

1 **High Resolution 3D Winds Derived from a Modified WISSDOM Synthesis
2 Scheme using Multiple Doppler Lidars and Observations**

8 **Chia-Lun Tsai¹, Kwonil Kim¹, Yu-Chieng Liou², and GyuWon Lee^{*1}**

10 ¹Department of Astronomy and Atmospheric Sciences, Center for Atmospheric REmote
11 sensing (CARE), Kyungpook National University, Daegu, South Korea

12 ²Department of Atmospheric Sciences, National Central University, Jhongli, Taiwan

* Corresponding author: Prof. GyuWon Lee, E-mail: gyuwon@knu.ac.kr

15 **Abstract**

16 A WISSDOM (Wind Synthesis System using Doppler Measurements) synthesis scheme was
17 developed to derive high-resolution 3-dimensional (3D) winds under clear-air conditions. From
18 this variational-based scheme, detailed wind information was obtained from scanning Doppler
19 lidars, automatic weather stations (AWS), sounding observations, and local reanalysis datasets
20 (LDAPS, Local Data Assimilation and Prediction System), which were utilized as constraints to
21 minimize the cost function. The objective of this study is to evaluate the performance and
22 accuracy of derived 3D winds from this modified scheme. A strong wind event was selected to
23 demonstrate its performance over complex terrain in Pyeongchang, South Korea. The size of the
24 test domain is $12 \times 12 \text{ km}^2$ extended up to 3 km height mean sea level (MSL) with remarkably
25 high horizontal and vertical resolution of 50 m. The derived winds reveal that reasonable patterns
26 were explored from a control run, as they have high similarity with the sounding observations.
27 The results of intercomparisons show that the correlation coefficients between derived horizontal
28 winds and sounding observations are 0.97 and 0.87 for u- and v-component winds, respectively,
29 and the averaged bias (root mean square deviation, RMSD) of horizontal winds is between -0.78
30 and 0.09 (1.77 and 1.65) m s^{-1} . The correlation coefficients between WISSDOM-derived winds
31 and lidar QVP (quasi-vertical profile) are 0.84 and 0.35 for u- and v-component winds,
32 respectively, and the averaged bias (RMSD) of horizontal winds is between 2.83 and 2.26 (3.69
33 and 2.92) m s^{-1} . The statistical errors also reveal a satisfying performance of the retrieved 3D
34 winds; the median values of wind directions are $-5\text{--}5$ ($0\text{--}2.5$) degrees, the wind speed is
35 approximately $-1\text{--}3 \text{ m s}^{-1}$ ($-1\text{--}0.5 \text{ m s}^{-1}$) and the vertical velocity is $-0.2\text{--}0.6 \text{ m s}^{-1}$ compared
36 with the lidar QVP (sounding observations). A series of sensitivity tests with different weighting
37 coefficients, radius of influence (RI) in interpolation and various combination of different
38 datasets were also performed. The results indicate that the present setting of the control run is the
39 optimal reference to WISSDOM synthesis in this event and will help verify the impacts against
40 various scenarios and observational references in this area.

42 **1. Introduction**

43 In the past few decades, many practical methods have been developed to derive wind
44 information by using meteorological radar data (Mohr and Miller, 1983, Lee et al., 1994, Liou
45 and Chang, 2009, Bell et al. 2012). The derived winds substantially revealed reasonable patterns
46 compared with conventional observations (such as surface stations, soundings, wind profiles,
47 etc.) and models (Liou et al., 2014, North et al., 2017, Chen, 2019, Oue et al., 2019). Most
48 comprehensive applications of the derived winds were adopted to document kinematic and
49 precipitation structures associated with various weather systems or phenomena at different scales
50 from thousands, hundreds, and a couple of kilometers, such as cold fronts, typhoons, tropical
51 cyclone rainbands, convective lines, and nonprecipitation low-pressure systems (LPS) (Yu and
52 Bond, 2002, Yu and Jou, 2005, Yu and Tsai, 2013, Yu and Tsai, 2017, Tsai et al. 2018, Yu et al.,
53 2020, Cha and Bell, 2021, Tsai et al., 2022). In addition, the accuracy of 3D winds could be
54 improved when increasing the numbers of Doppler radar because relatively fewer assumptions
55 and more information can be included (Yu and Tsai 2010, Liou and Chang, 2009). Therefore, the
56 retrieved schemes within multiple Doppler radars are a more popular way to obtain high-quality
57 3D winds and have been extensively applied to meteorological analyses.

58 The technique of velocity track display (VTD, Lee et al., 1994) and ground-based velocity
59 track display (GBVTD, Lee et al., 1999) can derive the winds from single Doppler radar under
60 some assumptions, as the wind patterns are generally uniform or axisymmetric rotational (Cha
61 and Bell, 2021). More extended techniques based on VTD and GBVTD have also been applied
62 to increase the quality of derived wind data, and such techniques include Extended-GBVTD
63 (EGBVTD, Liou et al., 2006) and generalized velocity track display (GVTD, Jou et al., 2008).
64 However, winds usually present nonuniform patterns and fast-evolving characteristics in most
65 mesoscale weather systems and microscale phenomena, and complete and detailed winds are still
66 difficult to resolve by these techniques. Most developed techniques are based on the contexts of
67 weaknesses from the above schemes on wind retrievals. Instead of a single Doppler radar,

68 multiple Doppler can retrieve better quality 3D winds with relatively fewer assumptions because
69 they provide sufficient radial velocity measurements and wind information with wider coverage
70 in the synthesis domain.

71 Cartesian Space Editing, Synthesis, and Display of Radar Fields under Interactive Control
72 (CEDRIC, Mohr and Miller, 1983) is a traditional package used to retrieve 3D winds by dual-
73 Doppler radar observations. This scheme usually determines the horizontal winds by using two
74 radars, and the vertical velocity can be obtained by variational adjustment with anelastic
75 continuity equation. Spline Analysis at Mesoscale Utilizing Radar and Aircraft Instrumentation
76 (SAMURAI) software is another way to retrieve 3D winds (Bell et al., 2012); this scheme is a
77 kind of variational data assimilation that adopts multiple radars. Recently, Tsai et al. (2018)
78 utilized the measurements of six Doppler radars to document precipitation and airflow structures
79 over complex terrain on the northeastern coast of South Korea via WISSDOM (Wind Synthesis
80 System using Doppler Measurements). Liou and Chang (2009) is the first purposes of this
81 algorithm. Furthermore, they performed immersed boundary method (IBM, Tseng and Ferziger,
82 2003) in WISSDOM, and its scientific applications were documented in Liou et al. (2012) and
83 Liou et al. (2016), respectively. Since one of the advantages of WISSDOM is that it considers
84 the orographic forcing on Cartesian coordinates by applying the IBM, higher quality 3D winds
85 can be derived well over terrain (Liou et al., 2013, 2014, Lee et al., 2018).

86 Generally, radial velocity is measured by detecting the movement of precipitation particles
87 relative to the locations of Doppler radars; thus, there are no sufficient radial velocity
88 measurements under clear-air conditions. However, the winds in clear-air conditions usually play
89 an important role in the initiations of various weather systems and phenomena, such as downslope
90 winds, gap winds, and wildfires (Reed, 1931, Colle and Mass, 2000, Mass and Ovens, 2019, Lee
91 et al., 2020). Although surface stations, soundings, and wind profilers can measure winds under
92 clear-air conditions, relatively poor spatial coverage is still a problem for obtaining sufficient
93 wind information in certain local areas. Therefore, scanning Doppler lidars will be one approach

94 to obtain wind information under clear-air conditions. Päschke et al. (2015) assessed the quality
95 of wind derived by Doppler lidar with a wind profiler in a year trial, and the results showed good
96 agreement in wind speed (the error ranged between 0.5 and 0.7 m s⁻¹) and wind direction (the
97 error ranged between 5° and 10°). Bell et al. (2020) combined an intersecting range height
98 indicator (RHI) of six Doppler lidars to build “virtual towers” (such as wind profilers) to
99 investigate the airflow over complex terrain during the Perdigão experiment. These virtual towers
100 can fill the gap in wind measurements above meteorological towers. The uncertainty of wind
101 fields is also reduced by adopting multiple Doppler lidars (Choukulkar et al., 2017), and a high
102 spatiotemporal resolution of derived wind is allowed to check small-scale rotors in mountainous
103 areas (Hill et al., 2010).

104 The original WISSDOM was designed to retrieve 3D winds based on Doppler radar
105 observations and background inputs combined with conventional observations and modeling.
106 However, the original WISSDOM only provided 3D winds under precipitation conditions. It does
107 not work well under clear-air conditions because Doppler radar cannot easily detect radial
108 velocity without precipitation particles. To obtain high-quality 3D winds under clear-air
109 conditions, the radial velocity observed from the scanning Doppler lidars can be used in modified
110 WISSDOM. The results will allow us to investigate the initiations of precipitation systems in
111 advance of rainfall and snowfall, which is an essential benefit rather than Doppler radar in related
112 research topics. Furthermore, the conventional observations and modeling datasets were used as
113 isolated constraints in the modified WISSDOM synthesis scheme. One of the benefits of the
114 isolated constraints is that it is easy to synthesize any kind of wind information obtained from
115 available datasets and give suitable weighting coefficients with different constraints when they
116 are processing the minimization in the cost function. Thus, more reliable 3D winds in clear-air
117 conditions were well derived from this modified WISSDOM synthesis scheme.

118 The objective of this study is to modify the WISSDOM synthesis scheme based on the
119 original version to be a more flexible and useful scheme by adding any number of Doppler lidars

120 and conventional observations as well as modeling datasets. This modified WISSDOM will allow
121 us to obtain an exceedingly high spatial resolution of 3D winds (50 m was set in this study) under
122 clear-air conditions. A resolution of 50 m was chosen in this study, as the Doppler lidars'
123 respective horizontal resolution averages 40-60 m. A variety of adequate datasets were collected
124 during a strong wind event in the winter season during an intensive field experiment ICE-POP
125 2018 (International Collaborative Experiments for Pyeongchang 2018 Olympic and Paralympic
126 winter games). In summary, the main goal of this study is to use Doppler lidar observations to
127 retrieve high-resolution 3D winds over terrain with clear-air conditions via WISSDOM. In this
128 study, detailed principles of the modified WISSDOM and data implementation are elucidated in
129 the following sections. In addition, the modified WISSDOM was performed to retrieve 3D winds
130 over complex terrain under clear-air conditions in a strong wind event. The reliability of the
131 derived 3D winds was also evaluated and discussed with conventional observations.

132 **2. Methodology**

133 **2.1 Original version of WISSDOM (WInd Synthesis System using DOppler Measurements)**

134 WISSDOM is a mathematically variational-based scheme to minimize the cost function, and
135 various wind-related observations can be used as one of the constraints in the cost function. The
136 3D winds were derived by variationally adjusted solutions to satisfy the constraints in the cost
137 function; thus, this is a gradient decent technique to converge toward a solution. The original
138 version of WISSDOM performed five constraints, including radar observations (i.e., reflectivity
139 and radial velocity), background (combined with automatic weather stations, sounding, model or
140 reanalysis data), continuity equation, vorticity equation, and Laplacian smoothing (Liou and
141 Chang 2009). Liou et al. (2012) applied the IBM in WISSDOM to consider the effect on the
142 nonflat surfaces. One of the advantages of IBM is providing realistic topographic forcing without

143 changing the Cartesian coordinate system into a terrain-following coordinate system. More
 144 scientific documentation associated with the interactions between terrain, precipitation, and
 145 winds in different areas can be found in Liou et al. (2016) for Taiwan and in Tsai et al. (2018) for
 146 South Korea. The cost function can be expressed as

$$147 \quad J = \sum_{M=1}^5 J_M, \quad (1)$$

148 where J_M is the different constraints. J_1 is the constraint related to the geometric relation
 149 between radar radial Doppler velocity observations (V_r) and derived one from true winds ($\mathbf{V}_t =$
 150 $u_t \mathbf{i} + v_t \mathbf{j} + w_t \mathbf{k}$) in Cartesian coordinates [eq. (2)]. Note that the \mathbf{V}_t will be first guessed,
 151 resulting from the background of the sounding observations used in this study.

$$152 \quad J_1 = \sum_{t=1}^2 \sum_{x,y,z} \sum_{i=1}^N \alpha_{1,i} (T_{1,i,t})^2. \quad (2)$$

153 Since WISDOM is a scheme that uses the 4DVAR approach, the variations between different
 154 time steps (t) should be considered, and two time steps of radar observations were collected in
 155 this constraint and all following constraints. The x, y, z indicates the locations of a given grid
 156 point in the synthesis domain, and i could be any number (N) of radars (at least 1). The α_1 is
 157 the weighting coefficient of J_1 (α_2 is the weighting coefficient of J_2 and so on). $T_{1,i,t}$ in eq.
 158 (2) is defined as eq. (3):

$$159 \quad T_{1,i,t} = (V_r)_{i,t} - \frac{(x - P_x^i)}{r_i} u_t - \frac{(y - P_y^i)}{r_i} v_t - \frac{(z - P_z^i)}{r_i} (w_t - W_{T,t}), \quad (3)$$

160 $(V_r)_{i,t}$ is the radial velocity observed by the radar (i) at time step (t), P_x^i, P_y^i and P_z^i depict the
 161 coordinate of radar i . The u_t, v_t and w_t ($W_{T,t}$) denote the 3D winds (terminal velocity of
 162 precipitation particles) at given grid points at the time step t ; and $r_i =$
 163 $\sqrt{(x - P_x^i)^2 + (y - P_y^i)^2 + (z - P_z^i)^2}$.

164 The second constraint is the difference between the background ($\mathbf{V}_{B,t}$) and true (derived)
 165 wind field ($\mathbf{V}_t = u_t \mathbf{i} + v_t \mathbf{j} + w_t \mathbf{k}$), which is defined as

$$166 \quad J_2 = \sum_{t=1}^2 \sum_{x,y,z} \alpha_2 (\mathbf{V}_t - \mathbf{V}_{B,t})^2. \quad (4)$$

167 There were several options to obtain background in the original version of WISSDOM. The most
 168 popular background resource involves using sounding observations; however, it can only provide
 169 homogeneous wind information for each level in WISSDOM with relatively coarse temporal
 170 resolution (3- to 12-hour intervals). The other option is combining sounding observations with
 171 AWS (automatic weather station) observations. Although the AWS provided wind information
 172 with better temporal resolution (1-min), the data were only observed at the surface layer with
 173 semirandom distributions. The last option is to combine sounding, AWS, modeling or reanalysis
 174 datasets. However, various datasets with different spatiotemporal resolutions are not favorable
 175 for appropriate interpolation of given grid points of WISSDOM synthesis, and the accuracy and
 176 reliability of the background may have been significantly affected by such a variety of datasets.
 177 Thus, these different observed or model data should be treated differently to minimize
 178 uncertainties and improve accuracy. Therefore, one of the improvements in the modified
 179 WISSDOM is that these inputs were individually separated into independent constraints with
 180 flexible interpolation methods. In addition, individual constraints considered the time if the
 181 temporal resolution of the inputs was equal to or higher than the time interval of the WISSDOM
 182 outputs. Note that the sounding observations are still a necessary dataset because the air density
 183 and temperature profile were used to identify the height of the melting level. In this study,
 184 sounding winds were adopted to represent the background for each level and a constraint at the
 185 same time; nevertheless, the AWS and reanalysis dataset are independent constraints in the
 186 modified WISSDOM (details are provided in the following section).

187 The third, fourth and fifth constraints in the cost function are the anelastic continuity
 188 equation, vertical vorticity equation and Laplacian smoothing filter, respectively. Equations (5),
 189 (6) and (7) are denoted as follows:

190
$$J_3 = \sum_{t=1}^2 \sum_{x,y,z} \alpha_3 \left[\frac{\partial(\rho_0 u_t)}{\partial x} + \frac{\partial(\rho_0 v_t)}{\partial y} + \frac{\partial(\rho_0 w_t)}{\partial z} \right]^2, \quad (5)$$

191
$$J_4 = \sum_{x,y,z} \alpha_4 \left\{ \frac{\partial \zeta}{\partial t} + \left[u \frac{\partial \zeta}{\partial x} + v \frac{\partial \zeta}{\partial y} + w \frac{\partial \zeta}{\partial z} + (\zeta + f) \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) + \left(\frac{\partial w}{\partial x} \frac{\partial v}{\partial y} - \frac{\partial w}{\partial y} \frac{\partial u}{\partial z} \right) \right] \right\}^2, \quad (6)$$

192
$$J_5 = \sum_{t=1}^2 \sum_{x,y,z} \alpha_5 [\nabla^2(u_t + v_t + w_t)]^2. \quad (7)$$

193 ρ_0 in eq. (5) is the air density, and $\zeta = \partial v / \partial x - \partial u / \partial y$ in eq. (6). The main advantage is that
 194 using vertical vorticity can provide further improvement in winds and thermodynamic retrievals
 195 from a method named as Terrain-Permitting Thermodynamic Retrieval Scheme (TPTRS, Liou et
 196 al. 2019).

197 **2.2 The modified WISSDOM**

198 In addition to the five constraints in the original version, the modified WISSDOM synthesis
 199 scheme includes three more constraints in the cost function. Thus, the cost function in the
 200 modified WISSDOM was written as

201
$$J = \sum_{M=1}^8 J_M. \quad (8)$$

202 $J_1 \sim J_5$ in (8) are the same constraints corresponding to equations (2)-(7). The main purpose
 203 of this study is to retrieve 3D winds under clear-air conditions in which observational data are
 204 relatively rare. Instead of the radial velocity $(V_r)_{i,t}$ observed from Doppler radars in eq. (3) in
 205 original version of WISSDOM, the radial velocity observed from Doppler lidars was adopted in
 206 the modified WISSDOM synthesis. In addition, if there were no precipitation particles under
 207 clear-air conditions, the terminal velocity of precipitation particles $(W_{T,t})$ was set to zero in eq.
 208 (3) in the modified WISSDOM. In this study, the time steps in WISSDOM were set by the
 209 synthesis time and 12 mins before the synthesis time due to the temporal resolution of the primary
 210 input lidar data being 12 mins. Notably, relatively minor changes in environmental conditions

211 were assumed in WISSDOM due to the limitation on the coarse temporal resolution from specific
 212 inputs. For example, the closest time step of a sounding observation or LDAPS dataset was
 213 chosen regarding the synthesis time, and the time constrain was set to be the same.

214 The sixth constraint is the difference between the derived wind fields and the sounding
 215 observations ($\mathbf{V}_{S,t}$), as defined in (9):

$$216 \quad J_6 = \sum_{t=1}^2 \sum_{x,y,z} \alpha_6 (V_t - V_{S,t})^2. \quad (9)$$

217 The sounding data in J_6 were interpolated to the given grid points near its tracks bearing on the
 218 radius influence (RI) distance (the details are provided in Section 3.2.3). The main difference
 219 between J_6 and J_2 is that the sounding data with various wind speeds and directions were used
 220 as an observation for given 3D locations in J_6 instead of the constraint of homogeneous
 221 background winds (i.e., uniform wind speed and direction) for each level in the studied domain
 222 in J_2 . An additional benefit of J_6 is that any number of sounding observations can be efficiently
 223 adopted in the WISSDOM synthesis domain. The seventh constraint represents the discrepancy
 224 between the true (derived) wind fields and AWS ($\mathbf{V}_{A,t}$), as expressed in (10):

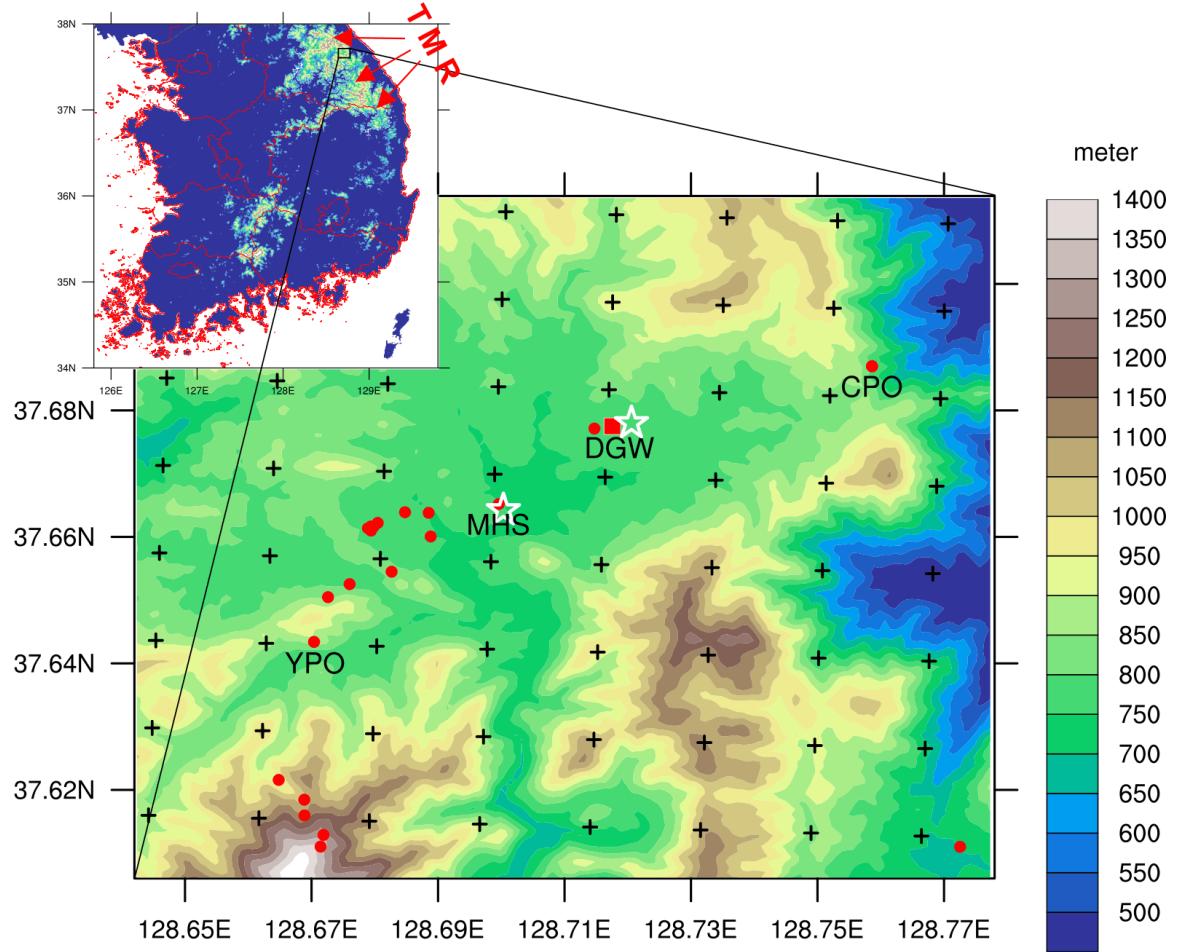
$$225 \quad J_7 = \sum_{t=1}^2 \sum_{x,y,z} \alpha_7 (V_t - V_{A,t})^2. \quad (10)$$

226 Finally, the eighth constraint measures the misfit between the derived winds and the local
 227 reanalysis dataset ($\mathbf{V}_{L,t}$), as defined in (11):

$$228 \quad J_8 = \sum_{t=1}^2 \sum_{x,y,z} \alpha_8 (V_t - V_{L,t})^2. \quad (11)$$

229 In this study, various observations and reanalysis datasets were utilized as constraints in the cost
 230 function of WISSDOM. The most important dataset is the radial velocity observed from Doppler
 231 lidars, which can measure wind information with high spatial resolution and good coverage from
 232 near the surface up to higher layers in the test domain. Sounding and AWS can provide horizontal
 233 winds for background or to be included in the constraints. The local reanalysis datasets were

234 obtained from the 3DVAR Local Data Assimilation and Prediction System (LDAPS) data
235 assimilation system from the Korea Meteorological Administration (KMA). Since these datasets
236 have different coordinate systems and various spatiotemporal resolutions, additional procedures
237 are required before the synthesis. Detailed descriptions of the procedures are described in the next
238 section.


239 The high-quality synthesized 3D wind field from radar observations has been applied in
240 several previous studies such as those by Liou and Chang (2009), Liou et al. (2012, 2013, 2014,
241 2016), and Lee et al. (2017). The advantages and details of the WISSDOM can be found in Tsai
242 et al. (2018). Although several studies have used Doppler radar in WISSDOM, this study is the
243 first time to apply Doppler lidar data in WISSDOM. This modified WISSDOM synthesis scheme
244 has also been applied in the analysis related to the mechanisms of orographically induced strong
245 wind on the northeastern coast of Korea (Tsai et al., 2022). In contrast to previous studies, this
246 study provides clear context, detailed procedures, reliability, and the limitations of the modified
247 WISSDOM.

248 **3. Data processing with a strong wind event**

249 **3.1 Basic information of WISSDOM synthesis**

250 A small domain near the northeastern coast of South Korea was selected to derive detailed
251 3D winds over complex terrain (in the black box in the inset map in Fig. 1) because relatively
252 dense and high-quality wind observations were only collected in this region during ICE-POP
253 2018. The size of the WISSDOM synthesis domain is $12 \times 12 \text{ km}^2$ (up to 3 km MSL height) in
254 the horizontal (vertical) direction with 50 m grid spacing. Such high spatial resolution 3D winds
255 were synthesized every 1 hour in this test. Note that the output time steps are adjustable to be
256 finer (recommended limitation is 10 mins), but they are highly related to the temporal resolution

257 of various datasets and computing resources. Two scanning Doppler lidars are located near the
 258 center of the domain: one is the equipped “WINDEX-2000” (the model’s name from the
 259 manufacturer) at the May Hills Supersite (MHS) site, and the other is the “Stream line-XR” at
 260 the DaeGwallyeong regional Weather office (DGW) site. In addition to the operational AWS
 261 (727 stations), additional surface observations (32 stations) are also involved in ICE-POP 2018
 262 surrounding the MHS and DGW sites and the venues of the winter Olympic Games. The
 263 soundings are launched at the DGW site every 3 hours during the research period. The LDAPS
 264 also provided high spatial resolution of wind information in the test domain. The horizontal
 265 distribution of all instruments and datasets used are shown in Fig. 1.

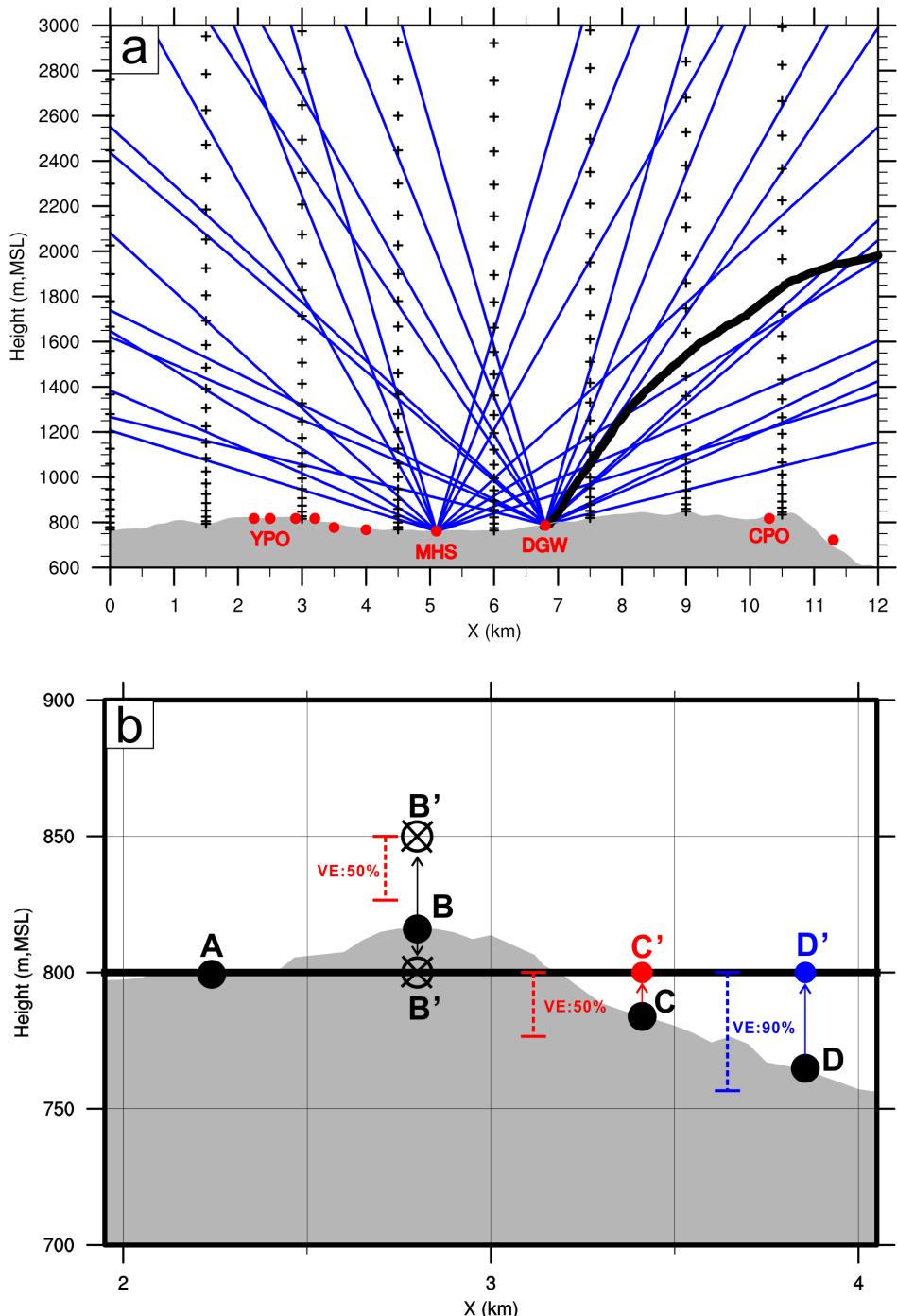
266
 267 Figure 1. Horizontal distribution of instruments and datasets used in this study. A small box in the upper map
 268 indicates the WISDOM synthesis domain. The Doppler lidars are marked by start symbols at the MHS and
 269 DGW sites. Red solid circles and square indicate the automatic weather station (AWS) and sounding, respectively.
 270 The black cross marks the data points of LDAPS. Topographic features and elevations are shown with the color
 271 shading in a color bar in the figure. The location of the Teabek Mountain Range (TMR) is also marked.

272 **3.2 Data implemented in WISSDOM synthesis**

273 **3.2.1 Scanning Doppler lidars**

274 The radial velocity observed from two scanning Doppler lidars was utilized to retrieve 3D
275 winds via WISSDOM synthesis. The original coordinate system of observed lidar data is not a
276 Cartesian coordinate system but a spherical (or polar) coordinate system as a plan position
277 indicator (PPI) and hemispheric range height indicator (HRHI) or the RHI. Although relatively
278 dense and complete coverage of wind information (i.e., radial velocity of aerosols) were
279 sufficiently recorded by lidar observations, the collected data are usually not located directly on
280 the given grid points in the WISSDOM synthesis (i.e., Cartesian coordinate system). In this study,
281 the lidar data were interpreted simply from the lidar coordinate system to the Cartesian coordinate
282 system via bilinear interpolation.

283 The scanning strategy of the lidar at the DGW site includes five elevation angles for PPI (7° ,
284 15° , 30° , 45° , and 80° before 10:00 UTC on 14 Feb. 2018 and 4° , 8° , 14° , 25° , and 80° after 10:00
285 UTC) and two HRHIs at azimuth angles of 51° and 330° . A full volume scan included all PPIs
286 and HRHIs every \sim 12 min. The maximum observed radius distance is \sim 13 km, and the grid
287 spacing is 40 m for each gate along the lidar beam. The scanning strategy of the lidar at the MHS
288 site involves seven elevation angles for PPI (5° , 7° , 10° , 15° , 30° , 45° , and 80°) and one HRHI
289 at an azimuth angle of 0° . A full volume scan included all PPIs and RHIs every \sim 12 min. The vertical
290 maximum observed radius distance was \sim 8 km, and the grid spacing was 60 m. The vertical
291 distribution of lidar data in the test domain is shown as blue lines in Fig. 2a.


292 **3.2.2 Automatic weather station (AWS)**

293 Most of the AWS are not exactly located on the given grid points of the Cartesian coordinate
294 system. Objective analysis (Cressman, 1959) is a popular way to correct semirandom and
295 inhomogeneous meteorological fields into regular grid points. Notably, that the wind directions

296 and speed must be the first project with the values along the u- and v-components, and then,
297 their values must be interpolated individually to the given grids. This study adopted objective
298 analysis for the AWS observations with adjustable RI distances between 100 m and 2000 m. After
299 this first step, the observational data can reasonably interpolate to the given grid points
300 horizontally. Furthermore, an additional step is required to put these interpolated data into the
301 given grid points at different vertical levels because the AWS are located at different elevations
302 in the test domain. In the traditional way of original WISSDOM, the interpolated data are moved
303 to the closest level with the shortest distance just above the AWS site. However, the interpolated
304 data are NOT moved to the closest level if the shortest distances are large like more than half
305 (50%) of grid spacing. Nevertheless, to include more data from the AWS observations
306 appropriately, adjusted distances between the AWS sites and given grid points at different vertical
307 levels were necessarily considered. These adjusted distances can be named as vertical extension
308 (VE) here, and there are two options of 50% and 90% in the tests of this study, which correspond
309 to 25 m and 45 m extensions between each grid (in case of the grid spacing is 50 m), respectively.
310 An example demonstrated how to implement the interpolated data to the given grid points by
311 adjustable VE after step one (Fig. 2b).

312 In Fig. 2b, the interpolated data do not need to move to a given grid point (as an example, at
313 the 800 m level here) if the elevation of the AWS is equal to the height of a given grid point as
314 point A. When the AWS is located higher than a given grid point (as point B in Fig. 2b) and does
315 not reach the lower boundary of VE (50%) from the upper given grid point (i.e., at the 850 m
316 level), this interpolated data will be removed and wasted. In contrast, when the interpolated data
317 are located just below the given grid point with 50% VE, it will be achieved in the WISSDOM
318 synthesis at the 800 m level (point C in Fig. 2b). The interpolated data of point D have a similar
319 situation to point B; however, it will be achieved at the 800 m level because a higher VE (90%)
320 was applied here. Since the locations of the AWS are semirandom with relatively sparse or
321 concentrated distributions, the optimal RI and adjustable VE make it possible to include more

322 AWS observations in the WISSDOM synthesis.

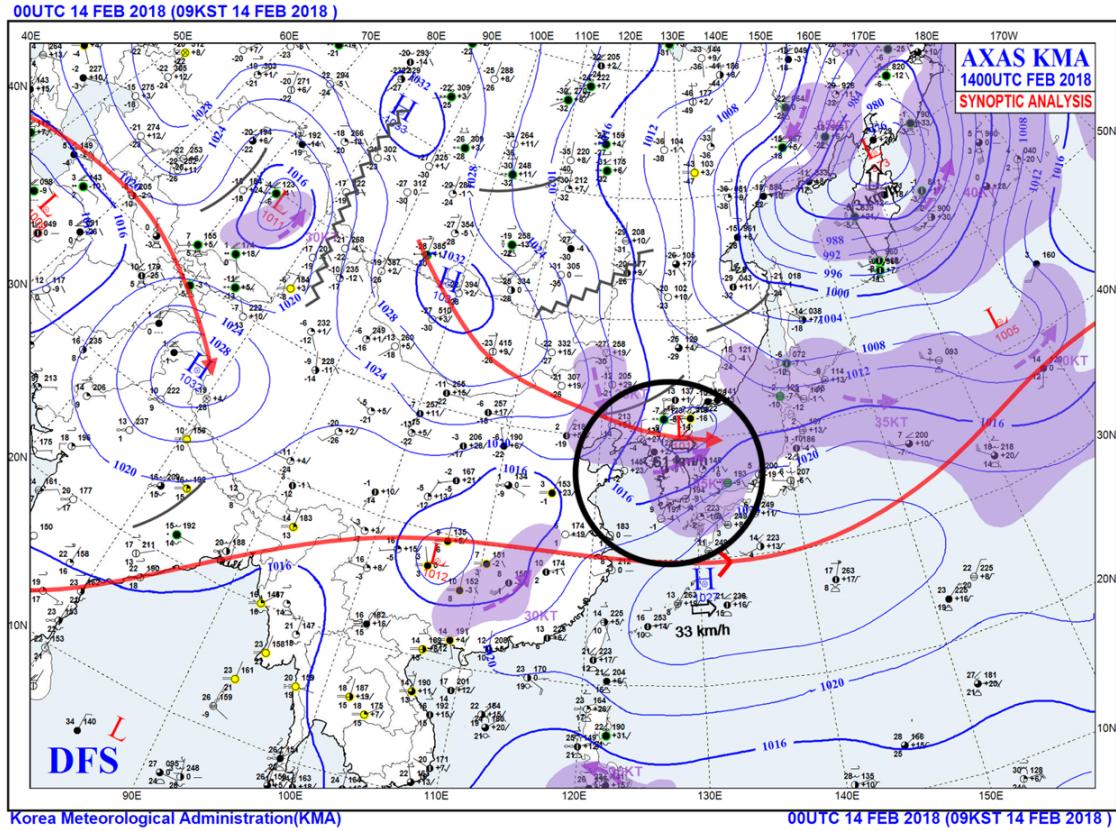
323

324 Figure 2. (a) Schematic diagram of the vertical distribution of adopted lidar datasets. Blue lines indicate the lidar
 325 data observed at the DGW and MHS sites with different elevation angles. The AWS are located on the ground
 326 and are marked by solid red circles. An example of a sounding track launched from the DGW site in one time
 327 step (06:00 UTC on 14 Feb. 2018) is plotted as a thick black line. The black cross marks indicate the vertical
 328 distribution of the LDAPS dataset. (b) Schematic diagram for data implementation with various locations of the
 329 AWS and different percentages of VE (vertical extension) from given grid points at the 800 m MSL level (thick
 330 black line). The gray shading on the bottom represents the topography.

331 **3.2.3 Sounding**

332 During ICE-POP 2018, the soundings are launched at the DGW site every 3 hours (from
333 00Z). Vertical profiles of air pressure, temperature, humidity, wind speed and directions were
334 recorded every second (i.e., ~ 3 m vertical spatial resolution) associated with the rising sensor.
335 The sounding sensor drifted when rising, and an example of its track in one time step is shown
336 as a thick black line in Fig. 2a. In this example, the sounding movement was mostly affected by
337 westerly winds, and it measured the meteorological parameters in any location along the track in
338 the test domain. The coordinate system of sounding data is quite similar to the distribution of
339 AWS measurements, and the observations are not located right on the given grid points of the
340 WISSDOM synthesis.

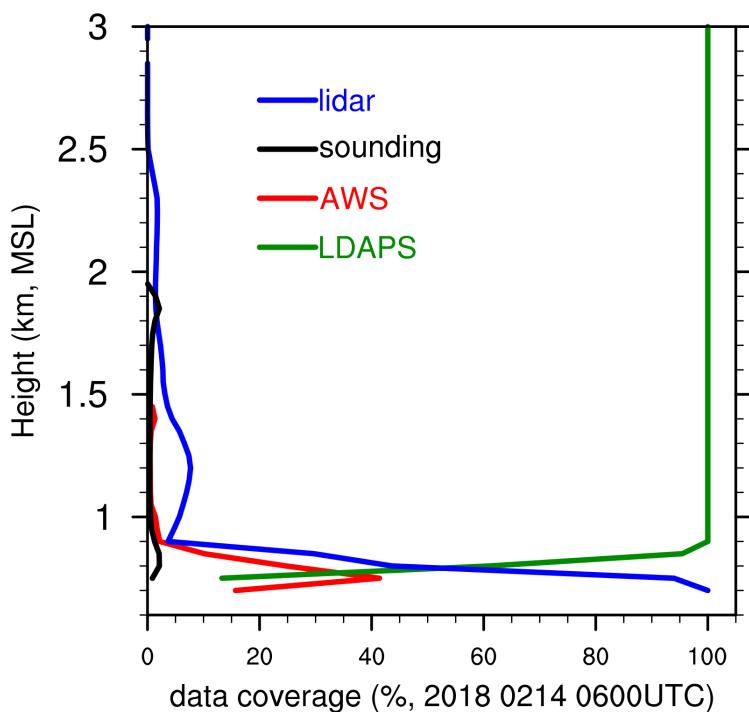
341 Similar to the AWS data, the sounding data also underwent objective analysis with an
342 adjustable RI distance for the wind measurements in the first step. Then, the interpolated data
343 were switched to given grid points for each vertical level by the different VE in the WISSDOM
344 synthesis.


345 **3.2.4 Reanalysis dataset: LDAPS**

346 The local reanalysis dataset LDAPS was generated by the KMA. This dataset provides u-
347 and v-component winds every 3 hours, and the horizontal spatial resolution is ~ 1.5 km with the
348 grid type in Lambert Conformal (as black cross marks in Fig. 1). The data revealed denser
349 distributions near the surface and sparse distributions at higher levels (see Fig. 2a). The initiations
350 of wind variables in the LDAPS were assimilated with many observational platforms, including
351 radar, AWS, satellite and sounding data. Thus, the relatively high reliability of this dataset could
352 be expected. In addition, such datasets have also significantly improved the forecast ability in
353 small-scale weather phenomena over complex terrain in Korea (Kim et al., 2019, Choi et al.,
354 2020, Kim et al., 2020).

355 The LDAPS data are not located directly on the given grid points of the WISSDOM synthesis
356 system. Unlike the distribution of AWS and sounding observations, LDAPS has dense and good
357 coverage in the test domain. The Cartesian coordinate is the most efficient method and the best
358 system for partial differential equations (Armijo, 1969), and it is also used in the cost function of
359 WISSDOM (Liou and Chang, 2009). In this study, the horizontal and vertical resolutions of given
360 grid points were primarily determined by the characteristics of lidar data. Therefore, similar to
361 lidar observations, the LDAPS data were also interpolated to the given grid points on the
362 Cartesian coordinate system via the bilinear interpolation method.

363 **3.3 Overview of the selected strong wind event**


364 A strong wind event was selected to evaluate the performance of this modified WISSDOM
365 synthesis scheme. In this strong wind event, the evolution of surface wind patterns on the Korean
366 Peninsula was mainly dominated by a moving LPS which is one type of strong downslope winds
367 (Park et al, 2022, Tsai et al., 2022). The LPS moved out from China and penetrated the northern
368 part of the Korean Peninsula through the Yellow Sea beginning at approximately 12:00 UTC on
369 13 February 2018. Consequently, a relatively strong surface wind speed (exceeding $\sim 17 \text{ m s}^{-1}$)
370 was observed when the LPS was located near the northeastern coast of the Korean Peninsula
371 ($\sim 130^\circ\text{E}, 40^\circ\text{N}$) at 00:00 UTC on 14 February 2018 (Fig. 3). Then, the surface wind speed became
372 weak when the LPS moved away from South Korea after 00:00 UTC on 15 February 2018 (not
373 shown); the details of the synoptic conditions can be found in Tsai et al. (2022).

374
375 Figure 3. Synoptic surface chart from the Korea Meteorological Administration (KMA) at 00:00 UTC on 14 Feb.
376 2018. The locations of the Korean peninsula and the LPS has been marked by black circle.
377

378 This event is one of two strong wind events (i.e., daily maximum wind speeds larger than
379 10 m s^{-1} observed at the AWS sites along the northeastern coast of South Korea) in the past
380 decade based on the KMA historic record. Such a strong wind event may help us to examine the
381 potential maximum errors of the retrieved winds. Since persistent, strong westerly winds were
382 observed by the soundings and AWS from near the surface and upper layers over the TMR during
383 the event, the data coverages in the test domain were checked during a chosen time step (06:00
384 UTC on 14 February 2018). The percentage of data occupations for each dataset (after
385 interpolation) was checked, and the results are shown in Fig. 4. Note that the elevation of the
386 TMR is approximately 700 m MSL in the test domain. The lidars provided good coverage of
387 100% to 50% at the lower layers between 700 m and 800 m MSL. The coverage of lidars was
388 reduced significantly above 900 m MSL and remained at $\sim 5\%$ due to the scan strategy during the
389 Olympic games (more dense observations near the surface). The maximum coverage of the AWS

390 observations is ~40% at 800 m, and there was less coverage above this layer since relatively few
391 AWS are located in the higher mountains. Because only one sounding observation was utilized
392 in this domain, relatively few coverages were also depicted. The local reanalysis LDAPS can
393 provide complete coverage above 900 m MSL (exceeding 100%), albeit there was less coverage
394 in the lower layers due to terrain. The lidar, sounding, and AWS observations covered most areas
395 at lower levels but not higher levels; thus, the LDAPS compensated for most of the wind
396 information at the upper layers in the WISSDOM synthesis.

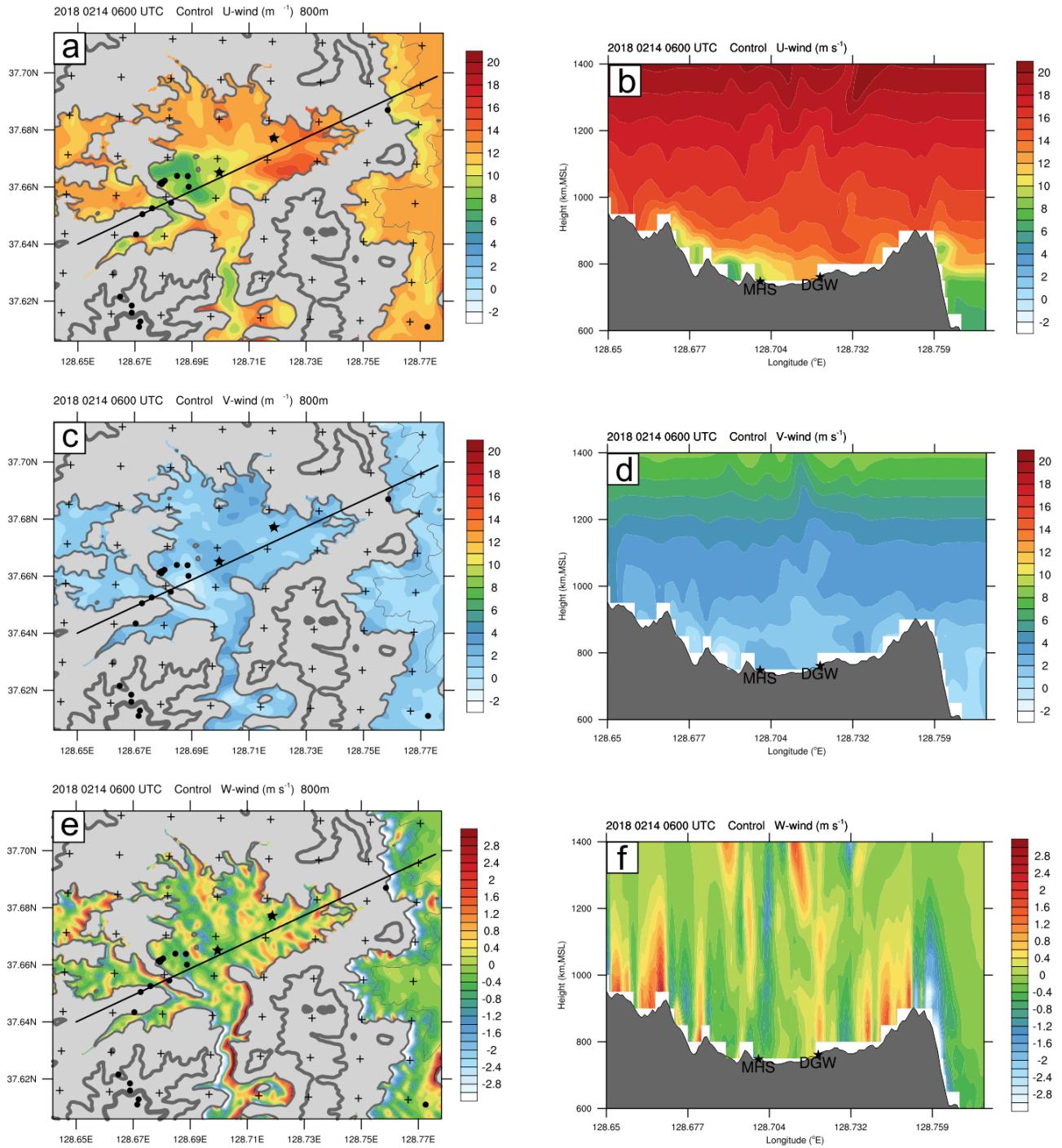
397
398 Figure 4. Data coverage (percentage, %) of the lidar (blue line), sounding (black line), AWS (red line) observations,
399 and LDAPS (green line) at 06:00 UTC on 14 Feb. 2018.

400 4. Control run and the accuracy of WISSDOM

401 4.1 Control run

402 Relatively reliable 3D winds were derived by a control run of the WISSDOM synthesis
403 because all available wind observations and local reanalysis datasets were appropriately acquired.
404 These datasets provided sufficient and complete wind information with a high percentage of

405 coverage in the test domain (cf. Fig. 4). Therefore, the retrieved winds from the control run can
 406 be treated as the optimal results in WISSDOM. The control run was performed carefully with the
 407 necessary procedures in data implementation before running the WISSDOM synthesis as follows.
 408 The lidar and LDAPS datasets must perform bilinear interpolation to the given grid points in
 409 WISSDOM, and the sounding and AWS observations must undergo objective analysis with the
 410 appropriate RI distance and VE. The quantities of the weighting coefficients for each input dataset
 411 followed the default setting from the original version of WISSDOM. The 3D winds were derived
 412 during one time step at 06:00 UTC on 14 Feb. 2018 and compared with conventional
 413 observations. Note that the best weighting coefficients have been determined by a series of
 414 observation system simulation experiment (OSSE) type tests from Liou and Chang (2009). They
 415 put more weighting coefficients in observations and fewer in modeling inputs. Based on the
 416 experiences and the default setting of weighting coefficients from their studies, the basic setting
 417 of the control run was first decided. Consequently, sensitivity tests were performed to better
 418 understand the possible variances associated with different weighting coefficients when the lidar
 419 data were implemented. The basic setting of this control run is summarized in Table 1.


Table 1 Basic setting of WISSDOM (control run)

Domain Range	Latitude: 37.606°N~37.713°N Longitude: 128.642°E~128.778°E
Domain Size	12 × 12 × 3 km (long × width × vertical)
Spatial Resolution	0.05 × 0.05 × 0.05 km (long × width × vertical)
Terrain Resolution	0.09 km
Coordinate System	Cartesian coordinate system
Background	Sounding (DGW)
Data Implementation	Doppler Lidars (MHS, DGW): bilinear interpolation AWS: objective analysis (RI*: 1 km, VE*: 90%) Sounding (DGW): objective analysis (RI: 1 km, VE: 90%) LDAPS: bilinear interpolation
Weighting Coefficient (input datasets)	Doppler Lidars (α_1): 10^6 Background (α_2): 10^2

Sounding (α_6): 10^6
AWS (α_7): 10^6
LDAPS (α_8): 10^3

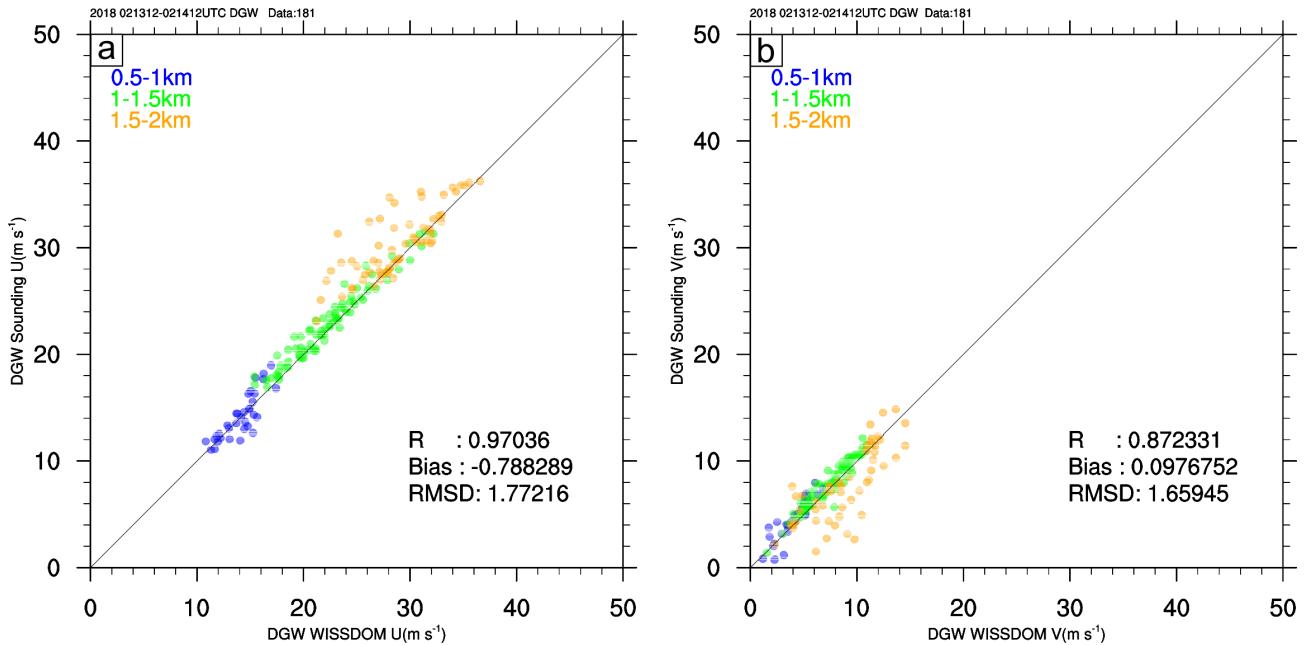
*RI: radius influence, VE: vertical extension

420 The results of 3D winds at 800 m MSL derived from the control run are shown in Figs. 5a,
 421 c, and e. Topographic features comprised relatively lower elevations in the center of the test
 422 domain, and there were weaker u-component winds ($\sim 7 \text{ m s}^{-1}$) near the AWS and MHS lidar sites
 423 between 128.67°E and 128.71°E (Fig. 5a). In contrast, the u-component winds ($\sim 15 \text{ m s}^{-1}$) were
 424 almost doubled near the DGW lidar site (between 128.71°E and 128.73°E). The vertical
 425 structures of the u-component winds across these two lidars (i.e., along the black line in Fig. 5a)
 426 are shown in Fig. 5b. The strength of the u-component winds rapidly increased from the surface
 427 to the upper layers (from ~ 6 to 20 m s^{-1}), and uniform u-component winds with wavy pattern
 428 were depicted above $\sim 1 \text{ km}$ MSL except for the stronger winds near the surface surrounding the
 429 DGW site. There were relatively weak (strong) u-component winds surrounding the lidar at the
 430 MHS (DGW) site near the surface. Relatively weak v-component winds were found
 431 (approximately $\pm 4 \text{ m s}^{-1}$) at 800 m MSL (Fig. 5c); thus, the horizontal wind directions were
 432 mostly westerly winds during this time step. The v-component winds were obviously accelerated
 433 in several local areas encompassing the terrain (near 128.71°E). The vertical structure of the v-
 434 component winds (Fig. 5d) indicates that the v-component winds became stronger in the upper
 435 layer. The wind directions were changed from westerly to southwesterly from the near surface
 436 up to $\sim 1.4 \text{ km}$ MSL height. Updrafts were triggered on windward slopes when westerly winds
 437 impinge the terrain or hills (Figs. 5e and 5f). Basically, the 3D winds derived from the WISSDOM
 438 synthesis reveal reasonable patterns compared to synoptic environmental conditions (cf. Fig. 3);
 439 the moving LPS accompanied stronger westerly winds.

440

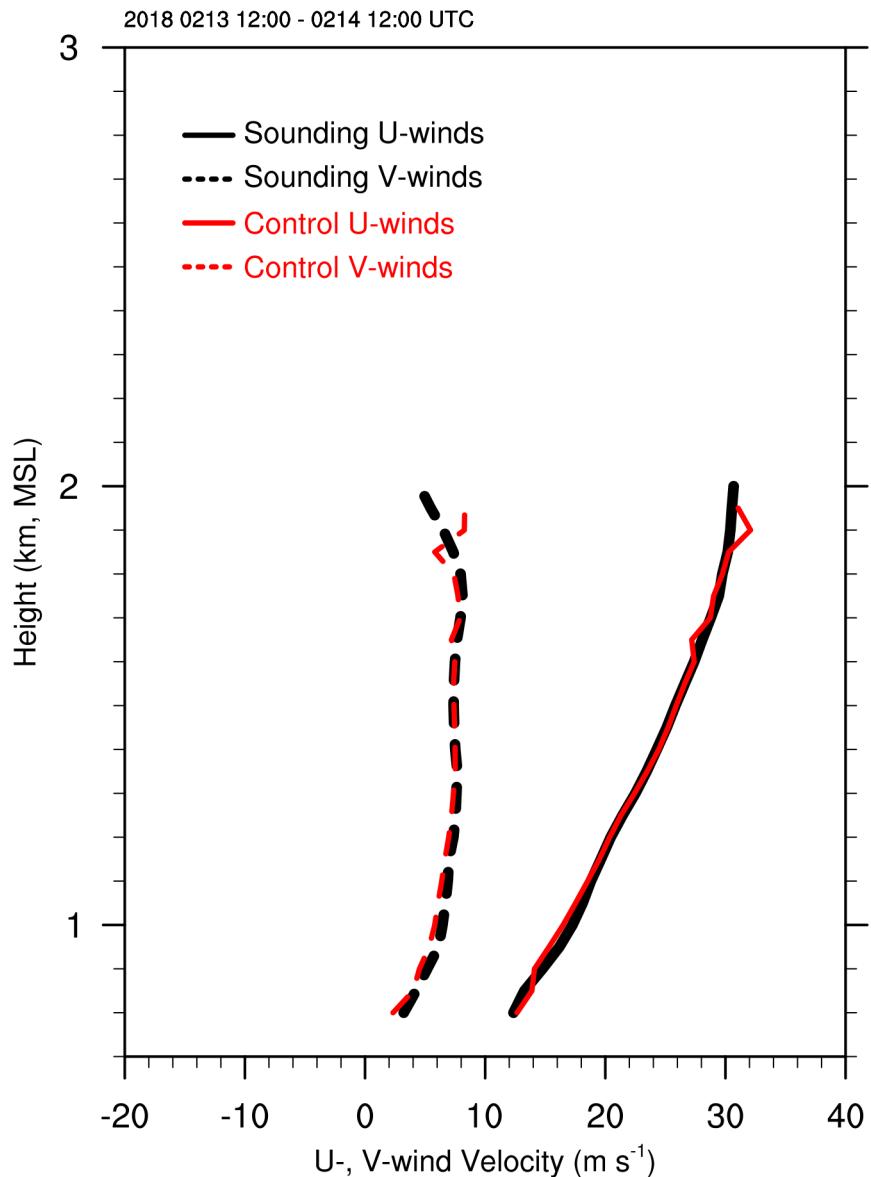
441 Figure 5. The 3D winds were derived from the control run by the WISSDOM synthesis at 06:00 UTC on 14 Feb.
442 2018. (a) The u-component winds (color, m s^{-1}) at 800 m MSL; the gray shading represents the terrain area, and
443 the contours indicate different terrain heights of 600 m, 800 m and 1000 m MSL corresponding to thin to thick
444 contours. The locations of lidars are marked with asterisks. (b) Vertical structures of u-component winds (color,
445 m s^{-1}) along the black line in (a). The gray shading in the lower part of the figure indicates the height of the terrain.
446 (c) and (d) are the same as (a) and (b) but for the v-component winds. (e) and (f) are the same as (a) and (b) but
447 for the w-component winds.

448 **4.2 Intercomparison between derived winds and observations**


449 Detailed analyses were performed in this section to quantitatively evaluate the accuracy of
450 the optimally derived 3D winds from the WISSDOM synthesis. Two kinds of instruments were
451 available in the test domain to detect the relatively realistic winds: sounding and lidar quasi-
452 vertical profiles (QVP, Ryzhkov et al., 2016). The QVP of horizontal and vertical winds were
453 retrieved based on the so-called velocity-azimuth display (VAD) technique (Browning and
454 Wexler, 1968, Gao et al., 2004). We regressed the Fourier coefficients of the Doppler velocities
455 of the 80° PPI under the linear horizontal wind assumption and obtained the horizontal wind
456 profile. The vertical (i.e., w-component) wind was retrieved under the assumptions of constant
457 vertical wind, zero terminal velocity of aerosol particles, and no horizontal divergence [see Kim
458 et al. (2022) for details on the wind retrieval]. The accuracy of the retrieved wind profile is
459 suitable for the WISSDOM wind evaluation, given the low root mean square deviation (RMSD)
460 of $< 2.5 \text{ m s}^{-1}$ and high correlation coefficient of > 0.94 of horizontal wind speed as shown in the
461 comparison against 487 rawinsondes (Kim et al., 2022). The horizontal winds observed from the
462 soundings and the u-, v-, and w-component winds of the lidar QVP at the DGW site were utilized
463 to represent the observations.

464 A complete analysis of the intercomparison between the WISSDOM synthesis and
465 observations is presented in the following subsections. Because the verification observations are
466 being used in the WISSDOM synthesis, the results of the control run are not verified
467 independently; nevertheless, detailed discussions regarding the results of the sensitivity tests for
468 the observations are presented in Section 5.

469 **4.2.1 Sounding**


470 The discrepancies in horizontal winds derived from WISSDOM and the sounding
471 observations for the entire research period (from 12:00 UTC on 13 to 12:00 UTC on 14 February

472 2018) were analyzed. Fig. 6 shows the scatter plots of the u- and v-component winds on the
 473 locations following the tracks of sounding launched from the DGW site. Most of the u-component
 474 winds derived from WISSDOM are in good agreement with the sounding observations, and the
 475 wind speed is increased with the height from approximately 10 to 40 m s^{-1} . Slight underestimation
 476 of retrieved u-component winds can be found at the layers of 1.5~2 km MSL (Fig. 6a). In contrast,
 477 most of the v-component winds were weak (smaller than 15 m s^{-1}) at all layers, because the
 478 environmental winds were more like westerlies during the research period. There were also
 479 slightly overestimated v-component winds derived from WISSDOM at the layers of 1.5~2 km
 480 MSL (Fig. 6b). The possible reason why the overestimated winds occurred above $\sim 1.5 \text{ km MSL}$
 481 is that lidar data had relatively less coverages at higher layers (cf. Fig. 4).

482
 483 Figure. 6. Scatter plots of (a) u-component winds between the WISSDOM synthesis (x-axis) and sounding
 484 observations (y-axis) above the DGW site during the research period. The colors indicate different layers, and
 485 the numbers of data points, correlation coefficients, average biases and root mean square deviations are also
 486 shown in the figure. (b) The same as (a) but for v-component winds.

487 Overall, the u-component winds show a high correlation coefficient (exceeding 0.97), low
 488 average bias (-0.78 m s^{-1}), and the RMSD of 1.77 m s^{-1} . The correlation coefficient of the v-
 489 component is also high (0.87), the average bias is 0.09 m s^{-1} , and the RMSD is 1.65 m s^{-1} .

490

491 Figure 7. Vertical wind profiles of average horizontal winds derived from the WISSDOM synthesis (red lines and
 492 vectors) and sounding observations (black lines and vectors) above the DGW site from 12:00 UTC on 13 to
 493 12:00 UTC on 14 Feb. 2018. Solid lines indicate u-component winds (m s^{-1}), and dashed lines indicate v-
 494 component winds (m s^{-1}).

495

The vertical profiles of the averaged u- and v-component winds for the period of 12:00 UTC

496

on 13 to 12:00 UTC on 14 Feb. 2018 is shown in Fig. 7 for the WISSDOM synthesis (red) and

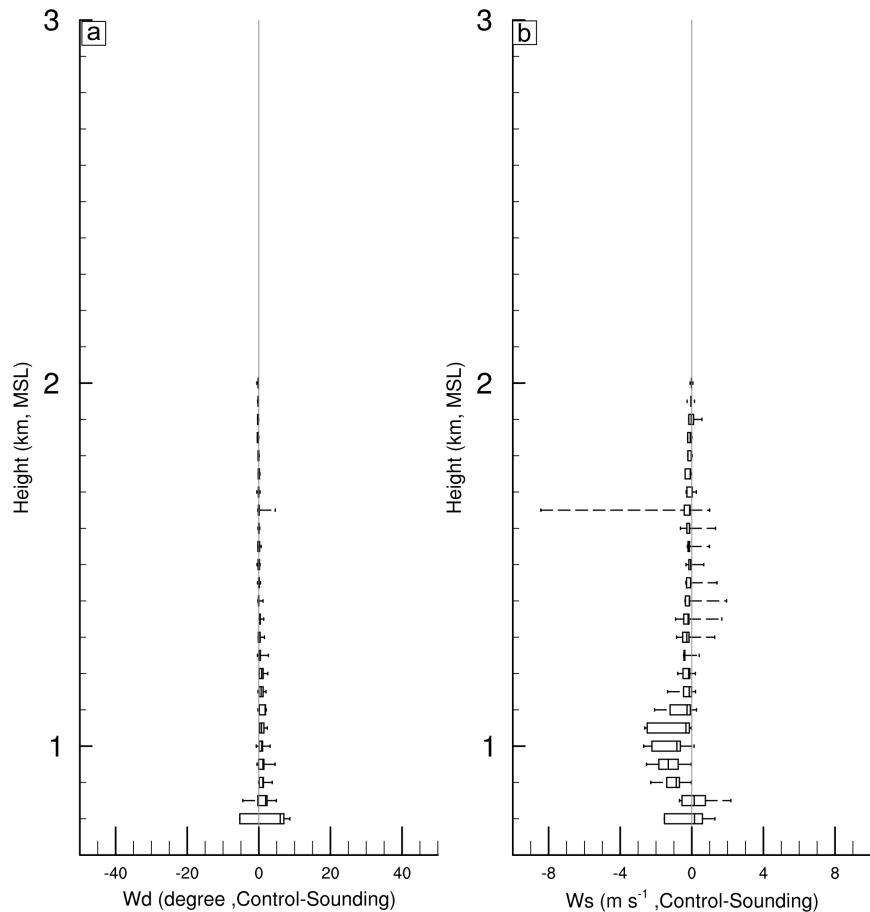
497

sounding observations (black) launched from the DGW site. The average profiles agree well

498

except for the height above 1.5 km MSL, slight discrepancies of u- and v-component winds (< 1

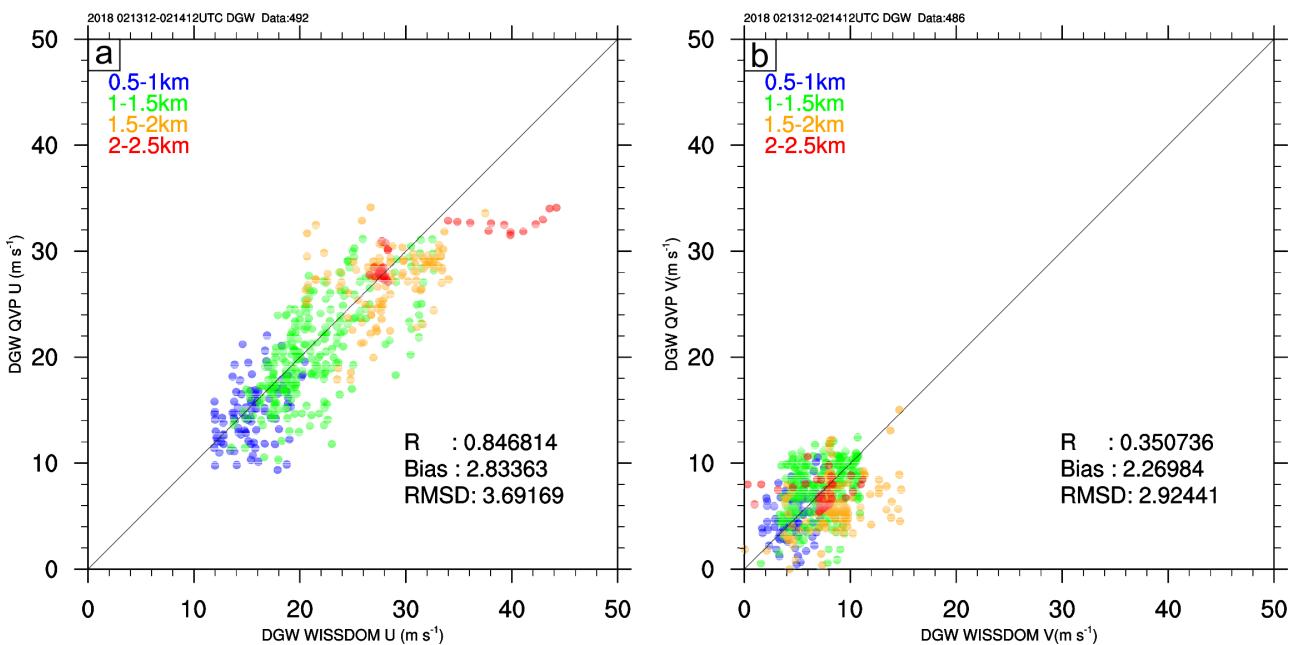
499


m s^{-1}). Their statistical errors during the entire research period were quantified by the box plot

500

shown in Fig. 8.

501 The maximum difference in wind directions between the WISSDOM synthesis and sounding
 502 observations is small at all layers. Only relatively larger IQR (between ~ 5 and 5 degrees) and
 503 larger median values (between ~ 0 and 5) can be found at the lowest level. The interquartile range
 504 (IQR) and median values of the wind direction differences are smaller (between ~ 0 and 2.5
 505 degrees) during the entire research period (Fig. 8a). Basically, the IQR and median values of the
 506 wind direction differences are close to 0 degrees above 1 km MSL. Fig. 8b shows the difference
 507 in wind speed between the WISSDOM synthesis and sounding observations. The differences of
 508 wind speed derived from WISSDOM was slightly underestimated in the layers between ~ 0.85
 509 and 1.3 km MSL. The median values of the wind speed differences were between -1 and 0.5 m
 510 s^{-1} , and the IQR of wind speed differences was between -2 and 0.5 m s^{-1} . Above 1.3 km MSL,
 511 the differences in wind speed are small as their median values are close to 0 m s^{-1} .


512

513
 514 Figure 8. The box plot of average (a) wind direction discrepancies between the WISSDOM synthesis and sounding
 515 observations above the DGW site during the research period. (b) Same as (a) but for the wind speed.

516 **4.2.3 Lidar QVP**

517 The lidar QVP is another observational reference used to evaluate the performance of derived
 518 winds from the WISSDOM synthesis. The scatter plots of the horizontal winds derived from
 519 WISSDOM and lidar QVP at the DGW site are shown in Fig. 9. The strength of the u-component
 520 winds increases with height in the range between approximately 10 m s^{-1} and 40 m s^{-1} from the
 521 surface up to $\sim 2.5 \text{ km MSL}$ (Fig. 9a). Although the results show a relatively high correlation
 522 coefficient (0.84) for the u-component winds from lower to higher layers in the entire research
 523 period, the degree of scatter is larger than that in Fig. 6a. The average bias and RMSD of the u-
 524 component winds are 2.83 m s^{-1} and 3.69 m s^{-1} , respectively. The correlation coefficient of v-
 525 component winds is lower (0.35) in association with low wind speed ($< 15 \text{ m s}^{-1}$) from the surface
 526 to 2.5 km MSL (Fig. 9b), and it may possibly relate to less coverage from lidar QVP data at
 527 higher layers. The average bias and RMSD of the v-component winds are 2.26 m s^{-1} and 2.92 m
 528 s^{-1} , respectively. The results of these scatter plot analyses are summarized in Table 2. Basically,
 529 the u-component winds have high correlations, relatively lower bias, and lower RMSD than the
 530 v-component winds because the environmental winds are more westerly.

531
 532 Figure 9. The same as Fig. 6 but for (a) u-component winds between the WISSDOM synthesis (x-axis) and lidar
 533 QVP (y-axis). (b) The same as (a) but for v-component winds.

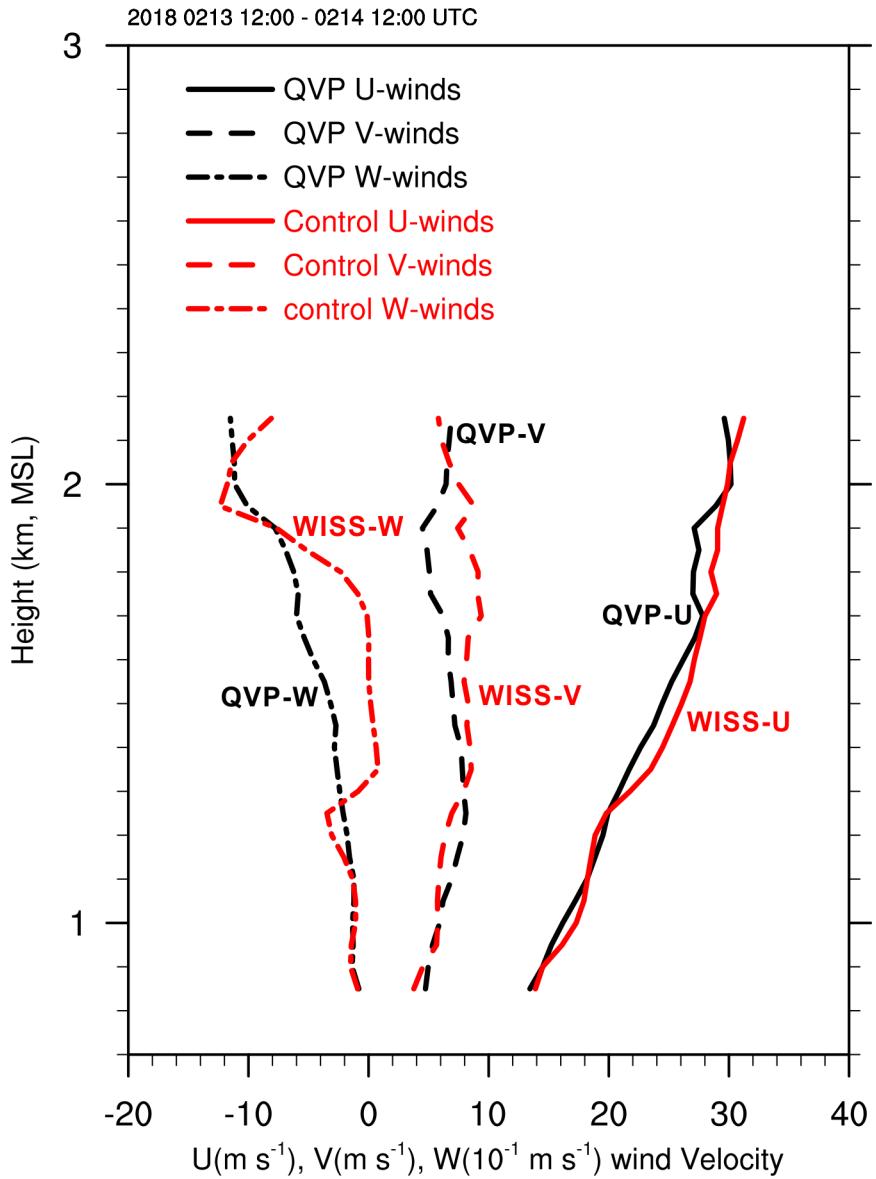
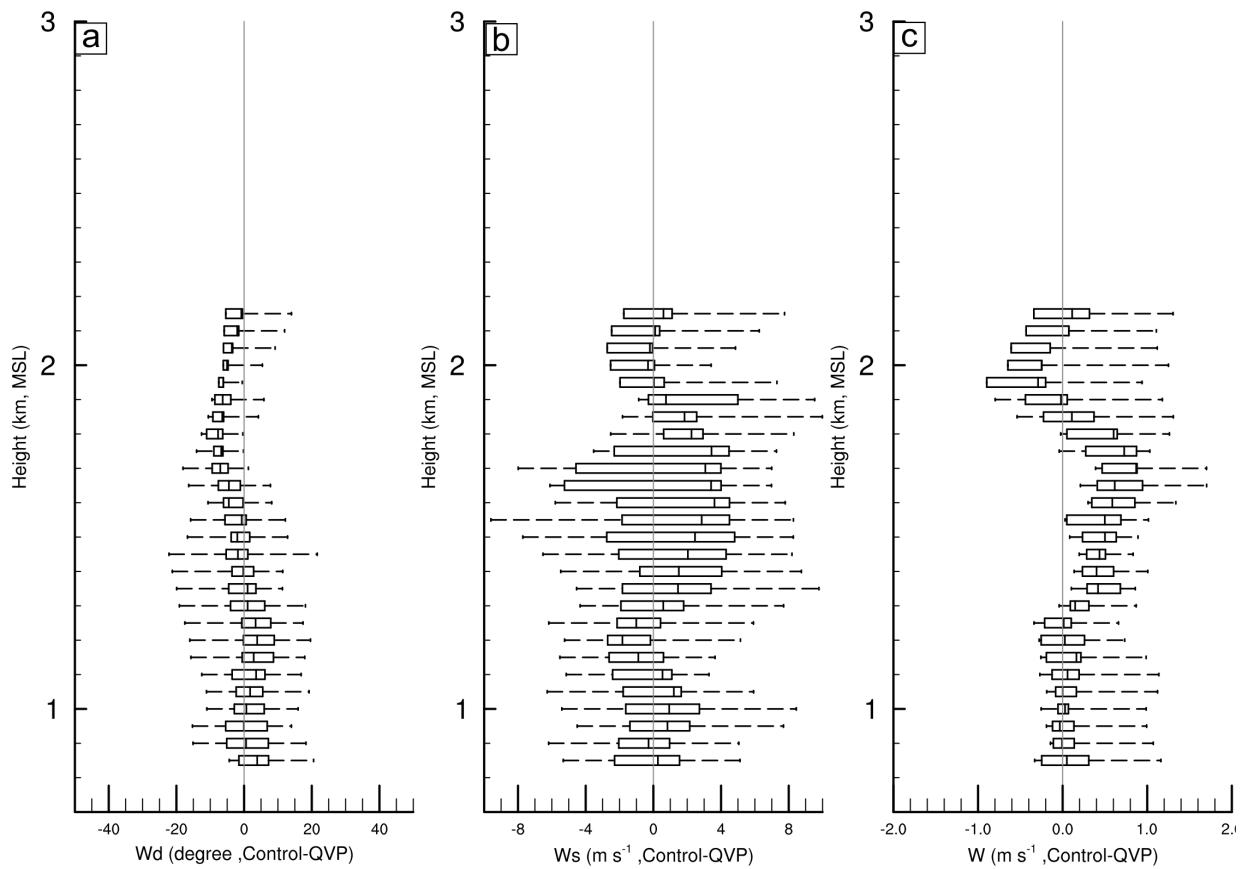

534

Table 2 Summary of the intercomparisons between WISSDOM and observations

		Correlation coefficient	Average bias (m s ⁻¹)	RMSD (m s ⁻¹)
WISSDOM-sounding	u-component	0.97	-0.78	1.77
	v-component	0.87	0.09	1.65
WISSDOM-lidar QVP	u-component	0.84	2.83	3.69
	v-component	0.35	2.26	2.92

535 Compared to the sounding observations, additional w-component winds are available in
 536 lidar QVP, which allows us to check their discrepancies in 3D winds. However, most of the
 537 vertical velocity observations were quite weak (approximately ± 0.2 m s⁻¹) above the DGW site,
 538 and relatively low reliability of the derived vertical velocity could be expected in this event.
 539 Therefore, the average vertical profiles of 3D winds were utilized to qualitatively check the
 540 discrepancies between WISSDOM synthesis and lidar QVP during the research period (Fig. 10).
 541 The results show that the average u-component winds have relatively smaller discrepancies
 542 (approximately < 1 m s⁻¹) between the WISSDOM synthesis (marked as WISS-U in Fig. 10) and
 543 lidar QVP (marked as QVP-U) below ~ 1.3 km MSL at the DGW site. In contrast, there were
 544 larger discrepancies (approximately > 2 m s⁻¹) between 1.3 km and 2 km MSL. The average v-
 545 component winds derived from WISSDOM (marked as WISS-V) and lidar QVP (QVP-V) were
 546 generally weak, and the ranges of WISS-V and QVP-V were between ~ 2 m s⁻¹ and 8 m s⁻¹.
 547 Generally, the vertical profiles of WISS-V were nearly overlain with QVP-V, and their
 548 discrepancies existed in the height range 1.6~2.0 km MSL (maximum ~ 4 m s⁻¹). Smaller (larger)
 549 discrepancies of w-component winds were significantly below (above) the height at ~ 1.3 km
 550 MSL (maximum discrepancies ~ 0.6 m s⁻¹ at 1.7 km MSL). Despite the larger discrepancies, the
 551 similar patterns of W can also be shown. In summary, the discrepancies in the 3D winds between
 552 the WISSDOM synthesis and lidar QVP were small in the lower layers and large in the higher
 553 layers because the observational data from lidars and AWS provided good quality and sufficient
 554 wind information at the lower layers but not in the higher layers (lower coverages of lidar data

555 above 1.3 km MSL, cf. Fig. 4).


556

557 Figure 10. Vertical wind profiles of average 3D winds derived from the WISDOM synthesis (red lines and vectors)
558 and lidar QVP (black lines and vectors) above the DGW site from 12:00 UTC on 13 to 12:00 UTC on 14 Feb.
559 2018. Solid lines indicate u-component winds (m s^{-1}), dashed lines indicate v-component winds (m s^{-1}), and
560 dash-dotted lines indicate w-component winds ($1 \times 10^1 \text{ m s}^{-1}$). The u-, v-, and w-component winds derived from
561 the WISDOM synthesis (lidar QVP) were marked by WISST-U (QVP-U), WISST-V (QVP-V), and WISST-W
562 (QVP-W), respectively.

563 Fig. 11 shows the quantile distribution of statistical errors of wind direction, wind speed and
564 vertical velocity between the WISDOM synthesis and lidar QVP during the research period.
565 The IQR of the wind direction is smaller ($-5\text{--}5$ degrees) in the layers from 0.85 km to 1.5 km
566 MSL and turns to approximately $-10\text{--}0$ degrees above 1.5 km MSL. The median values of wind

567 direction are smaller $-5\sim 5$ degrees) from near the surface to the upper layers (Fig. 11a). Fig. 11b
 568 shows that the median values (IQR) of wind speed are approximately $-1\sim 1$ m s^{-1} ($-2\sim 2$ m s^{-1})
 569 below 1.5 km MSL, and they all become larger with heights above 1.5 km MSL (between -1 and
 570 3 m s^{-1} for median values and $-4\sim 4$ m s^{-1} for the IQR). The statistical error of the vertical velocity
 571 reveals that the IQR is $-0.2\sim 0.2$ m s^{-1} ($-0.8\sim 0.8$ m s^{-1}) below (above) 1.3 km MSL, and the
 572 median values are $0\sim 0.2$ m s^{-1} ($-0.2\sim 0.6$ m s^{-1}) below (above) 1.3 km MSL. The results of
 573 statistical errors are summarized in Table 3.

574

575
 576 Figure 11. The box plot of average (a) wind direction discrepancies between the WISSDOM synthesis and sounding
 577 observations above the DGW site during the research period. (b) Same as (a) but for the wind speed. (c) Same
 578 as (a) but for the w-component winds.
 579

Table 3 Summary of the statistical errors between WISSDOM and observations

		Interquartile range (IQR)	Median values
WISSDOM-sounding	wind direction	$0\sim 2.5$ (deg.)	$0\sim 2.5$ (deg.)

	wind speed	-2~0.5 (m s ⁻¹)	-1~0.5 (m s ⁻¹)
	wind direction	-10~5 (deg.)	-5~5 (deg.)
WISSDOM-lidar QVP	wind speed	-4~4 (m s ⁻¹)	-1~3 (m s ⁻¹)
	w-component winds	-0.8~0.8 (m s ⁻¹)	-0.2~0.6 (m s ⁻¹)

580 **5. Sensitivity test with various datasets, data implementation and weighting coefficients**

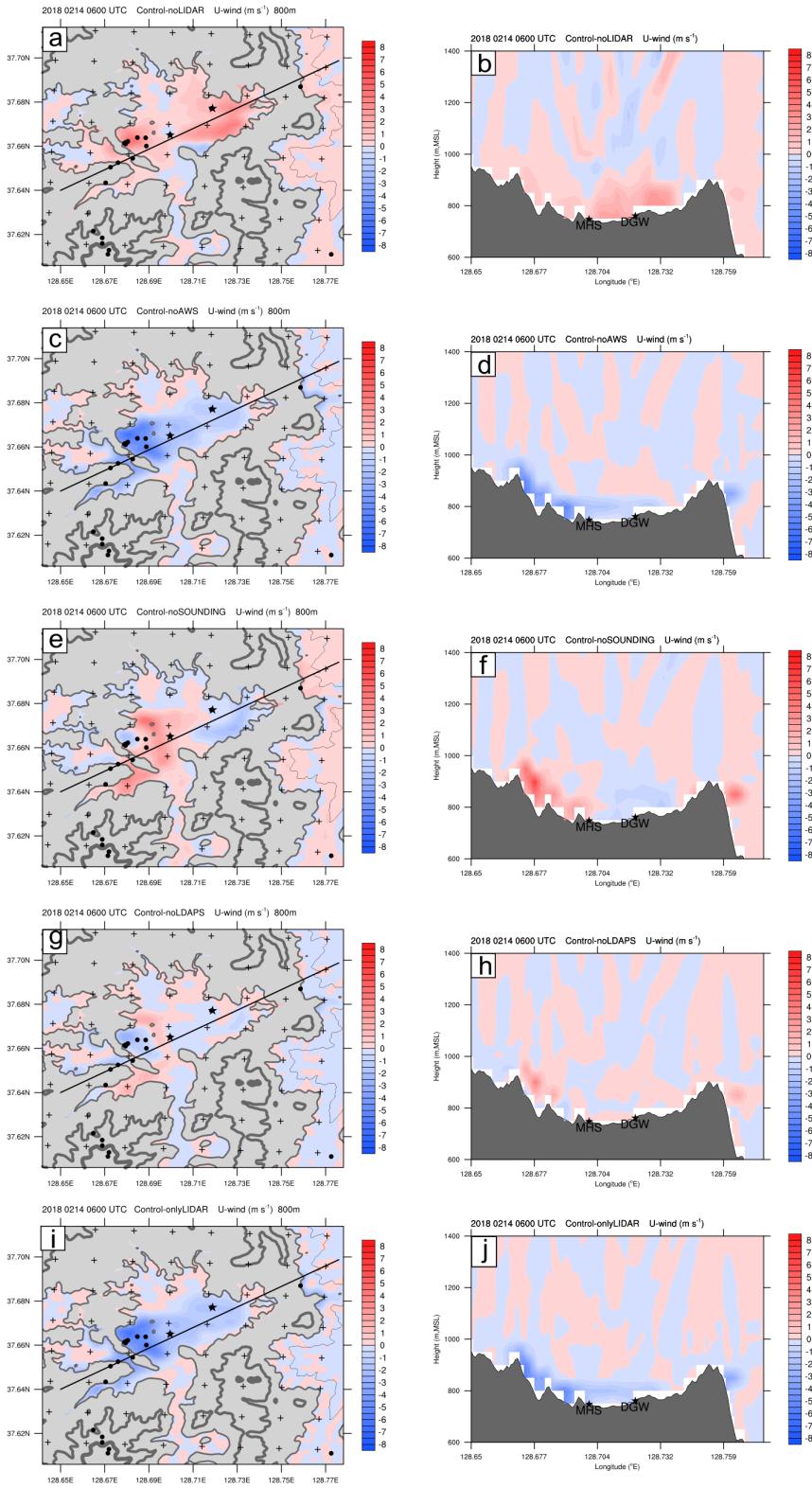
581 **5.1 Impacts of various datasets (Experiment A)**

582 In this section, the impacts of various datasets on data implemented in the WISSDOM
 583 synthesis were evaluated. In particular, the quantitative variances between each design, control
 584 run, sounding observations, and the QVP can be estimated. The basic setting of Experiment A
 585 took off several inputs from the WISSDOM control run (cf. Table 1) as four designs in
 586 Experiment A. The details of these four designs are summarized in Table 4 as the control run
 587 without the lidar observations (A-1), the control run without the AWS observations (A-2), the
 588 control run without the sounding observations (A-3) and the control run without the LDAPS data
 589 (A-4). The discrepancies of 3D winds were examined between the control run and each design in
 590 Experiment A. Since the environmental wind speed is nearly comprised of uniform westerlies in
 591 this event, the results only show the difference in u-component winds between control run and
 592 each design (A-1~A-4) in Fig. 12. An additional test was designed as only Doppler lidar data are
 593 used without other constraints from $J_6 \sim J_8$ (A-5) to evaluate the performances between the
 594 modified and original versions of WISSDOM.

595 Fig. 12a reveals the discrepancies in horizontal u-component winds at 800 m MSL as the A-
 596 1 is subtracted from the control run. This result reflects the impacts of lidar observations on the
 597 u-component winds in the WISSDOM synthesis. The most significant contributions from the

598 lidar observations are the high wind speed existing near the DGW site in a relatively narrow
 599 valley. The mechanisms of the accelerated wind speed due to the channeling effect in this local
 600 area were verified by our previous study (Tsai et al. 2022). The lidar observations also contributed
 601 to the high wind speed in another area near the western side of the MHS site (128.68°E, 37.66°N).
 602 Based on the analysis in the vertical cross section of u-component winds in A-1 (Fig. 12b), the
 603 lidar observations significantly affected the high wind speed only in the lower levels (below ~900
 604 m MSL) but not in the higher levels. Lidar observations provided sufficient coverage only for
 605 lower levels and not higher levels (cf. Fig. 4).

606

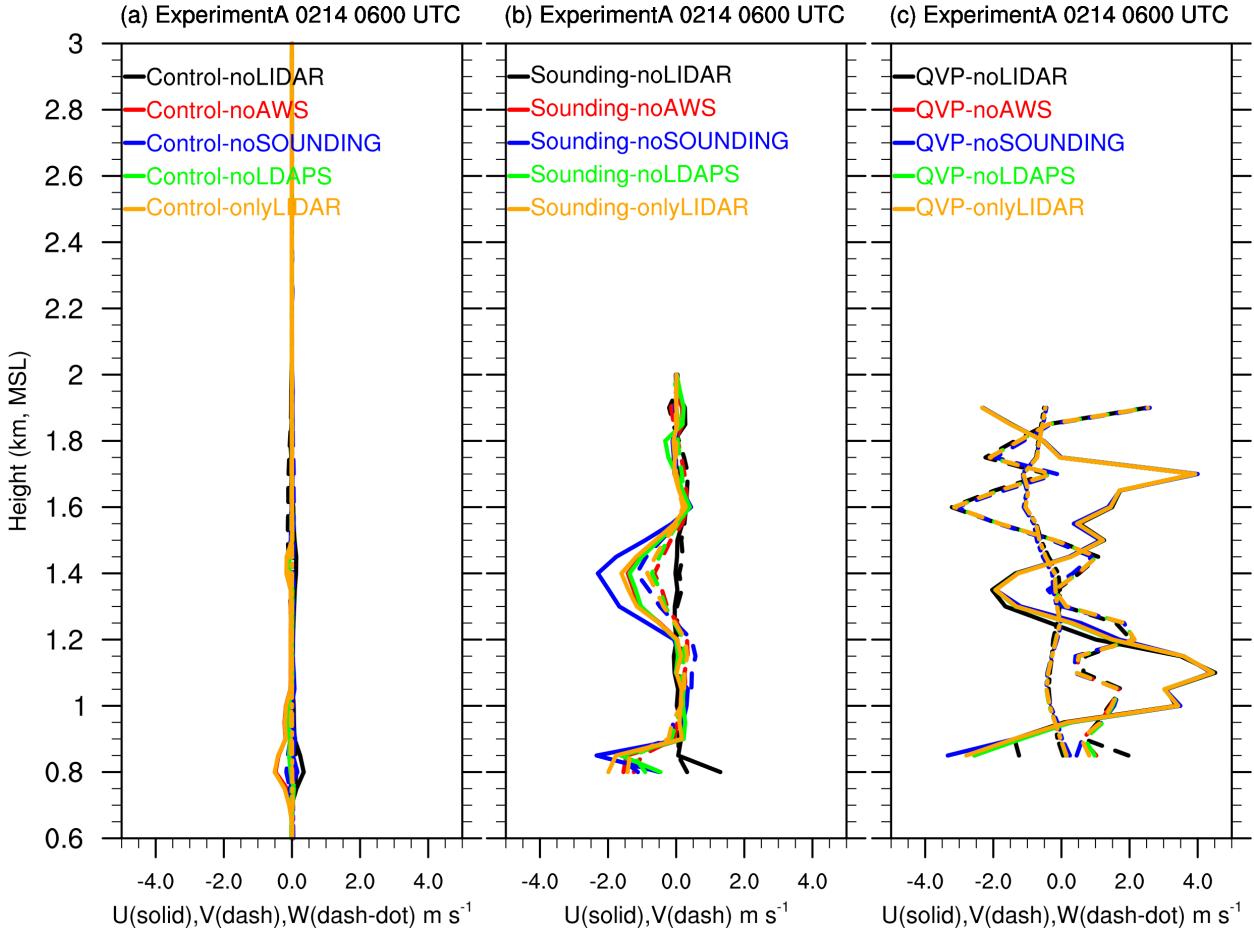

Table 4 Experiment setting (sensitivity testing)

	Various datasets	Including Doppler lidars, AWS, Soundings, LDAPS
	Interpolation of AWS	RI: 1.0 km, VE: 90%
Control run		Doppler Lidars (α_1): 10^6 Background (α_2): 10^2
	Weighting Coefficient	Sounding (α_6): 10^6 AWS (α_7): 10^6 LDAPS (α_8): 10^3
Experiment A	Various datasets	A-1 Excluding Doppler Lidars A-2 Excluding AWS A-3 Excluding Soundings A-4 Excluding LDAPS A-5 Only Doppler lidars
Experiment B	Interpolation of AWS	B-1 RI: 0.5 km, VE: 50% B-2 RI: 0.5 km, VE: 90% B-3 RI: 1.0 km, VE: 50% B-4 RI: 2.0 km, VE: 50% B-5 RI: 2.0 km, VE: 90%
Experiment C	Weighting Coefficient (constraints)	C-1 AWS (α_7): 10^3 C-2 Doppler Lidars (α_1): 10^3 C-3 LDAPS (α_8): 10^6

607

608 The impacts of the AWS cause negative values on the u-component winds in most areas at
 609 800 m MSL in A-2 (Fig. 12c), especially in the western areas of the MHS site. Negative

610 contributions of the u-component winds produced by the AWS observations were restricted near
611 the surface, and the low wind speed area was extended to ~100 m above the surface (Fig. 12d).
612 The contributions of the u-component winds from the sounding observations were weak near the
613 DGW sounding site in A-3 (Figs. 12e and 12f). The impacts of u-component winds from the
614 LDAPS datasets were rather smaller in most of analysis area. in A-4 (Figs. 12g and 12h).
615 Relatively weak winds were presented near the surface from the results of A-5 (Figs. 12i and
616 12j). These results reflect that the additional constraints play crucial roles, especially at lower
617 layers. Furthermore, it is implied that the winds can be reasonably retrieved when additional
618 constraints are set in the modified version of WISSDOM.

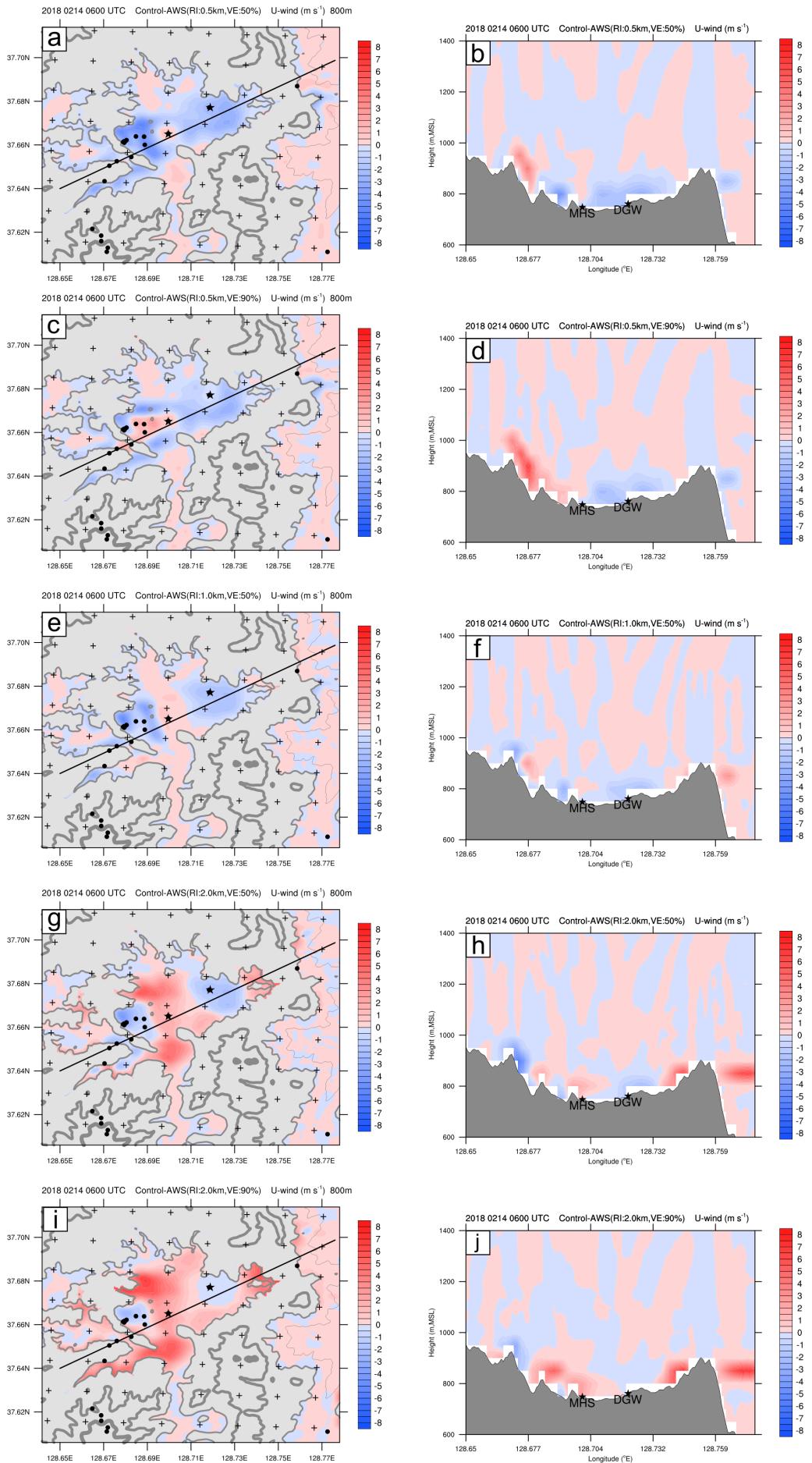


619
620
621
622
623
624

Figure 12. (a) The discrepancies in horizontal u-component winds between the control run and A-1 at 800 m MSL at 06:00 UTC on 14 Feb. 2018. (b) The same as (a) but for the vertical section along the black line in (a). (c) and (d) are the same as (a) and (b) but for A-2. (e) and (f) are the same as (a) and (b) but for A-3. (g) and (h) are the same as (a) and (b) but for A-4. (i) and (j) are the same as (a) and (b) but for A-5.

625 Averaged discrepancies in derived 3D winds for each vertical level in entire domain are
626 shown in Fig. 13a. These results summarized a series of sensitivity tests if the WISSDOM
627 synthesis lacks certain data inputs (i.e., A-1~A-5 in Experiment A) for derived u-, v- and w-
628 component winds in the test domain. Overall, the maximum absolute value of averaged
629 discrepancies for Experiment A are smaller than approximately 0.5 m s^{-1} , which are the
630 discrepancies of the u-component winds for A-1 and A-2 located at 800 m MSL. Except for these
631 values, the values of the derived u-, v- and w-component winds for A-1~A-2 are approximately
632 smaller than 0.2 m s^{-1} from the surface up to the top in the test domain. Based on the results of
633 A-5, relatively stronger values of derived u-component (exceeded -0.4 m s^{-1} at lower layers) can
634 be obtained from the setting like old version of WISSDOM. The wind speed can be better
635 modulated in modified version of WISSDOM when the Doppler lidar observations were adopted.

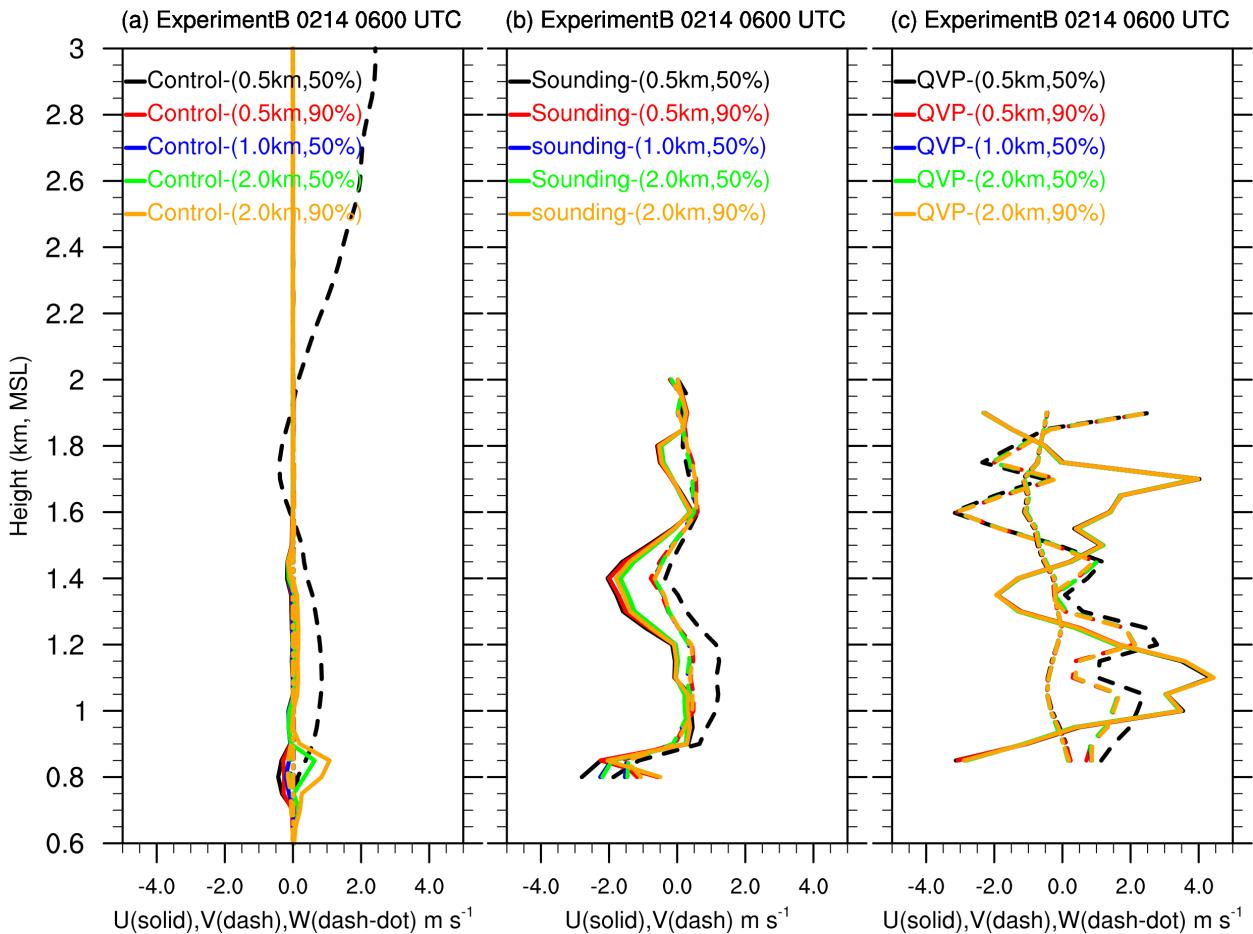
636 In addition, the discrepancies in derived 3D winds between sounding observations and QVP
637 were also examined along the sounding tracks (Fig. 13b) and above the DGW site (Fig. 13c).
638 Sounding observations played an essential role in the derived winds along its tracks. The
639 maximum discrepancies of u- (v-) component winds are exceeded by approximately -2 (-1) m s^{-1}
640 if the WISSDOM synthesis lacks sounding observations. However, small discrepancies
641 (nearly 0 m s^{-1}) were presented when the sounding (lidar) data were (not) implemented at all
642 levels in A-1. The peaks in the discrepancies manifested the potential impacts from the lidar and
643 AWS. This may be a result of lidar (AWS) having relatively higher data coverage at ~ 1.4 (0.8)
644 km MSL (cf. Fig. 4). The maximum discrepancies between the derived winds and the QVP winds
645 are approximately -4 and 4 (-1 and 0) m s^{-1} associated with u-, v- (w-) component winds.
646 Generally, the results reveal similar trends in A-1~A-5, which also implies that all the inputs in
647 the WISSDOM synthesis are equally significant against the QVP. In summary, the results of this
648 experiment (cf. Fig. 13) show that the lidar, sounding, and AWS data are more critical inputs in
649 modified WISSDOM. Therefore, it will be beneficial if various inputs can be included in the
650 synthesis.


651

652 Figure 13. (a) Vertical profiles of averaged discrepancies of 3D winds for each design in Experiment A at 06:00
 653 UTC on 14 Feb. 2018. The averaged discrepancies of u-, v- and w-component winds were plotted by solid, dash,
 654 and dash-dot lines, and the black, red, blue, green and orange lines indicate A-1, A-2, A-3, A-4 and A-5,
 655 respectively. (b) The same as (a) but for the discrepancies of sounding observations and u-, and v-component
 656 winds. (c) The same as (a) but for the discrepancies of QVP.

657 **5.2 Radius of influence (RI) and vertical extension for the AWS (Experiment B)**

658 Experiment B was performed to check the discrepancies in 3D winds between the control run
 659 and the different settings of RI and VE with the AWS observations. Because the average distance
 660 is approximately 0.1 to 2 km between each AWS site, there were five designs (B-1~B-5) in
 661 Experiment B with ranges of RI (VE) between 0.5 km (50%) and 2 km (90%). The details are
 662 shown in Table 4. The horizontal u-component winds at 800 m MSL and the vertical structure of
 663 Experiment B at one time step (06:00 UTC on 14 February 2018) are shown in Fig. 14. An
 664 unusual circular area with positive discrepancies around the MHS site was depicted in B-1 (Figs,


665 14a and 14b), which may have been produced by the insufficient RI distance and VE (the circular
666 artefact is removed when increasing VE to 90%). Relatively smaller RI and VE values can only
667 include relatively less wind information if the distances are large between each AWS. Enlarging
668 the RI and VE are required to appropriately include more wind information from the AWS
669 observations. Figs. 14c and 14d show the results of B-2 as VE reached 90%. Although the unusual
670 circle vanished, there were discontinuities with negative values near the northern and southern
671 areas of the MHS site and positive areas surrounding the AWS (128.68°E , 37.66°N). The setting
672 of B-3 was similar to that of the control run except that the VE was 50%. The discrepancies were
673 relatively small, albeit dense AWS contributed even smaller negative values in the western areas
674 of the MHS sites (Figs. 14g and 14h). Obviously, positive discrepancies appeared near the
675 northern and southern areas of the MHS site in B-4 and B-5 (Figs. 14g-j). The impacts of the
676 AWS with various settings (B-1~B-5) on the discrepancies in u-component winds were both
677 restricted near the surface, even with a larger RI and high VE.

679 Figure 14. The same as Fig.12, but (a) and (b) for B-1. (c) and (d) are the same as (a) and (b) but for B-2. (e) and (f)
680 are the same as (a) and (b) but for B-3. (g) and (h) are the same as (a) and (b) but for B-4. (i) and (j) are the same
681 as (a) and (b) but for B-5.

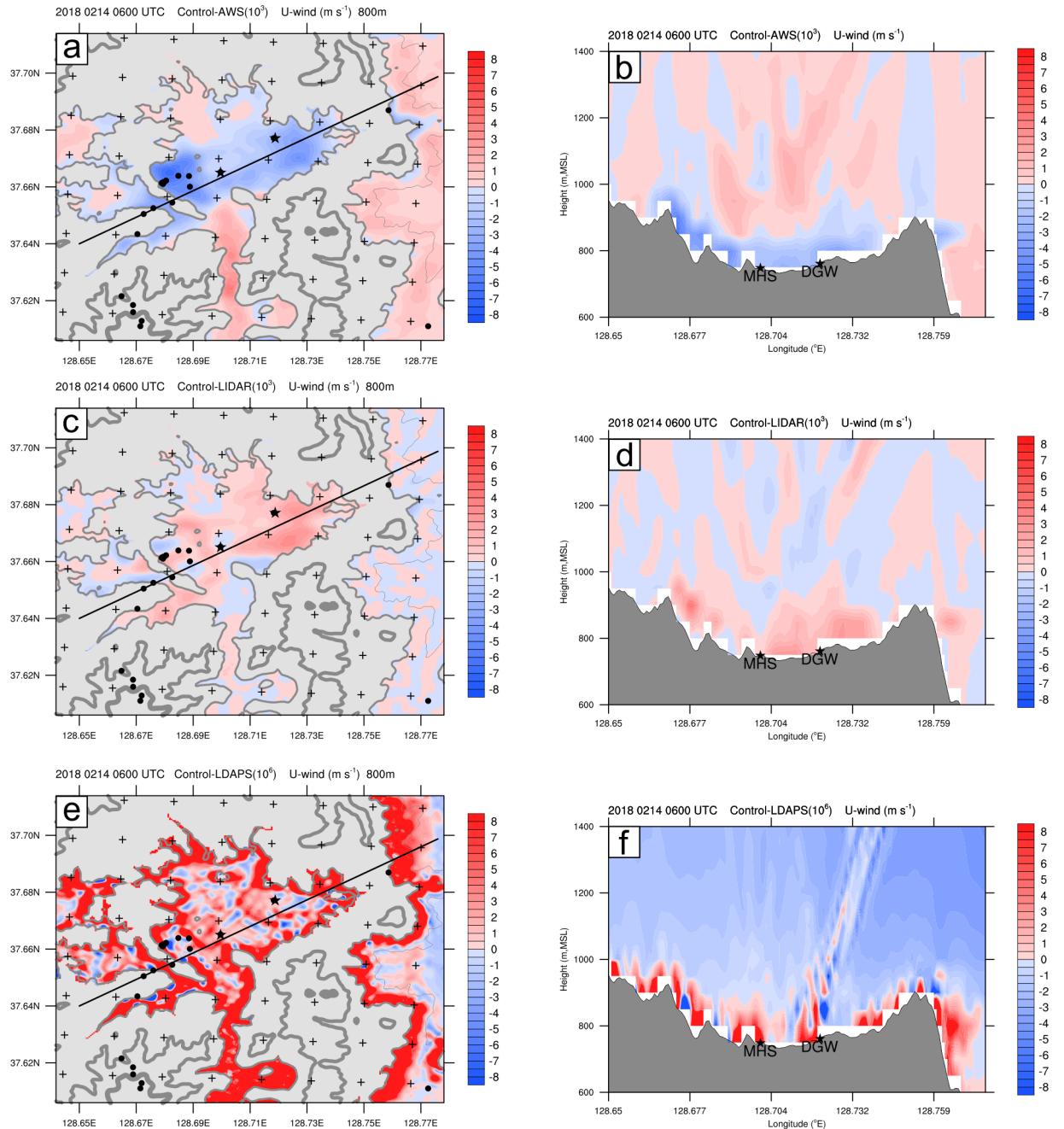
682 Fig. 15a shows the vertical profiles of averaged discrepancies of derived 3D winds in
683 Experiment B. This figure summarizes the results of sensitivity testing with different settings of
684 the RI and VE in WISSDOM (i.e., B-1~B-5 in Experiment B, shown in Table 4) for derived u-,
685 v- and w-component winds in the test domain. The maximum discrepancies of u-component
686 winds in B-1, B-2 and B-3 were quite small at only 0.4, 0.3 and 0.2 m s^{-1} , respectively.
687 Nevertheless, the maximum discrepancies of u-component winds for B-4 and B-5 were larger
688 than 0.6 m s^{-1} and even exceeded $\sim 1 \text{ m s}^{-1}$. Although the discrepancies in the u-component winds
689 in B-1 were small, the discrepancies in the v-component winds in B-1 reveal unusual patterns,
690 with larger positive values at $\sim 1100 \text{ m MSL}$ and negative values at $\sim 1800 \text{ m MSL}$ (black dashed
691 line in Fig. 15a), the possible reason is the minimizations of cost function are not converged well
692 because relatively few and weak v-component winds were included in B-1. Except for this value,
693 the maximum discrepancies of v-component winds were small for B-2~B-5, and the maximum
694 discrepancies of w-component winds were also small for all of Experiment B. Note that B-3
695 always has the smallest discrepancies with the derived 3D winds because the setting is quite
696 similar to the control run. Figs. 15b and 15c show the discrepancies of derived 3D winds between
697 the sounding observations and QVP. Their patterns are similar to A-1~A5 (cf. Figs. 13b and 13c),
698 except there were relatively larger values of u- (v-) component winds at lower layers
699 (approximately -3 and 1 m s^{-1}) in B-1 (Fig. 15b). The v-component winds also presented larger
700 values (exceeded $\sim 3 \text{ m s}^{-1}$) below $\sim 1.2 \text{ km MSL}$ compared with the QVP (Fig. 15c). The
701 conclusions indicated that the moderate setting (i.e., RI is 1 km) would be helpful to obtain minor
702 differences with the control run, sounding observations and the QVP. On the other hand, the
703 limited setting in experiment B (i.e., B-1) was helpless. In addition, the wind directions and speed
704 should be dominated by terrain, and the implementation of AWS data is crucial for the modified

705 WISSDOM synthesis, especially in the lower layers.

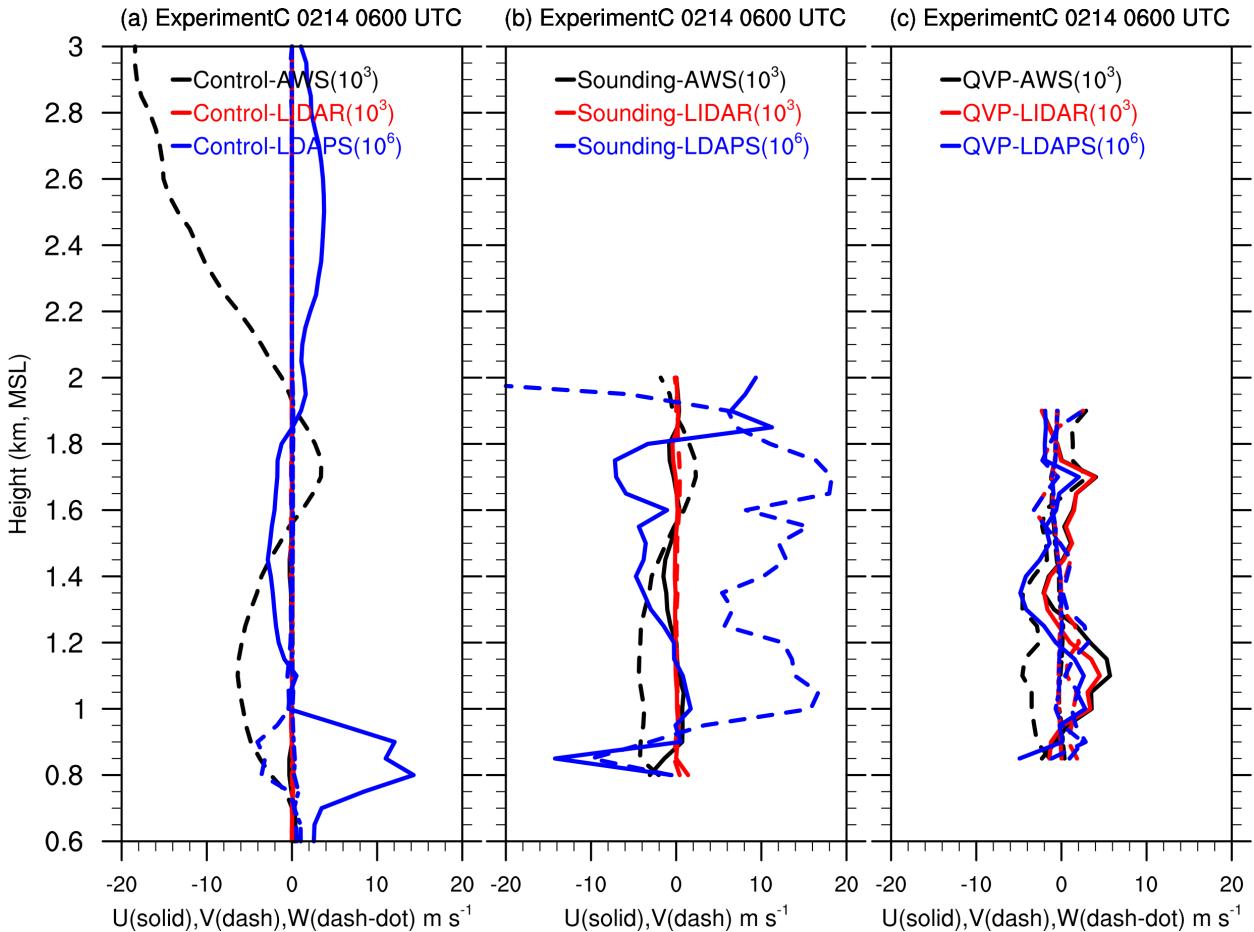
706

707 Figure 15. The same as Fig. 13, but for B-1~B-5.

708 5.3 Different weighting coefficients for the constraints (Experiment C)


709 Experiment C was designed to check the discrepancies in the derived u-component winds
710 between the control run and experimental runs with different weighting coefficients for each
711 constraint related to the AWS, lidar and LDAPS (corresponding to C-1, C-2 and C-3 in Table 4).
712 Originally, the weighting coefficients for the AWS and lidar observations were set to 10^6 , and the
713 value was 10^3 for the LDAPS dataset (i.e., control run, Table 1). The results of Experiment C
714 show significant negative discrepancies in u-component winds near the surface in C-1, especially
715 in the areas next to the AWS (128.68°E , 37.66°N). The discrepancies for C-1 (Figs. 16a and 16b)
716 and C-2 (Figs. 16c and 16d) are similar to those for A-2 (Figs. 12c and 12d) and A-1 (Figs. 12a
717 and 12b), respectively. The inputs of AWS and lidar both contributed relatively weak impacts to

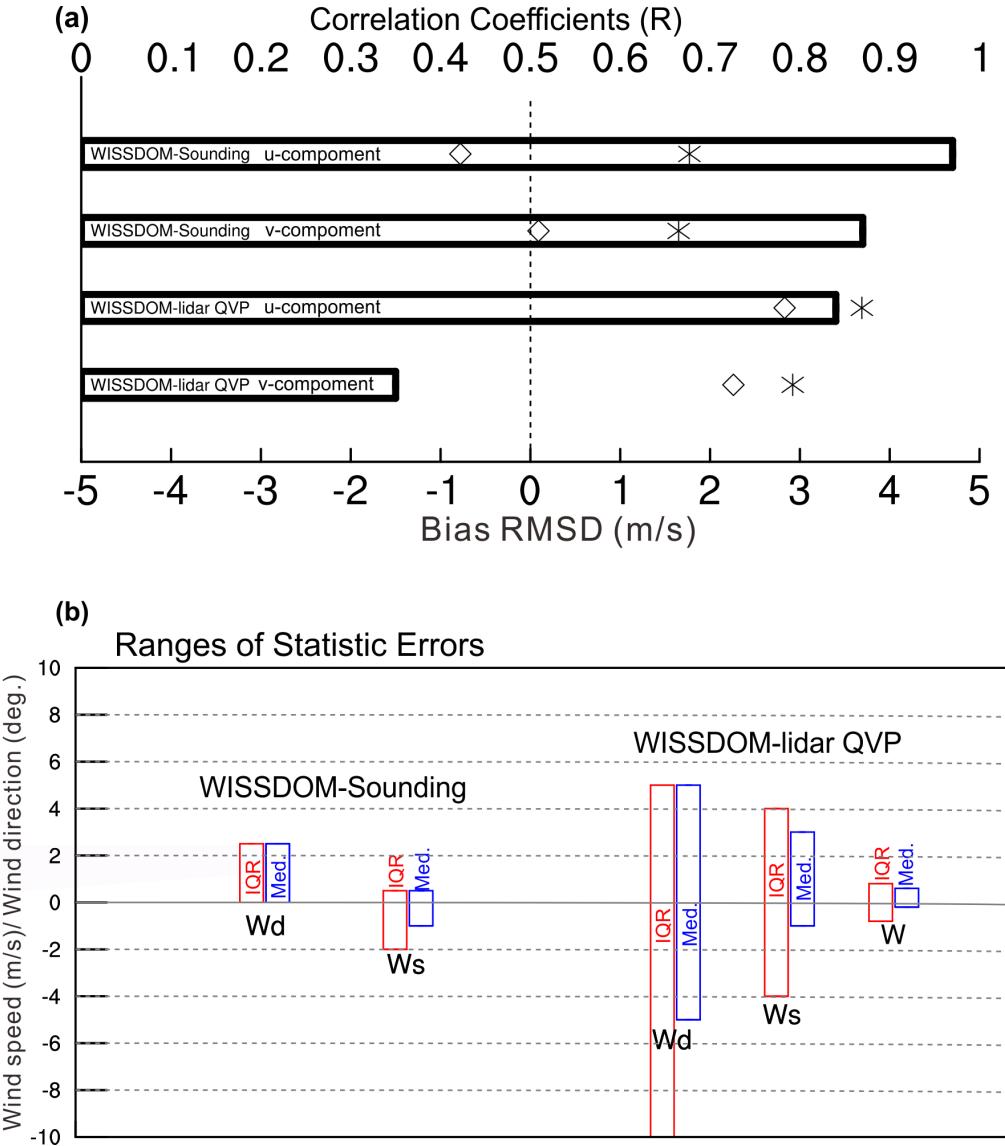
718 the WISSDOM synthesis when the weighting coefficient was set to 10^3 . Irrational patterns were
719 depicted when the weighting coefficient of LDAPS inputs increased to 10^6 , and larger and
720 positive discrepancies were crowded into most areas in the valley (i.e., C-3, Figs. 16e). Larger
721 and positive discrepancies existed only near the surface, and there were negative discrepancies
722 between approximately 1000 m and 1400 m (Fig. 16f). Notably, significant variances usually
723 existed between the observations and reanalysis datasets due to various spatiotemporal
724 resolutions. The results of scenario C-3 do not converge well because there was a relatively more
725 significant gradient between each input as their weighting coefficients were set to be the same
726 (i.e., 10^6). In this way, the effects of poor convergences might be amplified and superposed with
727 the AWS and lidar observations along the sounding tracks. This may be a possible reason that
728 artificial signals existed over the DGW site in scenario C-3.


729 The vertical profiles of averaged discrepancies of derived 3D winds in Experiment C are
730 shown in Fig. 17a. Absolute values of the discrepancies in the u-, v- and w-component winds are
731 smaller than 1 m s^{-1} , except for the discrepancies in the v-component winds with low weighting
732 of the AWS observations (i.e., C-1) and the discrepancies in the u- and v-component winds with
733 the high weighted LDAPS (i.e., C-3). The discrepancies in the v-component winds in C-1
734 exceeded -5 m s^{-1} at $\sim 1100 \text{ m MSL}$ and were larger than -15 m s^{-1} above 2600 m MSL . These
735 unreasonable characteristics are also shown as the discrepancies in the v-component winds in B-
736 1 (cf. Fig. 15a). The discrepancies in the u- and v-component winds in C-3 are 15 m s^{-1} and 4 m
737 s^{-1} , respectively, in the layers between 700 and 900 m MSL. Alternative positive and negative
738 discrepancies in the range of -3 to 3 m s^{-1} for the u-component winds in C-3 were found above
739 1000 m MSL.

740 The discrepancies in derived 3D winds between sounding observations and QVP in
741 Experiment C were also examined. Compared to the sounding observations, more significant
742 discrepancies in the u- and v-component winds (exceeded $\sim 20 \text{ m s}^{-1}$) can be obtained when
743 reducing (increasing) the weighting coefficients of the AWS (LDAPS) data (Fig. 17b). However,

744 the impacts of lidar against the QVP are shown; their discrepancies are in the range of -1 to 2 m
 745 s^{-1} for the u-component winds in C-2 (Fig. 17c). The conclusions reveal that the weighting
 746 coefficients of the AWS and LDAPS (lidar) are (moderately) significantly sensitive to the derived
 747 winds. Therefore, the weighting coefficients of LDAPS and AWS are not necessarily changed
 748 much.

749
 750 Figure 16. The same as Fig.12, but (a) and (b) for C-1. (c) and (d) are the same as (a) and (b) but for C-2. (e) and (f)
 751 are the same as (a) and (b) but for C-3.


752

753 Figure 17. The same as Fig. 13 but for C-1~C-3.

754 **6. Conclusion**

755 A modified WISSDOM synthesis scheme was developed to derive high-quality 3D winds
 756 under clear-air conditions. The main difference from the original version is that multiple lidar
 757 observations were used, and high-resolution 3D winds (50 m horizontally and vertically) were
 758 first derived in the modified WISSDOM scheme. In addition, all available datasets were included
 759 as one of the constraints in the cost function in this study. The data implementation and the
 760 detailed principles of the modified WISSDOM were also elaborated. This modified WISSDOM
 761 scheme was performed over the TMR to retrieve 3D winds during a strong wind event during
 762 ICE-POP 2018. The performance was evaluated via a series of sensitivity tests and compared
 763 with conventional observations.

764 The intercomparisons of horizontal winds during the entire research period reveal a relatively
765 high correlation coefficient between the optimal results of WISSDOM synthesis and sounding's
766 u- (v-) component winds exceeding 0.97 (0.87) at the DGW site. Furthermore, the average bias
767 is -0.78 m s^{-1} (0.09 m s^{-1}), and the RMSD is 1.77 m s^{-1} (1.65 m s^{-1}) for the u- (v-) component
768 winds. The intercomparisons of 3D winds between the WISSDOM synthesis and lidar QVP also
769 showed a higher correlation coefficient (0.84) for u-component winds, but a relatively smaller
770 correlation coefficient remained at 0.35 for v-component winds in this strong wind event. The
771 average bias (RMSD) of u-component winds is 2.83 m s^{-1} (3.69 m s^{-1}), and the average bias and
772 RMSD of v-component winds are 2.26 m s^{-1} and 2.92 m s^{-1} , respectively (cf. Table 2). Chen
773 (2019) analyzed the correlations between 3D winds derived from radar and observations in
774 several typhoon cases; the mean correlation coefficient ranged from 0.56 to 0.86, and the RMSD
775 was between 1.13 and 1.74 m s^{-1} . Compared to their results, only u-component winds have
776 relatively higher correlation coefficients, but the RMSD values are slightly higher in this study,
777 which may have been caused by the high variability in westerly winds associated with the moving
778 LPS. The statistical error results of the winds between the optimal results of WISSDOM synthesis
779 and observations show a good performance of the retrieved 3D winds in this strong wind event
780 (Table 3). Generally, the median values of wind directions are within ~ 10 degrees. Compared
781 with lidar QVP (sounding observations) the median values of the wind speed are approximately
782 $-1\sim 3 \text{ m s}^{-1}$ ($-1\sim 0.5 \text{ m s}^{-1}$) and the vertical velocity is within $-0.2\sim 0.6 \text{ m s}^{-1}$. Compared with
783 lidar QVP (sounding observations) above the DGW site, the interquartile range of wind directions
784 is $-10\sim 5$ (0-2.5) degrees, the wind speed is approximately $-4\sim 4 \text{ m s}^{-1}$ ($-1\sim 3 \text{ m s}^{-1}$) and the
785 vertical velocity is $-0.8\sim 0.8 \text{ m s}^{-1}$. The summaries of the correlation coefficients, average bias,
786 the RMSD, and range of statistical errors are shown in the schematic diagrams as Figs. 18a and
787 18b.

788
789
790
791
792

Figure 18. Schematic diagrams for the results of intercomparisons on (a) the correlation coefficients (R , histograms), the average bias (marked as diamonds), and the RMSD (marked as asterisks). (b) The ranges of statistic error for the IQR (red boxes) and median values (blue boxes). The wind directions, wind speed and w-component winds are denoted as W_d , W_s , and W respectively.

793 A control run (see the basic setting in Table 1) was set to explore the importance of acquired
794 observation datasets, various distances of RI, VE from the AWS observations, and the weighting
795 coefficient for each constraint (i.e., Experiments A-C, Table 4). The results of Experiment A
796 show that the lidar and AWS play critical roles in the derived horizontal winds, and the lidars
797 (AWS) provided positive (negative) contributions in stronger (weaker) wind speeds near the
798 surface. The sounding and the LDAPS provided relatively smaller impacts on the derived
799 horizontal winds from the WISSDOM synthesis. In Experiment B, minor discrepancies in 3D

winds were depicted when the RI (VE) was set to 1 km (50%), which indicated that the optimal setting of the RI is 1 km. However, there were larger discrepancies in 3D winds (from -0.4 m s^{-1} to $\sim 1 \text{ m s}^{-1}$) when the RI was set at 0.5 km and 2 km, and the VE was set between 50% and 90% (cf. Fig. 15). In Experiment C, significant discrepancies in 3D winds appeared by decreasing (raising) the weighting coefficient from the AWS observations (LDPAS datasets). Relatively reasonable winds can be derived with optimal settings in modified WISSDOM, and the setting of 90% (50%) in VE is also recommended over complex terrain (flat surface). These sensitivity tests will help verify the impacts against various scenarios and observational references in this area. The conclusions can also be a good reference for deciding the best locations to deploy the instruments.

This study demonstrated that reasonable patterns of 3D winds were derived by the modified WISSDOM synthesis scheme in a strong wind event. Reasonable winds can be retrieved from modified WISSDOM with sufficient coverage from the data, a moderate weighting function, and appropriate implementation from different datasets. In the future, many cases are required to check the performance of this modified WISSDOM scheme with different synoptic weather systems under clear-air conditions in different seasons. In addition, knowing the detailed kinematic fields will help us to identify where the flow accelerates/decelerates over complex terrain. Thus, the possible mechanisms of extremely strong winds in South Korea will be well documented through combinations with derived dynamic fields (Tsai et al., 2018, 2022), thermodynamic fields (Liou et al., 2019), observations and simulations. The detailed wind structures can be well documented for any meteorological phenomena in clear-air conditions (e.g., land–sea breezes, microdownbursts, nonprecipitation low-pressure systems, etc.) via a modified version of WISSDOM. It also has broad applications in site surveys of wind turbines, wind energy, monitoring wildfires, outdoor sports in mountain ranges, and aviation security.

824 *Code and data availability.* The scanning Doppler lidars, AWS, and sounding data used in this
825 study are available through zenodo: <https://doi.org/10.5281/zenodo.6537507>. The LDAPS
826 dataset is freely available from the KMA website (<https://data.kma.go.kr>).
827

828 *Acknowledgments.* This work was supported by the National Research Foundation of Korea (NRF)
829 grant funded by the Korea government (MSIT) (No. 2021R1A4A1032646) and by the Korea
830 Meteorological Administration Research and Development Program under Grant KMI2022-
831 00310.
832

833 *Author contributions.* This work was made possible by contribution from all authors.
834 Conceptualization, CLT, GWL; methodology, CLT, YCL, and KK; software, CLT, YCL, and
835 KK; validation, KK, YCL, and GWL; formal analysis, CLT, and KK; investigation, CLT, and
836 GWL; writing—original draft preparation, CLT; writing—review and editing, GWL, YCL and
837 KK; visualization, CLT; supervision, GWL; funding acquisition, GWL. All authors have read
838 and agreed to the published version of the manuscript.
839

840 *Competing interests.* The authors declare that they have no conflict of interest.
841

842 *Special issue statement.* This article is part of the special issue “Winter weather research in
843 complex terrain during ICE-POP 2018 (International Collaborative Experiments for
844 Pyeongchang 2018 Olympic and Paralympic winter games) (ACP/AMT/GMD inter-journal SI)”.
845 It is not associated with a conference.
846
847

848 **References**

849 Armijo, L.: A theory for the determination of wind and precipitation velocities with Doppler
850 radars. *J. Atmos. Sci.*, **26**, 570–573. 1969.

851 Bell, M. M., Montgomery, M. T., and Emanuel, K. A.: Air–sea enthalpy and momentum
852 exchange at major hurricane wind speeds observed during CBLAST, *J. Atmos. Sci.*, **69**,
853 3197–3222, <https://doi.org/10.1175/JAS-D-11-0276.1>, 2012.

854 Bell, T. M., Klein, P., Wildmann, N., and Menke, R.: Analysis of flow in complex terrain using
855 multi-Doppler lidar retrievals, *Atmos. Meas. Tech.*, **13**, 1357–1371,
856 <https://doi.org/10.5194/amt-13-1357-2020>, 2020.

857 Browning, K. A., and Wexler, R.: The Determination of Kinematic Properties of a Wind Field
858 Using Doppler Radar, *J. Appl. Meteorol.*, **7**, 105–113, [https://doi.org/10.1175/1520-0450\(1968\)007<0105:TDOOKPO>2.0.CO;2](https://doi.org/10.1175/1520-0450(1968)007<0105:TDOOKPO>2.0.CO;2), 1968.

859 Chen, Y.-A.: Verification of multiple-Doppler-radar derived vertical velocity using profiler data
860 and high resolution examination over complex terrain, M.S. thesis, National Central
861 University, 91 pp., 2019.

862 Choi, D., Hwang, Y., Lee, YH.: Observing Sensitivity Experiment Based on Convective Scale
863 Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer
864 2018. *Atmosphere*, **30**, 17–30, 2020 (Korean with English abstract).

865 Cha, T.-Y. and Bell, M. M.: Comparison of single-Doppler and multiple-Doppler wind retrievals
866 in Hurricane Matthew (2016), *Atmos. Meas. Tech.*, **14**, 3523–3539,
867 <https://doi.org/10.5194/amt-14-3523-2021>, 2021.

868 Choukulkar, A., Brewer, W. A., Sandberg, S. P., Weickmann, A., Bonin, T. A., Hardesty, R. M.,
869 Lundquist, J. K., Delgado, R., Iungo, G. V., Ashton, R., Debnath, M., Bianco, L., Wilczak,
870 J. M., Oncley, S., and Wolfe, D.: Evaluation of single and multiple Doppler lidar
871 techniques to measure complex flow during the XPIA field campaign, *Atmos. Meas. Tech.*,
872 **10**, 247–264, <https://doi.org/10.5194/amt-10-247-2017>, 2017.

873

874 Colle, B. A., and Mass, C. F.: High-Resolution Observations and Numerical Simulations of
875 Easterly Gap Flow through the Strait of Juan de Fuca on 9–10 December 1995. *Mon. Wea.
876 Rev.*, **128**, 2398–2422,

877 Cressman, G. P.: An operational objective analysis system. *Mon. Wea. Rev.*, **87**, 367–374, 1959.

878 Gao, J., Droege, K. K., Gong, J., and Xu, Q.: A method for retrieving mean horizontal wind
879 profiles from single-Doppler radar observations contaminated by aliasing, *Mon. Wea.
880 Rev.*, **132**, 1399–1409, [https://doi.org/10.1175/1520-0493\(2004\)132<1399:AMFRMH>2.0.CO;2](https://doi.org/10.1175/1520-0493(2004)132<1399:AMFRMH>2.0.CO;2), 2004.

882 Hill, M., R. Calhoun, H. J. S. F., Wieser, A., Dornbrack, A., Weissmann, M., Mayr, G., and
883 Newsom, R.: Coplanar Doppler lidar retrieval of rotors from T-REX, *J. Atmos. Sci.*, **67**,
884 713–729, 2010.

885 Jou, B. J.-D., Lee, W.-C., Liu, S.-P., and Kao, Y.-C.: Generalized VTD retrieval of atmospheric
886 vortex kinematic structure. Part I: Formulation and error analysis, *Mon. Weather Rev.*,
887 **136**, 995–1012, <https://doi.org/10.1175/2007MWR2116.1>, 2008.

888 Kim D.-J., Kang G., Kim D.-Y., Kim J.-J.: Characteristics of LDAPS-Predicted Surface Wind
889 Speed and Temperature at Automated Weather Stations with Different Surrounding Land
890 Cover and Topography in Korea. *Atmosphere*, **11**, 1224.
891 <https://doi.org/10.3390/atmos1111224>, 2020.

892 Kim, J.-H., R. D. Sharman, R. D., Benjamin, S., Brown, J., Park, S.-H. and Klemp, J.:
893 Improvement of Mountain Wave Turbulence Forecast in the NOAA’s Rapid Refresh
894 (RAP) Model with Hybrid Vertical Coordinate System, *Weather Forecast*, **34(6)**, 773-
895 780, <https://doi.org/10.1175/WAF-D-18-0187.1>, 2019.

896 Kim, K., Lyu, G., Baek, S., Shin, K., and Lee, G.: Retrieval and Accuracy Evaluation of
897 Horizontal Winds from Doppler Lidars during ICE-POP 2018, *Atmos.*, **32**, 163–178,
898 <https://doi.org/10.14191/Atmos.2022.32.2.161>, 2022.

899 Lee, J., Seo, J., Baik, J., Park, S., and Han, B.: A Numerical Study of Windstorms in the Lee of

900 the Taebaek Mountains, South Korea: Characteristics and Generation
901 Mechanisms. *Atmosphere*, **11**, 431. <https://doi.org/10.3390/atmos11040431>, 2020.

902 Lee, J.- T., Ko, K.- Y., Lee, D.- I., You, C.- H., and Liou, Y.- C.: Enhancement of orographic
903 precipitation in Jeju Island during the passage of Typhoon Khanun (2012), *Atmos. Res.*,
904 **201**, 1245–1254. <https://doi.org/10.1016/j.atmosres.2017.10.013>, 2017.

905 Lee, W.-C., Marks, F. D., and Carbone, R. E.: Velocity track display – A technique to extract
906 real-time tropical cyclone circulations using a single airborne Doppler radar, *J. Atmos.*
907 *Ocean. Tech.*, **11**, 337–356, [https://doi.org/10.1175/1520-0426\(1994\)011<0337:VTDTTE>2.0.CO;2](https://doi.org/10.1175/1520-0426(1994)011<0337:VTDTTE>2.0.CO;2), 1994

909 Lee, W.-C., Jou, B. J.-D., Chang, P.-L., and Deng, S.- M.: Tropical cyclone kinematic structure
910 derived from single-Doppler radar observations. Part I: Interpretation of Doppler velocity
911 patterns and the GBVTD technique, *Mon. Weather Rev.*, **127**, 2419–2439,
912 [https://doi.org/10.1175/1520-0493\(1999\)127<2419:TCKSRF>2.0.CO;2](https://doi.org/10.1175/1520-0493(1999)127<2419:TCKSRF>2.0.CO;2), 1999.

913 Liou, Y.-C., Wang, T.-C. C., Lee, W.-C., and Chang, Y.-J.: The retrieval of asymmetric tropical
914 cyclone structures using Doppler radar simulations and observations with the extended
915 GBVTD technique, *Mon. Weather Rev.*, **134**, 1140–1160,
916 <https://doi.org/10.1175/MWR3107.1>, 2006.

917 Liou, Y., and Chang, Y.: A Variational Multiple–Doppler Radar Three-Dimensional Wind
918 Synthesis Method and Its Impacts on Thermodynamic Retrieval. *Mon. Wea. Rev.*, **137**,
919 3992–4010, <https://doi.org/10.1175/2009MWR2980.1>, 2009.

920 Liou, Y., Chang, S., and Sun, J.: An Application of the Immersed Boundary Method for
921 Recovering the Three-Dimensional Wind Fields over Complex Terrain Using Multiple-
922 Doppler Radar Data. *Mon. Wea. Rev.*, **140**, 1603–1619, <https://doi.org/10.1175/MWR-D-11-00151.1>, 2012.

924 Liou, Y., Chen Wang, T., Tsai, Y., Tang, Y., Lin, P., and Lee, Y.: Structure of precipitating systems
925 over Taiwan’s complex terrain during Typhoon Morakot (2009) as revealed by weather

926 radar and rain gauge observations, *J. Hydrology*, **506**, 14-25.
927 <https://doi.org/10.1016/j.jhydro1.2012.09.004>, 2013.

928 Liou, Y., Chiou, J., Chen, W., and Yu, H.: Improving the Model Convective Storm Quantitative
929 Precipitation Nowcasting by Assimilating State Variables Retrieved from Multiple-
930 Doppler Radar Observations. *Mon. Wea. Rev.*, **142**, 4017–4035,
931 <https://doi.org/10.1175/MWR-D-13-00315.1>, 2014.

932 Liou, Y., Chen Wang, T., and Huang, P.: The Inland Eyewall Reintensification of Typhoon
933 Fanapi (2010) Documented from an Observational Perspective Using Multiple-Doppler
934 Radar and Surface Measurements. *Mon. Wea. Rev.*, **144**, 241–261,
935 <https://doi.org/10.1175/MWR-D-15-0136.1>, 2016.

936 Liou, Y. C., Yang, P. C., and Wang, W. Y.: Thermodynamic recovery of the pressure and
937 temperature fields over complex terrain using wind fields derived by multiple-Doppler
938 radar synthesis. *Mon. Wea. Rev.*, **147(10)**, 3843-3857, <https://doi.org/10.1175/MWR-D-19-0059.1>, 2019.

940 Mass, C. F., and Ovens, D.: The Northern California Wildfires of 8–9 October 2017: The Role
941 of a Major Downslope Wind Event. *Bull. Amer. Meteor. Soc.*, **100**, 235–256,
942 <https://doi.org/10.1175/BAMS-D-18-0037.1>, 2019.

943 Mohr, C. G., and Miller, L. J. : CEDRIC—A software package for Cartesian Space Editing,
944 Synthesis, and Display of Radar Fields under Interactive Control. Preprints, *21st Conf. on*
945 *Radar Meteorology*, Edmonton, AB, Canada, Amer. Meteor. Soc., 569–574, 1983.

946 Oue, M., Kollias, P., Shapiro, A., Tatarevic, A., and Matsui, T.: Investigation of observational
947 error sources in multi-Doppler-radar three-dimensional variational vertical air motion
948 retrievals, *Atmos. Meas. Tech.*, **12**, 1999–2018, <https://doi.org/10.5194/amt-12-1999-2019>, 2019.

950 Park, J.-R., Kim, J.-H., Shin, Y., Kim, S.-H., Chun, H.-Y., Jang, W., Tsai, C.-L. and Lee, G.: A
951 numerical simulation of a strong windstorm event in the Taebaek Mountain Region in

952 Korea during the ICE-POP 2018, *Atmos. Res.*, **272**, 106158,
953 <https://doi.org/10.1016/j.atmosres.2022.106158>.

954 Päschke, E., Leinweber, R., and Lehmann, V.: An assessment of the performance of a 1.5 μm
955 Doppler lidar for operational vertical wind profiling based on a 1-year trial, *Atmos. Meas.
956 Tech.*, **8**, 2251–2266, <https://doi.org/10.5194/amt-8-2251-2015>, 2015.

957 Reed, T. R.: GAP WINDS OF THE STRAIT OF JUAN DE FUCA. *Mon. Wea. Rev.*, **59**, 373–
958 376, [https://doi.org/10.1175/15200493\(1931\)59<373:GWOTSO>2.0.CO;2](https://doi.org/10.1175/15200493(1931)59<373:GWOTSO>2.0.CO;2), 1931.

959 Ryzhkov, A., Zhang, P., Reeves, H., Kumjian, M., Tschallener, T., Trömel, S., and Simmer,
960 C.: Quasi-Vertical Profiles—A New Way to Look at Polarimetric Radar Data. *J. Atmos.
961 Oceanic Technol.*, **33**, 551–562, <https://doi.org/10.1175/JTECH-D-15-0020.1>, 2016.

962 Tsai, C., Kim, K., Liou, Y., Lee, G., and Yu, C.: Impacts of Topography on Airflow and
963 Precipitation in the Pyeongchang Area Seen from Multiple-Doppler Radar
964 Observations. *Mon. Wea. Rev.*, **146**, 3401–3424, [https://doi.org/10.1175/MWR-D-17-0394.1](https://doi.org/10.1175/MWR-D-17-
965 0394.1), 2018.

966 Tsai, C.-L., Kim, K., Liou, Y.-C., Kim, J.-H., Lee, Y., and Lee, G.: Orographic-induced strong
967 wind associated with a low-pressure system under clear-air condition during ICE-POP
968 2018, *J. Geophys. Res. Atmos.*, **127**, e2021JD036418.
969 <https://doi.org/10.1029/2021JD036418>, 2022.

970 Tseng, Y., and Ferziger, J.: A ghost-cell immersed boundary method for flow in complex
971 geometry. *J. Comput. Phys.*, **192**, 593–623, <https://doi.org/10.1016/j.jcp.2003.07.024>.
972 2003.

973 Yu, C.- K., and Bond, N. A.: Airborne Doppler observations of a cold front in the vicinity of
974 Vancouver Island. *Mon. Wea. Rev.*, **130**, 2692-2708, [https://doi.org/10.1175/1520-0493\(2000\)128<1577:ADOOAL>2.0.CO;2](https://doi.org/10.1175/1520-
975 0493(2000)128<1577:ADOOAL>2.0.CO;2), 2002.

976 Yu, C., and Tsai, C.-L.: Surface Pressure Features of Landfalling Typhoon Rainbands and Their
977 Possible Causes. *J. Atmos. Sci.*, **67**, 2893–2911, <https://doi.org/10.1175/2010JAS3312.1>,

978 2010.

979 Yu, C.-K., and Tsai, C.-L. : Structural and surface features of arc-shaped radar echoes along an
980 outer tropical cyclone rainband. *J. Atmos. Sci.*, **70**, 56– 72. <https://doi.org/10.1175/JAS-D-12-090.1>, 2013.

981

982 Yu, C.-K., and Tsai, C.-L.: Structural changes of an outer tropical cyclone rain band encountering
983 the topography of northern Taiwan. *Q. J. R. Meteorol. Soc.*, **143**, 1107–1122.
984 <https://doi.org/10.1002/qj.2994>, 2017.

985 Yu, C.- K., and Jou, B. J.-D.: Radar observations of diurnally forced, offshore convective lines
986 along the southeastern coast of Taiwan. *Mon. Wea. Rev.*, **133**, 1613-1636,
987 <https://doi.org/10.1175/MWR2937.1>, 2005.

988 Yu, C.-K., Cheng, L.-W., Wu, C.-C., and Tsai, C.-L.: Outer Tropical Cyclone Rainbands
989 Associated with Typhoon Matmo (2014). *Mon. Wea. Rev.*, **148**, 2935–2952,
990 <https://doi.org/10.1175/MWR-D-20-0054.1>, 2020.