipitation conditions. It does
not work well under clear-air conditions because Doppler radar cannot easily detect radial
velocity without precipitation particles. To obtain high-quality 3D winds under clear-air
conditions, the radial velocity observed from the scanning Doppler lidars can be used in modified
WISSDOM. The results will allow us to investigate the initiations of precipitation systems in
advance of rainfall and snowfall, which is an essential benefit rather than Doppler radar in related
research topics. Furthermore, the conventional observations and modeling datasets were used as
isolated constraints in the modified WISSDOM synthesis scheme. One of the benefits of the
isolated constraints is that it is easy to synthesize any kind of wind information obtained from
available datasets and give suitable weighting coefficients with different constraints when they
are processing the minimization in the cost function. Thus, more reliable 3D winds in clear-air
conditions were well derived from this modified WISSDOM synthesis scheme.

The objective of this study is to modify the WISSDOM synthesis scheme based on the
original version to be a more flexible and useful scheme by adding any number of Doppler lidars
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and conventional observations as well as modeling datasets. This modified WISSDOM will allow
us to obtain an exceedingly high spatial resolution of 3D winds (50 m was set in this study) under
clear-air conditions. A resolution of 50 m was chosen in this study, as the Doppler lidars’
respective horizontal resolution averages 40-60 m. A variety of adequate datasets were collected
during a strong wind event in the winter season during an intensive field experiment ICE-POP
2018 (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic
winter games). In summary, the main goal of this study is to use Doppler lidar observations to
retrieve high-resolution 3D winds over terrain with clear-air conditions via WISSDOM. In this
study, detailed principles of the modified WISSDOM and data implementation are elucidated in
the following sections. In addition, the modified WISSDOM was performed to retrieve 3D winds
over complex terrain under clear-air conditions in a strong wind event. The reliability of the

derived 3D winds was also evaluated and discussed with conventional observations.

2. Methodology

2.1 Original version of WISSDOM (WInd Synthesis System using DOppler Measurements)

WISSDOM is a mathematically variational-based scheme to minimize the cost function, and
various wind-related observations can be used as one of the constraints in the cost function. The
3D winds were derived by variationally adjusted solutions to satisfy the constraints in the cost
function; thus, this is a gradient decent technique to converge toward a solution. The original
version of WISSDOM performed five constraints, including radar observations (i.e., reflectivity
and radial velocity), background (combined with automatic weather stations, sounding, model or
reanalysis data), continuity equation, vorticity equation, and Laplacian smoothing (Liou and
Chang 2009). Liou et al. (2012) applied the IBM in WISSDOM to consider the effect on the

nonflat surfaces. One of the advantages of IBM is providing realistic topographic forcing without
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changing the Cartesian coordinate system into a terrain-following coordinate system. More
scientific documentation associated with the interactions between terrain, precipitation, and
winds in different areas can be found in Liou et al. (2016) for Taiwan and in Tsai et al. (2018) for

South Korea. The cost function can be expressed as

] = ZS:]M, (D

where [, is the different constraints. J; is the constraint related to the geometric relation
between radar radial Doppler velocity observations (V,.) and derived one from true winds (V; =
u.i + v;j + wK) in Cartesian coordinates [eq. (2)]. Note that the V, will be first guessed,
resulting from the background of the sounding observations used in this study.

1= Zz: Z i“u (Tl,i,t)z- 2)

t=1xy,z i=1
Since WISSDOM is a scheme that uses the 4DV AR approach, the variations between different
time steps (t) should be considered, and two time steps of radar observations were collected in
this constraint and all following constraints. The x,y,z indicates the locations of a given grid
point in the synthesis domain, and i could be any number (N) of radars (at least 1). The a; is
the weighting coefficient of J; (a is the weighting coefficient of J, and so on). Ty ;. in eq.

(2) is defined as eq. (3):

— Wre), (3)

X—Pi y_Pi Z—Pi
Ty = (Vr)i,t_( - x)ut_( - 3’) Ut—( — Z)(Wt
L

L L

(1);¢ is the radial velocity observed by the radar (i) at time step (t), Py, PJ}' and P! depict the
coordinate of radar i. The u,, v, and w, (Wr,) denote the 3D winds (terminal velocity of

precipitation particles) at given grid points at the time step t ; and 1=

Ja= P+ =B+ - P,
The second constraint is the difference between the background (Vp,) and true (derived)

wind field (V; = u;i + v;j + w;K), which is defined as
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There were several options to obtain background in the original version of WISSDOM. The most
popular background resource involves using sounding observations; however, it can only provide
homogeneous wind information for each level in WISSDOM with relatively coarse temporal
resolution (3- to 12-hour intervals). The other option is combining sounding observations with
AWS (automatic weather station) observations. Although the AWS provided wind information
with better temporal resolution (1-min), the data were only observed at the surface layer with
semirandom distributions. The last option is to combine sounding, AWS, modeling or reanalysis
datasets. However, various datasets with different spatiotemporal resolutions are not favorable
for appropriate interpolation of given grid points of WISSDOM synthesis, and the accuracy and
reliability of the background may have been significantly affected by such a variety of datasets.
Thus, these different observed or model data should be treated differently to minimize
uncertainties and improve accuracy. Therefore, one of the improvements in the modified
WISSDOM is that these inputs were individually separated into independent constraints with
flexible interpolation methods. In addition, individual constraints considered the time if the
temporal resolution of the inputs was equal to or higher than the time interval of the WISSDOM
outputs. Note that the sounding observations are still a necessary dataset because the air density
and temperature profile were used to identify the height of the melting level. In this study,
sounding winds were adopted to represent the background for each level and a constraint at the
same time; nevertheless, the AWS and reanalysis dataset are independent constraints in the
modified WISSDOM (details are provided in the following section).

The third, fourth and fifth constraints in the cost function are the anelastic continuity
equation, vertical vorticity equation and Laplacian smoothing filter, respectively. Equations (5),

(6) and (7) are denoted as follows:
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pPo ineq. (5) is the air density, and { = dv/dx — du/dy in eq. (6). The main advantage is that
using vertical vorticity can provide further improvement in winds and thermodynamic retrievals
from a method named as Terrain-Permitting Thermodynamic Retrieval Scheme (TPTRS, Liou et

al. 2019).

2.2 The modified WISSDOM

In addition to the five constraints in the original version, the modified WISSDOM synthesis
scheme includes three more constraints in the cost function. Thus, the cost function in the
modified WISSDOM was written as

8
1= Ju ®
M=1

J1~Js in (8) are the same constraints corresponding to equations (2)-(7). The main purpose
of this study is to retrieve 3D winds under clear-air conditions in which observational data are
relatively rare. Instead of the radial velocity (V}.);, observed from Doppler radars in eq. (3) in
original version of WISSDOM, the radial velocity observed from Doppler lidars was adopted in
the modified WISSDOM synthesis. In addition, if there were no precipitation particles under
clear-air conditions, the terminal velocity of precipitation particles (Wr ) was set to zero in eq.
(3) in the modified WISSDOM. In this study, the time steps in WISSDOM were set by the
synthesis time and 12 mins before the synthesis time due to the temporal resolution of the primary
input lidar data being 12 mins. Notably, relatively minor changes in environmental conditions
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were assumed in WISSDOM due to the limitation on the coarse temporal resolution from specific
inputs. For example, the closest time step of a sounding observation or LDAPS dataset was
chosen regarding the synthesis time, and the time constrain was set to be the same.

The sixth constraint is the difference between the derived wind fields and the sounding

observations (Vs ), as defined in (9):

2
Jo= ) > ao(Ve—Vse)" ©)
t=1x,y,z

The sounding data in [, were interpolated to the given grid points near its tracks bearing on the
radius influence (RI) distance (the details are provided in Section 3.2.3). The main difference
between Jo and J, is that the sounding data with various wind speeds and directions were used
as an observation for given 3D locations in [, instead of the constraint of homogeneous
background winds (i.e., uniform wind speed and direction) for each level in the studied domain
in J,. An additional benefit of ], is that any number of sounding observations can be efficiently
adopted in the WISSDOM synthesis domain. The seventh constraint represents the discrepancy
between the true (derived) wind fields and AWS (V, ), as expressed in (10):
2
=) (V= Vae). (10)
t=1xy,z
Finally, the eighth constraint measures the misfit between the derived winds and the local
reanalysis dataset (V ), as defined in (11):
2
Jo= D > ag(Ve= Vi)’ (11)
t=1xy,z

In this study, various observations and reanalysis datasets were utilized as constraints in the cost
function of WISSDOM. The most important dataset is the radial velocity observed from Doppler
lidars, which can measure wind information with high spatial resolution and good coverage from
near the surface up to higher layers in the test domain. Sounding and AWS can provide horizontal
winds for background or to be included in the constraints. The local reanalysis datasets were
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obtained from the 3DVAR Local Data Assimilation and Prediction System (LDAPS) data
assimilation system from the Korea Meteorological Administration (KMA). Since these datasets
have different coordinate systems and various spatiotemporal resolutions, additional procedures
are required before the synthesis. Detailed descriptions of the procedures are described in the next
section.

The high-quality synthesized 3D wind field from radar observations has been applied in
several previous studies such as those by Liou and Chang (2009), Liou et al. (2012, 2013, 2014,
2016), and Lee et al. (2017). The advantages and details of the WISSDOM can be found in Tsai
et al. (2018). Although several studies have used Doppler radar in WISSDOM, this study is the
first time to apply Doppler lidar data in WISSDOM. This modified WISSDOM synthesis scheme
has also been applied in the analysis related to the mechanisms of orographically induced strong
wind on the northeastern coast of Korea (Tsai et al., 2022). In contrast to previous studies, this
study provides clear context, detailed procedures, reliability, and the limitations of the modified

WISSDOM.

3. Data processing with a strong wind event

3.1 Basic information of WISSDOM synthesis

A small domain near the northeastern coast of South Korea was selected to derive detailed
3D winds over complex terrain (in the black box in the inset map in Fig. 1) because relatively
dense and high-quality wind observations were only collected in this region during ICE-POP
2018. The size of the WISSDOM synthesis domain is 12 x 12 km? (up to 3 km MSL height) in
the horizontal (vertical) direction with 50 m grid spacing. Such high spatial resolution 3D winds
were synthesized every | hour in this test. Note that the output time steps are adjustable to be

finer (recommended limitation is 10 mins), but they are highly related to the temporal resolution
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257  of various datasets and computing resources. Two scanning Doppler lidars are located near the
258  center of the domain: one is the equipped “WINDEX-2000" (the model’s name from the
259  manufacturer) at the May Hills Supersite (MHS) site, and the other is the “Stream line-XR” at
260  the DaeGwallyeong regional Weather office (DGW) site. In addition to the operational AWS
261 (727 stations), additional surface observations (32 stations) are also involved in ICE-POP 2018
262  surrounding the MHS and DGW sites and the venues of the winter Olympic Games. The
263  soundings are launched at the DGW site every 3 hours during the research period. The LDAPS
264  also provided high spatial resolution of wind information in the test domain. The horizontal

265  distribution of all instruments and datasets used are shown in Fig. 1.
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267  Figure 1. Horizontal distribution of instruments and datasets used in this study. A small box in the upper map
268 indicates the WISSDOM synthesis domain. The Doppler lidars are marked by start symbols at the MHS and
269 DGW: sites. Red solid circles and square indicate the automatic weather station (AWS) and sounding, respectively.
270 The black cross marks the data points of LDAPS. Topographic features and elevations are shown with the color
271 shading in a color bar in the figure. The location of the Teabeak Mountain Range (TMR) is also marked.
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3.2 Data implemented in WISSDOM synthesis

3.2.1 Scanning Doppler lidars

The radial velocity observed from two scanning Doppler lidars was utilized to retrieve 3D
winds via WISSDOM synthesis. The original coordinate system of observed lidar data is not a
Cartesian coordinate system but a spherical (or polar) coordinate system as a plan position
indicator (PPI) and hemispheric range height indicator (HRHI) or the RHI. Although relatively
dense and complete coverage of wind information (i.e., radial velocity of aerosols) were
sufficiently recorded by lidar observations, the collected data are usually not located directly on
the given grid points in the WISSDOM synthesis (i.e., Cartesian coordinate system). In this study,
the lidar data were interpreted simply from the lidar coordinate system to the Cartesian coordinate
system via bilinear interpolation.

The scanning strategy of the lidar at the DGW site includes five elevation angles for PPI (7°,
15°,30°, 45°, and 80° before 10:00 UTC on 14 Feb. 2018 and 4°, 8°, 14°, 25°, and 80° after 10:00
UTC) and two HRHIs at azimuth angles of 51° and 330°. A full volume scan included all PPIs
and HRHIs every ~12 min. The maximum observed radius distance is ~13 km, and the grid
spacing is 40 m for each gate along the lidar beam. The scanning strategy of the lidar at the MHS
site involves seven elevation angles for PPI (5°, 7°, 10°, 15°, 30°, 45°, and 80°) and one HRHI
at an azimuth angle of 0°. A full volume scan included all PPIs and RHIs every ~12 min. The
maximum observed radius distance was ~8 km, and the grid spacing was 60 m. The vertical

distribution of lidar data in the test domain is shown as blue lines in Fig. 2a.

3.2.2 Automatic weather station (AWS)

Most of the AWS are not exactly located on the given grid points of the Cartesian coordinate
system. Objective analysis (Cressman, 1959) is a popular way to correct semirandom and
inhomogeneous meteorological fields into regular grid points. Notably, that the wind directions
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and speed must be the first project with the values along the u- and v-components, and then,
their values must be interpolated individually to the given grids. This study adopted objective
analysis for the AWS observations with adjustable RI distances between 100 m and 2000 m. After
this first step, the observational data can reasonably interpolate to the given grid points
horizontally. Furthermore, an additional step is required to put these interpolated data into the
given grid points at different vertical levels because the AWS are located at different elevations
in the test domain. In the traditional way of original WISSDOM, the interpolated data are moved
to the closest level with the shortest distance just above the AWS site. However, the interpolated
data are NOT moved to the closest level if the shortest distances are large like more than half
(50%) of grid spacing. Nevertheless, to include more data from the AWS observations
appropriately, adjusted distances between the AWS sites and given grid points at different vertical
levels were necessarily considered. These adjusted distances can be named as vertical extension
(VE) here, and there are two options of 50% and 90% in the tests of this study, which correspond
to 25 m and 45 m extensions between each grid (in case of the grid spacing is 50 m), respectively.
An example demonstrated how to implement the interpolated data to the given grid points by
adjustable VE after step one (Fig. 2b).

In Fig. 2b, the interpolated data do not need to move to a given grid point (as an example, at
the 800 m level here) if the elevation of the AWS is equal to the height of a given grid point as
point A. When the AWS is located higher than a given grid point (as point B in Fig. 2b) and does
not reach the lower boundary of VE (50%) from the upper given grid point (i.e., at the 850 m
level), this interpolated data will be removed and wasted. In contrast, when the interpolated data
are located just below the given grid point with 50% VE, it will be achieved in the WISSDOM
synthesis at the 800 m level (point C in Fig. 2b). The interpolated data of point D have a similar
situation to point B; however, it will be achieved at the 800 m level because a higher VE (90%)
was applied here. Since the locations of the AWS are semirandom with relatively sparse or
concentrated distributions, the optimal RI and adjustable VE make it possible to include more

14
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324 Figure 2. (a) Schematic diagram of the vertical distribution of adopted lidar datasets. Blue lines indicate the lidar
325 data observed at the DGW and MHS sites with different elevation angles. The AWS are located on the ground
326 and are marked by solid red circles. An example of a sounding track launched from the DGW site in one time
327 step (06:00 UTC on 14 Feb. 2018) is plotted as a thick black line. The black cross marks indicate the vertical
328 distribution of the LDAPS dataset. (b) Schematic diagram for data implementation with various locations of the
329 AWS and different percentages of VE (vertical extension) from given grid points at the 800 m MSL level (thick
330 black line). The gray shading on the bottom represents the topography.
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3.2.3 Sounding

During ICE-POP 2018, the soundings are launched at the DGW site every 3 hours (from
00Z). Vertical profiles of air pressure, temperature, humidity, wind speed and directions were
recorded every second (i.e., ~3 m vertical spatial resolution) associated with the rising sensor.
The sounding sensor drifted when rising, and an example of its track in one time step is shown
as a thick black line in Fig. 2a. In this example, the sounding movement was mostly affected by
westerly winds, and it measured the meteorological parameters in any location along the track in
the test domain. The coordinate system of sounding data is quite similar to the distribution of
AWS measurements, and the observations are not located right on the given grid points of the
WISSDOM synthesis.

Similar to the AWS data, the sounding data also underwent objective analysis with an
adjustable RI distance for the wind measurements in the first step. Then, the interpolated data
were switched to given grid points for each vertical level by the different VE in the WISSDOM

synthesis.

3.2.4 Reanalysis dataset: LDAPS

The local reanalysis dataset LDAPS was generated by the KMA. This dataset provides u-
and v-component winds every 3 hours, and the horizontal spatial resolution is ~1.5 km with the
grid type in Lambert Conformal (as black cross marks in Fig. 1). The data revealed denser
distributions near the surface and sparse distributions at higher levels (see Fig. 2a). The initiations
of wind variables in the LDAPS were assimilated with many observational platforms, including
radar, AWS, satellite and sounding data. Thus, the relatively high reliability of this dataset could
be expected. In addition, such datasets have also significantly improved the forecast ability in
small-scale weather phenomena over complex terrain in Korea (Kim et al., 2019, Choi et al.,

2020, Kim et al., 2020).
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The LDAPS data are not located directly on the given grid points of the WISSDOM synthesis
system. Unlike the distribution of AWS and sounding observations, LDAPS has dense and good
coverage in the test domain. The Cartesian coordinate is the most efficient method and the best
system for partial differential equations (Armijo, 1969), and it is also used in the cost function of
WISSDOM (Liou and Chang, 2009). In this study, the horizontal and vertical resolutions of given
grid points were primarily determined by the characteristics of lidar data. Therefore, similar to
lidar observations, the LDAPS data were also interpolated to the given grid points on the

Cartesian coordinate system via the bilinear interpolation method.

3.3 Overview of the selected strong wind event

A strong wind event was selected to evaluate the performance of this modified WISSDOM
synthesis scheme. In this strong wind event, the evolution of surface wind patterns on the Korean
Peninsula was mainly dominated by a moving LPS which is one type of strong downslope winds
(Park et al, 2022, Tsai et al., 2022). The LPS moved out from China and penetrated the northern
part of the Korean Peninsula through the Yellow Sea beginning at approximately 12:00 UTC on
13 February 2018. Consequently, a relatively strong surface wind speed (exceeding ~17 m s™!)
was observed when the LPS was located near the northeastern coast of the Korean Peninsula
(~130°E, 40°N) at 00:00 UTC on 14 February 2018 (Fig. 3). Then, the surface wind speed became
weak when the LPS moved away from South Korea after 00:00 UTC on 15 February 2018 (not

shown); the details of the synoptic conditions can be found in Tsai et al. (2022).

17



374
375
376
377

378

379

380

381

382

383

384

385

386

387

388

389

00UTC 14 FEB 2018 (09KST 14 FEB 2018 )
40E

170W

TTAXAS KMA
'[1400UTC FEB 2018
| SYNOPTIC ANALYSIS

00!
g

401

2 1008

: \ ‘ (8
P iy W 7
R 1; -~
Z3 Ny i
uar 35KT
§roee \

6
7 2200 "o 30N|

R

140E

orea Meteorological Administration(KMA) 00UTC 14 FEB 2018 (09KST 14 FEB 2018 )

Figure 3. Synoptic surface chart from the Korea Meteorological Administration (KMA) at 00:00 UTC on 14 Feb.
2018. The locations of the Korean peninsula and the LPS has been marked by black circle.

This event is one of two strong wind events (i.e., daily maximum wind speeds larger than

! observed at the AWS sites along the northeastern coast of South Korea) in the past

I0ms™
decade based on the KMA historic record. Such a strong wind event may help us to examine the
potential maximum errors of the retrieved winds. Since persistent, strong westerly winds were
observed by the soundings and AWS from near the surface and upper layers over the TMR during
the event, the data coverages in the test domain were checked during a chosen time step (06:00
UTC on 14 February 2018). The percentage of data occupations for each dataset (after
interpolation) was checked, and the results are shown in Fig. 4. Note that the elevation of the
TMR is approximately 700 m MSL in the test domain. The lidars provided good coverage of
100% to 50% at the lower layers between 700 m and 800 m MSL. The coverage of lidars was

reduced significantly above 900 m MSL and remained at ~5% due to the scan strategy during the

Olympic games (more dense observations near the surface). The maximum coverage of the AWS
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observations is ~40% at 800 m, and there was less coverage above this layer since relatively few
AWS are located in the higher mountains. Because only one sounding observation was utilized
in this domain, relatively few coverages were also depicted. The local reanalysis LDAPS can
provide complete coverage above 900 m MSL (exceeding 100%), albeit there was less coverage
in the lower layers due to terrain. The lidar, sounding, and AWS observations covered most areas
at lower levels but not higher levels; thus, the LDAPS compensated for most of the wind

information at the upper layers in the WISSDOM synthesis.

3
1 —lidar i
2.5 - —sounding B
—AWS
—| DAPS

Height (km, MSL)

L I BRI B RN
0 20 40 60 80 100
data coverage (%, 2018 0214 0600UTC)

Figure 4. Data coverage (percentage, %) of the lidar (blue line), sounding (black line), AWS (red line) observations,
and LDAPS (green line) at 06:00 UTC on 14 Feb. 2018.

4. Control run and the accuracy of WISSDOM

4.1 Control run

Relatively reliable 3D winds were derived by a control run of the WISSDOM synthesis
because all available wind observations and local reanalysis datasets were appropriately acquired.
These datasets provided sufficient and complete wind information with a high percentage of
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coverage in the test domain (cf. Fig. 4). Therefore, the retrieved winds from the control run can
be treated as the optimal results in WISSDOM. The control run was performed carefully with the
necessary procedures in data implementation before running the WISSDOM synthesis as follows.
The lidar and LDAPS datasets must perform bilinear interpolation to the given grid points in
WISSDOM, and the sounding and AWS observations must undergo objective analysis with the
appropriate RI distance and VE. The quantities of the weighting coefficients for each input dataset
followed the default setting from the original version of WISSDOM. The 3D winds were derived
during one time step at 06:00 UTC on 14 Feb. 2018 and compared with conventional
observations. Note that the best weighting coefficients have been determined by a series of
observation system simulation experiment (OSSE) type tests from Liou and Chang (2009). They
put more weighting coefficients in observations and fewer in modeling inputs. Based on the
experiences and the default setting of weighting coefficients from their studies, the basic setting
of the control run was first decided. Consequently, sensitivity tests were performed to better
understand the possible variances associated with different weighting coefficients when the lidar

data were implemented. The basic setting of this control run is summarized in Table 1.

Table 1 Basic setting of WISSDOM (control run)

Latitude: 37.606°N~37.713°N

Domain Range Longitude: 128.642°E~128.778°E

Domain Size 12 x 12 x 3 km (long x width x vertical)
Spatial Resolution 0.05 x 0.05 % 0.05 km (long x width x vertical)
Terrain Resolution 0.09 km
Coordinate System Cartesian coordinate system

Background Sounding (DGW)

Doppler Lidars (MHS, DGW): bilinear interpolation
AWS: objective analysis (RI*: 1 km, VE*: 90%)
Sounding (DGW): objective analysis (RI: 1 km, VE: 90%)
LDAPS: bilinear interpolation

Data Implementation

Weighting Coefficient Doppler Lidars (a): 10°
(input datasets) Background (a;):10?
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Sounding (ag): 10°
AWS (ay): 10°
LDAPS (ag): 10°

‘ *RI: radius influence, VE: vertical extension

The results of 3D winds at 800 m MSL derived from the control run are shown in Figs. 5a,
c, and e. Topographic features comprised relatively lower elevations in the center of the test
domain, and there were weaker u-component winds (~7 m s™!) near the AWS and MHS lidar sites
between 128.67°E and 128.71°E (Fig. 5a). In contrast, the u-component winds (~15 m s™!) were
almost doubled near the DGW lidar site (between 128.71°E and 128.73°E). The vertical
structures of the u-component winds across these two lidars (i.e., along the black line in Fig. 5a)
are shown in Fig. 5b. The strength of the u-component winds rapidly increased from the surface
to the upper layers (from ~6 to 20 m s™!), and uniform u-component winds with wavy pattern
were depicted above ~1 km MSL except for the stronger winds near the surface surrounding the
DGW site. There were relatively weak (strong) u-component winds surrounding the lidar at the
MHS (DGW) site near the surface. Relatively weak v-component winds were found
(approximately +4 m s ') at 800 m MSL (Fig. 5¢); thus, the horizontal wind directions were
mostly westerly winds during this time step. The v-component winds were obviously accelerated
in several local areas encompassing the terrain (near 128.71°E). The vertical structure of the v-
component winds (Fig. 5d) indicates that the v-component winds became stronger in the upper
layer. The wind directions were changed from westerly to southwesterly from the near surface
up to ~1.4 km MSL height. Updrafts were triggered on windward slopes when westerly winds
impinge the terrain or hills (Figs. Se and 5f). Basically, the 3D winds derived from the WISSDOM
synthesis reveal reasonable patterns compared to synoptic environmental conditions (cf. Fig. 3);

the moving LPS accompanied stronger westerly winds.
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Figure 5. The 3D winds were derived from the control run by the WISSDOM synthesis at 06:00 UTC on 14 Feb.

2018. (a) The u-component winds (color, m s™!) at 800 m MSL; the gray shading represents the terrain area, and

the contours indicate different terrain heights of 600 m, 800 m and 1000 m MSL corresponding to thin to thick

contours. The locations of lidars are marked with asterisks. (b) Vertical structures of u-component winds (color,

m s ) along the black line in (a) The gray shading in the lower part of the figure indicates the height of the terrain.

(c) and (d) are the same as (a) and (b) but for the v-component winds. (¢) and (f) are the same as (a) and (b) but

for the w-component winds.
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4.2 Intercomparison between derived winds and observations

Detailed analyses were performed in this section to quantitatively evaluate the accuracy of
the optimally derived 3D winds from the WISSDOM synthesis. Two kinds of instruments were
available in the test domain to detect the relatively realistic winds: sounding and lidar quasi-
vertical profiles (QVP, Ryzhkov et al., 2016). The QVP of horizontal and vertical winds were
retrieved based on the so-called velocity-azimuth display (VAD) technique (Browning and
Wexler, 1968, Gao et al., 2004). We regressed the Fourier coefficients of the Doppler velocities
of the 80° PPI under the linear horizontal wind assumption and obtained the horizontal wind
profile. The vertical (i.e., w-component) wind was retrieved under the assumptions of constant
vertical wind, zero terminal velocity of aerosol particles, and no horizontal divergence [see Kim
et al. (2022) for details on the wind retrieval]. The accuracy of the retrieved wind profile is
suitable for the WISSDOM wind evaluation, given the low root mean square deviation (RMSD)
of <2.5 m s! and high correlation coefficient of > 0.94 of horizontal wind speed as shown in the
comparison against 487 rawinsondes (Kim et al., 2022). The horizontal winds observed from the
soundings and the u-, v-, and w-component winds of the lidar QVP at the DGW site were utilized

to represent the observations.

A complete analysis of the intercomparison between the WISSDOM synthesis and
observations is presented in the following subsections. Because the verification observations are
being used in the WISSDOM synthesis, the results of the control run are not verified
independently; nevertheless, detailed discussions regarding the results of the sensitivity tests for

the observations are presented in Section 5.

4.2.1 Sounding

The discrepancies in horizontal winds derived from WISSDOM and the sounding

observations for the entire research period (from 12:00 UTC on 13 to 12:00 UTC on 14 February
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2018) were analyzed. Fig. 6 shows the scatter plots of the u- and v-component winds on the
locations following the tracks of sounding launched from the DGW site. Most of the u-component
winds derived from WISSDOM are in good agreement with the sounding observations, and the
wind speed is increased with the height from approximately 10 to 40 m s'!. Slight underestimation
of retrieved u-component winds can be found at the layers of 1.5~2 km MSL (Fig. 6a). In contrast,
most of the v-component winds were weak (smaller than 15 m s™!) at all layers, because the
environmental winds were more like westerlies during the research period. There were also
slightly overestimated v-component winds derived from WISSDOM at the layers of 1.5~2 km
MSL (Fig. 6b). The possible reason why the overestimated winds occurred above ~1.5 km MSL

is that lidar data had relatively less coverages at higher layers (cf. Fig. 4).
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Figure. 6. Scatter plots of (a) u-component winds between the WISSDOM synthesis (x-axis) and sounding
observations (y-axis) above the DGW site during the research period. The colors indicate different layers, and
the numbers of data points, correlation coefficients, average biases and root mean square deviations are also

shown in the figure. (b) The same as (a) but for v-component winds.

Overall, the u-component winds show a high correlation coefficient (exceeding 0.97), low
average bias (—0.78 m s™!), and the RMSD of 1.77 m s™!. The correlation coefficient of the v-

component is also high (0.87), the average bias is 0.09 m s™!, and the RMSD is 1.65 m s,
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Figure 7. Vertical wind profiles of average horizontal winds derived from the WISSDOM synthesis (red lines and
vectors) and sounding observations (black lines and vectors) above the DGW site from 12:00 UTC on 13 to
12:00 UTC on 14 Feb. 2018. Solid lines indicate u-component winds (m s '), and dashed lines indicate v-

component winds (m s™!).

The vertical profiles of the averaged u- and v-component winds for the period of 12:00 UTC
on 13 to 12:00 UTC on 14 Feb. 2018 is shown in Fig. 7 for the WISSDOM synthesis (red) and
sounding observations (black) launched from the DGW site. The average profiles agree well
except for the height above 1.5 km MSL, slight discrepancies of u- and v-component winds (< 1
m s ). Their statistical errors during the entire research period were quantified by the box plot

shown in Fig. 8.
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501 The maximum difference in wind directions between the WISSDOM synthesis and sounding
502  observations is small at all layers. Only relatively larger IQR (between ~—5 and 5 degrees) and
503  larger median values (between ~0 and 5) can be found at the lowest level. The interquartile range
504  (IQR) and median values of the wind direction differences are smaller (between ~0 and 2.5
505  degrees) during the entire research period (Fig. 8a). Basically, the IQR and median values of the
506  wind direction differences are close to 0 degrees above 1 km MSL. Fig. 8b shows the difference
507  in wind speed between the WISSDOM synthesis and sounding observations. The differences of
508  wind speed derived from WISSDOM was slightly underestimated in the layers between ~0.85
509  and 1.3 km MSL. The median values of the wind speed differences were between —1 and 0.5 m
510  s7!, and the IQR of wind speed differences was between —2 and 0.5 m s™!. Above 1.3 km MSL,
511  the differences in wind speed are small as their median values are close to 0 m s™!.
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514 Figure 8. The box plot of average (a) wind direction discrepancies between the WISSDOM synthesis and sounding
515 observations above the DGW site during the research period. (b) Same as (a) but for the wind speed.
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4.2.3 Lidar QVP

The lidar QVP is another observational reference used to evaluate the performance of derived
winds from the WISSDOM synthesis. The scatter plots of the horizontal winds derived from
WISSDOM and lidar QVP at the DGW site are shown in Fig. 9. The strength of the u-component
winds increases with height in the range between approximately 10 m s™! and 40 m s™! from the
surface up to ~2.5 km MSL (Fig. 9a). Although the results show a relatively high correlation
coefficient (0.84) for the u-component winds from lower to higher layers in the entire research
period, the degree of scatter is larger than that in Fig. 6a. The average bias and RMSD of the u-
component winds are 2.83 m s ! and 3.69 m s™!, respectively. The correlation coefficient of v-
component winds is lower (0.35) in association with low wind speed (<15 m s7!) from the surface
to 2.5 km MSL (Fig. 9b), and it may possibly relate to less coverage from lidar QVP data at
higher layers. The average bias and RMSD of the v-component winds are 2.26 m s™! and 2.92 m
s”!, respectively. The results of these scatter plot analyses are summarized in Table 2. Basically,
the u-component winds have high correlations, relatively lower bias, and lower RMSD than the

v-component winds because the environmental winds are more westerly.
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Figure 9. The same as Fig. 6 but for (a) u-component winds between the WISSDOM synthesis (x-axis) and lidar

QVP (y-axis). (b) The same as (a) but for v-component winds.
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534
Table 2 Summary of the intercomparisons between WISSDOM and observations

Correlation . " "

coefficient Average bias (ms ') RMSD (ms™)
i . u-component 0.97 -0.78 1.77
WISSDOM-sounding " onent 0.87 0.09 1.65
. u-component 0.84 2.83 3.69

ISSDOM-1 P
WISSDOM-lidar QVP 0 onent 0.35 2.26 2.92
535 Compared to the sounding observations, additional w-component winds are available in

536  lidar QVP, which allows us to check their discrepancies in 3D winds. However, most of the
537  vertical velocity observations were quite weak (approximately 0.2 m s™!) above the DGW site,
538 and relatively low reliability of the derived vertical velocity could be expected in this event.
539  Therefore, the average vertical profiles of 3D winds were utilized to qualitatively check the
540  discrepancies between WISSDOM synthesis and lidar QVP during the research period (Fig. 10).
541  The results show that the average u-component winds have relatively smaller discrepancies
542  (approximately <1 m s !) between the WISSDOM synthesis (marked as WISS-U in Fig. 10) and
543  lidar QVP (marked as QVP-U) below ~1.3 km MSL at the DGW site. In contrast, there were
544  larger discrepancies (approximately >2 m s !) between 1.3 km and 2 km MSL. The average v-
545  component winds derived from WISSDOM (marked as WISS-V) and lidar QVP (QVP-V) were
546  generally weak, and the ranges of WISS-V and QVP-V were between ~2 m s ! and 8 m s,
547  Generally, the vertical profiles of WISS-V were nearly overlain with QVP-V, and their
548  discrepancies existed in the height range 1.6~2.0 km MSL (maximum ~4 m s™!). Smaller (larger)
549  discrepancies of w-component winds were significantly below (above) the height at ~1.3 km
550  MSL (maximum discrepancies ~0.6 m s ! at 1.7 km MSL). Despite the larger discrepancies, the
551  similar patterns of W can also be shown. In summary, the discrepancies in the 3D winds between
552 the WISSDOM synthesis and lidar QVP were small in the lower layers and large in the higher
553  layers because the observational data from lidars and AWS provided good quality and sufficient

554  wind information at the lower layers but not in the higher layers (lower coverages of lidar data
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above 1.3 km MSL, cf. Fig. 4).
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Figure 10. Vertical wind profiles of average 3D winds derived from the WISSDOM synthesis (red lines and vectors)

and lidar QVP (black lines and vectors) above the DGW site from 12:00 UTC on 13 to 12:00 UTC on 14 Feb.

2018. Solid lines indicate u-component winds (m s '), dashed lines indicate v-component winds (m s!), and

dash-dotted lines indicate w-component winds (1x10' m s™!). The u-, v-, and w-component winds derived from
p p

the WISSDOM synthesis (lidar QVP) were marked by WISS-U (QVP-U), WISS-V (QVP-V), and WISS-W

(QVP-W), respectively.

Fig. 11 shows the quantile distribution of statistical errors of wind direction, wind speed and

vertical velocity between the WISSDOM synthesis and lidar QVP during the research period.

The IQR of the wind direction is smaller (—5~5 degrees) in the layers from 0.85 km to 1.5 km

MSL and turns to approximately —10~0 degrees above 1.5 km MSL. The median values of wind
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direction are smaller —5~5 degrees) from near the surface to the upper layers (Fig. 11a). Fig. 11b

shows that the median values (IQR) of wind speed are approximately ~1~1 m s™' (-2~2 m s71)

below 1.5 km MSL, and they all become larger with heights above 1.5 km MSL (between —1 and

3 ms~! for median values and —4~4 m s™! for the IQR). The statistical error of the vertical velocity

reveals that the IQR is —0.2~0.2 m s! (=0.8~0.8 m s7!) below (above) 1.3 km MSL, and the

median values are 0~0.2 m s™' —0.2~0.6 m s !) below (above) 1.3 km MSL. The results of

statistical errors are summarized in Table 3.
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Figure 11. The box plot of average (a) wind direction discrepancies between the WISSDOM synthesis and sounding

observations above the DGW site during the research period. (b) Same as (a) but for the wind speed. (c) Same

as (a) but for the w-component winds.

Table 3 Summary of the statistical errors between WISSDOM and observations

Interquartile Median
range (IQR) values
WISSDOM-sounding wind direction 0~2.5 (deg.) 0~2.5 (deg.)
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wind speed -2~0.5(ms!) -1~0.5(ms 1)

wind direction —10~5 (deg.) —5~5 (deg.)
WISSDOM-lidar QVP wind speed 4~4 (ms™) —1~3 (ms™)
w-component winds -0.8~0.8(ms!) —0.2~0.6 (ms!)

5. Sensitivity test with various datasets, data implementation and weighting coefficients

5.1 Impacts of various datasets (Experiment A)

In this section, the impacts of various datasets on data implemented in the WISSDOM
synthesis were evaluated. In particular, the quantitative variances between each design, control
run, sounding observations, and the QVP can be estimated. The basic setting of Experiment A
took off several inputs from the WISSDOM control run (cf. Table 1) as four designs in
Experiment A. The details of these four designs are summarized in Table 4 as the control run
without the lidar observations (A-1), the control run without the AWS observations (A-2), the
control run without the sounding observations (A-3) and the control run without the LDAPS data
(A-4). The discrepancies of 3D winds were examined between the control run and each design in
Experiment A. Since the environmental wind speed is nearly comprised of uniform westerlies in
this event, the results only show the difference in u-component winds between control run and
each design (A-1~A-4) in Fig. 12. An additional test was designed as only Doppler lidar data are
used without other constraints from Jo ~ Jg (A-5) to evaluate the performances between the
modified and original versions of WISSDOM.

Fig. 12a reveals the discrepancies in horizontal u-component winds at 800 m MSL as the A-
1 is subtracted from the control run. This result reflects the impacts of lidar observations on the

u-component winds in the WISSDOM synthesis. The most significant contributions from the
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598  lidar observations are the high wind speed existing near the DGW site in a relatively narrow
599  valley. The mechanisms of the accelerated wind speed due to the channeling effect in this local
600  area were verified by our previous study (Tsai et al. 2022). The lidar observations also contributed
601  to the high wind speed in another area near the western side of the MHS site (128.68°E, 37.66°N).
602  Based on the analysis in the vertical cross section of u-component winds in A-1 (Fig. 12b), the
603  lidar observations significantly affected the high wind speed only in the lower levels (below ~900
604 m MSL) but not in the higher levels. Lidar observations provided sufficient coverage only for

605 lower levels and not higher levels (cf. Fig. 4).

606
Table 4 Experiment setting (sensitivity testing)
. Including Doppler lidars, AWS,
Various datasets Soundings, LDAPS
Interpolation of AWS  RI: 1.0 km, VE: 90%
Control run Doppler Lidars (a): 10°
Background (a;):10?
Weighting Coefficient Sounding (a): 10°
AWS (a7): 10°
LDAPS (ag): 10°
A-1 Excluding Doppler Lidars
A-2 Excluding AWS
Experiment A Various datasets A-3  Excluding Soundings
A-4  Excluding LDAPS
A-5  Only Doppler lidars
B-1 RI: 0.5 km, VE: 50%
B-2 RI: 0.5 km, VE: 90%
Experiment B Interpolation of AWS  B_3  RI: 1.0 km, VE: 50%
B-4 RI: 2.0 km, VE: 50%
B-5 RI: 2.0 km, VE: 90%
Exveriment ¢ Veighting Coefficient C-1 AWS (a7): 10° X
Xperimen (constraints) C-2 Doppler Lidars (a;): 10
C-3 LDAPS (ag): 10°
607
608 The impacts of the AWS cause negative values on the u-component winds in most areas at

609 800 m MSL in A-2 (Fig. 12c), especially in the western areas of the MHS site. Negative
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617

618

contributions of the u-component winds produced by the AWS observations were restricted near
the surface, and the low wind speed area was extended to ~100 m above the surface (Fig. 12d).
The contributions of the u-component winds from the sounding observations were weak near the
DGW sounding site in A-3 (Figs. 12e and 12f). The impacts of u-component winds from the
LDAPS datasets were rather smaller in most of analysis area. in A-4 (Figs. 12g and 12h).
Relatively weak winds were presented near the surface from the results of A-5 (Figs. 121 and
12j). These results reflect that the additional constraints play crucial roles, especially at lower
layers. Furthermore, it is implied that the winds can be reasonably retrieved when additional

constraints are set in the modified version of WISSDOM.
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620  Figure 12. (a) The discrepancies in horizontal u-component winds between the control run and A-1 at 800 m MSL
621 at 06:00 UTC on 14 Feb. 2018. (b) The same as (a) but for the vertical section along the black line in (a). (c) and
622 (d) are the same as (a) and (b) but for A-2. (e) and (f) are the same as (a) and (b) but for A-3. (g) and (h) are the
623 same as (a) and (b) but for A-4. (i) and (j) are the same as (a) and (b) but for A-5.

624
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Averaged discrepancies in derived 3D winds for each vertical level in entire domain are
shown in Fig. 13a. These results summarized a series of sensitivity tests if the WISSDOM
synthesis lacks certain data inputs (i.e., A-1~A-5 in Experiment A) for derived u-, v- and w-
component winds in the test domain. Overall, the maximum absolute value of averaged

I which are the

discrepancies for Experiment A are smaller than approximately 0.5 m s~
discrepancies of the u-component winds for A-1 and A-2 located at 800 m MSL. Except for these
values, the values of the derived u-, v- and w-component winds for A-1~A-2 are approximately
smaller than 0.2 m s™! from the surface up to the top in the test domain. Based on the results of
A-5, relatively stronger values of derived u-component (exceeded —0.4 m s™! at lower layers) can
be obtained from the setting like old version of WISSDOM. The wind speed can be better
modulated in modified version of WISSDOM when the Doppler lidar observations were adopted.

In addition, the discrepancies in derived 3D winds between sounding observations and QVP
were also examined along the sounding tracks (Fig. 13b) and above the DGW site (Fig. 13c¢).
Sounding observations played an essential role in the derived winds along its tracks. The
maximum discrepancies of u- (v-) component winds are exceeded by approximately —2 (—1) m
s ! if the WISSDOM synthesis lacks sounding observations. However, small discrepancies
(nearly 0 m s ') were presented when the sounding (lidar) data were (not) implemented at all
levels in A-1. The peaks in the discrepancies manifested the potential impacts from the lidar and
AWS. This may be a result of lidar (AWS) having relativity higher data coverage at ~1.4 (0.8)
km MSL (cf. Fig. 4). The maximum discrepancies between the derived winds and the QVP winds

are approximately —4 and 4 (=1 and 0) m s™!

associated with u-, v- (w-) component winds.
Generally, the results reveal similar trends in A-1~A-5, which also implies that all the inputs in
the WISSDOM synthesis are equally significant against the QVP. In summary, the results of this
experiment (cf. Fig. 13) show that the lidar, sounding, and AWS data are more critical inputs in
modified WISSDOM. Therefore, it will be beneficial if various inputs can be included in the

synthesis.
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Figure 13. (a) Vertical profiles of averaged discrepancies of 3D winds for each design in Experiment A at 06:00
UTC on 14 Feb. 2018. The averaged discrepancies of u-, v- and w-component winds were plotted by solid, dash,
and dash-dot lines, and the black, red, blue, green and orange lines indicate A-1, A-2, A-3, A-4 and A-5,
respectively. (b) The same as (a) but for the discrepancies of sounding observations and u-, and v-component

winds. (c) The same as (a) but for the discrepancies of QVP.

5.2 Radius of influence (RI) and vertical extension for the AWS (Experiment B)

Experiment B was performed to check the discrepancies in 3D winds between the control run
and the different settings of RI and VE with the AWS observations. Because the average distance
is approximately 0.1 to 2 km between each AWS site, there were five designs (B-1~B-5) in
Experiment B with ranges of RI (VE) between 0.5 km (50%) and 2 km (90%). The details are
shown in Table 4. The horizontal u-component winds at 800 m MSL and the vertical structure of
Experiment B at one time step (06:00 UTC on 14 February 2018) are shown in Fig. 14. An

unusual circular area with positive discrepancies around the MHS site was depicted in B-1 (Figs,
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14a and 14b), which may have been produced by the insufficient RI distance and VE (the circular
artefact is removed when increasing VE to 90%). Relatively smaller RI and VE values can only
include relatively less wind information if the distances are large between each AWS. Enlarging
the RI and VE are required to appropriately include more wind information from the AWS
observations. Figs. 14c and 14d show the results of B-2 as VE reached 90%. Although the unusual
circle vanished, there were discontinuities with negative values near the northern and southern
areas of the MHS site and positive areas surrounding the AWS (128.68°E, 37.66°N). The setting
of B-3 was similar to that of the control run except that the VE was 50%. The discrepancies were
relatively small, albeit dense AWS contributed even smaller negative values in the western areas
of the MHS sites (Figs. 14g and 14h). Obviously, positive discrepancies appeared near the
northern and southern areas of the MHS site in B-4 and B-5 (Figs. 14g-j). The impacts of the
AWS with various settings (B-1~B-5) on the discrepancies in u-component winds were both

restricted near the surface, even with a larger RI and high VE.

37



2018 0214 0600 UTC  Control-AWS(RI:0.5km,VE:50%) U-wind (ms™) 800m
| I

|201 80214 0(500I utc Conlrol-l/-\Ws(Rl:0.5km,\llE:50%) U-wir;d (ms™)
s 1400 8
37.70N 7 7
6 6
5 5
1200
4 4
37.68N 3 3
2 = 2
2 1
37.66N £ 1000 0
s -1
8
2 = 2
3 3
37.64N 4 800 “
5 5
% 6
37.62N 7 7
-8 600 8
128.65 128.677 128.704 128.732 128.759
Longitude (°E)
12865E  12867E  12869E  12871E  12873E  12875E 12877
2018 0214 0600 UTC  Control-AWS(RI:0.5km,VE:90%) U-wind (ms™) 800m
1 | |
2018 0214 0600 UTC  Control-AWS(RI:0.5km,VE:90%) U-wind (ms)
8 1400 L | 1 1 1
37.70N 7
6
5
37.68N 4 1200
3
2
g
37.66N =
£ 1000
1 £
2 S
37.64N 3
g -4
5 800
-6
37.62N 7
-8
600
128.65 128.677 128.704 128732 128.759
128.65E 128.67E 128.69E 128.71E 128.73E 128.75E 128.77E Longitude (°E)
2018 0214 0600 UTC  Control-AWS(RI:1.0km,VE:50%) U-wind (m's™) 800m
|
2018 0214 0600 UTC  Control-AWS(RI:1.0km,VE:50%) U-wind (ms™)
8 1400 L | 1 1 1
37.70N 7
6
5
4
37.68N 1200
3
2
g
37.66N &
1 £ 1000
5
2 g
37.64N 3
g -4
5 800
-6
37.62N -7
-8
600
128,65 128.677 128.704 128.732 128.759
12865E  12867E  12869E  12871E  12873E  12875E 12877 Longitude ()
2018 0214 0600 UTC  Control-AWS(RI:2.0km,VE:50%) U-wind (ms) 800m
2018 0214 0600 UTC  Control-AWS(RI:2.0km,VE:50%) U-wind (ms™)
8 1400 I 1 I 1 s
37.70N 7
6 7
: :
37.68N g 1200 — 4
2 3
=5 2
2 1
37.66N =
£ 1000 - 0
5 -1
2 -2
37.64N 3
800 - 4
-5
-6
37.62N
-7
600 - 8
128.65 128.677 128.704 128.732 128.759
12865E  12867E  12869E  12871E  12873E  12875€ 12877 Longitude (°E)
2018 0214 0600 UTC  Control-AWS(RI:2.0km,VE:90%) U-wind (m s™) 800m
| |
2018 0214 0600 UTC  Control-AWS(RI:2.0km,VE:90%) U-wind (ms™)
8 1400 L 1 | 1 s
37.70N 7
6 7
: :
37.68N : 1200 - 4
2 3
= 2
2 1
37.66N =
£ 1000 - 0
2 3 B
E
37.64N 3 :
d " 3
5 800 L 4
% ‘2
37.62N -7 h
8 7
600 L 8
128.65 128.677 128.704 128.732 128.759
6 7 8 12865E  12867E  12869E  12871E  12873E 12875 12877 Longitude (E)

38



679
680
681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

Figure 14. The same as Fig.12, but (a) and (b) for B-1. (c) and (d) are the same as (a) and (b) but for B-2. (e) and (f)
are the same as (a) and (b) but for B-3. (g) and (h) are the same as (a) and (b) but for B-4. (i) and (j) are the same
as (a) and (b) but for B-5.

Fig. 15a shows the vertical profiles of averaged discrepancies of derived 3D winds in
Experiment B. This figure summarizes the results of sensitivity testing with different settings of
the RI and VE in WISSDOM (i.e., B-1~B-5 in Experiment B, shown in Table 4) for derived u-,
v- and w-component winds in the test domain. The maximum discrepancies of u-component

winds in B-1, B-2 and B-3 were quite small at only 0.4, 0.3 and 0.2 m s’!

, respectively.
Nevertheless, the maximum discrepancies of u-component winds for B-4 and B-5 were larger
than 0.6 m s™! and even exceeded ~1 m s™!. Although the discrepancies in the u-component winds
in B-1 were small, the discrepancies in the v-component winds in B-1 reveal unusual patterns,
with larger positive values at ~1100 m MSL and negative values at ~1800 m MSL (black dashed
line in Fig. 15a), the possible reason is the minimizations of cost function are not converged well
because relatively few and weak v-component winds were included in B-1. Except for this value,
the maximum discrepancies of v-component winds were small for B-2~B-5, and the maximum
discrepancies of w-component winds were also small for all of Experiment B. Note that B-3
always has the smallest discrepancies with the derived 3D winds because the setting is quite
similar to the control run. Figs. 15b and 15¢ show the discrepancies of derived 3D winds between
the sounding observations and QVP. Their patterns are similar to A-1~AS5 (cf. Figs. 13b and 13c),
except there were relatively larger values of u- (v-) component winds at lower layers
(approximately —3 and 1 m s ') in B-1 (Fig. 15b). The v-component winds also presented larger
values (exceeded ~3 m s ') below ~1.2 km MSL compared with the QVP (Fig. 15c). The
conclusions indicated that the moderate setting (i.e., RI is 1 km) would be helpful to obtain minor
differences with the control run, sounding observations and the QVP. On the other hand, the

limited setting in experiment B (i.e., B-1) was helpless. In addition, the wind directions and speed

should be dominated by terrain, and the implementation of AWS data is crucial for the modified
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WISSDOM synthesis, especially in the lower layers.
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Figure 15. The same as Fig. 13. but for B-1~B-5.

5.3 Different weighting coefficients for the constraints (Experiment C)

Experiment C was designed to check the discrepancies in the derived u-component winds
between the control run and experimental runs with different weighting coefficients for each
constraint related to the AWS, lidar and LDAPS (corresponding to C-1, C-2 and C-3 in Table 4).
Originally, the weighting coefficients for the AWS and lidar observations were set to 10°, and the
value was 10° for the LDAPS dataset (i.e., control run, Table 1). The results of Experiment C
show significant negative discrepancies in u-component winds near the surface in C-1, especially
in the areas next to the AWS (128.68°E, 37.66°N). The discrepancies for C-1 (Figs. 16a and 16b)
and C-2 (Figs. 16¢ and 16d) are similar to those for A-2 (Figs. 12¢ and 12d) and A-1 (Figs. 12a
and 12b), respectively. The inputs of AWS and lidar both contributed relatively weak impacts to
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the WISSDOM synthesis when the weighting coefficient was set to 10°. Irrational patterns were
depicted when the weighting coefficient of LDAPS inputs increased to 10°, and larger and
positive discrepancies were crowded into most areas in the valley (i.e., C-3, Figs. 16e). Larger
and positive discrepancies existed only near the surface, and there were negative discrepancies
between approximately 1000 m and 1400 m (Fig. 16f). Notably, significant variances usually
existed between the observations and reanalysis datasets due to various spatiotemporal
resolutions. The results of scenario C-3 do not converge well because there was a relatively more
significant gradient between each input as their weighting coefficients were set to be the same
(i.e., 10%). In this way, the effects of poor convergences might be amplified and superposed with
the AWS and lidar observations along the sounding tracks. This may be a possible reason that
artificial signals existed over the DGW site in scenario C-3.

The vertical profiles of averaged discrepancies of derived 3D winds in Experiment C are
shown in Fig. 17a. Absolute values of the discrepancies in the u-, v- and w-component winds are

smaller than 1 m s™!

, except for the discrepancies in the v-component winds with low weighting
of the AWS observations (i.e., C-1) and the discrepancies in the u- and v-component winds with
the high weighted LDAPS (i.e., C-3). The discrepancies in the v-component winds in C-1
exceeded —5 m s™! at ~1100 m MSL and were larger than —15 m s™! above 2600 m MSL. These
unreasonable characteristics are also shown as the discrepancies in the v-component winds in B-
1 (cf. Fig. 15a). The discrepancies in the u- and v-component winds in C-3 are 15 m s ! and 4 m
s !, respectively, in the layers between 700 and 900 m MSL. Alternative positive and negative
discrepancies in the range of —3 to 3 m s™! for the u-component winds in C-3 were found above
1000 m MSL.

The discrepancies in derived 3D winds between sounding observations and QVP in
Experiment C were also examined. Compared to the sounding observations, more significant
discrepancies in the u- and v-component winds (exceeded ~20 m s™!) can be obtained when
reducing (increasing) the weighting coefficients of the AWS (LDAPS) data (Fig. 17b). However,
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the impacts of lidar against the QVP are shown; their discrepancies are in the range of —1 to 2 m
s'! for the u-component winds in C-2 (Fig. 17¢). The conclusions reveal that the weighting
coefficients of the AWS and LDAPS (lidar) are (moderately) significantly sensitive to the derived

winds. Therefore, the weighting coefficients of LDAPS and AWS are not necessarily changed

much.
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Figure 16. The same as Fig.12, but (a) and (b) for C-1. (c) and (d) are the same as (a) and (b) but for C-2. (e) and (f)
are the same as (a) and (b) but for C-3.
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753 Figure 17. The same as Fig. 13 but for C-1~C-3.

754 6. Conclusion

755 A modified WISSDOM synthesis scheme was developed to derive high-quality 3D winds
756  under clear-air conditions. The main difference from the original version is that multiple lidar
757  observations were used, and high-resolution 3D winds (50 m horizontally and vertically) were
758  first derived in the modified WISSDOM scheme. In addition, all available datasets were included
759  as one of the constraints in the cost function in this study. The data implementation and the
760  detailed principles of the modified WISSDOM were also elaborated. This modified WISSDOM
761  scheme was performed over the TMR to retrieve 3D winds during a strong wind event during
762  ICE-POP 2018. The performance was evaluated via a series of sensitivity tests and compared

763  with conventional observations.
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The intercomparisons of horizontal winds during the entire research period reveal a relatively
high correlation coefficient between the optimal results of WISSDOM synthesis and sounding’s
u- (v-) component winds exceeding 0.97 (0.87) at the DGW site. Furthermore, the average bias
is —0.78 m s™! (0.09 m s7!), and the RMSD is 1.77 m s™! (1.65 m s!) for the u- (v-) component
winds. The intercomparisons of 3D winds between the WISSDOM synthesis and lidar QVP also
showed a higher correlation coefficient (0.84) for u-component winds, but a relatively smaller
correlation coefficient remained at 0.35 for v-component winds in this strong wind event. The
average bias (RMSD) of u-component winds is 2.83 m s™! (3.69 m s™!), and the average bias and
RMSD of v-component winds are 2.26 m s™! and 2.92 m s™!, respectively (cf. Table 2). Chen
(2019) analyzed the correlations between 3D winds derived from radar and observations in
several typhoon cases; the mean correlation coefficient ranged from 0.56 to 0.86, and the RMSD
was between 1.13 and 1.74 m s™!. Compared to their results, only u-component winds have
relatively higher correlation coefficients, but the RMSD values are slightly higher in this study,
which may have been caused by the high variability in westerly winds associated with the moving
LPS. The statistical error results of the winds between the optimal results of WISSDOM synthesis
and observations show a good performance of the retrieved 3D winds in this strong wind event
(Table 3). Generally, the median values of wind directions are within ~10 degrees. Compared
with lidar QVP (sounding observations) the median values of the wind speed are approximately
—1~3 m s ! (=1~0.5 m s7!) and the vertical velocity is within —0.2~0.6 m s !. Compared with
lidar QVP (sounding observations) above the DGW site, the interquartile range of wind directions
is —10~5 (0-2.5) degrees, the wind speed is approximately —4~4 m s™! (=1~3 m s™!) and the
vertical velocity is —0.8~0.8 m s™!. The summaries of the correlation coefficients, average bias,
the RMSD, and range of statistical errors are shown in the schematic diagrams as Figs. 18a and

18b.
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Figure 18. Schematic diagrams for the results of intercomparisons on (a) the correlation coefficients (R, histograms),
the average bias (marked as diamonds), and the RMSD (marked as asterisks). (b) The ranges of statistic error for
the IQR (red boxes) and median values (blue boxes). The wind directions, wind speed and w-component winds

are denoted as Wd, Ws, and W respectively.

A control run (see the basic setting in Table 1) was set to explore the importance of acquired
observation datasets, various distances of RI, VE from the AWS observations, and the weighting
coefficient for each constraint (i.e., Experiments A-C, Table 4). The results of Experiment A
show that the lidar and AWS play critical roles in the derived horizontal winds, and the lidars
(AWS) provided positive (negative) contributions in stronger (weaker) wind speeds near the
surface. The sounding and the LDAPS provided relatively smaller impacts on the derived
horizontal winds from the WISSDOM synthesis. In Experiment B, minor discrepancies in 3D
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winds were depicted when the RI (VE) was set to 1 km (50%), which indicated that the optimal
setting of the R is 1 km. However, there were larger discrepancies in 3D winds (from —0.4 m s™!
to ~1 m s™") when the RI was set at 0.5 km and 2 km, and the VE was set between 50% and 90%
(cf. Fig. 15). In Experiment C, significant discrepancies in 3D winds appeared by decreasing
(raising) the weighting coefficient from the AWS observations (LDPAS datasets). Relatively
reasonable winds can be derived with optimal settings in modified WISSDOM, and the setting
of 90% (50%) in VE is also recommended over complex terrain (flat surface). These sensitivity
tests will help verify the impacts against various scenarios and observational references in this
area. The conclusions can also be a good reference for deciding the best locations to deploy the
instruments.

This study demonstrated that reasonable patterns of 3D winds were derived by the modified
WISSDOM synthesis scheme in a strong wind event. Reasonable winds can be retrieved from
modified WISSDOM with sufficient coverage from the data, a moderate weighting function, and
appropriate implementation from different datasets. In the future, many cases are required to
check the performance of this modified WISSDOM scheme with different synoptic weather
systems under clear-air conditions in different seasons. In addition, knowing the detailed
kinematic fields will help us to identify where the flow accelerates/decelerates over complex
terrain. Thus, the possible mechanisms of extremely strong winds in South Korea will be well
documented through combinations with derived dynamic fields (Tsai et al., 2018, 2022),
thermodynamic fields (Liou et al., 2019), observations and simulations. The detailed wind
structures can be well documented for any meteorological phenomena in clear-air conditions
(e.g., land—sea breezes, microdownbursts, nonprecipitation low-pressure systems, etc.) via a
modified version of WISSDOM. It also has broad applications in site surveys of wind turbines,

wind energy, monitoring wildfires, outdoor sports in mountain ranges, and aviation security.
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Code and data availability. The scanning Doppler lidars, AWS, and sounding data used in this
study are available through zenodo: https://doi.org/10.5281/zenodo.6537507. The LDAPS
dataset is freely available from the KMA website (https://data.kma.go.kr).
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